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Abstract 23 

 24 

The impact of the physical environment and phytoplankton size on particle types 25 

(zooplankton, biogenic matter or phytodetritus) in the water column is poorly understood. 26 

Here, we investigate how hydrography (e.g. water column stratification) impacts 27 

phytoplankton size and photophysiology across a productive coastal bank area. Additionally, 28 

we investigate how the physical environment and phytoplankton size structure influence the 29 

concentrations of plankton (e.g. copepods and diatom chains), biogenic forms (fecal pellets) 30 

and other particles (minerals, aggregates or phytodetritus) using discrete samples and in-situ 31 

optical instruments. Microphytoplankton (> 20 µm), including many chain-forming diatoms, 32 

dominated (average > 90 % of total size fraction) in un-stratified waters of the bank. 33 

Phytoplankton within the bank region also required more irradiance to saturate 34 

photosynthesis, as indicated by the onset light saturation parameter (Ek, average 297 µmol 35 

photons m-2 s-1), suggesting high plasticity to a dynamic light environment. Conversely, the 36 

contribution of nano- and picophytoplankton (< 20 µm), such as flagellates increased (up to 37 

36% of total phytoplankton size fraction) towards stratified off-bank waters. The 38 

phytoplankton community from off-bank had lower Ek (average 199 µmol photons m-2 s-1) 39 

and presented higher concentrations of photoprotective pigments, such diatoxanthin - used in 40 

the xanthophyll cycle to cope with light stress and potential photo-damage. Higher 41 

concentrations of copepods (> 1 × 103 counts m-3), fecal pellets (> 1 × 104 counts m-3) and 42 

ammonium (> 0.5 µM) within the bank compared to off-bank regions, indicated that 43 

copepods were actively grazing in this region. Low stratification (average stratification index 44 

(SI) < 6 × 10-3 kg m-4) allowed for intensive mixing, which might have promoted the high 45 

concentration of aggregates (> 5 × 105 counts m-3) within the bank when compared to off-46 

bank (SI off-bank > 10 × 10-3 kg m-4). Our results, obtained using automated techniques 47 
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measured in-situ, represent an innovative approach to demonstrate that phytoplankton size 48 

and stratification influence the nature of particles found in the water column (including 49 

aggregates, fecal pellets and grazer abundances).  50 

 51 

1. Introduction 52 

 53 

The size structure and morphology of a plankton community is largely controlled by 54 

environmental factors, such as nutrient concentrations and turbulence in marine ecosystems 55 

(Acevedo-Trejos et al., 2013; Margalef, 1978). Consequently, phytoplankton size structure 56 

significantly impacts the energy transfer to upper trophic levels (Maury et al., 2007), in 57 

addition to the flux of particles to deep waters (Guidi et al., 2009; Mouw et al., 2016). For 58 

example, microphytoplankton (> 20 µm), mainly diatoms, which are common in upwelling 59 

nutrient-rich areas, are considered the main contributor to carbon export to deep waters 60 

(Kemp et al., 2006; Tréguer et al., 2018). Conversely, pico- (< 2 µm) and nanophytoplankton 61 

(2-20 µm), such as some cyanobacteria and small flagellates, dominate in stable and 62 

oligotrophic regions, and are rapidly remineralized in the upper water column (Kiørboe, 63 

1993; Marañón, 2009). Phytoplankton size structure can also influence photophysiological 64 

parameters within a community, such as photosynthetic rates, chlorophyll a absorption cross-65 

section and intracellular pigmentation (Lehmuskero et al., 2018; Uitz et al., 2008). However, 66 

the photoacclimation response of a phytoplankton community to light has been shown to be 67 

related to the amount of ambient light and depth rather than phytoplankton size structure 68 

(Bouman et al., 2018). 69 

Many efforts have been made over the last decades to investigate the influence of 70 

marine phytoplankton on vertical flux of carbon to deep waters using sediment traps (Boyd et 71 
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al., 2005; Salter et al., 2007), marine snow catchers (Cavan et al., 2015) and in-situ imaging 72 

techniques (Möller et al., 2012). However, the impact of marine phytoplankton communities 73 

and size structure on the nature of particles found in the water column (from individual cells 74 

to aggregates and/or carbon intake and repackaging, e.g. fecal pellets and grazer abundances), 75 

as well as their identification and quantification, remains a challenge. That is because of the 76 

complexity of marine suspended particles, which vary in form, size, and origin: from 77 

terrestrially-derived mineral grains, plankton and bacteria, biological detritus to a mixture of 78 

all these components. Moreover, phytoplankton size, morphology and taxonomy can 79 

influence the abundance and the properties of those particles, given that phytoplankton can 80 

enhance flocculation of marine snow (aggregates composed of a variety of plankton and 81 

detritus) during blooms (Laurenceau-Cornec et al., 2015). These particles may also break up, 82 

leading to a change in their transport behavior due to differences in size and density – and 83 

therefore particulate settling flux (Davies and Nepstad, 2017). In-situ monitoring 84 

(identification and quantification) of particles of distinct types (fecal pellets, aggregates, 85 

phytodetritus or living zooplankton) in the water can, thus, help us to understand the 86 

mechanisms underlying particle settling and flux. 87 

In-situ particle recording (biogenic and non-biogenic) as well as counting and 88 

identification using imaging and machine learning analyses has been considered a promising, 89 

non-destructive technique, where particle shape and size are preserved (Davies et al., 2017; 90 

Fragoso et al., 2018; Sosik and Olson, 2007).  Due to the highly variable and complex nature 91 

of particles suspended in the water column, in-situ imaging has proved to be essential in 92 

providing accurate information on abundance of individually classified particle types, such as 93 

marine snow, copepods and diatom chains (Hu and Davis, 2006). In-situ monitoring also 94 

allows a combination of several sensors that are able to capture particle size from a wide 95 

range of sizes and several orders of magnitude (Boss et al., 2015; Davies et al., 2017; 96 
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Reynolds et al., 2010). The application of machine learning techniques, utilizing deep 97 

convolutional neural networks has the potential for obtaining highly accurate and rapid 98 

classification of particle types measured in-situ (Davies et al., 2018; Ding et al., 2018). 99 

Coastal environments are highly productive due to upwelling, eddies or other episodic 100 

upward pulses of nutrients that continuously stimulate phytoplankton growth (Rykaczewski 101 

and Checkley, 2008). In addition to the high concentration of phytoplankton cells and chains, 102 

the intense water column mixing found in coastal systems allows aggregates and floc 103 

formation of several sizes, shapes and densities through the collision of small particles, either 104 

of a biogenic (live organisms and detritus) or non-biogenic (sediments) nature (Cross et al., 105 

2014; Stemmann and Boss, 2012). The dynamic and episodic nature of coastal waters, 106 

however, imposes a challenge when studying the mechanisms underlying phytoplankton 107 

dynamics and particle composition. The combination of adaptive robotic sampling, such as 108 

in-situ profiling autonomous underwater vehicles (AUVs), with numerical ocean models can, 109 

thus, address key drivers of productivity and environmental variability (Fossum et al., 2019; 110 

Johnsen et al., 2018; Ludvigsen et al., 2018). 111 

In this work, we provide a synthesis of information from a novel combination of in-112 

situ optical instruments, particle imaging, pigment-based phytoplankton size structure and 113 

fluorescence-based photophysiology. The goal is to: 1) investigate how distinct hydrography 114 

across a bank region affects the phytoplankton composition and photophysiological state and 115 

to 2) link the phytoplankton characteristics with particle types using an in-situ optical image 116 

sensor.  By doing so, we aim to better understand how the physical environment shapes 117 

phytoplankton size, and consequently, the upper trophic levels (e.g. copepod abundance) and 118 

particle formation (fecal pellets and aggregates), which will fill the gaps of our knowledge 119 

regarding pelagic processes and carbon fluxes in coastal ecosystems. 120 
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 121 

2. Methods 122 

2.1 Study area 123 

 124 

The Froan archipelago, located off the coast of mid-Norway, is considered a 125 

biological hotspot because of irregular bathymetry, where wind and tidal mixing sustain the 126 

primary productivity and biological diversity (Sætre, 2007). The area is known to be highly 127 

productive regarding seafood and fishing industry (e.g. Atlantic cod and saithe, large scallop 128 

(Pecten maximus) and edible crab (Cancer pagurus)), which boost the regional economy 129 

(Ervik et al., 2018; Julshamn et al., 2008; Tiller et al., 2015). Moreover, the Froan 130 

archipelago has a high biodiversity of fauna, being a breeding ground for the European shag 131 

(Phalacrocorax aristotelis) (Barrett et al., 1990), the great cormorant (Phalacrocorax carbo) 132 

(Lorentsen et al., 2010) and the gray seal (Halichoerus grypus) (Jenssen et al., 2010). Despite 133 

being an important ecological zone, little is known regarding plankton/particle distributions 134 

and dynamics in this region. 135 

This study area of Mausund Bank (63.8°- 64.2°N, 8.2° - 9.0° E) in the Froan 136 

archipelago is a shallow bank with small islands and complex bathymetry (Fig. 1). The 137 

circulation around Froan is dominated primarily by hydrographical forcing. The main oceanic 138 

current is the Norwegian Coastal Current (NCC), which is a surface water-mass originating in 139 

the south (in the Skagerrak Strait) that mixes with freshwater runoff from Norwegian fjords 140 

as it moves northwards along the coast (Skagseth et al., 2011). Another oceanic current found 141 

in the Mausund Bank is the North Atlantic Current (NAC), which flows underneath the NCC 142 

and occasionally intrudes into the bank, bringing warm, saline and nutrient-rich waters into 143 

this area. The steep continental shelf and the complex bathymetry in the shallow Mausund 144 

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



 

 

7 

 

Bank provide the physical setting for upwelling events, which are fueled by strong local tidal 145 

currents (Moe et al., 2003) and wind-driven mixing in the summer (Sætre, 2007). 146 

 147 

2.2 Sampling 148 

Samples for nutrient and biological analyses were collected between 8th to 12th May 149 

2017 at five different stations at Mausund Bank on board of the R/V Gunnerus (Fig. 1). The 150 

stations covered the area within the bank (St. 1 and 2) and off-bank area (St. 3, 4 and 5) (Fig. 151 

1). Stations were sampled several times within the course of the five days and under distinct 152 

tidal conditions (Table 1).  153 

A CTD (Sealogger 25, Seabird Electronics, Inc., USA) was deployed on a rosette with 154 

vertical profiles from the surface down to 100 - 250 m at each station. The Stratification 155 

Index (SI) was calculated as the absolute value of the difference in potential density (σƟ) 156 

between the deepest to the shallowest depth (σƟdeep - σƟshallow) divided by the respective 157 

difference in depth (zdeep - zshallow) as described in Li, 2002. 158 

 159 

2.3 Imaging sampling 160 

 161 

An additional profiling frame was also deployed in the upper 100 m of the water 162 

column to obtain information on optical and particle properties. Particle properties were 163 

obtained by the Silhouette Camera (SilCam) system (Davies et al., 2017). This instrument 164 

provides in-situ information on the particle size distribution and concentration spanning 165 

50m - ~11 mm in diameter. In-situ measurements of particulate material are necessary 166 

because marine snow flocs and other delicate particles are easily broken during discrete water 167 
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sampling. Images from the SilCam system can also be analyzed to extract information on the 168 

abundance of varying types of material present, such as diatom chains, fecal pellets and flocs 169 

(examples of images are found in Figure 2). The profiling frame was lowered at 170 

approximately 0.2-0.4cm/s, with data acquisition rates for the CTD at 1Hz and the SilCam at 171 

7Hz. 172 

The SilCam is an in-situ particle imaging system that utilizes telecentric receiving 173 

optics, a white backlight and a high-resolution color camera to record transmittance images 174 

(Davies et al 2017). The sample volume of the system used here was 35.2 x 29.4 x 11mm for 175 

each raw image recorded. In-focus particle images are directly recorded in color, so minimal 176 

processing is needed. These images look very much like microscope images (albeit at a lower 177 

magnification). From raw images, individually-detected particles are counted, sized and 178 

classified with a minimum equivalent circular diameter of 50 µm (corresponding to a 12 pixel 179 

area).  180 

 181 

2.4 L-AUV sampling  182 

The Light Autonomous Underwater Vehicle (L-AUV, Sousa et al., 2012) was 183 

equipped with a Seabird Fastcat 49 CTD (sampling rate of 16 Hz) for temperature, salinity 184 

(conductivity) and depth (pressure) parameters. A Wet Labs Eco Puck (Wet Labs, Oregon, 185 

USA, calibrated by producer prior to cruise) was also equipped on the L-AUV for 186 

fluorescence detection of chlorophyll a (Chlain-situ, in mg m-3) and colored dissolved organic 187 

matter concentrations (CDOM, in ppm). The concentration of total suspended material 188 

(TSM) was detected by back scattered light at 700 nm (bb700, m-1). Two transects were 189 

performed, one on the 8th May for 3 hours (10:30 am – 1:30 pm) back and forth in the region 190 

within the bank (transect A, Fig. 1) and another one off-bank (transect B) on the 5th May for 4 191 
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hours (2:30 pm – 16:30 pm). More details about the adaptive sampling strategy with the L-192 

AUV is available in Fossum et al. (2018). 193 

 194 

2.5 Water and net sampling  195 

Water samples were collected from 2.5 L Niskin bottles mounted on the CTD rosette 196 

frame. Discrete water samples were collected at the surface (< 5 m) and subsurface (25 and 197 

40 m) for measurements of phytoplankton pigments (including in vitro chlorophyll a as an 198 

indicator of phytoplankton biomass), and in vivo variable chlorophyll a fluorescence (Phyto-199 

PAM) for photosynthetic parameters. At stations 3, 4 and 5, which were more stratified, 200 

samples were also collected at deeper waters for nutrients (80 to 120 m). Net hauls were 201 

sampled at the surface (< 5 m) for analysis of phytoplankton communities, using a plankton 202 

net (mesh size 20m) and fixed with formaldehyde to a final concentration of 4%. The fixed 203 

samples from net hauls were kept in the dark at room temperature for later identification. 204 

Samples for nutrients were filtered with a 0.8 µm polycarbonate filter and the filtrate 205 

was placed in a centrifuge tube and frozen at -20ºC.  Nutrients concentrations (nitrate+nitrite, 206 

silicate, phosphate and ammonium) were analyzed later using a continuous flow automated 207 

analyzer (CFA, Auto Analyzer 3, SEAL). 208 

For pigment analyses (chlorophylls and carotenoids), water was filtered (0.5 L – 2L, 209 

depending on biomass) onto a Whatman GF/F glassfiber filter and on-board of the R/V 210 

Gunnerus. Filtration volumes were adjusted based on how much biomass was concentrated in 211 

each filter. After filtration, each filter was double-folded, wrapped in aluminum foil, 212 

immediately flash-frozen in liquid nitrogen and kept temporarily (during the cruise) in a liquid 213 

nitrogen shipper. After the cruise, samples were immediately transferred and stored in a -80ºC 214 
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freezer until analyses in the laboratory to minimize pigment degradation (Johnsen and 215 

Sakshaug, 1993). 216 

 217 

2.6 Image processing  218 

Classification of particles (copepod, diatom chain, fecal pellets, etc.) is obtained via a 219 

Deep Convolutional Neural Network implemented with Tensorflow (Abadi et al., 2016). The 220 

analysis of SilCam data is performed using PySilCam (github.com/emlynjdavies/PySilCam), 221 

which uses the workflow described by Davies et al., (2018). The following main processing 222 

steps are applied to each image recorded by the SilCam: 223 

1. Each image is corrected by a clean background image to reduce noise. 224 

2. The corrected image is segmented (binarized) to produce a logical image (zeros and 225 

ones) of the particles detected. 226 

3. Particles in the binary image are then counted and particle properties (geometry and 227 

particle type) are calculated for each particle. 228 

4. The particle size distribution is calculated by counting Equivalent Circular Diameters 229 

(ECD) into their appropriate volume size class.  230 

5. Particle volume is estimated by assuming the spherical volume-equivalence of the 231 

ECD. 232 

The background correction is calculated from an average of images recorded 233 

immediately prior to processing. The correction of images reduces noise and gradients in 234 

background illumination and small fouling artefacts that may appear on the optical window. 235 

To confirm accuracy of the particle sizes in the water, validation was performed using 236 

spherical standards as reported in Davies et al. (2017).  237 
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  238 

2.7 Pigment analyses 239 

Chlorophyll a concentration was determined by fluorometry (ChlaFluor) and high-240 

performance liquid chromatography (HPLC) (ChlaHPLC) 4 months after collection.  ChlaFluor 241 

was measured first through extraction in 100% methanol after 2 hours at -10°C, and 242 

determination using the non-acidification method (Holm-Hansen and Riemann, 1978) and a 243 

Turner Designs Trilogy fluorometer (model: 7200-000). Furthermore, individual chlorophylls 244 

and accessory pigments were quantified using a reverse-phase HPLC (Hewlett-Packard 1100 245 

Series system) equipped with a diode array detector (spectral absorbance), where pigments 246 

were separated using a Symmetry C8 column. The method is described in Rodríguez et al. 247 

(2006) with modification from Zapata et al. (2000), and referred to as ‘HPLC system 2’ in 248 

Egeland et al. (2011). Frozen filters were extracted with 100% methanol for at least 24 hours 249 

at -20ºC. Extracts were filtered through Millipore 0.45 µm filter syringe to remove debris 250 

before injection into the HPLC system. HPLC calibration was performed using chlorophyll 251 

and carotenoid standards from own cultures and from SIGMA (Aldrich, UK) and DHI Water 252 

& Environment (Denmark). Specific extinction coefficients used for pigment quantification 253 

were found in Jeffrey et al. (1997). Limits of detection were 0.001 mg m-3 for all pigments 254 

and pigment concentrations below detection limits were not reported. 255 

 256 

2.8 Phytoplankton size structure determination 257 

Many phytoplankton species typically found in coastal regions (e.g. the diatom 258 

Skeletonema) are sensitive to chlorophyllase activity, which results in the degradation of 259 

ChlaHPLC to chlorophyllide a and pheophorbide (sub-products of ChlaHPLC ) (Barrett and 260 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



 

 

12 

 

Jeffrey, 1971; Jeffrey and Hallegraeff, 1987; Roy et al., 1996; Suzuki and Fujita, 1986). 261 

Chlorophyllase activity has been assumed to increase in aqueous solvents, such as those used 262 

in HPLC analysis (Barrett and Jeffrey, 1971, Jeffrey and Hallegraeff, 1987) or during the 263 

breakage of weakly silicified cells walls (typically found in Skeletonema) and chloroplast 264 

damage, which releases the acidic cell sap (Roy et al., 1996; Johnsen and Sakshaug, 1993; 265 

Suzuki and Fujita, 1986).  266 

In this study, the presence of chlorophyll a degradation products, such as 267 

chlorophyllide a and phaeophorbide a was observed, so we infer that some degradation 268 

occurred possibly because of the dominance of Skeletonema costatum. In vitro chlorophyll a 269 

degradation can compromise the determination of phytoplankton groups, such as those that 270 

use a combination of pigment marker ratios to ChlaHPLC  (e.g. CHEMTAX). Therefore, 271 

phytoplankton size structure in this study was determined based on the ratio of selected class-272 

specific pigment markers (which excludes ChlaHPLC, see below) to the sum of total 273 

diagnostics pigment (DP). This approach has been widely used in oceanographic approaches 274 

(Poulton et al., 2006; Uitz et al., 2006; Vidussi et al., 2001) and provides a simplified 275 

estimation of phytoplankton size classes. The selected pigment markers were associated with 276 

taxonomic groups from the micro- (> 20 µm, e.g. diatoms and dinoflagellates), nano- (from 2 277 

to 20 µm, e.g. mostly flagellates) or picophytoplankton classes (< 2 µm, e.g. the 278 

cyanobacteria Prochlorococcus and Synechoccocus). The quantification was according to 279 

Poulton et al. (2006), with the modification that prasinoxanthin, a photosynthetic carotenoid 280 

of some prasinophytes, was included in the sum, given that this pigment was observed in this 281 

study and this phytoplankton group is commonly found in Norwegian coastal waters (Higgins 282 

et al., 2011; Johnsen and Sakshaug, 2007; Volent et al., 2011). In spite of some degradation 283 

of ChlaHPLC and the presence of chlorophyllide a and phaeophorbide a in the samples in this 284 
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study, ChlaHPLC and DPs were correlated (r2= 0.77, n= 28, p < 0.001), providing confidence 285 

in the method used (Vidussi et al., 2001). 286 

The approach used by Poulton et al. (2006) and Vidussi et al. (2001) is more 287 

simplistic, since it gives equal weight to all DPs. Other up-to-date and refined approach (e.g. 288 

Uitz et al., 2006) provides distinct weights of DPs, with the intention to more accurately 289 

estimate chlorophyll a concentrations associated with each size class. In this study, a more 290 

simplistic (former) approach was used, since the ultimate goal is to observe general spatial 291 

trends of phytoplankton size based on approximations rather than quantifying each class 292 

fraction in terms of chlorophyll a. Moreover, with this approach, Pras can be included in the 293 

calculation, given that it was not represented in the approach by Uitz et al. (2006). 294 

Regardless, estimations of phytoplankton size structure based on DPs must always be 295 

interpreted with caution because they do not reflect the true size of phytoplankton 296 

communities (Uitz et al., 2006). Several algal groups share similar pigment markers (Fuco is 297 

found in diatoms, as well as some prymnesiophytes, dinoflagellates and pelagophytes) and 298 

may present distinct size spectra (e.g. diatoms, which are generally considered part of the 299 

microphytoplankton can also be found in smaller sizes (< 20 µm)) (Uitz et al., 2006).  300 

Zeaxanthin (Zea) is indicative of cyanobacteria, chlorophytes and prasinophytes Type 301 

2 (Vidussi et al., 2004). In this study, Zea was observed as a trace pigment only (i.e. a peak 302 

was observed but its concentration was found below the limits of detection). For this reason, 303 

we removed Zea of the analyses. Chlorophyll b (Chl b) is a pigment marker found in 304 

prochlorophytes, chlorophytes, prasinophytes and euglenophytes (Jeffrey et al., 1997). It is 305 

more likely that Chl b belongs to prasinophytes, including the picoeukaryote Micromonas 306 

pusilla, given that this group has been observed in high abundances in Norwegian coastal 307 

waters (Volent et al., 2011). Therefore, we grouped the nano- and the picophytoplankton 308 

together (herein defined as Nf+Pf, see below) to represent the < 20 µm size fraction in the 309 
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further analyses. By doing so, we reduce any potential uncertainty related to Chl b being 310 

found in the two size groups. Alloxanthin (Allo) is a characteristic pigment of cryptophytes 311 

(Jeffrey and Vesk, 1997). Fucoxanthin (Fuco) is the major carotenoid found in diatoms, 312 

although it is also found in prymnesiophytes, chrysophytes, pelagophytes and dinoflagellates 313 

Type 2 (Higgins et al., 2011). Photosynthetic carotenoids, such as 19′-314 

hexanoyloxyfucoxanthin (Hex-fuco) and 19′-butanoyloxyfucoxanthin (But-fuco) are the main 315 

markers of prymnesiophytes and pelagophytes, respectively, although they can also be found 316 

in dinoflagellates Type 2 and dictyochophyceae (Higgins et al., 2011; Johnsen et al., 2011). 317 

Peridinin (Per) is the marker restricted to dinoflagellates Type 1 (Higgins et al., 2011). Per, 318 

Fuco, Chl b and Hex-fuco were detected in all samples, whereas But-fuco was observed in 319 

40% and Pras and Allo were found in 14% of samples. Although these latter two pigments 320 

were found in few samples (14%), we decided to keep in the approach, given that they are 321 

important markers of flagellates present in the water. 322 

 323 

A total of eight pigments was summed to calculate the DPs as: 324 

 325 

DPs (mg m-3) = Chl b + Allo + Hex-fuco + But-fuco + Fuco + Per + Pras, 326 

 327 

Where phytoplankton size classes are estimated as follow: 328 

 329 

Microphytoplankton fraction (size range > 20 µm, Mf) = (Fuco + Per)/DPs 330 

Nano- + picophytoplankton fraction (size range < 20 µm, Nf+Pf) = (Chl b, Allo + 331 

Hex-fuco + But-fuco + Pras)/DPs 332 
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      333 

To determine the xanthophyll de-epoxidation state (%), which infers whether the 334 

phytoplankton community is being exposed to light stress, the epoxidized (diadinoxanthin, 335 

DD) and the de-epoxidized form (diatoxanthin, DT) was calculated as DT/(DD+DT) and 336 

(DD+DT)/ChlaFluor (Lavaud et al., 2004), where chlorophyll a is derived from fluorometry 337 

rather than HPLC analyses. The solvent used in determining ChlaFluor (as opposite 338 

toChlaHPLC) is not aqueous (100% methanol, see section 2.7), which prevents chlorophyllase 339 

activity and, therefore, chlorophyll a degradation during laboratory analyses (Jeffrey and 340 

Hallegraeff, 1987).    341 

 342 

2.9 Phytoplankton photophysiology 343 

In vivo variable chlorophyll a fluorescence was measured using a Pulse Amplitude 344 

Modulation fluorometer (Phyto-PAM, Heinz Walz) on board of the R/V Gunnerus. Water 345 

samples were dark acclimated and the temperature inside the PAM cuvette chamber was 346 

adjusted to the in-situ water temperature for 5 minutes prior to the determination of the 347 

effective PSII quantum yield (ФPSII, detailed in Nymark et al. 2009). Discrete measurements 348 

were performed on water samples collected from surface and subsurface waters (< 5 m and 349 

25 m only) and pseudo-replicates (i.e. subsamples of the water collected from the same 350 

Niskin bottle) were measured at each depth.  351 

Measurements of photosynthesis or electron transport rate (ETR, µmol electrons m-2 s-352 

1) versus irradiance (P vs E curves) were performed to determine the following phytoplankton 353 

photophysiological parameters: electron transport rate efficiency (), maximum electron 354 

transport rate (ETRmax) and light intensity approximating the onset of saturation (Ek). The 355 

steps in irradiance levels varied from low to high irradiance (set from ~30 to 700 µmol 356 
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photons m-2 s-1). The model for curve fitting was performed in each curve and all parameters 357 

were based on Jassby and Platt (1976) model, which assumes that photosynthesis achieves a 358 

hyperbolic tangent function and disregards photo-inhibition.  359 

 360 

2.10 Phytoplankton composition 361 

Sub-samples from the preserved net haul samples were analyzed using a Nikon 362 

Eclipse 50i light microscope, where observed species were registered to provide a list of 363 

dominating phytoplankton species (> 20 m) during the survey period. Phytoplankton were 364 

identified to genus or species whenever possible, following Throndsen et al. (2007) and 365 

Tomas (1997). 366 

 367 

2.11 Statistical analyses  368 

Phytoplankton size structure in Mausund Bank was investigated using PRIMER-E 369 

(v7) software (Clarke and Warwick, 2001). Phytoplankton size fraction (% of nano- + 370 

picophytoplankton (< 20 µm) and microphytoplankton (> 20 µm) to the total) were analyzed 371 

using non-metric multi-dimensional scaling (nMDS) of samples based on Bray-Curtis 372 

similarity matrices. The nMDS plot was used to visually display the similarities of the 373 

samples, where samples with high community resemblances were located spatially closer 374 

than the less similar ones. The stress level of the nMDS plot is a measurement of visual 375 

representation, with low stress values (< 0.05) being associated with excellent visual 376 

representation of the similarity relationship in 2-D space (Clarke and Warwick, 2001). 377 

A redundancy analysis (RDA) was performed using the CANOCO 4.5 software 378 

(CANOCO, Microcomputer Power, Ithaca, NY) to analyze the environmental variables 379 
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(explanatory variables) that best explain the distribution of the phytoplankton size fractions 380 

from Mausund Bank. The RDA generates an ordination diagram with arrows that show 381 

associations between each size group and the explanatory and supplementary variables. Arrows 382 

representing environmental (nutrients and hydrographic variables), biological (phytoplankton 383 

size structure) or supplementary variables (particle types, chlorophyll a and photoprotective 384 

pigments) in the same or opposite direction suggest positive or negative correlations; and the 385 

longer the arrow, the stronger the correlation. Conversely, no proximity indicates weak or a 386 

lack of correlation. Forward-selection (a posteriori analysis) and Monte Carlo permutation test 387 

(n=999, reduced model) was applied to test the statistical significance (p < 0.05) of the 388 

environmental variables that significantly explained phytoplankton size distribution analyzed 389 

either individually (λ1, marginal effects) or together with other forward-selected variables (λa, 390 

conditional effects). Further information about the RDA analyses is found in Fragoso et al. 391 

(2016).  392 

 393 

3. Results  394 

3.1 Hydrography 395 

Vertical profiles of temperature and salinity from stations 1 and 2 (within the bank, 396 

region A) and stations 3, 4 and 5 (outside of the bank, region B) suggest that these two 397 

regions are characterized by distinct hydrography (Fig. 3). In region A, the water column was 398 

well mixed, with temperature from 7.2 - 7.5 ºC from surface to deep waters (approximate 100 399 

m, Fig. 3a). Conversely, at region B, temperature varied with depth, from < 7.3 ºC in the 400 

upper 100 m, increasing gradually from 50 to 110 m and up to 7.6 - 8.1 ºC at 200 m, 401 

indicating the influence of Atlantic water at this depth (Fig. 3a). Salinity and density (σƟ) had 402 

similar patterns in both regions, suggesting that stratification is mostly driven by changes in 403 
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salinity (Fig. 3b,c). In both regions, salinity and density were generally lower at the surface 404 

(region A, salinity < 34 and σƟ < 26.5 kg m-3; region B, salinity > 34 and σƟ > 26.5 kg m-3), 405 

increasing with depth (region A, salinity = 34.2 and σƟ= 26.7 kg m-3 in 110 m approximately; 406 

region B, salinity up to 35.2 and σƟ= 27.4 kg m-3 at 200 m) (Fig. 3b,c). The larger change in 407 

density with depth in region B (Fig. 3c) contributed to greater stratification when compared 408 

to region A as observed in the upper 100 m (maximum SI values > 0.02 kg m-4, Fig 3d). 409 

 410 

3.2 L-AUV measurements  411 

Vertical profiles of physical and biological parameters collected by sensors (Wet Labs 412 

Eco Puck and CTD) equipped on the L-AUV are shown in Figure 4. Temperature and 413 

salinity, in addition to concentrations of Chlain-situ, colored dissolved organic matter (CDOM) 414 

and total suspended material (TSM, analyzed as optical backscatter, bb700) showed distinct 415 

patterns in transects at regions A (within the bank) and B (off-bank, Fig. 4). In transect A, 416 

temperature and salinity changed slightly with depth, with warmer and fresher water at the 417 

surface (temperature ~ 7.4 ºC; salinity < 33) and cooler and more saline waters from 40 to 418 

100 m depth (average temperature = 7.2ºC and average salinity = 34) (Fig 4b,d). Conversely, 419 

in transect B, temperature was the highest at the surface (< 10 m) and below 80 m (> 7.2 up 420 

to 7.8 ºC), whereas salinity considerable increases from the surface (< 5 m, average = 33.5) 421 

towards deeper waters (average = 35 from 80 to 100 m), indicating the presence of warm and 422 

saline waters of Atlantic origin (Fig. 4c,e). In general, Chlain-situ concentration was higher in 423 

transect A than transect B, where high values (~4 mg Chlain-situ m
-3) extended down to 40 m 424 

(Fig. 4g,f). In transect B, on the contrary, Chlain-situ concentrated in the upper 20 m (~3 mg 425 

Chlain-situ m
-3, Fig. 4g). Likewise, concentrations of CDOM and bb700 were higher at transect 426 

A than B (Fig 4 h-k), particularly in the upper 40 m (CDOM > 2.7 ppm, bb700 > 0.0002 m-1, 427 
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Fig 4i, k), suggesting that they occur as a result of high phytoplankton concentration 428 

(observed by Chlain-situ values) found within bank area. 429 

 430 

3.3 Phytoplankton size and community structure 431 

Phytoplankton size structure varied from within the islets to outside of the bank area 432 

but not with depth (Fig. 5a). As observed in the nMDS analysis, phytoplankton at station 1 433 

and 2 had higher similarity values among stations in terms of size structure, and was 434 

dominated by microphytoplankton (Fig. 5b, average = 91%, Table 2), particularly diatoms 435 

(see species list, Table S1, supplementary material). The contribution of the phytoplankton < 436 

20 µm (nano- + picophytoplankton) increased while microphytoplankton decreased, from 437 

inshore (St. 1) to offshore (St. 5) (Fig. 5), reaching an average of 25% and 73% at stations 5, 438 

respectively (Table 2).  439 

Net haul samples were dominated by diatoms and dinoflagellates. The number of 440 

listed species varied from 11 at the outmost station (St. 5), to 29 and 31 at the innermost (St. 441 

1 and 2, respectively (Table S1, supplementary material). The dominant diatom was 442 

Skeletonema costatum, which was observed at all stations during the cruise. The toxic (PSP, 443 

Paralytic Shellfish Poison) dinoflagellate, Alexandrium tamarense, was also recorded in all 444 

samples, except at the station 5 (Table S1, supplementary material).  A variety of large 445 

dinoflagellates (e.g. Tripos spp., Protoperidinium depressum) and chain-forming diatoms 446 

(e.g. Chaetoceros spp., Thalassiosira gravida) were observed (Table S1, supplementary 447 

material), which consistent with the SilCam observations. Information on nano- and 448 

picophytoplankton in the net hauls is limited due to the sampling method and fixation. 449 

 450 

3.4 Phytoplankton photophysiology 451 
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Photosynthetic parameters obtained from P vs E curves differed between regions 452 

within and outside the bank. In region A, phytoplankton presented high electron transport rate 453 

(average ETRmax = 49 µmol electrons m-2 s-1), indicating higher photosynthetic rate when 454 

compared to region B (average ETRmax = 36 µmol electrons m-2 s-1) (Table 3). Phytoplankton 455 

from within bank region also appeared to require more irradiance to saturate photosynthesis 456 

(average Ek for station 1 = 311 µmol photons m-2 s-1), decreasing gradually towards off-bank 457 

(average of station 5 = 190 µmol photons m-2 s-1) (Table 3, Fig. 6). Phytoplankton from 458 

station 3 (part of region B) presented similar photophysiological traits as observed in 459 

phytoplankton from region A (St. 1 and 2), with high ETRmax (~ 49 µmol electrons m-2 s-1) 460 

(Table 3, Fig. 6). Conversely, Ek did not vary at different depths (surface and 25 m, Table S2, 461 

supplementary material).     462 

 463 

3.5 Particle distributions 464 

Particle composition and concentrations obtained from the SilCam showed distinct 465 

patterns among stations (Fig. 7). In general, concentrations of copepods (> 1 × 103 counts m-466 

3), fecal pellets (> 1 × 104 counts m-3), diatom chains (> 2 × 104 counts m-3), and other 467 

particles (> 5 × 105 counts m-3)  were higher within St. 1 and 2 (region A) than the other 468 

stations (Fig. 7, Table 2). At this region, concentrations of particles were similar within 469 

depth, confirming a strong mixing found in this region (Fig. 7). As opposed to region A, fecal 470 

pellets, diatom chains and other particles were higher in the upper 30 m in region B, 471 

decreasing gradually with depth and approaching undetectable counts from 70 to 100 m (Fig. 472 

7b-d).  473 

In terms of volume per water sampled (cm3 m-3), particles identified by the SilCam 474 

varied both from inshore to offshore (from St. 1-5) and vertically (1-20 m, 21-50 m, 51-100 475 
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m) (Fig. 8). Region A (St. 1 and 2) had, on average, high volume of particles (copepods, fecal 476 

pellets and diatom chains) at all depths (Fig. 8), except at surface/subsurface (1-20 m) waters 477 

of station 4, where large volume of fecal pellets and diatoms were observed (Fig. 8a). Fecal 478 

pellets, followed by diatom chains and copepods, contributed to most of the volume of 479 

identified particles, except at upper waters of station 4 (1-20 m), where diatom chains co-480 

dominated (Fig 8a). Particles, in terms of volume, decreased sharply at mid-depth (21-50 m) 481 

from region A (St. 1 and 2) to region B (St. 3, 4 and 5) and gradually at deeper waters (51-482 

100 m) from inshore (St. 1) to offshore (St. 5) (Fig 8b,c).  483 

 484 

3.6 Environmental controls on phytoplankton size structure 485 

 486 

Environmental variables that explained the variance (explanatory variables) in the 487 

phytoplankton size structure (% of nano- +picophytoplankton and microphytoplankton) were 488 

investigated using redundancy analysis (RDA) (Fig. 9).  The associations in the ordination 489 

diagram showed that the microphytoplankton fraction, which was higher at stations 1 and 2, 490 

are predicted to correlate positively with temperature (average temperature = 7.3 °C) and 491 

dissolved inorganic nitrogen concentrations, such as nitrate+nitrate and ammonium (average 492 

of NO3+NO2 = 2.2 µM and NH4 = 0.65 µM, Table 2, Fig. 9). Likewise, microphytoplankton 493 

fraction correlated positively with particles derived from the SilCam estimations 494 

(supplemental variables), such as diatom chains (> 8 × 104 counts m-3), copepods (> 1 × 103 495 

counts m-3), fecal pellets (> 2 × 104 counts m-3) and other particles (> 1 × 106 counts m-3, Fig. 496 

9, Table 2). Conversely, nano- + picophytoplankton size fraction, which mostly occurred in 497 

stations 4 and 5, correlated positively with stratification (average SI > 1 × 102 kg m-4 for St. 3 498 

and 5) and silicate (average Si(OH)4 > 1.0 µM, Table 2). Ratios of photoprotective pigments 499 
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of xanthophyll cycle, such as (DD+DT)/ChlaFluor and DT/(DD+DT) (supplementary 500 

variables) also correlated positively with the nano- + picophytoplankton size fraction from 501 

stations 4 and 5 (Fig. 9), where ratios were > 0.2 (Table 2).  502 

Forward selection showed that three out of seven environmental factors (silicate, 503 

ammonium, and nitrate+nitrate) best explained the variance in the phytoplankton size fraction 504 

when analyzed together (conditional effects, referred to as λa in Table 4). Silicate was the 505 

most significant explanatory variable (λa = 0.51, p = 0.001), followed by nitrate+nitrite 506 

concentration (λa = 0.18, p = 0.001) (Table 4). Ammonium concentration was also a 507 

significant explanatory variable (λa = 0.06, p = 0.025) (Table 4). All other explanatory 508 

variables (environmental factors) were not significant (p > 0.05) in this study.  509 

 510 

4. Discussion 511 

 512 

4.1 Environmental controls on phytoplankton distributions 513 

 514 

Tidal fronts, particularly at the boundaries of bank areas, are extremely dynamic at 515 

small spatial scales (< 20 km, Landeira et al., 2014). In this study, we sampled across the 516 

edge of the Mausund Bank during several tidal phases and, yet, consistent environmental and 517 

biological patterns varying along the bank slope were observed. Similar to other bank 518 

regions, such as Georges (Franks and Chen, 1996; Hu et al., 2008) and Svalbard Bank (Kędra 519 

et al., 2013), primary production in Mausund appears to be stimulated through intensive tidal 520 

mixing (particularly in shallow areas). Intrusion of nutrient-rich Atlantic deep waters to the 521 

shallow area (here defined as region A) could be an additional explanation for the high 522 
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productivity observed in Mausund Bank. The steep bathymetry of the bank edges (Fig. 1b) 523 

could promote disruption of internal waves, allowing nutrient-rich deep waters to lift and 524 

inject onto the shallow bank through vigorous tidal mixing. The variability of the depth 525 

where warmer Atlantic waters were observed at the margin of the bank (St. 3 - 5) (Fig. 3) 526 

may indicate lifting of this nutrient-rich water mass, potentially by internal waves or a similar 527 

phenomenon. A similar pattern was observed in Georges and Jones Bank (Celtic Sea), where 528 

the disruption of internal waves was considered a potential cause for the cross-frontal nutrient 529 

transfer from offshore into the bank, explaining the occurrence of long-lasting phytoplankton 530 

blooms in the area (Loder et al., 1992; Palmer et al., 2013; Tweddle et al., 2013).  531 

Phytoplankton from distinct regions of Mausund Bank (within and outside the bank) 532 

varied in biomass, size structure and in photophysiological status. Large phytoplankton, such 533 

as chain-forming diatoms were abundant in un-stratified waters of the bank, whereas the 534 

contribution of smaller forms, including flagellates, increased towards the off-bank areas. 535 

Again, similar to Georges Bank, chlorophyll a and diatom concentrations are high within the 536 

bank during spring bloom due to the strong tidal currents flowing over the irregular 537 

bathymetry (Franks and Chen, 2001; Townsend and Thomas, 2002). Nutrients are stirred up 538 

during pre-bloom conditions, and rapidly assimilated by the phytoplankton once light 539 

becomes available (Gallager et al., 1996; Townsend and Thomas, 2002). In the Mausund 540 

Bank area, nutrient injection from off-bank Atlantic waters combined with intense tidal 541 

mixing might lead to nutrient replenishment, favoring large phytoplankton, such as diatom 542 

chains within the bank (as observed in this study). Conversely, density stratification in the 543 

region outside the front suppresses nutrients fluxes to the surface, which might have selected 544 

for smaller phytoplankton (flagellates) off-bank, as observed in this and other studies (e.g. 545 

Georges Bank, Franks and Chen, 2001). Smaller phytoplankton can thrive in low nutrient 546 

environments due to a larger surface-to-volume ratio of the cells; and concomitantly, higher 547 
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nutrient uptake efficiency resulted from a thinner diffusion boundary layer (Finkel et al., 548 

2009). Even though the contribution of smaller phytoplankton is greater outside the bank, 549 

microphytoplankton, particularly diatoms and dinoflagellates, were still dominant, suggesting 550 

advection of surface waters and cross-shelf exchange.  551 

Vertical mixing may also explain the predominance of large phytoplankton, such as 552 

diatom chains, within Mausund Bank region. Because large chain-forming diatoms would 553 

tend to sink faster, given that they are heavier than smaller single cells, turbulence plays an 554 

important role in keeping diatoms within the euphotic zone in coastal waters (Landeira et al., 555 

2014; Margalef, 1978). Diatoms in coastal regions are also favored under mixed conditions 556 

because increased shear-rate stimulates the diffusion boundary layer, favoring nutrient 557 

transport to the cell (Pahlow et al., 1997). Turbulence caused by intense vertical mixing, has 558 

been shown to boost cellular enzymatic reactions and enhance nutrient uptake and carbon 559 

assimilation in phytoplankton, including diatom chains, when nutrient concentrations start to 560 

become limiting (< 3 µM for nitrate+nitrite, similar to the values found in this study), 561 

providing an adaptive advantage for growth (Barton et al., 2014). 562 

Strong vertical mixing also explains the presence of spore-forming diatoms, such as 563 

Skeletonema. During the early spring, friction of tidal currents against the seafloor in the 564 

shallow bank region generates turbulence that disturbs bottom sediments. Thus, diatom 565 

resting spores are lifted from the sediments and serve as an inoculum to the spring blooms in 566 

Norwegian coastal regions (Hegseth et al., 1995). Although, in this study, sampling likely 567 

occurred  after the onset of the spring bloom (usually in March or April in Norwegian coastal 568 

waters, Throndsen et al., 2007), many diatom species, such as Skeletonema and Chaetoceros 569 

found in high abundance in this study are known to form resting spores (Glaucia M. Fragoso 570 

et al., 2018; Throndsen et al., 2007; Tomas, 1997). Likewise, benthic diatoms, including 571 

Licmophora sp., Pleurosigma and Striatella unipunctata (Throndsen et al., 2007; Tomas, 572 
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1997) were observed in the samples, further pointing to the potential role of mixing in stirring 573 

up diatoms (and resting spores) from sediments. Similar to Georges Bank, many spore-574 

forming diatoms found in this study, such as Thalassiosira sp., Skeletonema and 575 

Chaetoceros, were found blooming in bank regions during spring where intense tidal mixing 576 

occurs (Gallager et al., 1996; Gettings et al., 2014).  577 

The saturation values for phytoplankton photosynthesis in Mausund Bank are in 578 

agreement with laboratory studies of an isolate of S. costatum from the Trondheimsfjord, 579 

where cells grown at EPAR of 75 µmol photons m-2 s-1 at 12 and 24 h day-length, obtained an 580 

Ek of 211 µmol photons m-2 s-1 (Gilstad et al., 1993). However, small changes in Ek were 581 

observed, where phytoplankton from well-mixed waters of the inner bank (region A) 582 

appeared to require higher light levels to saturate photosynthesis (higher Ek) than the off-bank 583 

community. A possible explanation for this pattern is that phytoplankton from this region 584 

developed high plasticity to dynamic light environment with fast recovery to the changing 585 

light conditions. That is, because the stirring of the water column caused by the tidal 586 

fluctuations will result in the phytoplankton cell/chain being moved vertically along an 587 

irradiance gradient, and consequently exposed to rapid variation in light levels (Loder and 588 

Platt, 1985). Phytoplankton in turbid waters, such as tidal regimes, are known for their ability 589 

to adapt to fluctuating light, as opposed to off-shore phytoplankton in clear waters (Brunet et 590 

al., 1993; Lavaud et al., 2007). Conversely, the phytoplankton community from off-bank 591 

areas appeared to be more sensitive to high light in this study due to their higher ratios of 592 

photoprotective xanthophylls, diadinoxanthin and diatoxanthin, per chlorophyll a to avoid 593 

photodamage (Goss et al., 2006). High diatoxanthin levels observed in phytoplankton from 594 

off-bank suggests  that the community was experiencing higher light intensities (Moisan et 595 

al., 1998).  596 
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4.2 SilCam and particle distributions 598 

 599 

The application of in-situ imaging techniques (e.g. the Video Plankton Recorder) has 600 

been used in productive bank areas similar to Mausund Bank, such as Georges Bank (Ashjian 601 

et al., 2001; Gallager et al., 1996; Norrbin et al., 1996). Similar to the findings of these 602 

studies, plankton distributions were closely related to hydrography, suggesting that the 603 

physical environment is the main driver of the vertical distributions of the particles, although 604 

micro-scale patchiness (10s of meters) can occur in response to the ability of plankton to 605 

search for food (Gallager et al., 1996). Strong vertical mixing within the bank (region A) also 606 

explains why particles were able to reach deeper waters in this area. Physical processes at the 607 

bottom of the mixed layer (advection, convection, turbulence) can, in some cases, cause 608 

particles to escape out of the mixed layer (Noh and Nakada, 2010) and possibly provide food 609 

for the benthos in Mausund Bank. Enhanced stratification, as observed in a two-layer system 610 

(coastal above Atlantic-related waters) in region B of Mausund Bank could also have trapped 611 

particles (diatom chains and fecal pellets, Fig. 8c) at deeper waters (51-100  m). Mass flux of 612 

diatoms aggregates to deeper water has been observed in stratified waters subjected to fronts 613 

and mesoscale features (Kemp et al., 2006).  614 

In this study, strong horizontal gradients of copepods, fecal pellets, diatom chains and 615 

other particles were observed along the bank’s edge, being more abundant within the islets 616 

and decreasing off-bank. The high abundance of copepods, fecal pellets and ammonium 617 

within the bank suggests that copepods were actively grazing in this region. Diatoms as well 618 

as aggregates may have stimulated copepod growth, due to the selective feeding behavior of 619 

some species towards large particles (option ratio of 1:18) (Hansen et al., 1994; Head and 620 

Harris, 1994). However, formation of very large diatom chains, such as those at the upper end 621 
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of the prey size spectrum (> 50 µm, see Fig. 2), could also be used as a strategy to avoid 622 

predation by zooplankton, although inefficient sloppy feeding behavior in some species can 623 

occur (Jansen, 2008). Modulation of chain size (either from small to large size of the prey 624 

spectrum) has been reported as an important ecological trait driving phytoplankton species 625 

competition because it influences size plasticity, allowing the prey to escape the optimum 626 

grazing size spectrum (Bergkvist et al., 2012; Bjærke et al., 2015; Landeira et al., 2014).  627 

Most particles (~87% of total counts) observed by the SilCam classified as ‘other’ in 628 

this study. This category contained particles, such as bio-aggregates and marine snow. 629 

Intensive mixing within the bank area might have promoted the aggregation of particles, 630 

particularly of phytodetritus (either dead phytoplankton or tightly packed in fecal pellets) 631 

because turbulent shear can cause their intensive collision (Burd and Jackson, 2009). 632 

Moreover, phytoplankton, particularly diatoms, can enhance flocculation via production of 633 

Extracellular Polymeric Substances (EPS), which have sticky surface properties that ensure 634 

high likelihood of coalescence between particles following a collision (Alldredge et al., 1993; 635 

Thorton, 2002). Diatoms are known to form aggregates towards the end of the bloom 636 

formation; and many species, including those found in this study (Chaetoceros, Skeletonema 637 

and Thalassiosira) are known to contribute largely to EPS formation (Thorton, 2002). 638 

Phytoplankton and particle dynamics across Mausund Bank are summarized in Figure 10.  639 

The deployment of the suite of particle monitoring tools on the profiling frame from 640 

the vessel is an excellent method to obtain high temporal resolution profiles from a single 641 

station. However, integration of particle monitoring sensors on-board autonomous vehicles 642 

could improve spatio-temporal sampling to wider scales due to the high variability of 643 

plankton communities (Ludvigsen et al., 2018). In addition, imaging smaller particles using 644 

similar techniques to that of the SilCam could provide valuable information on the 645 

phytoplankton composition. Incorporation of in-situ flow cytometry (Sosik and Olson, 2007), 646 
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coupled to a lower magnification SilCam, and mounted on an autonomous platform could 647 

provide a possible solution. 648 

 649 

5. Conclusion 650 

Phytoplankton from distinct regions of Mausund Bank (within and outside the islets) 651 

varied in concentration, size and photophysiological status. Large phytoplankton (> 20 µm), 652 

such as chain-forming diatoms were abundant in un-stratified waters of the bank, whereas the 653 

contribution of small phytoplankton (< 20 µm), such as flagellates increased towards off-654 

bank. Vertical mixing may also explain the predominance of larger (chain-forming) 655 

phytoplankton, such as spore-forming blooming diatoms. In spite of deeper mixing, 656 

phytoplankton from waters of the inner bank (region A) required more light to saturate 657 

photosynthesis (higher Ek) than the off-bank community, possibly because of high plasticity 658 

to dynamic light environment. Conversely, the phytoplankton community from the off-bank 659 

were more exposed to higher irradiance than at the inner bank indicated by higher cellular 660 

concentrations of photoprotective pigments, particularly diatoxanthin used in the xanthophyll 661 

cycle to cope with photo-damage. The large abundance of copepods, fecal pellets and 662 

ammonium within the bank suggests that copepods were actively grazing on the 663 

microphytoplankton. Intensive mixing is suggested to have promoted the agglomeration of 664 

particles, such as marine snow, within the bank.  665 
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Figure 1. Map showing the a) Froan archipelago in the coast of Norway and the b) stations 1041 

sampled (1-5), where discrete water sampling and vertical in-situ profiling occurred on-board 1042 

of the R/V Gunnerus, in addition to L-AUV sampling transects performed at region A (TA, 1043 

within the bank) and region B (TB, off-bank).   1044 

 1045 

Figure 2. Collages of particle images from 1-5m (left) and 5-70 m (right) from a,b) station 2 1046 

and c,d) station 5 obtained from the Silhouette Camera (SilCam). The collages of particle 1047 

images are auto-generated using a packaging algorithm that attempts to represent the size 1048 

distribution of particles to correspond with what was measured, but in doing do, 1049 

concentration (or separation between particles) is not represented. 1050 

 1051 

Figure 3. Vertical profiles of a) temperature (ºC), b) salinity, c) density (σƟ, kg m-3) and d) 1052 

stratification index (SI, kg m-4) of stations 1-5. 1053 

 1054 

Figure 4. a) L-AUV transects (gray lines) and key environmental variables in region A (TA) 1055 

and B (TB). Vertical profiles of environmental variables, including b-c) temperature and d-e) 1056 

salinity, in addition to biological variables, such as concentrations of f-g) chlorophyll a (mg 1057 

Chlain-situ m
-3) h-i) colored dissolved organic matter (CDOM, ppm) and j-k) and total 1058 

suspended matter (TSM, measured as bb at 700 nm, m-1) along transects A (left) and B (right) 1059 

from a fixed reference position shown by the star in Figure 3a (x-axis). 1060 

 1061 

Figure 5. a) Non-metric multi-dimensional scaling (nMDS) plot representing the similarity of 1062 

phytoplankton size structure as a function of a) samples from different depths (< 5 m, circles, 1063 
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25 m, triangle, 40 m, square) and stations (1-5, also denoted with different colors) and b) 1064 

relative proportion of size classes: nano- + picopytoplakton (Nf+Pf) and microphytoplankton 1065 

(Mf, white).  1066 

 1067 

Figure 6. Pooled photosynthesis-irradiance curves of phytoplankton from stations 1-5, 1068 

showing the electron transport rate (µmol electrons m-2 s-1, y-axis) as a function of irradiance 1069 

(EPAR in µmol photons m-2 s-1, x-axis). Line indicate the fit of the curves from grouping of the 1070 

following stations: 1 and 2 (solid), 3 (dotted) and 4 and 5 (dashed). Average values of 1071 

photosynthethic parameters per station for each curve are shown in Table 3.  1072 

 1073 

Figure 7. Vertical distribution of particle counts per volume of seawater sampled (× 103 1074 

counts m-3) derived from the Silhouette Camera (SilCam) at stations 1-5: a) copepods, b) 1075 

fecal pellets, diatom chains and other particles from stations 1-5. 1076 

 1077 

Figure 8. Average particle volume concentration per volume of seawater sampled (cm3 m-3) 1078 

derived from the Silhouette Camera (SilCam) for copepods (black), fecal pellets (gray) and 1079 

diatom chains (white) from a) surface/subsurface (1-20 m), b) mid-depth (21-50 m) and deep 1080 

waters (51-100 m) from stations 1-5. 1081 

 1082 

Figure 9. Ordination diagram generated from redundancy analysis (RDA). Triplot represents 1083 

phytoplankton size fraction (black lines), explanatory environmental variables (red lines), 1084 

supplementary variables (blue lines) and samples for each depth and station (closed circles; 1085 

colors refers to stations at Figure 1). Phytoplankton size fractions: MICRO = 1086 
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microphytoplankton, NANO + PICO = nano- + picophytoplankton. Environmental variables: 1087 

NH4 = ammonium, NO3+NO2 = nitrate and nitrite, Si(OH)4 = silicate, PO4 = phosphate, SI 1088 

= stratification index. Supplementary variables:  ChlaFluor = fluorometric-derived 1089 

chlorophyll a, FECAL = fecal pellets, OTHER= particles, DD = diadinoxanthin, DT = 1090 

diatoxanthin.  1091 

 1092 

Figure 10. A schematic diagram showing phytoplankton and particles (diatom chains, 1093 

copepods, fecal pellets and aggregates) dynamics in Mausund Bank, Froan archipelago. 1094 

Brown area indicates the bottom of the bank. The left side of the diagram represents stratified 1095 

waters from off-bank, with the influence of warm, nutrient-rich Atlantic waters (red) beneath 1096 

coastal waters (blue). Stratification can suppress nutrients at the surface, which increases the 1097 

proportion of small (< 20 µm) phytoplankton off-bank. The Atlantic-influenced waters enter 1098 

at the bank, either through internal waves or similar phenomena, and tidal mixing fuels the 1099 

growth of microphytoplankton (> 20 µm, including diatom chains). Pico- and 1100 

nanophytoplankton can feed ciliates or other types of microzooplankton. The high abundance 1101 

of diatoms stimulates copepod growth, fecal pellet production and aggregate formation on the 1102 

bank region. High abundance of copepods can serve as food to the upper trophic levels, such 1103 

as birds and fish, while aggregates can be a source of food for the benthos.    1104 
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Table 1. Date, time (GMT), CTD cast number, bottom depth (m) and tidal condition at 

each of the five stations revisited.

Day Time Station CTD Cast Bottom depth (m) Tide
08.05.2017 15:40 2 1 119 ebb
09.05.2017 10:35 5 2 250 high
09.05.2017 14:20 3 3 150 ebb
09.05.2017 16:30 2 4 120 low
09.05.2017 18:28 1 5 125 low
10.05.2017 11:00 5 6 250 high
10.05.2017 13:26 4 7 168 high
10.05.2017 15:30 3 8 156 ebb
10.05.2017 16:45 2 9 115 low
10.05.2017 18:17 1 10 124 low
11.05.2017 09:15 3 11 170 rise
11.05.2017 11:00 2 12 120 high
11.05.2017 15:30 1 13 123 ebb
11.05.2017 17:25 2 14 120 low
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Table 2. Average and standard deviations of biological and environmental parameters of each 

station. NO3+NO2 = nitrate and nitrite; PO4 = phosphate; Si(OH)4 = silicate; NH4 = ammonium; 

ChlaFluor = fluorometric-derived chlorophyll a, DD = diadinoxanthin, DT = diatoxanthin.  

Station 1 Station 2 Station 3 Station 4 Station 5
 n=4 n=9 n=8 n=3 n=6
Microphytoplankton (%) 91 ± 1 91 ± 2 87 ± 4 82 ± 5 73 ± 8
Nano- + picophytoplankton (%) 9 ± 2 9 ± 2 13 ± 4 18 ± 5 25 ± 8
NH4 (µM) 0.6 ± 0.1 0.5 ± 0.3 0.4 ± 0.1 0.6 ± 0.3 0.4 ± 0.2
PO4 (µM) 0.1 ± 0.1 0.1 ± 0 0.1 ± 0 0.1 ± 0.1 0.1 ± 0
NO3+NO2 (µM) 2.0 ± 0.3 2.4 ± 0.5 2.2 ± 0.6 1.5 ± 0.9 1.9 ± 0.3
Si(OH)4 (µM) 0.4 ± 0 0.5 ± 0.1 1.0 ± 0.3 1.3 ± 0.2 1.8 ± 0.1
Chlorophyll a  (mg ChlaFluor m-3) 4.0 ± 0.3 4.2 ± 1.1 2.8 ± 0.9 2.1 ± 1.9 1.9 ± 1.1
Temperature (ºC) 7.3 ± 0.1 7.3 ± 0.1 7.1 ± 0.1 7.0 ± 0.1 7.0 ± 0.1
Salinity 33.9 ± 0 33.9 ± 0 34.1 ± 0.1 34.1 ± 0.1 34.0 ± 0.1
Stratification Index × 10-3

(kg m-4) 2 ± 1 5 ± 7 14 ± 14 4 ± 4 11 ± 11
Copepods (× 103 counts m-3) 1.0 ± 0.4 1.2 ± 0.5 0.2 ± 0.3 0 ± 0 0.1 ± 0.2
Fecal pellets (× 103 counts m-3) 23 ± 10 26 ± 14 14 ± 10 10 ± 7 11 ± 7
Diatom chains (× 103 counts m-3) 83 ± 37 83 ± 40 13 ± 18 10 ± 10 2 ± 1
Other particles (× 103 counts m-3) 1275 ± 496 1381 ± 546 359 ± 235 369 ± 67 181 ± 16
(DD+DT)/ ChlaFluor (w:w) 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0 0.3 ± 0.1 0.2 ± 0.1
DT/(DD+DT) (w:w) 0.2 ± 0 0.2 ± 0 0.2 ± 0.1 0.3 ± 0 0.3 ± 0.1
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Table 3. Average, standard deviation and number of observations (n) of photophysiological 

parameters (maximum electron transport rate (ETRmax), initial slope of the curve (α) and onset 

saturation irradiance (Ek)) and goodness-of-fit ((the sum of squares due to error, SSE), R2 and 

root mean squared error (RMSE)) of curves for each station. Units of photophysiological 

parameters are: ETRmax, µmol electrons m-2 s-1; α, electrons /photons; Ek (ETRmax/α), µmol 

photons m-2 s-1. Values from each curve are shown in Table S2 (supplementary material).

Station n ETRmax α Ek SSE R2 RMSE
1 3 48 ± 4 0.154 ± 0.030 311 ± 33 53 ± 31 0.98 ± 0.01 2.2 ± 0.8
2 8 49  ± 2 0.167 ± 0.024 292 ± 38 76 ± 34 0.97 ± 0.01 2.6 ± 0.6
3 4 49 ± 5 0.184 ± 0.016 265 ± 47 102 ± 64 0.96 ± 0.03 2.9 ± 1.1
4 2 35 ± 2 0.160 ± 0.018 218 ± 38 22 ± 1 0.98 ± 0 1.4 ± 0
5 4 36  ± 5 0.191 ± 0.024 190 ± 30 57 ± 39 0.96 ± 0.03 2.2 ± 0.7
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Table 4. Variance of each explanatory (environmental) variable (temperature (°C), nitrate and 

nitrite (NO3+NO2), phosphate (PO4), silicate (Si(OH)4) and ammonium (NH4) (μM), salinity and 

stratification index (SI) analyzed alone (λ1, marginal effects) or with other forward-selected 

variables (λa, conditional effects). Significant p-values (**p < 0.001 and *p < 0.05) represent the 

variables that significantly explain the variation in the analysis. 

Marginal Effects   Conditional Effects   
Variable λ1 Variable λa P F
Si(OH)4 0.51 Si(OH)4 0.51 0.001** 28.6
Temperature 0.39 NO3+NO2 0.18 0.001** 16.0
NH4     0.07 NH4  0.06 0.025* 6.0
SI      0.07 Salinity   0.01 0.260 1.4
Salinity   0.04 Temperature 0.01 0.507 0.6
NO3+NO2 0.03 SI      0 0.521 0.4
PO4     0 PO4     0 0.792 0.1

 Axes                               1 2 3 4 Total variance
 Eigen-values                     0.771 0.001 0.227 0.001 1
 Phytoplankton group-environment 
correlations  0.879 0.612 0.000 0.000
 Cumulative percentage variance
    of group data                77.1% 71.2% 99.9% 100.0%
    of group-environment relation 99.9% 100.0% 0.0% 0.0%

 Sum of all eigenvalues                             1
 Sum of all canonical eigenvalues                             0.731  
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1

1 Table S1. List of taxa observed from samples collected from distinct regions (A and B), dates 

2 (8th to 11th May) and stations (1-5).  Black areas indicate taxa presence in the sample.  

 Region  A   A    B  B B

Sampling date 09
.m

ai

10
.m

ai

11
.m

ai

08
.m

ai

09
.m

ai

10
.m

ai

11
.m

ai

09
.m

ai

10
.m

ai

11
.m

ai

10
.m

ai

10
.m

ai

Group Taxa/station 1 2 3 4 5

Dinoflagellates
Alexandrium 
tamarense  1 1 1 1 1 1 1 1 1 1  
Amylax triacantha     1        
Dinophysis acuminata 1 1 1 1 1 1 1 1 1 1 1  
D. acuta  1     1      
D. norvegica 1 1  1 1   1     
D. rotundata            1
Diplopsalis spp.   1          
Gonyaulax scrippsae  1  1 1 1    1 1  
Protoperidinium bipes   1          
P. brevipes  1       1    
P.  cerasus   1 1         
P. cf. pentagonum         1    
P. depressum 1   1 1 1 1   1  1
P. divergens    1         
P. ovatum 1 1  1 1 1 1  1 1 1  
P. pellucidum 1 1  1 1 1 1 1  1 1  
P. quarnerense     1        
P. steinii        1     
P. subinerme    1         
Protoperidinium spp.   1 1       1  
Scrippsiella 
trochoidea   1     1     
Tripos furca         1   1
T. fusus 1   1 1 1  1 1 1 1 1
T. lineatum    1     1 1 1  
T. longipes 1 1   1 1 1  1 1 1 1
T. macroceros       1      
T. muellerii     1  1   1  1

Diatoms Cerataulina pelagica 1 1 1  1 1 1 1 1 1 1  
Chaetoceros cf. 
convolutus  1    1  1 1 1  1
C. danicus 1 1  1 1  1 1     
C. debilis 1 1      1 1 1  1
C. decipiens 1 1 1 1 1 1 1  1 1 1 1
C. laciniosus     1 1 1   1 1  
C. similis 1 1 1   1 1 1  1   
C. tenuissimus  1   1    1  1  
C. teres  1           
Chaetoceros spp.  1 1 1 1      1 1
Corethron hystrix            1
Coscinodiscus sp.  1  1 1      1  
Cyclotella spp.             

 
Cylindrotheca 
closterium 1 1 1  1 1  1 1  1  



2

3

4 Table S1 (continuation). List of taxa observed from samples collected from distinct regions 

5 (A and B), dates (8th to 11th May) and stations (1-5).  Black areas indicate taxa presence.

 Region  A   A    B  B B

Sampling date 09
.m

ai

10
.m

ai

11
.m

ai

08
.m

ai

09
.m

ai

10
.m

ai

11
.m

ai

09
.m

ai

10
.m

ai

11
.m

ai

10
.m

ai

10
.m

ai

Group Taxa/station 1 2 3 4 5
Dactyliosolen 
fragilissimus        1     
Fragiliariopsis sp. 1 1   1   1 1  1  
Guinardia delicatula 1 1 1 1 1 1 1 1 1 1 1  
Leptocylindrus danicus     1        
Licmophora sp. 1  1  1   1     
Navicula sp. 1 1   1   1   1  
Pleurosigma normanii 1  1 1 1 1 1 1 1 1 1  
Pseudo-nitzschia 
seriata 1 1  1 1 1 1 1 1 1 1  
Pseudo-nitzschia spp. 1 1 1 1 1 1 1  1 1 1  
Skeletonema costatum 1 1 1 1 1 1 1 1 1 1 1  
Striatella unipunctata    1 1   1  1   
Thalassionema 
nitzschioides   1   1     1  
Thalassiosira gravida 1 1           
Thalassiosira spp. 1 1 1 1 1 1 1 1 1 1 1  
Pennate diatom        1     

Crysophyceae Meringosphaera sp.   1      1    
Silicoflagellates Dictyocha speculum 1 1  1         

6

7



3

8 Table S2. Photophysiological parameters (maximum electron transport rate (ETRmax), initial 

9 slope of the curve (α) and onset saturation irradiance (Ek)) and goodness-of-fit (the sum of 

10 squares due to error (SSE), degrees of freedom (DOF), R2 and root mean squared error 

11 (RMSE)) of each curve measured on distinct stations, CTD casts and depths. Units of 

12 photophysiological parameters are: ETRmax, µmol electrons m-2 s-1; α, electrons/photons; Ek, 

13 µmol photons m-2 s-1. Values from each curve are shown in Table S2 (supplementary 

14 material).

Station Depth CTD cast ETRmax α Ek SSE DOF R2 RMSE
1 1 10 44 0.1357 326 79 10 0.97 2.8
1 25 10 46 0.1381 334 63 10 0.98 2.5
1 25 13 52 0.1888 274 19 11 0.99 1.4
2 1 4 46 0.1517 306 79 11 0.97 2.7
2 3 9 45 0.1481 307 42 11 0.99 2.0
2 3 12 49 0.2157 227 97 11 0.97 3.0
2 3 14 50 0.1405 354 142 11 0.94 3.6
2 25 4 47 0.1793 261 37 11 0.99 1.8
2 25 9 48 0.157 308 73 11 0.98 2.6
2 25 12 52 0.1772 291 50 11 0.98 2.1
2 25 14 47 0.1666 280 86 10 0.96 2.9
3 3 11 49 0.1783 273 177 11 0.94 4.0
3 25 3 51 0.195 260 22 11 0.99 1.4
3 25 8 52 0.1634 320 95 11 0.97 2.9
3 25 11 41 0.1986 206 112 11 0.94 3.2
4 3 7 36 0.1467 245 23 11 0.99 1.4
4 25 7 33 0.1728 191 22 11 0.98 1.4
5 1 2 34 0.1948 175 106 11 0.92 3.1
5 3 6 37 0.1601 231 33 11 0.98 1.7
5 25 2 31 0.1918 162 67 11 0.93 2.5
5 25 6 42 0.2191 192 20 8 0.99 1.6
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