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Abstract 

Formulating effective management intervention measures for water supply systems requires 

investigation of potential long-term impacts. This study applies an integrated multiple regression, 

random forest regression, and quantitative microbial risk assessment (QMRA) modelling approach to 

assess the effect of climate-driven precipitation on pathogen infection risks in three drinking water 

treatment plants (WTPs) in Norway. Pathogen removal efficacies of treatment steps were calculated 

using process models. The results indicate that while the WTPs investigated generally meet the current 

water safety guidelines, risks of Norovirus and Cryptosporidium infection may be of concern in the 

future. The pathogen infections attributable to current projections of average precipitation in the study 
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locations may be low. However, the pathogen increases in the drinking water sources due to the 

occurrence of extreme precipitation events in the catchments could substantially increase the risks of 

pathogen infections. In addition, without optimal operation of the UV disinfection steps in the WTPs, 

both the present and potential future infection risks could be high. Therefore, the QMRA models 

demonstrated the need for improved optimization of key treatment steps in the WTPs, as well as 

implementation of stringent regulations in protecting raw water sources in the country. The variety of 

models applied and the pathogen: E. coli used in the study introduce some uncertainties in the results, 

thus, management decisions that will be based on the results should consider these limitations. 

Nevertheless, the integration of predictive models with QMRA as applied in this study could be a useful 

method for climate impact assessment in the water supply industry. 

 

Keywords: Quantitative microbial risk assessment, water treatment, climate change, E. coli, 

Norovirus, Giardia, Cryptosporidium, Campylobacter 

 

1. Introduction 

Worldwide, microbial contamination of drinking water sources and related public health impacts 

remains an ongoing challenge for the managers of water supply systems. This challenge is expected to 

exacerbate in the 21st century due to increased frequency, intensity and duration of climate related events 

such precipitation, which is known to significantly affect the quality of drinking water sources (Cann et 

al., 2013; IPCC, 2014).   In particular, water supply systems that depend on surface water sources will 

be the most challenged. Microbial deterioration of surface water sources due to increased precipitation 

have been directly linked to waterborne disease outbreaks (Curriero et al., 2001; Mann et al., 2007; 

Nichols et al., 2009; Cann et al., 2013; Tornevi et al., 2015; Beaudeau et al., 2014; Guzman-Herrador et 

al., 2016; Drayna et al., 2010). In addition, seasonality in sporadic cases of waterborne diseases may be 

explained by seasonal contamination of surface water bodies (Patz & Han, 2013). 
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Potential sources of pathogens to surface waterbodies include lateral inputs from pastures and riparian 

zones, influx of pathogen-contaminated groundwater and faecal matter deposits from livestock and 

wildlife in catchments (Ram et al., 2007; Pandey et al., 2014). Animal manure provides food and shelter 

for microorganisms, thereby enhancing the transport of microorganisms in soil (Guber et al., 2005). The 

fraction of all these potential pathogen sources that reach drinking water sources largely depends on the 

intensity of precipitation, which can result in increased pathogen loads in runoff within agricultural 

catchments (Jokinen et al., 2012). In addition, due to increased turbulence in streams during extreme 

precipitation periods, changes in sedimentation processes and resuspension in stream channels can 

increase the concentrations of microbial organisms in such streams (Hofstra, 2011; Drummond et al., 

2014; Sterk et al., 2015). 

Discharge from wastewater treatment systems, leaking sewer pipes, septic tanks and combined sewer 

overflows (CSOs), which usually occur during intense rainfall are important sources of microbial 

contaminants to drinking water sources (Grøndahl-Rosado et al., 2014a; Passerat et al., 2011). During 

extreme rainfall events, new channel flows created in different directions from regular ones (Hunter, 

2003) uncover other distant pollutant sources in watershed, further increasing contaminant load in source 

water. A study that monitored CSO events resulting from precipitations and a mixture of snowmelt and 

precipitation noted that E. coli was mostly associated with raw sewage, and the concentrations remained 

high throughout each CSO event (Madoux-Humery et al., 2013). FIB and pathogens such as E. coli, 

enterococci, Norovirus and Adenovirus in receiving rivers have surged after CSOs (Passerat et al., 2011; 

Rodriguez et al., 2012). 

In Norway, nearly 90% of the water supply systems depend on surface water sources that are susceptible 

to point and non-point sources of microbial contamination. It is expected that the quality of these surface 

water sources will be affected in the future due to projected changes in average precipitation and runoff 

(Tryland et al., 2011). It has been shown that the concentrations of faecal indicator bacteria occurring 

at raw water intake zones of Norwegian lakes typically increase during spring and autumn circulation 

periods when high precipitation occurs in the form of snowmelt and rainfall (Hem, 2008). Mean annual 

precipitation in the country is projected to increase by 5% - 30% in 2100, with major seasonal variations 
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and increased frequency of torrential rains. Similarly, temperature is projected to increase by 2.3oC - 

4.6oC during this period (Ministry of the Environment, 2010). The magnitudes of the projections 

substantially vary across the different climate regions in the country, implying that the severity of 

potential effects on the quality of drinking water sources could differ across the country. Water supply 

systems with inadequate treatment will be particularly challenged by increases in microbial 

concentrations in their raw water sources during extreme precipitation. Thus, to comprehensively assess 

the potential effect of the projections and to develop successful adaptation strategies, it is essential to 

account for the risks of microbial contamination of water sources and treatment needs for different 

climate regions in the country.  

Presently, climate impact assessment of water supply systems in QMRA is often based on simulation of 

scenarios of high pathogen concentrations in source water and failures on treatment processes. These 

scenarios are assumed to capture possible changes in climate variables such as precipitation and 

temperature (Atubo and Mafinejadasl, 2012; Hamouda et al., 2016). Due to the expected increases in 

average precipitation and temperature in the country and the potential impacts they are likely to have on 

microbial quality of drinking water resources, efficient management of public health risks associated 

with treated water consumption requires long-term evaluation of potential risks, and this can be achieved 

through QMRA. Although some recent studies have developed frameworks to account for this (Schijven 

et al., 2013a; Smith et al., 2015; Sterk et al., 2015), to the best of our knowledge, no study has particularly 

integrated the effect of local climate projections from water source to infection risk estimation through 

QMRA modelling. 

The aim of this study was to assess the potential effect of precipitation on the pathogen infection risks 

associated with the consumption of water consumption from selected treatment plants in Norway. The 

specific objectives were to: (1) evaluate how current projections of average precipitation can affect E. 

coli and pathogen concentrations in raw water sources; (2) determine the barrier efficacies of the water 

treatment plants (WTPs)  against the pathogenic organisms; (3) evaluate the pathogen infection risk 

associated with potential changes in pathogen concentration in water sources in relation to projected and 
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assumed increases in precipitation, and (4) evaluate pathogen infection risks associated with optimal 

and sub-optimal operations in water treatment processes.  

 

2. Materials and methods 

 

2.1. Selected water supply systems and raw water sources  

Figure 1 shows the locations of the selected WTPs in Norway. Selection of the WTPs was based on 

climate zones, the size/capacity of the plants, and the number of people they supply drinking water. 

They include two plants on the west coast (Ålesund WTP and Svartediket WTP in Bergen), and one in 

the southern region of the country (Oset WTP in Oslo).  The characteristics of the raw water sources, 

production capacities and the sizes of populations that are connected to the three WTPs are presented in 
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Table 1.

 

 

Figure 1. (A) Map of study region, (B) Climate regions of Norway, (C) Temperature zones, and (D) 

Precipitation zones showing the locations of the WTPs; Ålesund WTP, Svartediket WTP in Bergen, 

and Oset WTP in Oslo. 

 

Table 1. Water source characteristics and production capacities of the three WTPs. 

Water source and 

production capacity 

WTP 

 Ålesund WTP Oset WTP Svartediket WTP 

Source and location 

(Lat./Long.) 

Lake Brusdalsvatnet 

(Lat. 62.47, Long. 

6.47) 

Lake Maridalsvannet 

(Lat. 59.98, Long. 

10.77) 

Lake Svartediket 

(Lat. 60.38, Long. 

5.37) 

Average surface area 

(Km2) 

7.3 3.83 0.5 

Catchment size (Km2) 30 252 12.33 
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Average depth (m) 102 - - 

Raw water intake 

depth (m) 

35 30 30 

Production capacity 

(m3/day) 

55,000 288,000 – 38,4000 40,000 – 80,000 

Average population 

connected 

50,000 67,4736 17 1827 

 

 

Presently, strict regulations are imposed in the catchments of these water sources to regulate activities 

that can lead to microbial contamination. However, the catchments are composed of forest cover, with 

substantial numbers of wildlife and birds, which can be major sources of microbial discharge into the 

water sources. In addition, farm animals such as sheep are located in some of the catchments. For 

instance, approximately 100 horses have been reported to be in the catchment of Lake Maridalsvannet 

(Tryland et al., 2015). Moreover, although activities such as bathing, fishing or camping are not allowed 

within the catchments of the water sources, residents commonly use the areas for recreational walk, and 

sometimes include their dogs. In addition, onsite wastewater treatment plants and septic tanks located 

within the catchments may be important sources of microbial contamination. For instance, sewage 

leakages from residential areas close to Lake Svartediket were implicated in the major waterborne 

outbreak recorded in the country in 2004 (Tveit et al., 2005), and the leakages may have been triggered 

by heavy rainfall recorded 2-weeks prior to the event (Johnsen et al., 2005). Results of recent studies 

that investigated the sources of faecal indicator organisms in the tributaries of major drinking water 

sources in Norway (including Lake Maridalsvannet and Lake Svartediket) revealed that human faecal 

contamination occurs mostly in the cold season (November 2014- May 2015), while the contributions 

of animals were highest in the warm season (June- September 2015) (Paruch et al., 2016a &b).  

 

2.2. Climate-driven QMRA modelling framework and data 

Figure 2 presents an overview of the steps applied in the climate-driven QMRA modelling framework 

used in this study to assess the pathogen infection risks for the selected water treatment plants (WTPs). 

The framework comprises five sub-modelling processes under historical and climate change scenarios: 

(A) modelling of the relationships between precipitation and water quality variables (turbidity and 



8 
 

 

color); (B) modelling of the E. coli  concentration in the raw water sources based on turbidity and color; 

(C) estimation of selected pathogen concentration from observed (historical) E. coli and predicted E. 

coli (under: projected average precipitation for 2045 and 2075; assumed 50% and 100% increases in 

extreme precipitation events); (D) modelling of the barrier efficacies of the WTPs against the selected 

pathogens; and (E) modelling pathogen infection risks including sensitivity analysis for the QMRA 

inputs. Step E also involved calculation of infection risks associated with potential failures in each of 

the water treatment steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Framework of the modelling steps for prediction of future pathogen infection risks associated 

with the WTPs. (A) Regression models (prediction of future turbidity and color), (B) Random Forest 

(RF) models (prediction of future E. coli), (C) Estimation of pathogens from E. coli, (D) Process models 

(treatment barrier efficacies), and (E) Dose-response models (pathogen infection risk calculation). EP = 

Adjusted Turbidity & Color 

• Projected: 2045, 2075 

• EP increase: 50%, 100% 

 

     Adjusted Precipitation 

• Projected: 2045, 2075 

• EP increase: 50%, 100% 

 

       Predicted E. coli based on: 

• 2045 & 2075 climate 

projections 

• 50% & 100% EP increases 

 

Estimated pathogens in raw water 

• 2045 & 2075 climate projections 

• 50% & 100% EP increases 

 

A 
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extreme precipitation (Values of average precipitation ≥ 3 times standard deviations of the time series 

were increased by 50% and 100%). 

 

The water quality data used in this study were taken from the WTPs, and were composed of weekly 

records of turbidity, color, and E. coli measured in the raw water sources between 2009 and 2015. In 

addition, hourly precipitation measurements in the catchments of the raw water sources for the same 

period were obtained from weather stations closest to the water sources. From the hourly measurements, 

total weekly precipitation values were calculated. Further, seasonal mean values of projected 

precipitation for 2045 and 2075 in the locations of the raw water sources were obtained from the 

Norwegian Meteorological Institute.  The mean projections were first bias-corrected and used to adjust 

the historical time series of the observed precipitation in the regions. Table 2 shows the bias-corrected 

projections of precipitation in the study regions for 2045 and 2075. 

Table 2. Bias-corrected median projections of precipitation in the regions where the WTPs studied are 

located.  

WTP Year Biase-corrected median projected change (%) in average 
precipitation under RCP8.5 climate scenarios. 

  Winter Spring Summer Autumn 
Ålesund 2045 

2075 
         0.16 
        -0.12 

14.22 
17.25 

         9.79 
         14.26 

       -13.17 
       -10.78 

Oset 2045 
2075 

         5.99 
         11.23 

22.82 
20.05 

         3.19 
         1.76 

       -8.64 
       -5.59 

Svartediket 2045 
2075 

         17.51 
         22.35 

11.75 
17.31 

         21.64 
         22.37 

        4.33 
        10.15 

 

 

2.2.1. Modelling the relationships between precipitation and water quality 

Traditional regression analysis (step A in Figure 2) was used to evaluate the relationships between the 

measured precipitation in the catchments and levels of turbidity and color measured by the WTPs for 

the same period. The regression analysis involved various functions including linear, exponential, 

polynomial and logarithmic. The best models were selected based on coefficient of determination (R2), 

diagnosis of residuals as well as overall significance levels of the models (p ≤ 0.05). The regression 
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models were used to predict the values of turbidity and color in the raw water sources based on changes 

in average precipitation from (1) climate projections, and (2) assumed increases in precipitation. In the 

first case, the projected changes in average precipitation in the catchments for 2045 and 2075 were used 

to estimate corresponding changes in the measured turbidity and color through the regression models. 

These potential change ratios (%) were used to adjust the time series of the two variables to represent 

future values to be used in predicting E. coli in the raw water sources for 2045 and 2075. The 

precipitation changes factor method as applied in this study is widely used for adjusting historical 

climate variables in hydrological modelling and climate impact assessment (Teutschbein and Seibert, 

2012; Shrestha et al., 2017). The method is based on transforming historically observed time series of 

climate variables using ratios between mean future and historical climate projections. The seasonal mean 

values of projections of precipitation used in this study are based on median values derived from 

ensembles of Representative Concentration Pathways (RCP 8.5) models taken from the Norwegian 

Climate Service Center. The climate models are composed of 10 different models and calculate the 

change factors for future years as moving averages. Therefore, the change factor of precipitation used 

in this study represents expected changes in a 40-year period, with each of the selected years (2045 and 

2075) as median. In the second case, values in the records of precipitation (2009 - 2015) that were greater 

than or equal to three times the standard deviation (𝜎) of the 7 – year observations were increased by 

50% and 100%. This was used to assess the potential effects of extreme precipitation events on the 

infection risks. Generally, an event of a climate or weather variable such as precipitation is said to be 

extreme when its occurrence is above or below threshold values near the upper (or lower) ends of their 

observed ranges (Annex 2012). This is caused by changes in mean total precipitation, which can be 

accompanied by changes in distribution, frequency, variability and intensity (IPCC, 2001). The new 

precipitation data (with increases in only the values ≥ 3𝜎) were applied in the regression models to 

calculate corresponding changes in turbidity and color under the assumed increases in precipitation. To 

propagate the uncertainties in the regression model estimates in the subsequent steps of this study, the 

95% confidence limits of the regression parameters were used to calculate uncertainty bounds for the 

predicted water quality variables. Therefore, each prediction was composed of mean, lower 95%CI, and 

upper 95%CI. 
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2.2.2. Prediction of future E. coli with random forest models  

Random forest-based (RF) machine learning models were developed to predict the observed 

concentrations of E. coli in the raw water sources using measured turbidity and color as inputs (step B 

of Figure 2). Random forest is a tree-based machine learning algorithm developed by Breiman (2001). 

The model generates multiple decision trees through random data sampling (approximately two-thirds 

of training data), bootstrapping, and fitting each sample with either a classification or regression trees. 

Predictions of all the decision trees are aggregated to produce output variables as an average of 

predictions from the grown trees. The model is designed to prevent overfitting by calculating prediction 

errors from “out-of-bag samples” (one-third of training data) for each tree, thus obviating the need for 

additional testing of the model accuracy.  Further description of the random forest machine learning and 

its appropriateness for use in predicting E. coli in raw water can be found in the work of Mohammed et 

al. (2018).  In this study, weekly measurements of turbidity and color in the water sources from 2009 – 

2015 were used to train and test the RF models for predicting E. coli in the water sources. The RF models 

in this study were developed using codes written in MATLAB (version R2017b). Although the RF 

model has a unique way of assessing the accuracy of predictions, we trained the models with 70% of the 

data sets, and further assessed the reliability of the models for predicting potential future concentrations 

of E. coli in the water sources by using the remaining 30% of the data for testing. The outputs of both 

training and testing of the RF models were further regressed to evaluate the performance of each of the 

models using coefficient of determination (R2).  The time series of turbidity and color adjusted from 

climate projections of average precipitation and extreme precipitation events were used as inputs to 

predict potential E. coli concentrations (mean, lower and upper 95%CI) in the water sources under the 

two scenarios described in section 2.2.1. of this study.  

 

2.2.3. Estimation of pathogen concentrations in the raw water sources 

For the purpose of modelling pathogen infection risks, the concentrations of pathogens in the water 

sources are required. For this, the study accounted for Norovirus, Giardia, Cryptosporidium, and 

Campylobacter. Norovirus is one of the most common causes of non-bacterial gastrointestinal illnesses 
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in Norway, with strong seasonal variations and peaks during winter (NIPH, 2016). In addition, drinking 

water contamination is considered as a likely cause of between 300- 500 annual reported cases of 

Giardia and Cryptosporidium illnesses in the country (Nygård and Blystad, 2005). Amongst the 

incidences of bacterial gastroenteritis recorded in Norway, cases resulting from Campylobacter 

infections constitute a majority (Kvitsand & Fiksdal, 2010; MSIS, 2015). Further, Campylobacter was 

frequently identified in reported waterborne infections in Norway between 1988- 2002 (Nygård et al., 

2003), and has been recognized as the second most common pathogen implicated in reported waterborne 

outbreaks in Scandinavian countries between 1998 and 2012 (Guzman-Herrador et al., 2015). In 

addition, consumption of both treated and untreated water have been identified as potential risk factors 

for incidences of Campylobacter infections in Norway (Kapperud et al., 2003; Jakopanec et al., 2008). 

However, pathogen concentrations in water sources are rarely monitored, due to complexities in their 

detection methods. Thus, water quality regulations require targeting faecal indicator bacteria (FIB), 

which can be easily detected and enumerated in water. Drinking water supply systems in the country 

heavily rely on surface water sources, which are often subject to contamination from combined sewer 

overflows (CSOs) and discharges from on-site sanitation (Tryland et al., 2011; Petterson et al., 2016). 

The ratios used in to estimate the concentrations of pathogens from E. coli concentrations are shown in 

Table 3. A key limitation of this method is the restriction of the E. coli pathogen relationships to that of 

wastewater, since this may not be the same for other sources in the environment.   Therefore, although 

the observed associations between E. coli and the pathogens in wastewater may not necessarily correlate 

with the situation in the water sources studied, the ratios enabled useful estimates of the concentrations 

of the pathogens to be obtained. The pathogen concentrations were estimated as time series with their 

95% CI. To account for variability and uncertainty in the pathogen concentrations, 95% CI were 

estimated from the corresponding confidence limits of the predicted E. coli concentrations.  In addition, 

the pathogen concentrations were fitted to triangular probability distributions (defined by the minimum, 

mode and maximum of the time series). 

Table 3. Reported average concentrations of pathogens in sewage in Norway and the pathogen: E. coli 

ratios used to estimate pathogen concentrations from the observed and predicted E. coli in this study. 
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Microbe/pathogen 

(per 100 ml) 

Concentration in 

WWTP influent 

and sewage 

system 

References Pathogen: E. coli 

ratio 

E. coli 5.9 × 106 Grøndahl-Rosado 

et al., 2014b 

 

Norovirus 5.1 × 105 Myrmel et al., 

2015 
8.64 ×  10−2 

Giardia 7.59 × 102 Robertson et al., 

2006 
1.30 ×  10−4 

Cryptosporidium 6.78 × 102 Robertson et al., 

2006 
1.20 ×  10−4 

Campylobacter - Eregno et al., 

2016 
2.00 ×  10−5 

                       

 

2.2.4. Modelling of pathogen removal in water treatment processes   

Figure 3 shows the main treatment steps involved in the three WTPs included in this study.  The 

treatments steps that serve as barriers to pathogenic organisms in the water are accounted for in this 

study (Figure 3).  

 

Figure 3. Main treatment steps involved the three water WTPs included in this study (A, B and C for 

the Ålesund, Oset, and Svartediket respectively). 

 

The models applied in assessing the performances of the different steps in the removal of the selected 

pathogenic organisms are presented as follows:  
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The value of Cout for each pathogen was calculated as follows (Haas et al., 1999): 

 

   𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 × 𝜋𝑖 × … … … . . 𝜋𝑛                                                   (1) 

 

Where 𝐶𝑖𝑛 is the concentration in raw water, 𝜋𝑖 is the Log removal (𝐿𝑟) of treatment step 𝑖, and 𝑛 is the 

final treatment step. In each treatment step, 𝐿𝑟 was calculated as mean (minimum, maximum) by varying 

one major input parameter. These were fitted to triangular probability distributions to account for the 

variability in the barrier efficacies.  For the WTPs that include coagulation/flocculation and/or 

sedimentation steps, 𝐿𝑟 values were taken from the works of Bell, 2000 and Hijnen & Medema, 2010.  

The values of 𝐿𝑟 for rapid sand filtration in the WTPs were calculated by applying the colloid filtration 

theory (Yao et al., 1971). Data on filter dimensions, media characteristics and operation conditions used 

as inputs to the model were collected from the WTPs. In this model, filter media dimensions were varied 

to obtain the mean (minimum, maximum) values for 𝐿𝑟. Details of the treatment steps, model equations, 

and parameters used in calculating the barrier efficacies are presented in Appendix A. 

Reduction of pathogens by free chlorine was estimated based on the 𝐶𝑡 values for the disinfection 

contact chambers of each facility, From the 𝐶𝑡 values, 𝐿𝑟 was calculated using the relation (Ødegaard 

et al., 2009): 

 

𝐿𝑟 = 𝐿𝑟𝑟𝑒𝑞 ×
𝐶𝑡

𝐶𝑡𝑟𝑒𝑞
                                                        (2) 

where 𝐿𝑟𝑟𝑒𝑞 and 𝐶𝑡𝑟𝑒𝑞 are the required inactivation and 𝐶𝑡 values for each pathogen by chlorination for 

specific water pH and temperature (Ødegaard et al., 2009).  To obtain the mean, minimum and maximum 

values of 𝐿𝑟, corresponding values of the concentrations of total organic carbon (TOC) in the raw water 

sources used as inputs in the calculation of the 𝐶𝑡 values were applied. 

For the UV step, disinfection was modelled using the Chick-Watson model (Haas & Karra, 1984), with 

the disinfectant concentration replaced by the UV intensity as: 
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𝑙𝑜𝑔10
𝐶𝑥

𝐶0
= −𝑘𝐼𝑛𝜏                                                            (3) 

 

where 𝐼 [mJ/cm2] is the UV intensity, k [cm2W-1s-1] is the inactivation rate constant, 𝜏 is the irradiation 

time [s], and 𝑛 [-] is an empirical constant. Here, the 95%CI of the values of k were used to calculate 

the minimum, mean and maximum values of 𝐿𝑟. For Norovirus, the value of 𝑘 (mean ± 95%CI) was 

set at 0.102 ± 0.006, which is based on a study conducted for Rotavirus (Malley et al., 2004), thus, the 

Rotavirus was assumed as a suitable surrogate for Norovirus. For Giardia, Cryptosporidium, and 

Campylobacter, a 𝑘 value of 0.122 ± 0.009 was used (Craik et al., 2000; Malley et al., 2004).  

 

2.2.5.  Modelling exposure to pathogens and infection risks 

The daily dose of pathogens in the treated water from the respective WTPs consumed per person per 

day was calculated as follows:  

 

𝑑 = 𝑐 ×  𝑉 × 10−Lr                                                         (4) 

 

where 𝑐 is the pathogen concentration, 𝑉 is the mean daily amount of cold water consumed per person 

(0.74 L), which follows a Log-normal distribution with parameters 𝜇 = −0.299 and 𝜎 = 0.57 (Westrell 

, 2004), and 𝐿𝑟 is the total log removal achieved by the different treatment units in the WTP, which were 

derived from section .2.2.4. To account for variabilities in the dose-response model parameters 

themselves, the minimum and maximum values shown in Table 4 were fitted to uniform probability 

distributions. Using the various distributions of the input parameters, Monte Carlo simulations were run 

with 10 000 iterations, and the resulting data were used for the respective dose-response models. To 

assess the daily pathogen infection risks associated with the dose, 𝑑 of pathogens ingested in equation 

4, the dose-response models summarized in Table 4 were used for the different pathogens. Although the 

hypergeometric dose-response for used norovirus has some limitations (Schmidt, 2015; Van Abel et al., 
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2017), the model was applied in this study under the assumption of a “worst case” scenario for which 

the populations connected to the water supply systems have no immunity to the virus.  

 

Table 4: Dose-response models and parameters used in calculating the daily infection risks 

Pathogen Model Parameters  

U (min, max) 

References 

Norovirus Hypergeometric 𝛼 = U (0.004, 0.005) 

 𝛽 = U (0.055, 0.063) 

 𝑎 = 0.9997 

Teunis et al., 2008; 

Thebault et al., 2013 

Giardia Exponential 𝑟 = U (0.0199, 0.02) Rose & Gerba, 1991 ; 

Teunis et al., 1996 ;  

Haas et al., 1999 ; 

Cryptosporidium Exponential 𝑟 = U (0.004, 0.2) US. EPA, 2006; 

WHO, 2011 

Campylobacter Beta-Poisson 𝛼 = U (0.145, 0.15) 

 𝛽 = U (7.59, 7.9) 

Medema et al., 1996 

Teunis et al., 1999 

U = Uniform distribution 

 

Annual infection risks were calculated from the daily infection risks using the following equation. 

𝑃𝑎𝑛𝑛𝑢𝑎𝑙 = 1 − (1 − 𝑃𝑑𝑎𝑖𝑙𝑦)
𝑛

                                                         (5) 

 

where  𝑃𝑑𝑎𝑖𝑙𝑦 is the daily infection risks from the respective dose response models, and 𝑛 = 365 for 

annual risk estimation. In this study, median infection risks were calculated and the values were 

compared with the   acceptable infection risk level of 10-4 per person per year (pppy), which has been 

used for surface water treatment requirements in the US (US. EPA, 2006). For drinking water 

consumption, the WHO recommends the use of Daily Adjusted Life Years (DALYs), with a tolerable 

disease burden of 10-6 DALY ppy (WHO, 2011). However, disease burdens associated with the infection 
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risks were not calculated in this study. The infection risks were calculated using the pathogen 

concentrations estimated from the historical E. coli in the raw water sources, predicted concentrations 

under climate projections, and the concentrations under extreme precipitation events. Since the pathogen 

concentrations (from the climate projections and extreme precipitation events) were estimated with their 

95%CI (section 2.2.3), the annual median infection risks were separately calculated from the confidence 

limits and presented as uncertainty bounds.  

In the case of the historical infection risks, uncertainty bounds (95%CI) were calculated using the 

Kolmogorov-Smirnov (K-S) “goodness of fit” test (Hogg and Tanis, 1977). The K-S test determines 

confidence bands for probability distributions. The QMRA models were implemented and run in R 

(Ri386 3.5.0). 

 

2.3. Water treatment failure scenarios 

After applying the models to estimate the potential future infection risks that are attributable to the 

projected precipitation and extreme precipitation events in the catchments of the water sources, 

additional scenarios were performed to investigate the effects of potential failures in each treatment step 

on the infection risks. These scenarios were meant to determine how safe the treated water can be under 

events of failures in any of the barriers. This was evaluated by using the 5th percentiles of the calculated 

barrier efficiency of each treatment step, while all other steps remained unvaried. The resulting median 

infection risks were compared with the baseline scenarios. By comparing the results of these scenarios 

with the baseline scenarios, key areas that may be of concern can be identified and prioritized in ensuring 

the safety of drinking water in the future.  

 

2.4. Sensitivity analysis of QMRA inputs 

The main objective of the sensitivity analysis performed in this study was to determine how the various 

inputs of the QMRA influence the infection risk calculation. For this reason, the pathogen 

concentrations, water consumption, and dose-response model parameters were varied from their 
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minimum to maximum values, and the infection risk due to each variation was calculated. The sensitivity 

analysis was performed only for Ålesund WTP, with the assumption that the others would show similar 

trends. The calculated median infection risks resulting from varying each parameter were averaged and 

factor sensitivity coefficients (𝐹𝑆𝑖) were calculated as: 

 

𝐹𝑆𝑖 = 𝑃𝑖,𝑥 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒⁄                                                                   (6) 

 

where  𝑃𝑖,𝑥 is the averaged median infection risk obtained after varying model input parameter 𝑥, and 

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the baseline median infection risk.  The sensitivity analysis was performed only for the 

QMRA step, since variabilities in the model input parameters at each step were incorporated using 

probability distributions.  

 

3. Results  

 

3.1. Dependence of turbidity and color on precipitation 

Table 5 summarizes the fitted linear and non-linear relationships between the water quality variables 

(turbidity and color) in the raw water sources of the three WTPs and the catchment precipitation. For 

each selected model, the residuals were randomly and symmetrically dispersed from the horizontal, 

indicating that the linear models adequately describe the data. In addition, the standardized residuals 

ranged from -0.1 to 0.1 for the turbidity models and -0.4 to 0.4 for the color models. All the models were 

also significant at p < 0.05. The R2 values for the selected models ranged from 0.28 to 0.37 for turbidity 

and 0.31 and 0.52 for color, suggesting that catchment precipitation explains less than 40% and 50% of 

variabilities in the measured turbidity and color respectively. The predicted seasonal averages of the 

water quality variables and the catchment precipitation are shown in the appendix (Appendix B). 
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Table 5: Results of the selected regression models fitted to measured turbidity and color in the raw 

sources and catchment precipitation. The projected seasonal changes in turbidity and color in the water 

sources are also shown.  

Variable Relationship R2 Mean change factor for 2045 and 2075 (%) 

    Winter Spring Summer Autumn 

Ålesund water source 

Turbidity y = 0.028 +0.597x3 0.37 2045 

2075 

2.81 

2.79 

3.01 

3.14 

2.85 

    3.01 

2.67 

2.72 

Color y = 0.106+1.129x- 

4.277x2+3.881x3 

0.52 

 

2045 

2075 

11.68 

9.42 

19.22 

19.32 

18.01 

19.22 

-12.16 

-7.52 

Oset water source 

Turbidity y = 0.083 + 0.091x 0.28 2045 

2075 

9.94 

9.95 

10.12 

9.94 

10.31 

10.39 

8.76 

9.31 

Color y = 0.134 + 0.119x 0.43 2045 

2075 

15.48 

16.06 

14.79 

15.46 

15.97 

16.06 

13.92 

14.61 

Svartediket water source 

Turbidity 

               

y = 0.095exp(x) 0.29 2045 

2075 

10.1 

10.7 

11.9 

11.6 

9.8 

9.7 

8.7 

8.9 

Color y = 0.232 + 0.316x 0.31 2045 

2075 

25.1 

26.9 

30.5 

29.5 

24.2 

23.8 

20.4 

21.3 

x- catchment precipitation; y-response variables (turbidity or color). 

 

3.2. Historical and predicted concentrations of E. coli in the water sources 

The seven-year historical observations indicate that the concentrations of E. coli are generally low in all 

the water sources, with seven-year (2009 - 2015) maximum concentrations of 9 CFU/100 ml, 6 CFU/100 

ml, and 37 CFU/100 ml in the water sources for Ålesund, Oset, and Svartediket respectively. Higher 

concentrations occur during winter and autumn seasons in the water sources for Ålesund and Oset WTP, 
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compared to spring and summer. However, the differences are marginal in the Ålesund water source, 

which has a larger total surface area, and located in an area that receives significantly higher rainfall 

throughout the seasons (west coast of Norway) than the Oset water source (southern Norway). The 

pattern of variation was however slightly different in the water source for Svartediket, with higher 

concentrations occurring mostly in autumn relative to the other seasons.  

Figure 4 shows the concentrations of E. coli in the raw water sources predicted using the RF models for 

the two scenarios (average projected precipitation for 2075 and 100% increase in extreme precipitation 

events). Regression plots comparing the outputs of the RF models with the historical observations of E. 

coli in the water sources are shown in Appendix B. Across the three water sources, R2 values achieved 

ranged from 0.71 to 0.89 during model training and from 0.66 to 0.74 during testing. Comparison of the 

predictions under the two scenarios indicate that the extreme precipitation events may result in higher 

concentrations of E. coli in the raw water sources than the future climate projections.  

 

Figure 4. Predicted concentrations of E. coli in the raw water sources under climate projections for 2075 

and 100% increases extreme precipitation events for Ålesund (A1 & A2), Oset (B1 & B2), and 

Svartediket (C1 & C2). 
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3.3. Estimated pathogen concentrations in the water sources 

The average and 95% CI of the concentrations of the pathogenic organisms predicted under the two 

scenarios are shown in Figure 5. As indicated in section 3.2, the concentrations of E. coli in the historical 

observations were generally low in the three lakes. Consequently, the estimated pathogen concentrations 

in the various raw water sources were generally low. As shown in the figure, the calculated 

concentrations of Norovirus were higher in the water sources than the other pathogens. The relatively 

higher concentrations of Norovirus can be attributed to higher ratio of the pathogen to E. coli as used in 

the calculation. Moreover, just as like the predicted E. coli concentrations, the increases due to extreme 

precipitation events were relatively higher than those estimated under the climate projections.  

 

Figure 5. Averages and 95% CI of the concentrations of Norovirus, Giardia, Cryptosporidium, and 

Campylobacter estimated in the water sources for Ålesund (A), Oset (B), and Svartediket (C) WTPs  

 

 

 

3.4. Pathogen removal in the water treatment plants 
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Table 6 summarizes the results of the model estimates of log removals of the reference pathogens by the 

treatment processes across the three WTPs.  The model results of the rapid sand filters alone generally 

yielded less than 1 log removal of the pathogens. Across all the WTPs, log removal of Norovirus by 

filtration was lower than the three other pathogens. This may be partly due to the average size of the 

pathogen, which is an essential component of the colloid filtration theory applied in this study. 

 

Table 6: Calculated log reductions of pathogens in the various WTPs  

Pathogen Log removal (𝜋) 

mean (min - max) 

 Coagulation/ 

Flocculation, 

sedimentation 

Rapid sand 

filtration 

Chlorination UV Total 

Ålesund WTP  

Norovirus  0.09 (0.06, 0.19) 0.0099(0.0094,0.011) 3.234 (3.095, 

3.366) 

3.335 (3.164, 

3.574) 

Giardia  0.174 (0.099, 

0.332) 

0.00039 (0.00036, 

0.00042) 

3.646 (3.489, 

3.792) 

3.819 (3.589, 

4.125) 

Cryptosporidium  0.253 (0.151, 

0.504) 

0.00039 (0.00037, 

0.00042) 

3.646 (3.489, 

3.792) 

3.898 (3.642, 

4.296) 

Campylobacter  0.932 (0.566, 

1.887) 

0.039 (0.037, 0.0415) 3.646 (3.489, 

3.792) 

4.617 (4.094, 

5.722) 

Oset WTP  

Norovirus 1.8 (0.2, 4.3) 0.151 (0.105, 

0.218) 

0.916 (0.727, 0.959) 3.605 (3.466, 

3.736) 

6.472 (4.498, 

9.215) 

Giardia 1.83 (0.30, 2.91) 0.245 (0.177, 

0.368) 

0.036 (0.029, 0.038) 4.016 (3.861, 

4.163) 

6.128 (4.367, 

7.469) 

Cryptosporidium 1.91 (0.4, 3.8) 0.373 (0.269, 

0.509) 

0.036 (0.029, 0.039) 4.017 (3.861, 

4.163) 

6.336 (4.559, 

8.511) 

Campylobacter 1.98 (0.6, 3.7) 1.331 (0.972, 

2.058) 

3.665 (2.911, 3.839) 4.017 (3.861, 

4.163) 

10.992 (8.344, 

13.762) 

Svartediket WTP  
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Norovirus 1.83 (0.2,4.3) 0.199 (0.155, 

0.297) 

0.982 (0.753, 1.044) 3.234 (3.095, 

3.366) 

6.244 (4.202, 

9.001) 

Giardia 2.01 (0.3, 2.9) 0.335 (0.259, 

0.498) 

0.039 (0.031, 0.042) 3.646 (3.489, 

3.792) 

6.031 (4.079, 

7.233) 

Cryptosporidium 2.35 (0.4, 3.81) 0.508 (0.394, 

0.755) 

0.039 (0.031, 0.042) 3.646 (3.489, 

3.792) 

6.543 (4.313, 

8.388) 

Campylobacter 2.07 (0.6, 3.7) 1.784 (1.475, 

2.832) 

3.925 (3.011, 4.176) 3.646 (3.489, 

3.792) 

11.425 (8.575, 

14.501) 

 

The current drinking water regulation in Norway requires that WTPs reduce bacteria and viruses by a 

minimum of 99.9% (3 log reduction), and parasites by 99% (2 log reduction) (Norwegian Food Safety 

Authority, 2005). Based on the Norwegian guideline for microbial barrier analysis in water supply 

systems, the levels of raw water quality and the population that are connected to the WTPs included in 

this study require minimum log reductions of 5 for Norovirus, 5 for Campylobacter, and 3 for Giardia 

and Cryptosporidium (Norwegian Food Safety Authority, 2005; Ødegaard & Østerhus, 2014). The total 

log reductions calculated in this study (5.28 – 6.85 log for Norovirus; 3.92 – 6.5 log for Giardia and 

Cryptosporidium; and 9.39 – 11.91 for Campylobacter) suggest that the WTPs studied generally meet 

the requirements. However, these are purely under the assumption that each of the treatment processes 

are performing at their optimal capacities. 

 

3.5. Historical and future infection risks  

 A summary of the annual median infection risks per person per year (pppy) from the historical and 

predicted concentrations of the pathogens are shown in Table 6. In this table, infection risks that are 

higher than the acceptable limit of 10-4 pppy are shaded in grey color. The annual median infection risks 

(historical) for the Ålesund WTP were; 3.15 10-6 (pppy), 3.33 x 10-7, 2.06 x 10-6 (pppy), and 8.76 x 10-7 

(pppy) for Norovirus, Giardia, Cryptosporidium, and Campylobacter respectively. The respective 

historical risks for Oset and Svartediket were 9.64 x 10-9 (pppy) and 1.03 x 10-8 (pppy) for Norovirus, 

1.14 x 10-8 (pppy) and 5.98 x 10-8 (pppy) for Giardia, 5.85 x 10-10 (pppy) and 1.96 x 10-8 (pppy) for 

Cryptosporidium, and 4.76 x 10-12 (pppy) and 3.24 x 10-10 (pppy) for Campylobacter. It can be noted 
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from the above values that the median values for Norovirus, Cryptosporidium, and Campylobacter in 

the Ålesund WTP, were high, although they were averagely within acceptable limits of 10-4 pppy (US 

EPA, 2006). Moreover, the 95% CI of the historical risks for Norovirus in this WTP (10-4  pppy) suggests 

that the risk of the virus may have been high. The 95% CI risk values for the other pathogens in the 

Ålesund WTP and all the pathogens in the Oset and Svartediket WTPs were however < 10-5 (pppy). 

The results also indicate that under the current projections of average precipitation in the regions where 

the raw water sources are located, future infection risks may generally remain close to the present levels. 

However, as shown by the 95% CI values in Table 6 (A), the risk of Norovirus and cryptosporidium in 

the Ålesund WTP may be high in the future. Further, the results shown in Table 6 (B) indicate that the 

occurrence of extreme precipitation events in the catchments of all the raw water sources may lead to 

substantial increases the infection risks. The risks of Norovirus and cryptosporidium in the three WTPs 

could be particularly high under these events, with median risk levels > the acceptable limit of 10-4 

(pppy).  

 

Table 6: Population annual median infection risks from the estimated pathogen concentrations in the 

water sources; historical and future climate projections (A), historical and increases in extreme 

precipitation events (B).  

(A)  Historical Predicted-2045 Predicted-2075 
 5%CI Median 95%CI 5%CI Median 95%CI 5%CI Median 95%CI 

Ålesund WTP 
Norovirus 6.8E-08 3.2E-06 9.8E-04 2.4E-07 2.5E-05 2.5E-03 2.6E-05 2.7E-04 2.7E-03 

Giardia 1.1E-10 3.7E-07 8.0E-06 2.0E-07 2.0E-05 2.1E-04 2.4E-07 2.7E-05 2.9E-04 

Cryptosporidium 8.0E-09 2.1E-06 6.3E-05 8.5E-06 8.4E-05 1.6E-04 8.9E-06 8.7E-06 1.8E-03 

Campylobacter 3.7E-09 8.8E-07 4.5E-06 6.6E-07 1.4E-06 3.9E-05 4.8E-07 4.8E-06 4.8E-05 

Oset WTP 
Norovirus 1.3E-12 9.2E-09 4.1E-05 8.0E-09 9.7E-07 1.3E-05 4.3E-09 6.4E-07 8.5E-05 

Giardia 7.3E-11 1.1E-08 3.4E-07 3.3E-10 3.6E-08 4.4E-06 6.8E-09 2.1E-06 2.3E-05 

Cryptosporidium 1.1E-12 5.9E-10 9.4E-06 1.1E-09 1.2E-07 1.5E-05 1.6E-09 2.5E-06 3.1E-06 

Campylobacter 0.0E+00 4.8E-12 2.6E-09 5.7E-13 6.9E-13 7.3E-08 5.7E-13 7.3E-11 6.9E-09 

Svartediket WTP 
Norovirus 1.3E-10 1.0E-08 4.1E-05 2.9E-08 3.3E-05 4.2E-04 3.0E-08 4.0E-05 7.7E-04 

Giardia 3.9E-11 6.0E-09 1.0E-06 5.4E-09 2.4E-06 4.6E-05 6.0E-08 1.1E-05 1.8E-05 

Cryptosporidium 6.6E-11 2.0E-08 6.9E-06 9.9E-09 1.7E-06 3.1E-05 1.0E-07 1.5E-05 3.4E-05 

Campylobacter 0.0E+00 3.2E-10 4.3E-08 1.6E-13 2.0E-10 2.8E-06 1.1E-12 2.0E-09 3.0E-05 

 
(B)                                                                         Historical 50% EP increase 100% EP increase 
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 5%CI Median 95%CI 5%CI Median 95%CI 5%CI Median 95%CI 

Ålesund WTP 

Norovirus 6.8E-08 3.2E-06 9.8E-04 2.7E-05 3.3E-04 3.5E-03 4.1E-05 5.4E-04 7.2E-03 

Giardia 1.1E-10 3.7E-07 8.0E-06 3.2E-06 3.3E-04 3.4E-04 5.4E-07 8.6E-04 1.4E-03 

Cryptosporidium 8.0E-09 2.1E-06 6.3E-05 2.0E-06 2.3E-04 2.6E-03 4.7E-06 7.5E-04 7.1E-03 

Campylobacter 3.7E-09 8.8E-07 4.5E-06 3.3E-06 3.3E-06 3.7E-06 7.1E-06 1.3E-05 3.0E-04 

Oset WTP 
Norovirus 1.3E-12 9.2E-09 4.1E-05 3.7E-09 4.7E-05 5.4E-04 3.1E-09 3.7E-04 6.8E-03 

Giardia 7.3E-11 1.1E-08 3.4E-07 3.2E-09 3.6E-06 4.1E-05 5.2E-09 6.7E-04 1.0E-04 

Cryptosporidium 1.1E-12 5.9E-10 9.4E-06 1.5E-09 2.2E-06 2.8E-04 1.1E-09 1.5E-04 2.5E-03 

Campylobacter 0.0E+00 4.8E-12 2.6E-09 8.1E-14 1.2E-10 1.2E-07 6.1E-13 8.1E-09 1.3E-05 

Svartediket WTP 
Norovirus 1.3E-10 1.0E-08 4.1E-05 2.9E-08 4.4E-04 5.1E-04 3.0E-08 4.6E-04 6.6E-03 

Giardia 3.9E-11 6.0E-09 1.0E-06 2.1E-08 3.4E-05 8.5E-04 8.5E-09 1.7E-05 7.2E-04 

Cryptosporidium 6.6E-11 2.0E-08 6.9E-06 5.5E-07 8.5E-05 4.1E-04 3.3E-05 6.6E-05 6.0E-03 

Campylobacter 0.0E+00 3.2E-10 4.3E-08 1.5E-12 3.7E-08 7.5E-05 1.5E-12 2.4E-06 6.2E-04 

EP = extreme precipitation 

 

3.5 Effects of sub-optimal performance of treatment steps on infection risks  

Figure 6 shows the results of the additional scenarios performed on the WTPs to investigate potential 

effects of variations in the performances of the treatment steps on the infection risks. The scenarios were 

simulated for all the pathogens in each WTP and compared to the baseline scenarios. Results for the 

Ålesund WTP show that when the UV step performs at its 5th percentile capacity, risk of Norovirus 

infection can increase from the baseline value of 3.15 10-6 (pppy) to 1.02 x 10-4 (pppy). However, low 

performance of the chlorine unit does not appear to affect the infection risks. Similar effects of sub-

optimal performance of the UV steps can be seen in the resulting infection risks calculated in the other 

WTPs. In addition, poor performance of the main treatment step in the Ålesund WTP (1 media filter) 

had low effect on the risks of infection of Norovirus and Giardia in the Ålesund WTP. Despite the 

relatively low effect of the filter in this WTP on the two pathogens, a poor performing filter implies that 

water from the filter outlet would contain relatively higher particle concentrations, subsequently 

reducing UV transmittance and disinfection efficacy. Across all the WTPs, the overall performance of 

the treatments and disinfections depended on the UV step. It can also be seen that for Oset and 

Svartediket WTPs, the effects of the chlorine steps on the infection risks were higher compared to the 
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case of the Ålesund WTP. This is due to the relatively higher barrier efficacies calculated for the chlorine 

steps in these WTPs, compared to the Ålesund WTP.  

 

 

Figure 6. Effects of poor performing treatment steps (5th percentiles of their efficacies) on the infection 

risks in the Ålesund WTP (A) Oset WTP, (B) and Svartediket WTP (C). 

 

3.6. Parameter sensitivity in the infection risk calculation 

Figures 7 shows a plot of the sensitivity ranks of the various inputs of the infection risk calculation in 

the Ålesund WTP. Varying the model input parameters within their ranges resulted in significant 

changes in the calculated infection risks. For instance, increasing the concentration of Norovirus in the 

estimated historical time series from the minimum of 0.086 genome copies/100 ml to the maximum of 

0.966 genome copies/100 ml resulted in increasing the infection risk from 3.15 x 10-6 (pppy) to 4.73 x 

10-3 (pppy). Similar increases were noted when the volume of water and the alpha parameter (α) in the 
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model were varied from minimum to maximum values. For the beta parameter however, increasing it 

from 0.055 to 0.063 resulted in lower infection risks of the virus. The alpha and beta parameters (α, β) 

determine the infectivity of the virus, and the results in Figure 7 suggest that the choice of values for 

these parameters can have substantial impact on the final risk estimates. The concentration of Norovirus 

was the most sensitive parameter to the dose-response model with a sensitivity rank of 1.84, followed 

by the beta parameter with 1.22. In the exponential model for Giardia, water consumption was ranked 

highest among the input parameters. This parameter also ranked highest in the models for 

Cryptosporidium, followed closely by pathogen concentration in both cases. In the beta-Poisson model 

for Campylobacter, the pathogen concentration achieved the highest ranking (1.82) with the remaining 

parameters having approximately 1.1. 

 

 

Figure 7. Sensitivity ranks of the infection risk calculation input parameters for Norovirus (A), Giardia 

(B), Cryptosporidium (C) and Campylobacter (D) in the Ålesund WTP. 𝛼, 𝛽 and 𝑟 are parameters in 

the dose-response functions. 
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4. Discussion 

As presented in Table 5 in the results section, catchment precipitation may be expected to result in higher 

percent increases in the color of the raw water sources than the turbidity. This may be due to the spatial 

characteristics of the catchments such as soil type, topography, and concentrations of decaying organic 

matter in the catchments. The expected increase in turbidity in the future may be lower (~ 3%) in Lake 

Brusdalsvatnet (raw water source of the Ålesund WTP) than the other water sources, apparently due to 

the relatively larger size of the lake (surface area of ~ 7.2 km2) and higher mean resident time compared 

to the other two lakes. Moreover, both turbidity and color displayed different responses to variations in 

the precipitation observed in the various water source catchments. Therefore, the predicted variations in 

the water quality variables reflect a combined influence of the respective responses and the varying 

magnitudes of the projected precipitation in the catchments. It is worth noting that the calculated change 

factors only account for potential impact of catchment precipitation, as the actual future concentrations 

of these variables can be affected by other factors such as soil/sediment characteristics and 

anthropogenic activities within the catchments. 

Precipitation in the catchments of the water supply systems in this study comprises rainfall and snow, 

both of which can affect the turbidity and color of the water sources. In addition, high stream flows from 

heavy rainfall events and snowmelt cause mixing of stratified drinking water reservoirs such as lakes 

(Bertone et al., 2016), potentially increasing turbidity and color at the raw water intake zones of WTPs.  

Studies have found significant positive correlations between precipitation and variations in turbidity and 

color of drinking water sources (Nilsson & Renöfält, 2008; Whitehead et al., 2009). Moreover, high 

river flows from intense rainfall in the catchment of water supply systems have been associated with   

increased sediment load and turbidity of raw water (Göransson et al., 2013; Bertone et al., 2016). Color 

can be significantly varied by the concentration of dissolved organic and inorganic substances such as 

humic and fulvic materials, both of which are affected by precipitation through increases in organic 

matter content of surface water (Delpla et al., 2015; Dieleman et al., 2016).   
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The R2 values obtained from regression of the observed E. coli in the raw water sources and the outputs 

of the random forest models were from 0.66 to 0.74 during testing in this study. This indicates that 

turbidity and color could substantially explain variabilities in the concentrations of FIB in drinking water 

sources. Other studies that applied multivariate regression models in predicting the concentrations of E. 

coli in surface water resources from water quality variables have reported similar prediction accuracies. 

For instance, results of a study that predicted the concentrations of FIB in a river from water quality 

parameters such as turbidity, pH and water temperature reported R2 of up to 0.82 in in the model for E. 

coli prediction (Herrig et al., 2015). Similarly, when water quality and weather parameters including 

turbidity, rainfall, and air temperature were applied in predicting E. coli in beach water, the models were 

able to explain approximately 70% of the variations in the FIB (Olyphant & Whitman, 2004). Moreover, 

the RF model as applied in this study has been demonstrated to have potential for application in 

predicting water quality variables, including FIB (Rodriguez-Galiano et al., 2014; Mohammed et al., 

2018).  

Although precipitation and its variability are key drivers of faecal contamination of surface water bodies, 

precipitation alone rarely predicts the concentrations of FIB in water. Therefore, FIB predictive models 

rely on additional environmental and water quality parameters. For catchments where precipitation 

poorly correlates with the occurrence of FIB in surface water, determining the relationships between 

precipitation and other surrogate variables such as turbidity could offer a means of evaluating the 

indirect effects of precipitation. The results of this study show that combining this relatively efficient 

model with multiple regression can allow potential future changes in water quality parameters to be 

estimated. Although the method as applied in this study neglects the effects of other factors such as 

future anthropogenic activities in the catchments that may affect the quality of water in the future, it 

enables the changes attributable to changes in key weather variables to be quantified from climate 

projections. Instead of only assuming certain future concentrations of pathogens for simulating climate 

scenarios in QMRA, the method applied in this study relates the concentrations with actual climate 

projections in the catchments of water sources. Although the method can be applied to other drinking 

water sources, records of water quality variables and precipitation specific to different water sources are 
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required.  Apart from the data inputs, the reliability of this approach depends on the appropriateness of 

the statistical relations established between the water quality variables and catchment precipitation, as 

well as the quality of the climate projections. In addition, the pathogen: E.coli ratios used to estimate 

the concentrations of the pathogens may be specific to the study region, and this may not be true for 

other locations. Moreover, since animals such as horses and dogs have been documented as important 

sources of microbial discharge into the raw water sources included in this study, estimating pathogen 

concentrations based on reported ratios in wastewater alone could misrepresent the effects of 

contributions from other potential sources in the catchments. 

Results of a study that examined the filterability of different viruses in water using advection-dispersion 

models showed that the size was the only factor that influenced the retention of viruses in filter media, 

and better retention was achieved for larger viruses (Aronino et al., 2009). The least removal efficiency 

of 0.09 log for Norovirus was calculated for the WTP that uses a one media filter composed of calcium 

carbonate marbles (Ålesund WTP). In addition, the treatment steps in the WTP does not include 

clarification by coagulation, although this was not accounted for in the filtration models. A study that 

investigated the removal of Norovirus in a laboratory scale coagulation-rapid sand filtration set-up 

observed very low removal was achieved in the absence of a coagulant (Shirasaki et al., 2010). Their 

results indicated that removal of viruses in rapid granular filtration is greatly dependent on coagulation 

upstream of the filters. The low virus removal efficacies of the rapid sand filters as calculated in this 

study are consistent with performances reported in literature. Results of a study that reviewed the 

performances of various water treatment processes on the removal of microorganisms indicate that rapid 

granular filtration alone can achieve an average virus removal efficiency of up to 0.6 log (Hijnen et al., 

2004). 

For the protozoan pathogens, the maximum log removals by the filters were 0.29 log for Giardia and 

0.45 log for Cryptosporidium. These removal efficacies were achieved for the Svartediket WTP that 

uses a three-media filter. The respective minimum removal efficacies were 0.17 log and 0.25 log, both 

in the Ålesund WTP, which uses a single-media filter. Compared to the values achieved in this study, 

higher removal efficacies of these pathogens by rapid granular filters have been reported in literature. 
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For instance, results of the review performed by Hijnen et al. (2004) showed that up to 1.2 log and 1.1 

log removals can be achieved for Giardia and Cryptosporidium respectively, when the filtration step is 

not preceded by coagulation. The highest removal efficacies (1.28 and 1.68) were achieved for 

Campylobacter in the Oset and Svartediket WTPs. Efficacies reported in literature typically range from 

0.2 log and 1.5 log for granular media filter alone (Hijnen et al. 2004). The calculated pathogen removal 

by chlorine disinfection ranged from 0.009 log to 0.98 log for Norovirus and from 0.039 log and 3.93 

log for Campylobacter. The corresponding values achieved for the protozoan pathogens were however 

very low (0.0004 log to 0.039 log). A review on the efficacies of chlorine disinfection in WTPs revealed 

that 2.1 log and 4 log removal of viruses could be achieved by free chlorine dose of ~0.5 mg/L in raw 

water sources with pH of 6.5 - 8 and temperature of < 10 oC (Petterson and Stenström, 2015). The 

concentrations of TOC in the water sources for the reviewed studies were not however reported. As 

described in section 2.3 of this study, calculation of both the initial chlorine oxidation and degradation 

constant involved the use of TOC in the water sources. This parameter is one of the key determinants of 

chlorine disinfection units, and the average values in the water sources included in this study was 2.3 to 

3.8 mg/l. The calculated log reductions for the protozoan pathogens and Campylobacter achieved in this 

study are consistent with reported values in the literature. For instance, Petterson and Stenström 2015 

showed that at an initial chlorine residual of 0.4 mg/L and mean residence time of 12 minutes, up to 

0.03 log and 9.1 log reductions can be achieved for Giardia and Campylobacter respectively for average 

hydraulic behavior in the tank (with baffling factor of 6) using the disinfectant concentration × time (Ct) 

approach. UV disinfection resulted in the highest log-reductions for all the pathogens across the different 

WTPs. The least log removal was 3.23 log for Norovirus, while higher efficacies were calculated for 

Giardia (4.02 log), Cryptosporidium (4.02 log) and Campylobacter (4.36 log). The relatively high 

efficacy of UV in pathogen inactivation is widely reported in literature (Clancy, 2002; Linden et al., 

2002; Gerba et al., 2002; Malley et al., 2004). For UV doses within the range of the values applied in 

the WTPs considered in this study (~ 40 mJ/cm2), up to 4.8 log of viruses and 3 log of protozoa and 

bacteria were reported in a review by Hijnen et al. (2006). 
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The results of the QMRA in this study suggest that the local projections of average precipitation in the 

country are not likely to substantially increase the risks of pathogen infections due to water consumption 

from public water utilities. However, the occurrence of extreme precipitation events in the catchments 

of water sources may be associated with significant increases in the infection risks. This indicates that 

managers of drinking water supply systems should be more concerned about meeting water quality 

targets during these rather unpredictable events, instead of climate projections. This further emphasizes 

the need for protection of drinking water source catchments such that faecal contamination of raw water 

that may be associated with the occurrence of extreme precipitation events, either as rainfall or snow 

can be minimized.  

The predicted historical and future infection risks in the Ålesund WTP suggest that the WTP will require 

additional treatment steps such as a coagulation/flocculation unit in order to reduce the potential risks 

of pathogen infections presently and in the future. In addition, chlorination that is used as the first step 

in this WTP has a very short effective residence time. This resulted in very low chlorine disinfection 

efficacies calculated for the WTP. Therefore, it may be necessary to change both the location and design 

of the chamber such that the residence time can be improved. Moreover, a pH control step (CO2 unit), 

which follow the chlorination unit in this WTP reduces the pH of water. This can affect the effectiveness 

of the chlorine disinfection due to the influence of pH on the type of species formed.  Although lower 

pH (~ < 7) favors the formation of hypochlorous acid (HOCL), which may be a better bactericidal 

species of chlorine (Le Dantec et al., 2002; Crittenden et al., 2012), at extremely low water pH, other 

species such as chlorous gas may dominate.  

Moreover, results of the scenarios for failures in the treatment steps show that ensuring optimal 

performances of certain treatment processes such as UV disinfection are more important in ensuring the 

safety of drinking water than the threats of climate change. Across all the WTPs, the overall 

performances of the treatment steps depended on the UV step. As indicated in Figure 6, failures in this 

step could significantly increase the risks of pathogen infection due to consumption of treated water 

from all the WTPs studied. Therefore, without optimal performance of the UV step during extreme 

precipitation events, the WTPs may not guarantee safe drinking water to their consumers.  
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Major potential sources of uncertainties in the calculated pathogen infection risks include the assumed 

relationships between E. coli and the pathogens used in predicting the risks, the climate projections of 

average precipitation, water consumption pattern, and the dose-response models themselves. Although 

uncertainties may still be present in the results, considerable reduction in the overall uncertainty can be 

achieved through extensive pathogen data acquisition in the raw water sources. Improving the 

uncertainty associated with the pathogen concentrations requires more sampling and analysis of raw 

water samples such that actual pathogen concentrations can be used in QMRA modelling. While such 

analysis may not eliminate the uncertainties, more representative pathogen concentrations are still 

necessary for efficient risk characterization. Estimation of pathogen concentrations from E. coli for the 

purpose of QMRA as applied in this study can either underestimate or overestimate the actual 

concentrations, and the associated health risks. The use of the results of the assessments for decision 

support should consider the associated uncertainties. Further, it may be necessary to compare calculated 

infection risks with actual incidence of pathogen infections in the populations connected to the various 

WTPs, although limited data exist, often due to under-reporting.  

 

5. Conclusions 

The present study investigates the potential impact of climate projections of average precipitation and 

the occurrence of extreme precipitation events on pathogen infection risks due to treated water 

consumption from three drinking water facilities in Norway. Regression and random forest machine-

learning models were used to predict potential concentrations of pathogens in the raw water sources in 

the future. Subsequently, dose-response models were applied to calculate present and potential future 

pathogen infection risks. Based on the calculated median risks of infections, the historical risk levels in 

the Ålesund, Oset and Svartediket WTPs were generally within acceptable limits. However, risks for 

Norovirus in the Ålesund WTP were considerably high, and this may be partly attributed to the absence 

of a coagulation-flocculation unit in the water treatment plant, as well as the relatively low effectiveness 

of the chlorine system. 
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Results of the 2045 and 2075 infection risks suggest that under the current projections of average 

precipitation in the regions where the raw water sources of the WTPs are located, the infection risks 

may remain close to present levels. However, infection risks that may be associated with the occurrence 

of extreme precipitation in the water source catchments may be considerably high. This means that the 

WTPs will require optimization of treatment steps in the facilities to accommodate potential impact of 

climate change through extreme precipitation events. Further, sub-optimal operation of water treatment 

processes, particularly the UV steps could significantly increase the pathogen infection risks. The 

QMRA model results presented in this research provides strong evidence of the need to ensure protection 

of the raw water sources and ensuring optimal operation of water treatment processes. Estimating 

pathogen concentrations from FIB introduces uncertainties in the infection risks calculated. However, 

current limitations of detection methods for pathogenic organisms in water make it difficult to perform 

QMRA without such relationships. Overall, the study confirms that viral and/or protozoan pathogens 

may be the key drivers of infections in the populations that are connected to the water supply systems 

studied, and significant effort needs to be done to reduce these risks and to ensure more resilient water 

treatment processes under changing climate.  
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