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Design and Development of low-cost Sensor to
capture ventral and dorsal Finger-vein for Biometric

Authentication
Raghavendra Ramachandra, Kiran Raja, Sushma Venkatesh and Christoph Busch

Abstract—Biometrics-based authentication of subjects is widely
deployed in several real-life applications. Among various biomet-
ric characteristics, finger-vein characteristic has demonstrated
both reliable and highly accurate authentication for access control
in secured applications. However, most of these systems are
based on commercial sensors where the image level data is not
available for academic research. In this paper, we present the
design and development of a low-cost finger-vein sensor based
on a single camera that can capture finger-vein images from
dorsal and ventral part of the finger with high quality. The
system consists of multiple Near-Infra-Red (NIR) light sources
to illuminate the finger from both sides (left and right) and
top. The camera in the sensor is also coupled with the custom
designed physical structure to facilitate high reflectance of the
emitted light and distribute the light uniformly on the finger
to capture good quality dorsal and ventral finger-vein pattern.
Extensive experiments are carried out on the data captured using
the developed sensor and benchmarked the performance with
eight different State-Of-The-Art (SOTA) algorithms. The results
on a large-scale finger-vein dataset demonstrate the need for
illumination from both sides (left and right) and from the top of
the finger, to capture finger-vein images with high quality that
improves the verification performance.

Index Terms—Biometrics, finger-vein sensor, dorsal finger-vein,
ventral finger-vein, sensor.

I. INTRODUCTION

The increased demand for reliable and accurate authentica-
tion in secure applications has led to an interest in employing
the finger vascular pattern (aka., finger-vein) as a biometric
modality. Finger-vein biometrics are known to deliver high
verification accuracy and this has boosted the adaptability of
finger-vein biometrics in the finance sectors for secure banking
transactions and other high secure applications. The finger-
vein system is primarily based on extracting the structure of
the vascular pattern in the finger which are visible in the NIR
light only. As finger-vein patterns are present beneath the skin,
they are neither susceptible to abrasion nor to changes in the
surface of the skin (e.g. for cuts or abrasions) making them
robust against presentation attacks (a.k.a. spoofing attacks).
Even when attacked on finger-vein sensors through presenta-
tion attacks/spoofing attacks, they can be detected easily by
analyzing the different spatial and temporal differences [1].

The underlying principle in designing a finger-vein sensor
is by illuminating a finger with NIR light which is absorbed
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in higher proportion by Haemoglobin than the neighboring
tissues resulting in highlighted vein pattern within the finger.
The use and arrangement of the light source to illuminate the
finger plays a vital role in extracting a good quality finger-
vein pattern. The conventional arrangements in the finger-vein
sensor can be broadly classified to have two types such as [2]:
(a) Light penetration approach (b) Light reflection approach.
Most of the current day finger-vein sensors are based on the
penetration approach that can provide a good quality finger-
vein image when compared to the reflection approach. The
light penetration approaches can be further divided in two
types: (a) Top-illuminated - illumination from the top of the
finger (b) Side-illuminated - illumination from the side (both
left and right side) of the finger.

In the case of a top-light illuminated sensor, the Light-
Emitting-Diode (LED) is placed above the finger and the
camera is placed below the finger. The light emitted from the
LEDs is penetrating through the finger and is absorbed by the
vein patterns due to the presence of haemoglobin. This makes
the vein region appear darker than the neighborhood tissues
when recorded by the camera, resulting in the capture of a
finger-vein pattern. The NIR wavelength of 850nm is widely
used to illuminate the finger.

With side-light illuminated sensors, the LED lights are
placed on both sides of the finger and illuminated simulta-
neously. The camera is placed below the finger that captures
the vein image. Despite the side-illumination using a higher
number of LEDs (at 850nm) to achieve uniform illumination
of the finger surface, the quality of the finger-vein image has
been reported to be better with light penetration approaches
[3].

Earlier works on finger-vein sensors and capture devices
were carried out by the industrial stakeholders Hitachi, Mofria
and IDEMIA that have explored both side and top light
illumination. Figure 1 shows examples of commercial finger-
vein sensors and Table I presents the properties of such
sensors, especially in terms of the hardware and the com-
ponents employed to design the same. The common features
across all commercial finger-vein sensors are on the use of
NIR spectra to capture the finger-vein images. Depending
on the design and placement of the finger one can easily
locate the type of illumination (top or side). The common
information that was made available from finger-vein vendors
are the performance metrics that include False Acceptance
Rate (FAR), False Reject Rate (FRR) and Failure To Enrol
(FTE). It is also interesting to note that all commercial sensors
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Fig. 1: Examples of commercial sensors (a) MOFRIA (b)
EKEMP (c) BARCLAYS (d) IDEMIA (e) HITACHI (f)
M2SYS (g) SONY

Company Camera and
Lens

Accuracy Type of
illumination

EKEMP No informa-
tion

FRR = 0.01%,
FAR = 0.00001%
FTE = 0.001%

Top illumination

M2SYS NIR camera FRR = 0.01%,
FAR = 0.0001%,
FTE = 0%

Top illumination

HITACHI No informa-
tion

FRR = 0.01%,
FAR = 0.0001%,
FTE = 0.03%

Side illumination

Barclays No informa-
tion

No information No information

IDEMIA No informa-
tion

FRR = no infor-
mation , FAR =
0.0001%, FTE =
0%

Side illumination

KO-Vein No informa-
tion

FRR = 0.01%,
FAR = 0.0001%,
FTE = 0.%

Side illumination

MOFIRIA No informa-
tion

No information Side illumination

TABLE I: Characteristics of commercial finger-vein sensor

are compact, fast transaction times (in terms of a millisecond
to authenticate the single query), good storage capabilities
(to store 2000 to 5000 finger-vein template) and are powered
through USB. However, the detailed hardware description is
not available for commercial finger-vein sensors. Further, none
of the commercial sensors provides access to the captured
raw finger-vein images neither to the templates as these are
encoded in a proprietary format, further protected by the
manufacturer. In addition to these commercial sensors, there
also exists an academic sensor from EKEMP. However, the
technical details, especially in terms of component-hardware
and access to the raw finger-vein images, are not available.

During recent years, the academic versions of finger-vein
sensors have emerged with different design and specification
to improve the finger-vein image quality and thereby improve
the performance of authentication. Figure 2 illustrates the
academic finger-vein devices and Table II indicates the charac-
teristics of the academic finger-vein sensors. The majority of
the academic sensors measure larger than commercial sensors
that can be attributed to the modular design adopted by
academic researchers. The interesting characteristics of all
these sensors are: (a) All sensors have used the NIR camera
with a filter (NIR/IR pass) and a lens. The camera quality

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Examples of commercial sensors (a) Hung et al. [4]
(b) B. H Ton et al. [5] (c) W. Tang et al. [6] (d) X. Xi [7] (e)
W. Yang [8] (f) R. Raghavendra et al. [9] (g) Y. Lu et al. [10]
(h) T. D. Pham et al. [11]

is also varied across different sensors from the expensive
industrial cameras [5] to low-cost web camera [11]. (b) A
different spectral wavelength within NIR band is used for
the illumination. Thus, the spectral wavelength is varied from
850nm till 940nm. (c) The majority of the sensors have used
the top-light illumination and very few have used the side-light
illumination. However, as noted from the commercial sensors
(see Table I) the majority of them are based on the side-light
illumination. Thus, the position of the illumination (top/side)
is based on the finger placement that can impact the user
experience. (d) Even though most of the academic sensors have
provided the information on the sensor components none of
them discussed the design aspect and also the more technical
aspects of the light source, for example, type of the LEDs and
the view angle. This will limit one to successfully reconstruct
the finger-vein sensor.

Authors Camera and Lens Capture
Wavelength

Type of
illumination

Hung et al. [4] 1/3 inch CMOS camera No informa-
tion

Top
illumination

B. H Ton et al. [5] Pentax H1214-M /IR cut
filter

850nm Top
illumination

W. Tang et al. [6] No information 890nm Top
illumination

T. Dai et al. [12] 172 inch CCH
(SV1310FM, Da-heng
Optics)

No informa-
tion

Top
illumination

M. Kono et al. [13] NIR CCD camera No informa-
tion

Top
illumination

X. Xi [7] No information No informa-
tion

Top
illumination

J. kim et al. [14] CCD camera (GF 038B
NIR)

850nm Top
illumination

W. Yang [8] No information 850nm Top
illumination

R. Raghavendra et
al. [9]

DMK 22BUC03 CMOS
/ 8mm

870nm Top
illumination

Y. Lu et al. [10] NIR camera 850nm Top
illumination

H. dana [15] No information 900nm Side
illumination

T. D. Pham [11] Webcamera 850nm Top
illumination

TABLE II: Characteristics of academic finger-vein sensor

Although reasonable efforts have been made in developing
finger-vein sensors, it is still difficult to prefer a type of illu-
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Fig. 3: Developed finger-vein sensor with captured dorsal and ventral finger-vein images (a) Sensor design layout (b) Captured
finger-vein images (c) Sensor components

mination (top/side) and a kind of finger-vein capture concept
(dorsal/ventral), which improves both reliability and accuracy
of the finger-vein verification. Therefore, in this paper, we aim
to answer the following questions:

Q1: What type of light illumination (top or side) con-
tributes effectively to improve the finger-vein verification
performance?
Q2: Does the use of illumination from both top and side
improve the finger-vein verification performance?
Q3: What kind of finger-vein capture concept (dor-
sal/ventral) can provide better performance on the large-
scale finger-vein database?

To the best of our knowledge, this is the first work that em-
pirically presents the answers to the above research questions.

To effectively answer these questions, it is essential to
collect a new finger-vein database with three different light
illumination such as the top, side and both (in which both
side and the top finger is illuminated). Further, it is also
essential to collect a new database with dorsal and ventral
finger-vein patterns corresponding to the same finger instance
with the same capturing conditions and the sensor. These
factors motivated us to design and develop a low-cost finger-
vein capture device. The proposed finger-vein sensor thus has
a unique design that can accommodate the illumination from
both sides and top of the finger. The sensor further houses a
physical structure to focus the illumination that enables the
high-quality imaging of the finger-vein biometrics. Further,
the design aspects are focused on accommodating the pleasant
user experience while capturing both dorsal and ventral finger-
vein images in two different instances.

The main contributions of this paper are:

• Design and development of a low-cost finger-vein sensor
that can capture both ventral and dorsal finger-vein pattern
in two different representations and three different illu-
minations on the finger such as top, side and both (top
and side). The design details are provided such that an
interested researcher can re-build such a sensor without
spending time for component selection and design.

• New finger-vein database comprised of 350 different
finger-vein (both ventral and dorsal) samples, captured in
three different illuminations referred to as top, side and
both. We refer this database as DB-I in the rest of the
paper.

• New large-scale finger-vein database comprised of 1084
unique finger-vein samples using both illuminations to
provide the comparative analysis of dorsal and ventral
finger-vein patterns. We refer to this database as DB-II in
the rest of the paper.

• Extensive experiments with eight different state-of-the-art
finger-vein verification methods on both DB-I and DB-II
databases.

The rest of the paper is organised as follows: Section II
presents the design and development of our low-cost finger-
vein sensor, Section III presents the state-of-the-art finger-vein
verification systems, Section IV presents the details of the data
collection enabled by the developed finger-vein sensor, Section
V presents the experimental results and discussion. Section VI
provides the conclusion and remarks of this work.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Finger-vein
Image preprocessing Feature

Extraction Comparison
Accept

Reject

Fig. 4: Block diagram of finger-vein verification system
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Fig. 5: Illustration of a finger-vein sample captured with different illuminations

II. DEVELOPED FINGER-VEIN SENSOR

Figure 3 illustrates the developed sensor design and the
associated components. The developed sensor has three inte-
gral parts (1) NIR Camera (2) NIR light source (3) Dedicated
(customized) physical structures to achieve high radiance of
the illuminated light. We employed the NIR camera DMK
22BUC03 monochrome CMOS with a resolution of 744×480
pixel that has good quantum efficiency in NIR spectral band.
The camera has been equipped with T3Z0312CS lens with
a focal length of 8mm. The NIR lighting source is based on
three independent LED clusters that emit an adequate amount
of light to capture the finger-vein pattern. The first two NIR
LED clusters are developed using a cluster of 10 LEDs (for
side illumination) and third LED cluster (top illumination)
is comprised of 40 LEDs. We have employed NIR LEDs
TSFF 5210 with a wavelength of 920nm by considering it’s
high radiant intensity and view angle that results in good
illumination on a finger.

The key part of the sensor is the custom designed physical
structure that enables adequate intensity of lighting to pene-
trate into the finger to achieve a good quality of the finger-
vein image. Two different physical structures are developed,
the first structure is designed to concentrate the emitted light
intensity to the small area. The walls of the first structure are
coated using a reflective aluminum foil to increase the radiance
of the light further. The second physical structure is designed
to act as a single slit such that the non-uniform light crossing
this slit becomes uniform [16].

The sensor is constructed by considering the ergonomic con-
venience such that the user can place the finger (irrespective of
size and shape) without any difficulty/pressure on the finger.
This is achieved by introducing a holder that allows the finger
to be easily rested and also restricts the involuntary movement
of the fingers to get the stable and consistent finger-vein image
without any blur factor introduced by minor motion. Figure
5 shows the example finger-vein image captured using the
proposed sensor in three different types of illumination.

III. BASELINE FINGER-VEIN VERIFICATION

Fig. 4 shows the block diagram of the finger-vein verifica-
tion system employed in this work. The main objective of this
work is to quantify the finger-vein verification performance
across different kinds of light illumination that are widely
used in designing the finger-vein capture device. To this
extent, we have employed eight different well know finger-
vein verification systems as the baseline methods.

The finger-vein biometrics is well addressed by the re-
searchers that have resulted in numerous features extraction
and comparison techniques. The systematic survey of finger-
vein feature extraction techniques is presented in [17]. The
available feature extraction techniques can be widely divided
in two types namely: Local features and global features. The
local features extract the features pertaining to the finger-vein
structure that includes the line patterns and the minutia points.
The main advantage of the local features is the use of sim-
plified comparators like non-cumulative template comparison
algorithm or a simple distance measures (binary). Further, the
local feature based methods have indicated robust accuracy,
also computationally efficient and well suited to work with
a single enrolment sample as the comparators are based on
non-learning techniques. The global feature methods extract
either image gradients or the texture based information from
the finger-vein images. The comparator corresponding to the
global features are normally based on the machine learning
techniques and thus, need more image samples per subject to
train the same to achieve the desired accuracy.

In this work, we evaluate both local and global features
that are widely used in the finger-vein literature by considering
their performance accuracy. The local feature extraction meth-
ods employed in this work include: Maximum Curvature Pat-
tern (MCP) [18], Spectral Minutiae Representation (SMR) [19]
and Repeated Line Tracking (RLT) method [20]. We have used
the non-cumulative template comparison algorithm [18] as the
comparator for all three local feature extraction techniques
to quantify the performance. Further, we have also employed
four different global feature extraction techniques that include:
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LBP features [21], LBPV features [22], Steerable features [23]
and HoG features [24]. As it is well demonstrated in the
literature that the use of machine learning based comparator
has demonstrated the best performance with global features,
in this work, we have employed Probabilistic Collaborative
Representation Classifier (P-CRC) [25] [26] by considering
its accuracy and less computational cost. Thus, the use of the
same comparator on different global features allows one to
quantify the performance of the different global features for
finger-vein verification. We also note the recent advances in
the machine learning made it possible to employ an end-to-
end finger-vein system using a deep learning approach based
on the Convolutional Neural Network (CNN) [27] that have
indicated a reliable performance of the finger-vein verification
system. We have therefore evaluated an end-to-end finger-
vein algorithm using deep CNN architecture [27]. For a more
detailed description of the feature extraction and compara-
tor techniques, readers are referred to the above-mentioned
respective references. All these eight different finger-vein
algorithms are evaluated independently on both DB-I and DB-
II databases.

IV. FINGER-VEIN DATABASE COLLECTION

We have used the newly developed finger-vein sensor to
collect two different databases that in turn allowed us to test
and benchmark the applicability of the developed sensor in
real-life applications. In this work, we have collected two
different databases referred as DB-I and DB-II. The first
database (DB-I) is collected to evaluate the performance of the
finger-vein (Dorsal and Ventral) patterns with three different
light illuminations positions such as (a) from the Side (b) from
the Top (c) Both - side and top. The DB-I is comprised of
350 individual finger-vein samples collected in 10 different
sessions (over a duration of 1 - 15 days) that has resulted
in 350 × 10 = 3500 ventral and dorsal finger-vein samples
correspondingly. The performance of four different SOTA al-
gorithms is reported by following the evaluation protocol with
9 samples as the enrolment sample and 1 sample as the probe
for each unique finger-vein instance. Thus, for each trial, we
have 350×1 = 350 genuine scores and 350×349×1 = 122150
impostors scores. We repeat the selection of reference and
probe samples ten times and the average of the results are
reported together with the 90% Confidence Interval (CI) in
terms of Genuine Match Rate (GMR) @ False Match Rate
(FMR) of 10−3. Figure 5 illustrates the example finger-vein
(ventral) that is captured in three different light illumination
conditions. It is interesting to observe that the perceptual
quality of the finger-vein image is better when both side and
top illumination on the finger is used.

The second database (DB-II) is collected using Both illumi-
nation to quantify the performance of the ventral versus dorsal
finger-vein samples. DB-II is comprised of 1084 unique finger-
vein (both ventral and dorsal) samples collected in 10 different
sessions (in the duration of 1 - 15 days) which has resulted in
database with 1084 × 10 = 10840 ventral finger-vein samples
and 1084×10 = 10840 dorsal finger-vein samples. To evaluate
the performance on DB-II, we divided the whole database to

have a development dataset (only to tune the parameters of
SOTA) of 100 unique finger-vein instances and the remaining
984 unique instances are used to report the results. We follow
the same evaluation protocol of DB-I with 9 samples used as
enrolment and 1 sample as a probe that results in 984 genuine
scores and 967272 impostors scores. Finally, the selection
of enrolment and probe samples are repeated 10 times and
the average results with the 90% CI are reported. Figure 3
(b) illustrates the example of the dorsal and ventral finger-
vein samples that are captured using the developed finger-vein
sensor. The database is available semi-publicly for research
purpose upon the request to authors.

V. EXPERIMENT AND RESULTS

In this section, we present the quantitative experimental
results on both DB-I and DB-II databases. The performance re-
ported in this paper is based on the definitions of International
Standard ISO/IEC 19795-1:2006 on Biometric Performance
Testing and Reporting (BPTR) [28]. Thus, the results are
presented using the ROC curves with FMR and FNMR.

The ROC curves describe the relationship between FMR
and GMR = 1- FNMR that are established through the
accumulation of the ordered genuine and impostor scores [28].
Since the ROC curves are plotted with FMR versus GMR =
1- FNMR, it will allow one to quickly verify the performance
of the biometric system by setting the decision threshold at a
particular FMR.

We have performed two different experiments (1) Exper-
iment 1: Presents the performance of the SOTA finger-vein
algorithms on three different kinds of illumination indepen-
dently on the medium sized database of 350 unique finger-
vein instances (DB-I). Thus, this experiment will provide a
quantitative analysis of what type of illumination can improve
the overall performance of the finger-vein biometrics. In this
experiment, results are reported independently on dorsal and
ventral finger-vein patterns. This experiment is designed to
answer the question Q1 and Q2. (2) Experiment 2: This ex-
periment is designed to compare the performance of the dorsal
finger-vein with ventral finger-vein patterns that are collected
with both (side and top ) illumination. This experiment will
use the DB-II database to report the results independently
on dorsal and ventral finger-vein patterns. This experiment is
designed to answer the question Q3.

A. Experiment 1: Results and discussion

Table III shows the performance of eight different state-of-
the-art techniques that includes both local and global feature
extractions schemes together with deep CNN technique. The
comparison scores for the local features are obtained using
the non-cumulative template comparison algorithm mentioned
in [18] and comparison scores for the global feature extrac-
tion schemes are obtained using Probabilistic Collaborative
Representation Classifier (P-CRC). Figure 6 and 7 indicates
the receiver operating curves corresponding to eight different
finger-vein verification system on dorsal and ventral finger-
vein pattern respectively.
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(c) Both Illuminations

Fig. 6: Performance of Dorsal finger-vein with Side, Top and Both Illuminations
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(b) Top Illumination
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Fig. 7: Performance of Ventral finger-vein with Side, Top and Both Illuminations

Algorithms

Side illumination Top illumination Both illuminations
GMR @ FMR = 10−3 ±

CI
GMR @ FMR = 10−3 ±

CI
GMR @ FMR = 10−3 ±

CI
Dorsal Ventral Dorsal Ventral Dorsal Ventral

Global features

HoG features [24] 99.43 ±

0.18
96.85 ±

0.02
100 ± 0 100 ± 0

100 ± 0 100 ± 0
LBP features [21] 2.28 ± 0.11 5.71 ± 0.15 4.57 ± 0.19 4.57 ± 2.14

6.75 ± 0.15 8.56 ± 1.96
LBPV features [22] 0 ± 0 0 ± 0 0 ± 0 0 ± 0

0 ± 0 0 ± 0
Steerable features
[23]

97.43 ±

0.87
86.57 ±

0.14
80.57 ±0.43 80.67 ±

0.56 100 ± 0 96.78 ±

0.01
CNN [27] 99.72 ±

0.41
97.71 ±

0.34
99.43 ±

0.41
98.78 ±

0.01 100 ± 0.02 100 ± 0

Local features

MCP [18] 9.42 ± 0.24 19.14 ±

0.01
96.12 ± 0.0 24.41 ±

0.24 99.71 ± 0 98.57 ±

0.24
SMR [19] 7.42 ± 0.35 16.85 ±

0.34
47.42 ± 0.0 24.28 ±

0.24 99.71 ± 0 99.42 ±

0.25
RLT [20] 25.42 ±

0.64
2.10 ± 0.34 83.71 ±

0.24
19.71 ±

0.24 97.71 ± 0 98.57 ±

0.25

TABLE III: Performance of the SOTA finger-vein recognition algorithms on different kind of illuminations
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(a) (b)

Fig. 8: Illustration of the dorsal finger-vein sample captured
with different illuminations indicating the finger knuckle fea-
tures (marked in red circles) (a) side-light illumination (b)
top-light illumination

Based on the obtained results for both Dorsal (see Figure
6 and Table III) and Ventral (see Figure 7 and Table III), the
following points can be noted:

• The performance of the finger-vein verification with lo-
cal features especially with side-light illumination has
resulted in degraded performance (when compared to that
of top-light and both-light illumination) on both ventral
and dorsal finger-vein patterns. A similar observation is
also noted with the texture based global features. The
possible reason for the degraded performance can be
attributed to the way the light is illuminated on the
finger. With the use of the side-light illumination process
illuminating the light on both sides of the fingers, the
chances are that the illumination process is blocked by
the distal phalanx of the finger. This results in low-quality
image capture outcomes, where the finger-vein pattern (in
both ventral and dorsal) is less visible. This fact can be
justified from the Figure 5 in which the side illumination
shows the poor quality of finger-vein patterns. As the
local features are based on extracting the vein patterns and
then locating the minutia points, there are many changes
that these features are not effectively extracted due to the
insufficient light illumination. Further, the degradation of
the texture based approaches can be attributed to the lack
of texture information in finger-vein images captured in
the NIR spectrum.

• It is interesting to observe the outstanding verification
performance of the global features based on HoG and
the CNN based approaches on the side light illumination.
The accurate performance of the HoG features can be
attributed to the robustness of HoG to the rotation and
illumination. Along the same lines, the CNN based ap-
proach can learn the robust features from the data and
thus result in the accurate performance.

• The performance of the finger-vein verification based on
both local and global features are greatly improved with
top-light illumination. However, the texture based global
features based on LBP and LBPV have indicated the
degrading performance and can be attributed to the lack
of texture information as images are captured in the NIR
spectrum. Further, it is also noted that the performance
of the local feature based on SMR has indicated the
degraded performance when compared to that of the
other two different local feature methods. Since the SMR
method is based on the minutiae extraction, adequate
illumination is required to accurately locate the same.
Thus, the lack of illumination has resulted in the degraded
performance of the SMR method.

• Even with the top-light illumination, both HoG and CNN

based approach have indicated an outstanding perfor-
mance. This fact further justifies the robustness of both
of these methods to the type of light illumination (side
or top).

• It is interesting to observe that local features based tech-
niques especially based on MCP features have indicated
the good performance on the dorsal finger-vein pattern
when compared with the ventral finger-vein pattern. After
carefully observing the dorsal finger-vein images captured
with top light illumination, it can be attributed to the
type of illumination in which the dorsal finger-vein is
captured together with the residues of the finger knuckle.
This will result in line features when MCP is used, as the
residues of finger knuckles are unique for each finger, this
has contributed to the increased performance. Figure 8
illustrates the presence of finger knuckle features together
with the dorsal finger-vein pattern.

• With both-light illumination, the performance of the
SOTA algorithms on both dorsal and ventral finger-vein
are drastically improved. This fact justifies the use of
both (side and top) illumination together with the physical
structures to capture the high-quality finger-vein imaging.
However, the texture based method has resulted in a
degraded performance, which is due to the lack of texture
information as images are captured in the NIR spectrum.

• The performance of the dorsal and ventral finger-vein, es-
pecially with both-light illumination has indicated similar
verification performance.

• Based on the extensive experiments, it is evident that the
use of both-light illuminations has resulted in significant
improvement in the accuracy irrespective of the finger-
vein verification algorithms employed in this work. The
improved accuracy is attributed to the larger visibility of
the finger-vein pattern that contributes to the effective
feature representations useful to improve the verification
accuracy. It is also observed that the performance of
local features are highly dependent on the type of the
light illumination and it is well demonstrated that the use
of both-light illuminations can significantly improve the
performance.

• The best performance is note with both HoG and CNN
with GMR = 100% @ FAR = 10−3 with both light
illumination justifies the quality of the finger-vein images
and it’s application to the real-world scenario.

B. Experiment 2: Results and discussion

Figure 9 shows the Receiver Operating Characteristic (ROC)
curve obtained on DB-II on both ventral and dorsal finger-
vein patterns. Table IV indicates the quantitative performance
of the eight different state-of-the-art finger-vein verification
algorithms on both ventral and dorsal finger-vein patterns. In
this experiment, the data is captured using both (side and top)
illumination and thus, the good quality finger-vein samples
are employed. The following are main observations from this
experiment:
• Majority of the state-of-the-art finger-vein verification

algorithms have demonstrated a reasonable verification



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

10-4 10-3 10-2 10-1 100 101 102

False Match Rate (FMR)

60

65

70

75

80

85

90

95

100

F
al

se
 N

on
-M

at
ch

 R
at

e 
(F

N
M

R
)

HOG features
LBP Features
LBPV Features
Steerable Features
CNN Features
MCP Features
RLT features
SMR features

10-4 10-3 10-2 10-1 100 101 102

False Match Rate (FMR)

60

65

70

75

80

85

90

95

100

F
al

se
 N

on
-M

at
ch

 R
at

e 
(F

N
M

R
)

HOG features
LBP Features
LBPV Features
Steerable Features
CNN Features
MCP Features
RLT features
SMR features

Fig. 9: Verification performance and ROC curves on DB-II (a) Dorsal finger-vein (b) Ventral finger-vein

Algorithms
GMR @ FMR = 10−4 ± CI
Dorsal
Fingervein

Ventral
Fingervein

Global Features

HoG features [24] 99.91 ± 0.25 99.97 ± 0.18

LBP features [21] 0 ± 0 1.93 ± 0.78

LBPV features
[22]

0 ± 0 0 ± 0

Steerable features
[23]

68.39 ± 0.45 53.46 ± 0.89

CNN [27] 99.85 ± 0.03 99.82 ± 0.28

Local features

MCP [18] 99.84±0.25 99.73 ± 0.75

SMR [19] 99.89 ± 0.39 99.93 ± 0.65

RLT [20] 78.36 ± 5.09 82.37 ± 0.18

TABLE IV: Performance of the SOTA finger-vein recognition algorithms on DB-II

accuracy on both ventral and dorsal finger-vein.
• Along the same lines of earlier observation, the texture

based features resulted in a degraded verification per-
formance that can be attributed to the lack of texture
information as images are captured in the NIR spectrum.

• All three different local feature based finger-vein verifica-
tion algorithms have demonstrated high performance on
both ventral and dorsal finger-vein patterns. This can be
attributed to the type of light illumination i.e, both-light
illumination employed to collect the DB-II.

• Among the global feature-based approaches the HoG and
CNN based features have demonstrated the outstanding
performance. The HoG features has indicated a perfor-
mance of GMR = 99.91%@FMR= 10−4 and GMR =
99.97%@FMR= 10−4 on dorsal and ventral finger-vein
patterns respectively. The similar performance is also
noted with the CNN based approach.

• Both ventral and dorsal finger-vein patterns have indi-
cated a similar performance with three different state-of-

the-art finger-vein verification algorithms. This justifies
the applicability of the dorsal finger-vein patterns as a
potential biometric characteristic together with the ventral
finger-vein.

Based on the obtained results following are the precise
answers for the research questions addressed in this work:

Q1: The use of top-light illumination has resulted in an
improved performance on both dorsal and ventral finger-
vein verification.
Q2: It is very evident that the use of both-light illu-
minations has significantly improved the performance of
finger-vein verification algorithms.
Q3: With both-light illumination, dorsal and ventral
finger-vein patterns have indicated a similar performance.

VI. CONCLUSION

We have developed a new low-cost finger-vein sensor to
capture good quality finger-vein images from both ventral and
dorsal region in two separate capture processes. The goal of
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this work is to explore the effectiveness of the illumination
type (side, top and both) and also the type of finger-vein (dor-
sal/ventral). To this extent, we have presented two new finger-
vein databases: DB-I with 350 unique finger-vein instances
captured in three different illumination types, DB-II with 1084
unique instances collected using both illuminations. An exten-
sive evaluation is carried out on eight different SOTA methods
on two different large-scale databases (DB-I and DB-II). The
results indicate the use of Both-light illumination (side + top)
to achieve high verification accuracy. This further justifies the
design and applicability of the developed sensor in the real-
life scenario. The obtained results on DB-II also indicate the
applicability of the dorsal finger-vein characteristics for the
real-life applications.
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APPENDIX

In the following Tables V and VI presents the perfor-
mance of eight different state-of-the-art methods employed
in this work on DB-I and DB-II respectively. Since EER
is not a recommended metric to evaluate the performance
of a biometric systems following the International Standard
ISO/IEC 19795-1:2006 on Biometric Performance Testing
and Reporting (BPTR) [28], we have included this just for
reference and it can be noticed that the EER values are lower
with both-light illumination.

REFERENCES

[1] R. Raghavendra and C. Busch, “Presentation attack detection algorithms
for finger vein biometrics: A comprehensive study,” in 11th International
Conference on Signal-Image Technology & Internet-Based Systems
(SITIS). IEEE, 2015, pp. 628–632.

[2] R. Raghavendra, J. Surbiryala, K. B. Raja, and C. Busch, “Novel
finger vascular pattern imaging device for robust biometric verification,”
in Imaging Systems and Techniques (IST), 2014 IEEE International
Conference on. IEEE, 2014, pp. 148–152.

[3] A. Kumar and Y. Zhou, “Human identification using finger images,”
IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2228–2244,
2012.

[4] B. Huang, Y. Dai, R. Li, D. Tang, and W. Li, “Finger-vein authentication
based on wide line detector and pattern normalization,” in 20th Interna-
tional Conference on Pattern Recognition, Aug 2010, pp. 1269–1272.

[5] B. Ton and R. Veldhuis, “A high quality finger vascular pattern dataset
collected using a custom designed capturing device,” in International
Conference on Biometrics (ICB), 2013, pp. 1–5.

[6] W. Yang, X. Yu, and Q. Liao, “Personal authentication using finger
vein pattern and finger-dorsa texture fusion,” in Proceedings of the 17th
ACM International Conference on Multimedia, ser. MM ’09, 2009, pp.
905–908.

[7] X. Xi, G. Yang, Y. Yin, and X. Meng, “Finger vein recognition with
personalized feature selection,” Sensors, vol. 13, no. 9, pp. 11 243–
11 259, 2013.

[8] W. Yang, Q. Rao, and Q. Liao, “Personal identification for single
sample using finger vein location and direction coding,” in Hand-Based
Biometrics (ICHB), 2011 International Conference on. IEEE, 2011,
pp. 1–6.

[9] R. Raghavendra, K. B. raja, J. Surbiryala, and C. Busch, “A low-cost
multimodal biometric sensor to capture finger vein and fingerprint,” in
International Joint Conference on Biometrics (IJCB), Sep 2014, pp. 1–7.

[10] Y. Lu, S. J. Xie, S. Yoon, Z. Wang, and D. S. Park, “An available
database for the research of finger vein recognition,” in 2013 6th
International Congress on Image and Signal Processing (CISP), vol. 01,
Dec 2013, pp. 410–415.

[11] D. T. N. S. Y. K. Tuyen Danh Pham, Young Ho Park and K. R. Park,
“Nonintrusive finger-vein recognition system using nir image sensor and
accuracy analyses according to various factors,” Sensor, vol. 15, no. 7,
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Algorithms

Side illumination Back illumination Both illumination

EER (%) EER (%) EER (%)

Dorsal Ventral Dorsal Ventral Dorsal Ventral

Global Features

HoG features
[24]

0.01 0 0.01 0.01 0 0

LBP features
[21]

4.30 5.59 2.28 4.31 0.92 1.91

LBPV features
[22]

28.30 28.03 22.97 13.25 9.45 12.83

Steerable
features [23]

1.72 1.71 0.05 1.72 0.22 0.22

CNN [27] 0.21 0.01 0.01 0 0 0

Local features

MCP [18] 4.57 2.28 4.12 0.57 0.28 0.57

SMR [19] 4.57 2.71 4.28 1.71 0.04 0.49

RLT [20] 4.97 1.71 4.28 1.71 0.29 0.87

TABLE V: Performance (in EER (%)) of the SOTA finger-vein recognition algorithms on different kind of illuminations

Algorithms
EER(%)

Dorsal Fingervein Ventral Fingervein

Global features

HoG features [24] 0 0.18

LBP features [21] 4.17 3.54

LBPV features [22] 4.62 6.55

Steerable features [23] 3.44 2.97

CNN [27] 0.08 0.14

MCP [18] 0.27 0.34

Local
features

SMR [19] 0.28 0.22

RLT [20] 0.65 0.61

TABLE VI: Performance (in EER (%)) of the SOTA finger-vein recognition algorithms on DB-II


