
Doctoral theses at NTNU, 2020:116

Doctoral theses at N
TN

U, 2020:116

Herman Galteland

H
erm

an Galteland Malicious cryptography

ISBN 978-82-326-4580-0 (printed version)
ISBN 978-82-326-4581-7 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Herman Galteland

Malicious cryptography

Trondheim, April 2020

Faculty of Information Technology
and Electrical Engineering
Department of Mathematical Sciences

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-4580-0 (printed version)
ISBN 978-82-326-4581-7 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2020:116

© Herman Galteland

Faculty of Information Technology
and Electrical Engineering
Department of Mathematical Sciences

Printed by Skipnes Kommunikasjon as

Acknowledgments

This thesis marks the end of my PhD studies and I would like to
express my gratitude to everyone that has helped me along the way.

First and foremost I would like to thank my advisor Kristian Gjøs-
teen for giving me the support I needed, answering all of my questions,
guiding me, and always being calm and reassuring.

I would like to thank my co-authors: Gareth, Kristian, Stig Frode,
Tjerand, Ruxandra, and Yao for writing papers and working with me.
I would get stuck working all by myself and I would overlook many
details. The discussions we had made the papers and the process
better. I would also like to give an extra thanks to the post-doctors,
Gareth Davies and Ruxandra Olimid, for showing me good research
habits.

There are ups and downs in a PhD’s life, just like anywhere else,
and I would like to give my gratitude to my family for being encour-
aging when I shared my successes and for being supportive when I
encountered difficulties. Last but not least, I would like to express my
greatest appreciation to Yao for brightening my days, answering my
silly questions, supporting me in my endeavors, and working together
with me.

Herman Galteland
Trondheim, January 2020

3

4

Introduction

Historically, cryptography has been a tool for the defender. In this
thesis we discuss malicious uses of cryptography and countermeasures
to such use. That is, we study how attackers could use cryptography
to make the defender’s work harder, and how such techniques can be
countered by the defender. The goal of this thesis is not to develop
new attacks, but to understand possible future threats. This is im-
portant, because to prepare for future attacks we must know what
to defend against. Obviously there is an ethical dilemma here, we
have tried to balance this by only considering theoretical studies. We
have not developed attack code. We also note that some tools and
techniques studied in this thesis are dual-use, technologies that can be
used by both a defender and an attacker. The Tor network, and other
anonymity networks, is used to avoid surveillance and censorship, but
can also be used to hide attackers. Similar for subliminal channels.

Malicious cryptography started with Young and Yung and their
submission to the 1996 IEEE Security & Privacy conference, where
they proposed malware that encrypts the local files on the infected
computer and holds them for ransom [13]. The malicious code gener-
ates a symmetric encryption key on the infected computer and uses it
to encrypt files. The symmetric key is then encrypted using a public
encryption key stored in the code, where the malware author has the
secret decryption key. The owner of the infected computer is notified
and to recover the symmetric key, and the encrypted files, the owner
has to pay the malware author and send the encrypted symmetric
key. Using the secret decryption key the malware author decrypts the
symmetric key and sends it back, so that the owner can recover their

5

6

files. This attack was called cryptoviral extortion by Young and Yung.
Today such malware is commonly known as ransomware. With the
paper Young and Yung showed how malware can use cryptography
and by publishing the paper they gave the security community time
to prepare. Young and Yung continued this line of work and called it
cryptovirology [15].

This thesis consists of six papers and they appear in logical order,
not chronological order. In Section 1 we introduce the two principal
actors of this thesis, and discuss the techniques we have studied that
the attacker use. In Section 2 we discuss the countermeasures we have
studied that the defender use.

1 Malicious cryptography

The two principal actors of this thesis is an attacker, the Malware
Author, and an defender, the Opponent. The Malware Author aims to
attack the Opponent’s computers for personal gain, and the Opponent
aims to defend their network and expose the Malware Author.

The Malware Author writes and uses malware to attack comput-
ers. Malware is software that is maliciously installed on a computer
and is designed to give functionality and behavior desired by the Mal-
ware Author, but not by the legitimate computer owner. The Malware
Author’s goals are to hide their identity and intentions. We discuss
how the Malware Author can improve their malware using encryp-
tion, communicate with their malware anonymously or discretely, and
send encrypted commands to their malware. We will not discuss the
malicious code itself or what it does.

The Opponent protects a network of computers against malware
attacks. The Opponent monitors their network and collects malware
samples found on their computers, samples are analyzed and checked
if they pose a threat to the Opponent’s network. The Opponent wants
to discover the intentions and identity of the Malware Author. We dis-
cuss possible countermeasures the Opponent can use when defending
against attacks from the Malware Author. We show how the Oppo-
nent can break anonymity networks to discover the Malware Author’s
identity and how to prevent subliminal channels.

Introduction 7

A Public
information

Regular
computers

Anonymity
network

Anonymity
network

Proxy
k

O k

Target
k

O k

Initial
infections

Encrypted
channel

k

Subliminal
channel

k

Figure 1: The Malware Author A wants access to the network of
the Opponent O. A infects regular computers with malware, which
propagates to the target computer. Keying material k is stolen by
malware and sent out of O’s network via a subliminal channel, where
it becomes public information and can be retrieved by A. The key is
uploaded to a proxy, where it is used byA to gain accessO’s encrypted
channel and network.

1.1 Attack plan

Cryptography can be used by the Malware Author in different ways
and below we describe how the techniques studied in this thesis can
be used as part of an attack, see Figure 1.

The Malware Author has a piece of malicious software and wants
to use it to gain access to the Opponent’s network, where malware is
used to steal keying material, for an encrypted channel, from a spe-
cific target located inside the Opponent’s network. To protect the
malicious code the Malware Author encrypts it before it is released.
The encryption scheme is designed such that encrypted malware will
only be decrypted if it infects the intended target computer, anywhere
else the Opponent would find unintelligible malware samples that do
not reveal their purpose. The Malware Author infects a few regu-
lar computers, that is not in the Opponent’s network, and encrypted
malware starts propagating. Let’s assume malware successfully prop-
agates into the Opponent’s network and infects the target computer,
where encrypted malware is decrypted and the malicious code is re-

8

leased. Its first task is to collect keying material for an encrypted
channel used by the Opponent and send it through a subliminal chan-
nel. The keying material is encoded into a digital signature, produced
by the infected host, and sent out of the Opponent’s network, where
it becomes public information that the Malware Author can retrieve.
The signature is decoded and the Malware Author recovers the keying
material. The key is stored on a file storage server, which is used as
a proxy to prevent direct communication. The key gives the Malware
Author access to the Opponent’s encrypted channel and network.

1.2 Malware encryption

The Malware Author wants to hide their identity and their intentions,
sending a readable, unprotected malware into the Opponent’s network
makes it vulnerable to analysis. By reading and testing the malicious
code the Opponent can find the intentions of the Malware Author,
which can also make it easier to expose their identity. We want the
Opponent to do as much work as possible when analyzing malware,
and encrypting the malicious code protects it from analysis [8, 9].

The Author encrypts malware using some encryption key, where
the encrypted malware consists of an encrypted payload, the mali-
cious code, and an unencrypted loader that manages the encrypted
malware. The loader needs the correct decryption key before the pay-
load can be run. It is not always possible for the Malware Author to
send the key to the loader, for instance in an air gap network. If the
key is hidden inside the loader the Opponent could discover it. We
need a different method for generating the decryption key.

Environmental keys [11] are generated from locally available data
on a computer, this information could be IP addresses, PATH vari-
ables, or any arbitrary time and date. With environmental keys the
loader scans the infected host for environmental data, hashes it, and
generates several potential decryption keys. Each generated key is
checked if it decrypts the payload. The Malware Author gathers, or
guesses, this information to generate the encryption key that is used
to encrypt the payload. The environmental data specifies the target
the Malware Author wants to attack, where the correct decryption
key can only be generated on the target computer.

Introduction 9

To ensure that no computer in the Opponent’s network is the
target their only option is to find or guess the decryption key. The
loader tells what kinds of environmental data that might generate the
correct decryption key, however, to find this data the Opponent needs
to scan all of his computers. We assume the Opponent has access to all
computers in his network. If no computer has the environmental data
that generates the correct decryption key then the malware sample is
most likely not targeting the Opponent’s computers. If no decryption
key can be found then the malicious code can never be analyzed and
the intentions of the Malware Author stay protected.

Paper I Malware encryption schemes – rerandomizable ciphertexts
encrypted using environmental key. We present malware en-
cryption schemes that use environmental encryption keys, used
to encrypt malicious software, and rerandomization techniques,
to make different-looking copies of encrypted malware.

An earlier version of this paper was published at Mycrypt’16, the
version in this thesis is an extended version and includes an additional
method for encryption malware called the Path scheme. Instead of
using one encryption key, specifying the target, we use several keys
to specify a path of computers that needs to be infected before the
encrypted payload can be decrypted at the target. By using more
keys we reduce the Opponent’s chances of successfully decrypting the
payload.

1.3 Anonymity networks

Suppose the Malware Author wants to infect computers with their
malware, or wants to retrieve stolen information stored on the proxy
server. If the Malware Author communicates directly with the com-
puters, or the proxy, their identity can be discovered by the Opponent
and they need a method to communicate anonymously.

Anonymity networks are designed to hide the connection between
the sender and receiver of a message. If the Malware Author uses
an anonymity network when infecting computers, or when commu-
nicating with the proxy, their identity stays hidden even if the Op-
ponent observes the messages sent to the infected computers, or the

10

proxy. Therefore, the Malware Author should use an anonymity net-
work whenever they communicate with computers.

Anonymity networks are tools the Malware Author uses. We will
talk more about mix networks, specifically the cMix protocol, and the
Tor network later in this introduction.

1.4 Subliminal channels

A subliminal channel is a covert communication channel that is in-
serted into an overt communication channel, for example a digital sig-
nature scheme. The sender and receiver of the messages sent over a
subliminal channel will typically share secret information before start-
ing the communication such that they, and only they, can encode and
decode subliminal messages in the overt communication.

The subliminal channel is a solution to Simmons’ Prisoners’ Prob-
lem [12]. Two criminals are arrested and sent to jail, imprisoned the
two accomplices want to communicate and plan their escape. The
warden of the prison allows them to communicate if, and only if, the
prisoners send plaintext messages, such that the warden can learn
their escape plan. The prisoners agree on sending plaintext message
if they can sign them, such that they can verify that the received mes-
sages was sent from a prisoner and not from the warden. The problem
of the prisoners is to find a method to communicate covertly over the
overt communication channel controlled by the warden. If there is a
subliminal channel in the digital signature scheme used to sign the
messages then it might be possible for the prisoners to communicate
covertly by encoding subliminal messages into the signatures.

Subliminal channels are designed to hide the communication chan-
nel, and for the Malware Author this is a tool similar to anonymity
networks. Messages sent from malware can be disguised as the Op-
ponent’s computers’ normal network communication. Information is
sent over a subliminal channel by encoding it into the infected com-
puter’s digital signatures that are sent to any server or website located
outside of the Opponent’s network. Subliminal channels give malware
additional protection, because no malware would be analyzed if the
Opponent does not notice any suspicious activity.

Introduction 11

The bandwidth of the subliminal channel depends on the signature
scheme.

Paper II Subliminal channels in post-quantum digital signature
schemes. We look for subliminal channels in the digital signa-
tures schemes submitted to NIST’s Post Quantum Cryptogra-
phy Standardization Project.

All proposed digital signatures schemes accepted into NIST’s second
round have a subliminal channel. If the Opponent wants to use a (soon
to be) standardized post-quantum secure digital signatures scheme for
their network then it will contain a subliminal channel.

1.5 Command server

Suppose malware has reached its target and has performed some pre-
determined task, where the Malware Author becomes informed of its
status and wishes to send a command. Alternatively, suppose mal-
ware is stealing information from a computer and wants to send it to
the Malware Author. To send commands to or retrieve information
the Malware Author can use a command server as a proxy to prevent
direct communication with malware.

The Malware Author sends commands to the server and informa-
tion is uploaded to the command server from malware. This makes
it harder to connect the Malware Author with their malicious soft-
ware, as there is no direct communication between them. However,
the Opponent might find the command server, seize it, gather any in-
formation stored, and potentially reveal the Malware Author’s inten-
tions and identity from the information. In other words, the command
server cannot be trusted and any information stored on it should be
encrypted. To give malware access to the encrypted commands the
Malware Author should use a group key exchange protocol to dis-
tribute keys, and they have two requirements of the protocol.

The first requirement is that the protocol should be noninterac-
tive. When a file is to be encrypted and shared on the command server
neither the Malware Author nor malicious software wish to wait for
all participants to be online for the key exchange protocol. The mali-
cious code mostly stays encrypted and while encrypted it should not

12

perform a key exchange. Nor should the unencrypted loader, since
the Opponent could discover any keying material it has stored. In-
stead, the malicious code should do the key exchange once it has been
decrypted. Similar for the Malware Author, information might be
uploaded at any time by malware and while it waits for the Malware
Author to respond the Opponent might discover the infection and
prevent data being sent.

The second requirement is that the protocol should provide for-
ward secrecy. If the Opponent manages to discover a decrypted mali-
cious software then any file encryption- and decryption keys become
compromised, this should not jeopardize all of the encrypted files on
the server. By periodically updating the file encryption keys with re-
spect to a master private key, i.e. session keys and a long-term key, the
Malware Author can separate each uploaded file into sessions, where
one compromised session key will not jeopardize files encrypted under
a different session key. This is not enough to protect the files if the
master private key is compromised, where a key exchange protocol
with forward secrecy is needed.

To sum up, the Malware Author wants a noninteractive group key
exchange protocol that provides forward secrecy, and the Offline As-
sisted Group Key Exchange (OAGKE) protocol of Boyd et al. [3] sat-
isfies both of the Malware Author’s requirements. Below we describe
an adapted version of the user scenario of the OAGKE protocol. For
simplicity we use the Malware Author as the initiator that shares a
command, and malware as the responders that receives the command,
the file sharing process is identical when malware initiates.

Suppose malware has reached its target, decrypted the payload,
and possibly done some malicious act. The Malware Author has been
notified of the status and wants to issue a new command. Before the
command is uploaded to the proxy it is encrypted, where the OAGKE
protocol utilizes the command server to assist in the group key ex-
change protocol. File encryption keys are shared using a modified key
encapsulation mechanism (KEM) scheme denoted as blinded KEM
(BKEM), a new primitive introduced by Boyd et al. [3]. The server
generates keys for the BKEM scheme and sends the encapsulation key
to the Malware Author, the server keeps the decapsulation key until all

Introduction 13

recipients have responded and completed the protocol. The Malware
Author encapsulates the file encryption key and the encapsulation is
uploaded to the server together with the encrypted command. Note
that in the original user scenario of the OAGKE protocol the encap-
sulation is directly sent to the recipient, however, we do not want the
Malware Author to directly communicate with their malicious soft-
ware and encapsulations are therefore sent to the server. This is not a
problem as the encapsulation can be encrypted using a public encryp-
tion (PKE) scheme. The malicious software retrieves the encrypted
command and the encapsulation from the server, the BKEM scheme
has the added ability to blind encapsulations such that when malware
asks the server to decapsulate the blinded encapsulation nothing can
be learned about the file encryption key, as it is also blinded when the
encapsulation is. The malicious code receives a blinded key from the
server, which is unblinded using the BKEM scheme and the command
can be decrypted. Once this process is finished the command server
deletes its keys for the session, such that forward secrecy is achieved.

Paper III Cloud-assisted Asynchronous Key Transport with Post-
Quantum Security. The paper presents a generic method of
constructing post-quantum secure blinded KEMs, a primitive
used to construct an OAGKE protocol.

If the Opponent gains access to the malicious code they get some
session keys and a long-term key. The session key can be used to de-
crypt files on the command server for that session. The long-term key
should not be able to decrypt any files from previous sessions, since
the OAGKE protocol provides forward secrecy. However, the Oppo-
nent can use the long-term key to generate new session keys, upload
some encrypted file, and trick the Malware Author into interacting
with the command server. If the Opponent is monitoring the network
traffic around the command server they might be able to discover and
identify the Malware Author. Therefore an anonymity network must
be used by the Malware Author to protect their identity.

14

2 Opponent’s countermeasures

We have showed how the Malware Author can use cryptography to
improve their attack. Below we describe how the remaining techniques
studied in this thesis can be used by the Opponent to counter the
problems caused by the Malware Author.

The Opponent has noticed encrypted malware samples on multi-
ple computers in their network and is currently unable to analyze the
malicious code. During this stage all the Opponent can do is to guess
or find the decryption key, and prevent malware from propagating fur-
ther. Let’s assume the Opponent successfully discovers the decryption
key and analyzes the malicious code in a safe environment. The Op-
ponent notices malware is looking for keying material, it wants to gain
access to the Opponent’s network, and gives it some random number
hoping that the malicious code sends it to the Malware Author. How-
ever, it attempts to encode the randomness into a digital signature
and send it over a subliminal channel. The Opponent sets all of their
computers to use a subliminal-free digital signature scheme to prevent
any information leakage. All signatures generated by the Opponent’s
computers are checked by the Opponent and they can stop any stolen
information before it is sent out of the network.

By further analyzing the malicious code the Opponent discovers a
long-term key that is used to generate sessions keys for a file storage
sever. The Opponent seizes the server and uncovers a few encrypted
files, however, the long-term cannot be used to decrypt them. Instead,
the Opponent generates a fresh session key, uploads some encrypted
file, and waits for someone to communicate with the server. The file
is retrieved by an unknown entity using an anonymity network and to
reveal their identity the Opponent attacks the anonymity network.

2.1 Attacking anonymity networks

Anonymity networks are designed to hide the connection between the
sender and receiver of a message. Suppose the Opponent attempts
to discover the Malware Author’s identity by monitoring a server the
Malware Author is communicating with. However, the Opponent only
notices messages being from someone using an anonymity network and

Introduction 15

is unable to connect the messages back to the sender. To discover the
identity of the sender the Opponent can attack the anonymity network
and potentially discover the Malware Author.

2.2 Mix network

Mix networks [4] are anonymous communication networks that use a
chain of servers, called mix nodes. A mix network collects a speci-
fied number of messages before they are sent though the network as a
batch. Each mix node permutes and does some cryptographic compu-
tation on the messages such that it is hard to connect the input and
the output messages.

A mix network usually has high latency because a batch of mes-
sages must be gathered before it can start mixing, and it performs ex-
pensive computation during mixing. Chaum et al. have proposed the
mix network called cMix [6] that has an offline phase, that do most of
the expensive computations, and an efficient online phase. The offline
precomputation phase can be performed while a the servers collect
messages. This reduces latency.

Paper IV Attacks on the Basic cMix Design: On the Necessity of
Commitments and Randomized Partial Checking. We analyze
the cMix protocol for weaknesses and present two attacks on
the basic description of the protocol.

Note that we analyzed an earlier version of the protocol [5] and the
attacks mentioned in the paper do no longer apply [6].

The attacks presented in the paper make it possible for the Op-
ponent to connect the sender and receiver of a message, breaking the
relationship anonymity [10] of the cMix protocol. Suppose the Oppo-
nent has corrupted the required mix nodes to perform these attacks,
while the Malware Author communicates over the cMix network the
Opponent can use these attacks to connect the messages back to the
Malware Author and reveal their identity.

Protocol analysis is common practice to ensure secure implemen-
tations, any attacks discovered by the Opponent will eventually be-
come common knowledge and fixed. To have a permanent attack on
an anonymity network the Opponent can design and implement their

16

own protocol with a backdoor that only they know. A backdoor into
an anonymity network could make it possible for the Opponent to
connect the sender and receiver of any message. Implementing such
systems is known as kleptography [14].

2.3 Onion routing

The onion routing network Tor [7] consists of servers, called onion
routers, that relay messages sent to and from the users. When a
user wants to communicate with a website it makes a chain of onion
routers, three onion routers is the default choice, and establishes a
symmetric key with each onion router. This chain is called a Tor
circuit. The first node of a circuit is called a guard node, each user
has their own small set of guard nodes that they use when creating
circuits. The last node is an exit node, only trusted onion routers are
marked as an exit. The middle node of a circuit is called a relay. Each
node in the circuit knows each of its neighboring nodes and none of
the nodes knows both the user and the sender, making a single onion
router unable to link the sender and the receiver. The user encrypts
its messages three times using its three symmetric keys before sending
it to the website over the circuit, where each onion router removes one
layer of encryption before passing it to the next node. Similarly, when
the website sends a message back each onion router adds one layer of
encryption, which the user can remove once the message has been
received.

The Tor network is a tool the Malware Author uses to hide their
connection with malware. Suppose the Opponent observes messages
sent to the proxy from someone using the Tor network, to find the
sender of these messages the Opponent needs to break the relationship
anonymity of the Tor protocol. All onion routers are public and we
assume the Opponent can recognize messages sent to the Tor network.

Paper V Jurisdictional adversaries monitoring and reconstructing
the Tor network. We introduce an adversary against the Tor
network that monitors Tor traffic crossing the borders of a ju-
risdiction the adversary controls, and show that a coalition of
such adversaries is able to break the relationship anonymity of

Introduction 17

the Tor network.

The Opponent protecting a network of computers would generally
see any messages sent inside their jurisdiction, the jurisdictional ad-
versaries do not. This does not mean that the results of the paper
cannot be used by the Opponent, they would only have more infor-
mation to aid them in breaking the relationship anonymity of the Tor
network.

We achieve a 40%–60% reconstruction of the Tor network. There
is a considerable chance the Opponent will know parts of the Malware
Author’s circuits, and whenever a new circuit is created the Opponent
will gather more information that might help in discovering the Mal-
ware Author’s identity.

The weakness of the jurisdictional adversaries is that they do not
see any Tor traffic sent inside their jurisdiction. If the user chooses its
Tor circuits such that the traffic that would cross a border is sent be-
tween onion routers then no jurisdiction would be able to see the iden-
tity of the website or the user. Note that this only avoids detection by
the jurisdictional adversaries, an adversary corrupting onion routers
would still have the capability to detect the user or the website. The
Opponent could have their own corrupted onion routers inside their
network, however, this would only allow them to see where malware
is located inside their network and not the Malware Author. The Op-
ponent needs to corrupt onion routers inside the Malware Author’s
jurisdiction to be able to see their identity.

2.4 Subliminal-free digital signature schemes

A subliminal channel in a digital signature scheme makes it possible
for the Malware Author to communicate covertly with their malicious
software and send information out of the Opponent’s network unno-
ticed. To prevent subliminal channels the Opponent can choose a dig-
ital signature scheme with a small subliminal bandwidth. This would
give them more time to detect malware and possibly prevent some in-
formation flow between the malicious code and the Malware Author,
however, a small bandwidth will not prevent subliminal channels.

The Opponent needs a subliminal-free digital signature scheme to

18

prevent malware using subliminal channels. Subliminal messages typ-
ically replace any random values used to generate the signatures, and
by controlling how the randomness is generated the Opponent can
remove subliminal channels. The RSA-FDH signature scheme [1] is
deterministic and therefore subliminal-free, but not always practical.
Bohli et al. [2] proposed a digital signature scheme that is subliminal-
free. They use the pseudorandom number generator of Naor to gener-
ate deterministic randomness and use this output to produce digital
signatures. To prove a signature is subliminal-free Bohli et al. use non-
interactive zero-knowledge proofs to show that the generated random
number was deterministic and used to produce the signature. The
proofs are sent to a warden who checks if the signature is generated
honestly and is free of subliminal channels. Bohli et al. used these
techniques to construct a subliminal-free variant of ECDSA. Hence,
for classical signatures subliminal-free schemes exists.

Paper VI Verifiable Random Secrets and Subliminal-Free Digital Sig-
natures. We introduce the notion of verifiable random secrets
and use it with Schnorr-like digital signature schemes to make
a post-quantum secure subliminal-free digital signature scheme.

We use a verifiable random secret scheme to produce random num-
bers and, similar to Bohli et al., we use proofs to show that the ran-
dom number and the signature was honestly generated and, therefore,
subliminal-free. Signature-proof pairs are sent to a warden, who ver-
ifies the proofs and forwards the signature to the recipient if they
are valid. The Opponent plays the role of the warden and checks all
signatures sent from computers in their network. If malware tries to
encode a subliminal message in a signature the Opponent will notice
and can stop the communication immediately, before any information
has been lost.

dfgd

References

[1] Mihir Bellare and Phillip Rogaway. The Exact Security of Digi-
tal Signatures-how to Sign with RSA and Rabin. In Proceedings

Introduction 19

of the 15th Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques, EUROCRYPT’96, pages
399–416, Berlin, Heidelberg, 1996. Springer-Verlag.

[2] Jens-Matthias Bohli, María Isabel González Vasco, and Rainer
Steinwandt. A Subliminal-Free Variant of ECDSA. In Jan L. Ca-
menisch, Christian S. Collberg, Neil F. Johnson, and Phil Sallee,
editors, Information Hiding, pages 375–387, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[3] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang.
Offline Assisted Group Key Exchange. In Liqun Chen, Mark
Manulis, and Steve Schneider, editors, Information Security,
pages 268–285, Cham, 2018. Springer International Publishing.

[4] David Chaum. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Commun. ACM, 24(2):84–90, February
1981.

[5] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna
Krasnova, Joeri de Ruiter, and Alan T. Sherman. cMix: Mixing
with Minimal Real-Time Asymmetric Cryptographic Operations.
Cryptology ePrint Archive, Report 2016/008, 2016. https://
eprint.iacr.org/2016/008.

[6] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna
Krasnova, Joeri De Ruiter, and Alan T. Sherman. cMix: Mix-
ing with Minimal Real-Time Asymmetric Cryptographic Opera-
tions. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, Applied Cryptography and Network Security, pages 557–
578, Cham, 2017. Springer International Publishing.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
Second-generation Onion Router. In Proceedings of the 13th Con-
ference on USENIX Security Symposium - Volume 13, SSYM’04,
pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[8] Eric Filiol. Strong Cryptography Armoured Computer Viruses
Forbidding Code Analysis: the bradley virus. Research Report
RR-5250, INRIA, 2004.

20

[9] Eric Filiol. Malicious cryptography techniques for unreversable
(malicious or not) binaries. CoRR, abs/1009.4000, 2010.

[10] Andreas Pfitzmann and Marit Hansen. A terminology for talk-
ing about privacy by data minimization: Anonymity, Unlinkabil-
ity, Undetectability, Unobservability, Pseudonymity, and Identity
Management, 2010.

[11] James Riordan and Bruce Schneier. Environmental Key Genera-
tion Towards Clueless Agents. In Giovanni Vigna, editor, Mobile
Agents and Security, volume 1419 of Lecture Notes in Computer
Science, pages 15–24. Springer Berlin Heidelberg, 1998.

[12] Gustavus J. Simmons. The Prisoners’ Problem and the Sublimi-
nal Channel. Advances in Cryptology: Proceedings of Crypto 83,
pages 51–67, 1984.

[13] Adam Young and Moti Yung. Cryptovirology: extortion-based
security threats and countermeasures. In Proceedings 1996 IEEE
Symposium on Security and Privacy, pages 129–140, May 1996.

[14] Adam Young and Moti Yung. The Dark Side of “Black-Box”
Cryptography or: Should We Trust Capstone? In Neal Koblitz,
editor, Advances in Cryptology — CRYPTO ’96, pages 89–103,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[15] Adam Young and Moti Yung. Malicious Cryptography: Exposing
Cryptovirology. John Wiley & Sons, 2004.

Paper i

Malware encryption schemes –
rerandomizable ciphertexts encrypted using

environmental key
Herman Galteland and Kristian Gjøsteen

Published in Paradigms in Cryptology – Mycrypt 2016.
Malicious and Exploratory Cryptology, full version available on

ePrint 2017/1007

Malware encryption schemes – rerandomizable

ciphertexts encrypted using environmental

keys ∗

Herman Galteland†and Kristian Gjøsteen

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology

{herman.galteland, kristian.gjosteen}@ntnu.no

Abstract

It has been shown that encrypting malware prevents an op-
ponent, defending a network of computers, from analyzing the
malicious code and identifying the intentions of the malware au-
thor. We discuss malware encryption schemes that use environ-
mental encryption keys, generated from computers the malware
author intends to attack, and use rerandomization techniques
to make each malware sample in the network indistinguishable.
We are interested in hiding the intentions and identity of the
malware author, not in hiding the existence of malware.

Keywords. Malicious cryptography, environmental keys, reran-
domization, provable security.

1 Introduction

Malware is software maliciously installed on a computer designed to
give functionality and behavior desired by the malware author, but
not by the legitimate computer owner.

∗This is an extended version of [7]
†This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.nsm.stat.

no

23

This work extends on our previous work [7], where we have in-
cluded an additional encryption scheme. Our goal is to study malware
propagation and how to protect propagating malware from analysis.
We do not study the construction of computer viruses or any other
types of malware, but rather how to construct schemes designed to
encrypt malware that hides the intentions and the identity of the
malware author. In the previous work we presented two schemes as
proofs of concepts, whereas in this work we include a third scheme
that extends on the first two constructions and uses several keys to
encrypt malware.

Each encryption scheme gives us insight on how a malware author
could use cryptography maliciously. For each scheme, we describe how
encrypted malware behaves, the technical details, and their strengths
and weaknesses.

1.1 Real world examples

BurnEye [13] is a tool designed to defend binary files and is an ex-
ample on how to protect malware. The tool adds three layers of
protection to a file: obfuscation, encryption, and a fingerprint layer.
The fingerprint layer ensures that the file can only be executed on a
specific computer that has the specifications stated by the fingerprint.
The encryption layer uses a user-chosen password as the encryption
key such that the file can only be executed (or analyzed) by someone
who knows the password.

Gauss [10] is a sophisticated malware that uses encryption to pro-
tect certain payloads. Gauss uses environmental keys to decrypt these
payloads, where an environmental key is generated from locally avail-
able data. The malware gathers data on the infected computer and
hashes it to create decryption keys, where the string of data that
results in the correct key is selected by the malware author. The
malicious code can only be executed when the correct key is pro-
duced, that is, when the malware infects the intended target. To our
knowledge the contents of the encrypted payloads of Gauss are still
unknown.

24 H. Galteland and K. Gjøsteen

S

T

n

MN

Figure 1: Malware propagating into an opponent’s network. The
source S infects n initial nodes. The opponent protects a network of
M nodes. There are at most N malware samples.

1.2 Malware propagation

Consider a malware author whose objective is to attack a specific
location (or locations). The malware author’s goals is to hide his in-
tentions and identity. The malware author’s opponent is an opponent
observing and defending a network of nodes, which contains one (or
more) of the malware author’s target(s). The goal of the opponent is
to detect malware targeting any node in the network he is protecting
and to discover the intentions and identity of the malware author.
Hiding the mere existence of malware from the opponent is a distinct
problem and not one we consider in the current work.

1.2.1 Setup

We use the following model to describe malware propagation, see Fig-
ure 1. The source S, the malware author, infects n initial nodes with
(different variations of) his malware. Released malware infects sub-
sequent nodes by making similar copies of themselves and propagates
throughout the network.

The opponent protects M nodes in the network from malware
threat. We assume he has full knowledge of the environment he is
protecting. By observing the wider network the opponent can find at
most N malware samples.

Malware encryption schemes 25

Every direct link to the malware author increases the opponent’s
chance to discover the author’s identity. Therefore, to avoid identi-
fication, the malware author should perform as few initial infections
as possible and use indirect paths to the target node.

1.2.2 Encrypting malware payload

The malware author encrypts the malware payload to increase the
opponent’s workload. Encrypting the payload prevents an opponent
reverse engineering the malicious code and hides the intentions of the
malware author [4, 5]. We use encryption keys derived from environ-
mental parameters, network triggers, or a combination of these [11].
The environmental information is gathered from the target node and
could consist of, for example, IP address, PATH variables, and/or
any arbitrary time and date. This requires the information about the
target node to be guessed, or to be general information (to target
several nodes).

An encrypted malware consists of the encrypted payload, contain-
ing the malicious code, and a cleartext loader that gathers environ-
mental parameters to generate decryption keys.

To initialize an encrypted malware the author chooses environ-
mental data identifying the target node(s), hashes the data to create
an encryption key, encrypts the payload using the key, and releases
the encrypted malware. When malware infects a new node the clear-
text loader determines the environmental data of the infected node,
hashes the data to derive K ≥ 1 keys, and attempts to decrypt the
payload using the K derived keys. If the decryption is a success then
the malicious code can be executed. Otherwise the loader creates
copies of the malware and infects new nodes in the network.

The malware author can initialize at most n distinct encrypted
malware, one for each initial infection, which encrypts the same ma-
licious code. Hence, there are at most n distinct encrypted payloads
among the samples collected by the opponent. Each sample is en-
crypted and has an unknown target. If the opponent wants to guar-
antee that none of these n samples would attack a node in his network
then he needs to do roughly K trial decryptions for each of his M
nodes. Hence, the opponent’s workload is at most nMK.

26 H. Galteland and K. Gjøsteen

Malware consist of a cleartext loader and an encrypted payload. When malware arrives
on a new host the loader is executed and preforms the following steps:

1. The loader scans the host environment and determines the environmental data.

2. The loader hashes the environmental data to produce one or more keys.

3. The loader tries to decrypt the encrypted payload with each key.

4. If the decryption succeeds, the decrypted payload is executed.

5. The malware may also attempt to infect some other host, in which case the en-
crypted payload is rerandomized before it is transmitted to the new host.

Note that the malware author will certainly use some polymorphic engine and other
standard malware techniques in order to provide a basic level of protection for the cleartext
loader and the encrypted payload.

Figure 2: The malware attack process.

1.2.3 Rerandomizable encrypted payload

Instead of making exact copies of the malware we want the loader to
rerandomize [2, 8] the encrypted payload. The rerandomization pro-
cess takes as input an encrypted payload and some uniformly random
values to produce a new ciphertext that encrypts the same malicious
code. Hence, the loader can produce several different-looking en-
crypted malware to infect nodes without needing the knowledge of
the secret key. The process is described in Figure 2.

We want to rerandomize the encrypted payloads in such a way
that any two malware samples are indistinguishable. If the opponent
is unable to distinguish between malware samples then, essentially,
there are N unique variations of the malware in the network. This
means that the opponent need to doK trial decryptions forN samples
for M different nodes to ensure that none of the malware samples are
targeting any of his nodes. This will increase the opponent’s workload
to NMK.

Since the malware creates different variations of itself, the malware
author can choose n to be small and, possibly, significantly reducing
the risk of unveiling his identity.

1.2.4 Path variation

Instead of using a single encryption key we can choose to use several
keys, derived from different nodes in the network, describing a path

Malware encryption schemes 27

S
kt kt−1

. . .
k2

T

k1

Figure 3: Location of keys on the path towards the target

towards the target (see Figure 3). The last key k1 is derived from
environmental data identifying the target node, just as before. The
remaining keys, called default keys, are derived from environmental
data that is available on all nodes in the path. This requires the mal-
ware author to investigate and gather the environmental data of each
node in the path towards the target before malware can be encrypted.
The difference between the path and the single key variations is that
the path scheme will always try to decrypt the payload using a key
(a default key in most cases).

The path variation encrypted malware can only be decrypted if
malware infect the nodes in the correct path toward the target. There
is no difference between malware samples in the correct path and
malware samples in a wrong path, hence, all samples needs to be
treated as if they are both in the path and not in the path by the
opponent. The only difference is when the malicious code has been
executed and the opponent notices.

If the opponent only wants to know if a node in his network is tar-
geted he has to check all possible paths between a node with a sample
to all other nodes in his network and see if the sample decrypt cor-
rectly. If the opponent finds the target node, either by analysis or by
noticing that the malicious code was executed, then he can trace the
correct path back towards the source, by using the algorithms used
by the malware, and possibly find information that could identify the
malware author. However, this requires knowledge of the full net-
work and the opponent only has knowledge over his network – unless
the source is inside the opponent’s network. This is an unwanted
trait, but it seems to be unavoidable if we also wish to include the
rerandomization. Without knowledge of the target node the oppo-
nent cannot trace back to the source by looking at the algorithms
alone.

28 H. Galteland and K. Gjøsteen

1.2.5 Limitations

The limitation of our schemes is that the opponent can always guess,
or predict, the target of the malware author. Also, if the malware
reaches its target, the payload will be decrypted and executed. If
the opponent notices the attack he will be able to deduce the envi-
ronmental key and thus be able to decrypt the payload. This seems
impossible to avoid.

Once an opponent discovers the key used for one sample, he can
easily discover all other samples corresponding to that key. However,
the malware author will hope that different opponents are unwilling
to reveal that they are under attack, they somehow consider this
fact sensitive, and that they therefore do not share discovered keys.
This means that one opponent’s success may not make the other
opponent’s work easier.

For the path variant, if the opponent discover the target node
then it is possible to find the source. If the opponent finds the correct
path back to the source he can discover all the encryption keys. How-
ever, this is not enough to determine if another malware sample is
encrypted under the same keys, especially if that sample has infected
a node in a wrong path. The opponent has to find the sample’s infec-
tion path back to the source first, remove any decryption keys used
(to restore the sample to its initial condition), and then check if the
keys decrypt the payload. This would require knowledge of the full
network.

1.2.6 The potential threat

Assuming there is more than one malware author, an opponent can-
not be certain of whether every new encrypted malware sample corre-
sponds to one he has previously determined is no threat or a genuinely
new piece of malware. That is, all malware samples created by dif-
ferent malware authors looks like the same encrypted malware. This
requires all malware authors to agree on a malware encryption stan-
dard, they all have malware that have the same size, use the same
loader, and otherwise create encrypted malware that looks the same.
This seems unlikely. If malware authors do not agree on a standard

Malware encryption schemes 29

Path variation malware consist of a cleartext loader and an encrypted payload. When
path variation malware arrives on a new host the loader is executed and preforms the
following steps:

1. The loader scans the host environment and determines the environmental data.

2. The loader hashes the environmental data to produce one or more keys and a
default key.

3. The loader check each key if they can decrypt the encrypted payload.

– If a key is found use it to decrypt, if not use the default key to decrypt.

4. The loader checks if the decrypted payload could be executed.

5. The malware may also attempt to infect some other host, in which case the en-
crypted payload is rerandomized before it is transmitted to the new host.

Note that the malware author will certainly use some polymorphic engine and other
standard malware techniques in order to provide a basic level of protection for the cleartext
loader and the encrypted payload.

Figure 4: Path variation malware attack process.

then the opponents can use these pieces of information to classify
samples.

1.3 Related work

Traditionally cryptography has been developed and used as a defense
against attackers. However, it is clear that cryptography can also be
of use to the attackers.

Young and Yung where the first to raise the concern about mali-
cious use of cryptography (cryptovirology) [15] and have several works
related to malware construction and propagation, where we will men-
tion three related papers. First, Young and Yung designed a virus
capable of encrypting files on the victim’s computer and hold them
for ransom [14]. Second, they describe how to utilize a mix network
to mix programs and propagate malware [15]. Third, they designed a
mobile program that carries a rerandomizable ciphertext, which en-
ables anonymous communication, where the program takes random
walks through a network and rerandomizes the ciphertext at each
node, using a system called Feralcore [16].

The mix network and the mobile program, by Young and Yung,
use the idea of universal re-encryption, by Golle et al. [8], to re-
encrypt ciphertexts. The re-encryption process transforms the ci-

30 H. Galteland and K. Gjøsteen

phertexts into a new ciphertext that encrypts the same message and
does not require knowledge about the public key. Similar to universal
re-encryption is the notion of rerandomization by Canetti et al. [2].

Filiol showed that by encrypting malware payload [4, 5] one can
prevent anyone from analyzing the code and reverse engineer it, pos-
sibly using the environmental keys of Riordan and Schneier [11] as
encryption keys. Similar to Riordan and Schneier’s environmental
keys, secure triggers [6, 9] are also used to keep certain content pri-
vate until a particular event occurs.

1.4 Overview

The rest of this paper contains the technical details of our schemes.
The general cryptosystem designed to encrypt and rerandomize mal-
ware payload is described in Section 2.1. The basic scheme, in Sec-
tion 2.2, shows that malware encryption described in the introduction
is possible in theory, however, the scheme is not practical because it
can encrypt short messages. The extended scheme, in Section 2.3, is
based on the basic scheme and can encrypt longer messages, making
it more practical. The basic and extended schemes use the malware
attack process described in Figure 2. The path scheme, in Section 2.4,
is the path variant of both the basic and the extended scheme and uses
several encryption keys instead of one. The malware attack process
for the path variation is described in Figure 4. For each scheme we
show that they are secure using games, where the opponent is asked
to distinguish between ciphertexts encrypting the same message and
ciphertexts encrypting two different messages. That is, we will sim-
ulate whether an opponent is able to distinguish malware samples.
The security proof of the basic scheme is in Section 2.2.1, the secu-
rity proof of the extended scheme is in Section 2.3.1, and the security
proof of the path scheme is in Section 2.4.3. All three proofs are
similar.

Malware encryption schemes 31

2 Rerandomizable encryption schemes

In this section we present three encryption schemes designed to en-
crypt and rerandomize malware payload. The first scheme is a basic
proof of concept and the second is an extension of the basic scheme
capable of encrypting longer payloads. The third scheme is the path
variant of the first two. Further, we show that it is hard to distinguish
between encrypted payload samples by using games.

As a simplification we denote payload as messages, encrypted pay-
load as ciphertexts, replication of malware as rerandomization of ci-
phertexts, and environmentally derived keys as keys.

2.1 Preliminary

In each scheme we have an algorithm E encrypting messages, an algo-
rithm D decrypting ciphertexts, and an algorithm R rerandomizing
ciphertexts. In the path variant of the extended scheme (in Sec-
tion 2.4) we add a padding functionality to the rerandomize algorithm
and rename it to a padding algorithm P.

Encryption For a message m and a key k the encryption algorithm
E(k,m) outputs a ciphertext c.

Decryption For a ciphertext c and a key k the decryption algorithm
D(k, c) either outputs a message m or a special symbol ⊥ indi-
cating decryption failure.

Rerandomization For a ciphertext c, encrypting a message m, the
rerandomize algorithm R(c) outputs a ciphertext c′ encrypting
the same message m.

The output distribution of the rerandomize algorithm should be
computationally indistinguishable from the output distribution of the
encryption algorithm. That is, it should be hard to determine if two
different ciphertexts encrypts the same message or not.

The systems should be correct, we should almost always be able
to decrypt all ciphertexts output by the encryption algorithm and
any rerandomized ciphertexts output by the rerandomize algorithm.

32 H. Galteland and K. Gjøsteen

Correctness If c was output from E(k,m) then D(k, c) will always
output m except with negligible probability.

Rerandomization If c was output by E(k,m) then the output dis-
tribution of R(c) should be computationally indistinguishable
from the output distribution of E(k,m). Furthermore, if c′ was
output from Rn(E(k,m)), for any n ≥ 1 then D(k, c′) will al-
ways output m except with negligible probability.

We will not always be able to apply an arbitrary number of reran-
domizations to a ciphertext without getting decryption errors, which
we will see is the case in Section 2.3 and in Section 2.4.

The security requirements of our cryptosystems reflect the in-
tentions of the malware author. It should be difficult to guess the
malware author’s target, and it should be hard to determine if two
ciphertexts are the encryption of the same message or not.

Key indistinguishability It should be hard to say something about
which key a ciphertext is encrypted under.

Ciphertext indistinguishability It should be hard to decide if two
ciphertexts, encrypted under the same key, decrypt to the same
message or not.

2.2 Basic scheme

The basic scheme is based on the ElGamal cryptosystem over a group
G of prime order p generated by g. This scheme is essentially the same
as the encryption scheme proposed by Golle et al [8]. The key used in
the algorithms is generated by the loader using environmental data.

Encryption For a message m ∈ G and a key k ∈ Z∗p, sample r
r←− Z∗p

and s
r←− Zp, and output

c = (x, y, z, w) = (gr, gkr, gs, gksm).

Decryption For a ciphertext c = (x, y, z, w) and a key k ∈ Z∗p check

if xk = y. If it is then output

m = z−kw.

Malware encryption schemes 33

If not output ⊥.

Rerandomize For a ciphertext c = (x, y, z, w), sample r′ r←− Z∗p and

s′ r←− Zp, and output

c′ = (x′, y′, z′, w′) = (xr
′
, yr

′
, zxs

′
, wys

′
).

Correctness If c = (x, y, z, w) was output by the encryption algo-
rithm then there exists parameters r, s, k, and a message m such
that

c = (x, y, z, w) = (gr, gkr, gs, gksm).

With input c the rerandomize algorithm will output c′ = (x′, y′, z′, w′)
where

x′ = xr
′

= grr
′
,

y′ = yr
′

= gkrr
′
,

z′ = zxs
′

= gsgrs
′

= gs+rs
′
,

w′ = wys
′

= gksgkrs
′
m = gk(s+rs′)m.

That is, c′ = (grr
′
, gkrr

′
, gs+rs

′
, gk(s+rs′)m). Since r 6= 0, we get that

s + rs′ can take any value in Zp except s and all values are equally
probable. Hence, the output distribution of the encryption and reran-
domize algorithms are computationally indistinguishable and has the
same structure, that is,

c′ = (gr̂, gkr̂, gŝ, gkŝm)

for some parameters r̂, ŝ, k, and a message m.
For a ciphertext c = (x, y, z, w), output by the encryption, and

the correct key k we have that xk = (gr)k = gkr = y. The message m
is retrieved by computing

z−kw = (gs)−kgksm = g−ks+ksm = m.

Similar for a ciphertext c′ output by the rerandomization algorithm.
We will have decryption errors if the sampled values s, in the

encryption algorithm, or s′, in the rerandomization algorithm, is equal
to zero. This can be made negligible for large values of p, hence, the
decryption algorithm is almost always correct.

34 H. Galteland and K. Gjøsteen

Longer messages The limitation of the basic scheme is that the
message size is relatively small. One option is to encrypt several mes-
sages under the same key. That is, a set of messages {m1,m2, . . . ,mn}
can be encrypted as

(gr, gkr, gs1 , gks1m1, g
s2 , gks2m2, . . . , g

sn , gksnmn)

for some parameters s1, s2, . . . , sn, r, and key k. However, this is
inefficient. In Section 2.3 we construct the extended scheme where
we use techniques from symmetric cryptography to encrypt longer
messages.

2.2.1 Security of the basic scheme

The decryption key is derived from environmental data sampled by
the loader from the infected computer. From the opponent’s per-
spective the collection of sampled data types can be considered as
a probability space of possible decryption keys. We will denote this
space by D. If the size of D is large then the opponent is less likely
to guess the correct decryption key, where the size of D is determined
by the number of keys generated by the loader.

We show that the opponent O is unable to distinguish between
ciphertexts and that his advantage is determined by D, that is, the
probability of the opponent guessing the correct key. To prove this
we use games [12]. In our games we start by simulating Experiment 1
where we ask the opponent to differentiate between the two cases;
two ciphertexts encrypting different messages, and two ciphertexts
encrypting the same message.

Experiment 1 Given two ciphertext c1 and c2, decide if

c1 = E(k1,m1)
c2 = E(k2,m2)

or
c1 = E(k1,m1)
c2 = R(c1)

for some messages m1,m2 and keys k1, k2.

We show that the security of the scheme can be based on the
hardness of the Decisional Diffie-Hellman (DDH) problem [1] in the
random oracle model. The DDH problem is to distinguish tuples

Malware encryption schemes 35

Algorithm 1 Game 0 simulating Experiment 1

1: u1, u2
r←− D, k1 ← H(u1), k2 ← H(u2), b

r←− {0, 1}
2: Get m1,m2 from O
3: if b = 0 then
4: c1 ← E(k1,m1)
5: c2 ← E(k2,m2)
6: Send c1, c2 to O
7: if b = 1 then
8: c1 ← E(k1,m1)
9: c2 ←R(c1)

10: Send c1, c2 to O
11: Get b′ from O

of the form (g, ga, gb, gab) and tuples of the form (g, ga, gb, gc), for
some a, b, c ∈ Z∗p. Where the DDH assumption states that the DDH
problem is hard to solve.

To create the encryption keys we use an oracle to hash elements
drawn from the probability space D. We denote the oracle by H,
where it should be impossible to get any information about the input
of the oracle by looking at its output.

Game 0 Simulate Experiment 1. See Algorithm 1 for the detailed
procedure. Let E0 be the event that b = b′ in Game 0.

Game 1 Stop the game if the opponent queries either u1 or u2

(guessed the correct key). The random oracle H outputs b′ r←− {0, 1}.
We denote this event by F1.

Let E1 be the event that b = b′ in Game 1. Unless event F1 occurs
Game 1 behaves just like Game 0. Thus E0 ∧ ¬F1 ⇐⇒ E1 ∧ ¬F1

and by the difference lemma we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1].

Game 2 Draw k1, k2
r←− Z∗p and stop querying the oracle. The

opponent can still query the oracle, hence, we need to draw samples
from D to check if the opponent is guessing the correct key(s).

Let E2 be the event that b = b′ in Game 2. The output of H is
indistinguishable from uniform samples of Z∗p, hence, Pr[E1] = Pr[E2].

36 H. Galteland and K. Gjøsteen

Game 3 For uniform s, s′ r←− Z∗p and keys k1, k2 precompute

(x, y, z, w) = (g, gk1 , gs, gk1s), and (x′, y′, z′, w′) = (g, gk2 , gs
′
, gk2s

′
)

before receiving message m1 and m2.
Let E3 be the event that b = b′ in Game 3. After encrypting both

messages, or encrypting one and rerandomizing it, we get that the
output of the encryption, and rerandomize, algorithms are exactly
the same in Game 2 and Game 3. Thus, Pr[E2] = Pr[E3].

Game 4 Let (x, y, z, w) = (g, gk1 , gs, gk1s) be the first tuple and

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)

= (g, ga+ck1 , gb+s, g(a+ck1)(b+s))

be the second, for some a, b, c
r←− Z∗p.

Let E4 be the event that b = b′ in Game 4. Since the tuples of
Game 4 results in the same output space as the tuples of Game 3 we
get that Pr[E3] = Pr[E4].

Game 5 The output of the rerandomize algorithm is of the form

(grr
′
, gk1rr

′
, gs+rs

′
, gk1(s+rs′)m)

for some r, r′, s and s′, where s + rs′ 6= s since the variables used in
the algorithm cannot be zero. This gives us a statistical difference of
1/p between the output distributions. Change the rerandomization
algorithm such that the second ciphertext (in case b = 1) is computed
as

(grr
′
, gk1rr

′
, gs+rs

′+s̃, gk1(s+rs′+s̃)m1),

where s̃
r←− Zp. The new sum s+ rs′ + s̃ can be any value in Zp and

all values are equally probable.
Let F5 be the event that s+rs′+s̃ = s and let E5 be the event that

b = b′ in Game 5. Unless F5 occurs, Game 4 and Game 5 behaves the
same, that is, E4 ∧ ¬F5 ⇐⇒ E5 ∧ ¬F5 and by the difference lemma
we get that

|Pr[E4]− Pr[E5]| ≤ Pr[F5] =
1

p
.

Malware encryption schemes 37

Algorithm 2 Input: (x, y, z, w)

1: u1, u2
r←− D, b

r←− {0, 1}
2: a, b, c

r←− Z∗p
3: (x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
4: Get m1,m2 from O
5: if b = 0 then
6: r, r′ r←− Z∗p
7: c1 ← (xr, yr, z, wm1)

8: c2 ← (x′ r
′
, y′ r

′
, z′, w′m2)

9: Send c1, c2 to O
10: if b = 1 then
11: r, r′, s′, s̃ r←− Z∗p
12: c1 ← (xr, yr, z, wm1)

13: c2 ← (xrr
′
, yrr

′
, zxrs

′+s̃, wyrs
′+s̃m1)

14: Send c1, c2 to O
15: Get b′ from O

Game 6 Change the first tuple into the form (g, ga
′
, gb
′
, gc
′
), for

uniform elements a′, b′, c′ ∈ Z∗p. The second tuple will then look like

(g, ga+a′c, gb+b
′
, gab+ab

′+a′bc+cc′).

Let E6 be the event that b = b′ in Game 6. Since we are using uniform
elements in the tuples the encryption and rerandomization algorithms
are, essentially, one-time pads. Hence, Pr[E6] = 1/2.

We claim that |Pr[E5] − Pr[E6]| is equal to the advantage of an
adversary A, solving the DDH problem, with access to Algorithm 2.
We let Advddh(A) denote the advantage of A. Algorithm 2 has
(g, ga, gb, gc) as input, for some a, b, and c, where c can be equal
to ab. The algorithm simulates Game 5 if the input is on the form
(g, ga, gb, gab) and

Pr[A2(g, ga, gb, gab) = 1 | a, b r←− Z∗p] = Pr[E5].

If the input is on the form (g, ga, gb, gc) the algorithm proceed as in
Game 6 and

Pr[A2(g, ga, gb, gc) = 1 | a, b, c r←− Z∗p] = Pr[E6],

where the DDH advantage of A is equal to |Pr[E5]− Pr[E6]|.

38 H. Galteland and K. Gjøsteen

Summary From the games we bound the advantage of the oppo-
nent O.

Adv(O) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]− Pr[E3]

+ Pr[E3]− Pr[E4] + Pr[E4]− Pr[E5] + Pr[E5]

− Pr[E6] + Pr[E6]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E4]− Pr[E5]|+ |Pr[E5]− Pr[E6]|

≤ Pr[F1] +
1

p
+ Advddh(A).

By the DDH assumption the DDH advantage of A is negligible and,
for large enough p, we get that the advantage of our opponent is
determined by the probability that O guesses or predicts the correct
key, that is, determined by the probability space D.

2.3 Extended scheme

In the extended scheme we represent messages as bit strings to en-
crypt longer messages. However, this change reduces the number of
rerandomizations we can perform on a ciphertext and we need to relax
the requirements of the cryptosystem.

Correctness If c was produced by iteratively applying R to the out-
put of E(k,m) at most n times then D(k, c) will output m except
with negligible probability.

We use a pseudorandom function f : G→ {0, 1}N mapping group
elements to bit strings of length N , for some large N ∈ N. We let
fL denote the truncation of the output to L bits, for L < N . We
assume that group elements can be encoded as bit strings of length
at most l/2. The construction in this section is very similar to the
hybrid scheme by Golle et al [8]. The key used in the algorithms is
generated by the loader using environmental data.

Encryption For a message m ∈ {0, 1}L and a key k ∈ Z∗p, sample

r
r←− Z∗p, s

r←− Zp, γ
r←− G and output

c = gr||gkr||gs||gksγ||
(
fL+l(n+1)+1(γ)⊕ (m||1||0l(n+1))

)
.

Malware encryption schemes 39

Decryption For a ciphertext c = x||y||b′0 and a key k ∈ Z∗p check if

xk = y. If not output ⊥. If it is let b′0 = z0||w0||b0 and compute

b′1 = f|b0|(z
−k
0 w0)⊕ b0.

If the result b′1 ends in l′ ≥ l zeros then the message is the result
minus the tail of zeros and exactly one 1. Otherwise interpret
b′1 as z1||w1||b1 and repeat the procedure. If this procedure is
repeated n+ 1 times output ⊥.

Rerandomization For a ciphertext c = x||y||bm||bl, where bl is the
last l bits. Sample r′ r←− Z∗p, s′

r←− Zp, γ′
r←− G, and output

c′ = xr
′ ||yr′ ||xs′ ||ys′γ′||

(
f|bm|(γ

′)⊕ bm
)
.

Correctness Before applying the rerandomize algorithm, bm looks
like

gs||gksγ||
(
fL+ln+1(γ)⊕ (m||1||0ln)

)

for s ∈ Z∗p, key k, and γ ∈ G. The l last bits we discard, bl, is an
“encryption” of l zeros. We can therefore only perform n rerandom-
izations on a ciphertext before we get decryption failure, that is, there
would be no tail of zeros left for the decryption algorithm to detect.

If c = x||y||b′0 was output from the encryption algorithm, we have
that xk = gkr = y. Hence, we can write b′0 as z||w||b0, and compute

f|b0|(z
−kw)⊕ b0 = fL+l(n+1)+1(γ)⊕ fL+l(n+1)+1(γ)⊕ (m||1||0l(n+1))

= (m||1||0l(n+1)).

The result ends with a tail of l′ ≥ l zeros and the output message is
m.

Let c be a ciphertext that was produced by iteratively applying
the rerandomize algorithm to the output of E(k,m) t times, where
1 ≤ t ≤ n. Write c as x||y||b′t, where x = gr1···rt+1 , y = gk(r1···rt+1).
Note b′t has the form

(gr1···rt)s
′ ||(gk(r1···rt))s

′
γt||
(
fL+l(n+1−t)+1(γt)⊕ b′t−1

)

40 H. Galteland and K. Gjøsteen

for s′, r1, . . . , rt+1 ∈ Z∗p, key k, and group element γt ∈ G. Observe

that for all 1 ≤ t ≤ n we have that xk = y. Thus we can write
b′t = zt||wt||bt and compute

f|bt|(z
−k
t wt)⊕ bt = fL+l(n+1−t)+1(γt)⊕ fL+l(n+1−t)+1(γt)⊕ b′t−1

= b′t−1

where b′t−1 does not end with a tail of l′ ≥ l zeros (except with negligi-
ble probability) since the ciphertext is also encrypted once using with
the encryption algorithm (in addition to the t rerandomizations). Let
b′t−1 = zt−1||wt−1||bt−1 and repeat the process t more times. In the
last iteration we perform the decryption on the bit string z0||w0||b0,
where b0 looks like

fL+l(n+1−t)+1(γ0)⊕ (m||1||0l(n+1−t)).

We know this decrypts to the message m.
We will have decryption errors if the sampled values s, in the

encryption algorithm, or s′, in the rerandomization algorithm, is equal
to zero. This can be made negligible for large values of p, hence, the
decryption algorithm is almost always correct.

2.3.1 Security of the extended scheme

Similar to the security proof of the basic scheme, we show that the
opponent is unable to distinguish between encrypted ciphertexts and
that his advantage is determined by D, the probability of guessing
the correct key. As in the proof of the basic scheme, we use games to
simulate Experiment 1.

Game 0 Simulate Experiment 1. The full procedure can be seen in
Algorithm 1. Let E0 be the event that b = b′ in Game 0.

Game 1 Similar to the basic Game 1, where we get |Pr[E0] −
Pr[E1]| ≤ Pr[F1].

Game 2 Similar to the basic Game 2, where we get Pr[E1] = Pr[E2].

Malware encryption schemes 41

Algorithm 3 Input: (x, y, z, w)

1: u1, u2
r←− D, b

r←− {0, 1}
2: a, b, c

r←− Z∗p
3: (x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
4: Get m1,m2 from O
5: if b = 0 then
6: r, r′γ, γ′ r←− Z∗p
7: c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)

8: c2 ← x′ r
′ ||y′ r′ ||z′||w′γ′||

(
fL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)

9: Send c1, c2 to O
10: if b = 1 then
11: r, r′s′, γ, γ′ r←− Z∗p
12: c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)

13: Let c1 = xr||yr||bm||bl, where bl is the last l bits

14: c2 ← xrr
′ ||yrr′ ||xrs′ ||yrs′γ′||

(
f|bm|(γ

′)⊕ bm
)

15: Send c1, c2 to O
16: Get b′ from O

Game 3 Similar to the basic Game 3, where we get Pr[E2] = Pr[E3].

Game 4 Similar to the basic Game 4, where we get Pr[E3] = Pr[E4].

Game 5 Similar to the basic Game 6 except we use Algorithm 3
instead. We get that |Pr[E4]− Pr[E5]| = Advddh(A).

Game 6 Sample a function h from a family Γ of all functions from
G to {0, 1}N instead of using the function f . We denote hL as the
truncation of the output of h to L bits. The pseudorandom function
(PRF) advantage of an adversary B is its ability to distinguishing f
from any function h sampled from Γ. The PRF-advantage of B is neg-
ligible if f is pseudorandom. We let Advprf(B) denote the advantage
of B.

Let E6 be the event b = b′ in Game 6. We use an arbitrary
function h, with a random group element γ, to encrypt the messagem,
hence, the output ciphertexts of the encryption and rerandomization
algorithms can be any random bit string. Thus Pr[E6] = 1/2.

We claim that |Pr[E5] − Pr[E6]| is equal to the PRF-advantage,
where we use Algorithm 4. The algorithm draws a function h from

42 H. Galteland and K. Gjøsteen

the family Γ, which may be equal to f . The PRF-advantage is

∣∣Pr[A4(x, y, z, w)=1 | A4←f]−Pr[A4(x, y, z, w)=1 | h←Γ, A4←h]
∣∣

which is equal to |Pr[E5]− Pr[E6]|.

Summary From the games we bound the advantage of the oppo-
nent O.

Adv(O) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]− Pr[E3]

+ Pr[E3]− Pr[E4] + Pr[E4]− Pr[E5] + Pr[E5]

− Pr[E6] + Pr[E6]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E4]− Pr[E5]|+ |Pr[E5]− Pr[E6]|
≤ Pr[F1] + Advddh(A) + Advprf(B).

By the DDH assumption the DDH advantage of A is negligible, and
assuming f is pseudorandom the PRF advantage of B is negligible.
Therefore, the advantage of the opponent is determined by the prob-
ability that the opponent guesses or predicts the correct key, that is,
determined by the probability space D.

2.4 Path scheme

The path variation scheme encrypts malware under several keys and
encrypted malware will be correctly decrypted if it travels on the
correct path in the network toward the target. If a malware sample
infects a node not in the path then it can no longer be correctly
decrypted, except with negligible probability.

The scheme uses several encryption keys, where each key is gener-
ated from environmental data gathered from a node in the path. The
malware author selects the path and, hence, needs knowledge about
each node in the path to generate the encryption keys.

When encrypted malware infects a node the loader samples local
environmental data to generate a set of keys and a default key, checks
if one of the non-default keys can be used for decryption, if not it will
use the default key in the decryption algorithm. If the node is in the

Malware encryption schemes 43

Algorithm 4 Input: (x, y, z, w)

1: u1, u2
r←− D, b

r←− {0, 1}, h← Γ

2: a, b, c
r←− Z∗p

3: (x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
4: Get m1,m2 from O
5: if b = 0 then
6: r, r′, γ, γ′ r←− Z∗p
7: c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)

8: c2 ← x′ r
′ ||y′ r′ ||z′||w′γ′||

(
hL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)

9: Send c1, c2 to O
10: if b = 1 then
11: r, r′, s′, γ, γ′ r←− Z∗p
12: c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)

13: Let c1 = xr||yr||bm||bl, where bl is the last l bits

14: c2 ← xrr
′ ||yrr′ ||xrs′ ||yrs′γ′||

(
h|bm|(γ

′)⊕ bm
)

15: Send c1, c2 to O
16: Get b′ from O

correct path a key will be removed from the encrypted malware. If it
is not in the correct path then the attempted decryption introduces
a new random value to the ciphertext, which will not be removed on
any subsequent node except for some negligible probability.

Malware payload will be encrypted using the keys kt, . . . , k2, k1,
where kt, . . . , k2 are default keys associated to a node in the path and
k1 is a specific key identifying the target node, see Figure 3.

2.4.1 Based on the basic scheme

Creating a path variant of the basic scheme is straight forward. We
use the same algorithms except for the following. The encryption
algorithm encrypts the malware under the sum of the keys, instead of
a single key, and the decryption algorithm will always try to decrypt
using a key. The algorithms are as follows.

Encryption For a message m ∈ G and keys k1, k2, . . . , kt ∈ Z∗p,
sample r

r←− Z∗p and s
r←− Zp, and output

c = (x, y, z, w) = (gr, gr(k1+k2+···+kt), gs, gs(k1+k2+···+kt)m).

Decryption For a ciphertext c = (x, y, z, w) check if any of the non-

44 H. Galteland and K. Gjøsteen

Algorithm 5 Extended path variation attack process.
1: compute ct ← E((k1, . . . , kt),m)
2: for i = 1, . . . , n do
3: compute c′t ← P(ct) and infect a computer

4: while node is infected with c′i do
5: compute ci ← D(k, c′i)
6: if result is executable then
7: run malware
8: else
9: compute c′i−1 ← P(ci) and use it to infect a new node

default keys k̂ satisfies xk̂ = y,1 if so let k = k̂ if not let k be
the default key. Output

c′ = (x, y′, z, w′) = (x, x−ky, z, z−kw).

Rerandomize For a ciphertext c = (x, y, z, w), sample r′ r←− Z∗p and

s′ r←− Zp, and output

c′ = (x′, y′, z′, w′) = (xr
′
, yr

′
, zxs

′
, wys

′
).

2.4.2 Based on the extended scheme

The path variant of the extended scheme utilizes an onion type en-
cryption [3], where each onion layer is encrypted under one of the
keys. The rerandomize algorithm hides keys inside the ciphertext us-
ing a PRF and locks it using a group element. Thus, we need to
completely remove a key from the ciphertext when we use it in a de-
cryption, hence, if we encrypt each layer using one key we can remove
a key completely from the ciphertext.

Since we encrypt in layers we need a padding algorithm, P, to pad
the ciphertexts such they have the same default length, denoted LD.
The scheme pads the ciphertext after an encryption or a decryption.
Note that the encryption algorithm no longer adds any zeros when
encrypting. The padding algorithm also rerandomizes the ciphertexts,
hence, it replaces the rerandomize algorithm.

1This will be true if the malware infects the target node after traveling on the
correct path, then there will only be one non-default key remaining encryption the
ciphertext.

Malware encryption schemes 45

Padding For a ciphertext c, encrypting a message m, the padding
algorithm P(c) outputs a ciphertext c′, encrypting the same
message m, with a defined length.

See Algorithm 5 for the malware algorithm, which is specific for
the extended path variation. Note that the decryption algorithm will
be correct only if the malware attack process is performed as showed
in the algorithm. Thus we need a specific correctness requirement
for the path version of the extended scheme. We also need a require-
ment for the padding algorithm, since it replaces the rerandomization
algorithm.

Correctness If c′i was output from P(E(ki, ci−1)) or P(D(ki+1, ci+1))
then D(ki, c

′
i) will always output ci−1 except with negligible

probability.

Padding If c was output by E(k,m) then the output distribution
of P(c) should be computationally indistinguishable from the
output distribution of E(k,m).

The algorithms of the extended path scheme are as follows.

Encryption For a message m ∈ {0, 1}L, keys k1, k2, . . . , kt ∈ Z∗p,
ri

r←− Z∗p, si
r←− Zp, and γi

r←− G, for i = 1, . . . , t. Encrypt the
message in layers where

c1 = gr1 ||gr1k1 ||gs1 ||gs1k1γ1|| (fL(γ1)⊕m)

and

ci = gri ||griki ||gsi ||gsikiγi||
(
fL+2(i−1)l(γi)⊕ ci−1

)

for i ∈ {2, . . . , t}. Pad ct such that it has default length LD.

Padding For a ciphertext c. If | c | = LD let c = x||y||bm||bl, where
bl is the last l bits, otherwise let c = x||y||bm.

P(c) = xr
′ ||yr′ ||xs′ ||ys′γ′||

(
f|bm|+N+1(γ′)⊕ (bm||1||0N

)
.

where N = LD − |bm| − 2l − 1.2

2N is a multiple of l.

46 H. Galteland and K. Gjøsteen

Decryption For a ciphertext c = x0||y0||b′0 check if any of the non-

default keys k̂ satisfies xk̂0 = y0, if so let k = k̂ if not let k be
the default key. Let b′0 = z0||w0||b0 and compute

b′1 = f|b0|(z
−k
0 w0)⊕ b0,

interpret b′1 as z1||w1||b1||1||0N ′ , where N ′ ∈ N.3 Compute

b′2 = f|b1|(z
−k
1 w1)⊕ b1

and check if b′2 is an executable malware. If it is then the attack
was successful, if not pad b′2.

2.4.3 Security of the path scheme

Based on the basic scheme The proof is as the basic proof, given
in Section 2.2.1, except that:

• the probability space D is replaced with D1 × · · · ×Dt,

• use vectors of samples u1 and u2 instead of u1 and u2, and

• use vectors of keys k1 and k2 instead of k1 and k2.

The opponent’s advantage is bounded by

Adv(O) ≤ Pr[F1] +
1

p
+ Advddh(A).

That is, the advantage is bounded by the opponent’s ability to guess
or predict the correct keys and is determined by the probability space
D1 × · · · ×Dt.

Based on the extended scheme The proof is as the extended
proof, given in Section 2.3.1, except that:

• replace the rerandomize algorithm with the padding algorithm
in Experiment 1,

3N ′ will be a multiple of l zeros if the correct key is used in the decryption
algorithm.

Malware encryption schemes 47

• the probability space D is replaced with D1 × · · · ×Dt,

• use vectors of samples u1 and u2 instead of u1 and u2,

• use vectors of keys k1 and k2 instead of k1 and k2,

• precompute 2t tuples of the form

{(xj , yj , zj , wj)}tj=1 =
{(
g, gk1,j , gsj , gsjk1,j

)}t
j=1

and
{(
x′j , y

′
j , z
′
j , w

′
j

)}t
j=1

=
{(
g, gk2,j , gs

′
j , gs

′
jk2,j

)}t
j=1

instead of precomputing two tuples, and

• from the first tuple, (x, y, z, w), create an additional 2t − 1 tu-
ples, instead of one, by uniformly sample {aj , bj , cj}2t−1

j=1 and
compute

{(
x, xajycj , zxbj , wcjzajycjbjxajbj

)}2t−1

j=1
.

The opponent’s advantage is bounded by

Adv(O) ≤ Pr[F1] + Advddh(A) + Advprf(B).

That is, the advantage is bounded by the opponent’s ability to guess
or predict the correct keys and is determined by the probability space
D1 × · · · ×Dt.

Acknowledgments

We would like to thank Adam Young for valuable discussions and we
would like to thank the anonymous reviewers for helpful comments.

References

[1] Dan Boneh. Algorithmic Number Theory: Third International
Symposiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998
Proceedings, chapter The Decision Diffie-Hellman problem, pages
48–63. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

48 H. Galteland and K. Gjøsteen

[2] Ran Canetti, Hugo Krawczyk, and Jesper B. Nielsen. Relaxing
chosen-ciphertext security. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, pages 565–582, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[3] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The second-generation onion router. In Proceedings of the
13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[4] Eric Filiol. Strong Cryptography Armoured Computer Viruses
Forbidding Code Analysis: the bradley virus. Research Report
RR-5250, INRIA, 2004.

[5] Eric Filiol. Malicious cryptography techniques for unreversable
(malicious or not) binaries. CoRR, abs/1009.4000, 2010.

[6] Ariel Futoransky, Emiliano Kargieman, Carlos Sarraute, and
Ariel Waissbein. Foundations and applications for secure trig-
gers. Cryptology ePrint Archive, Report 2005/284, 2005.
http://eprint.iacr.org/.

[7] Herman Galteland and Kristian Gjøsteen. Malware, Encryption,
and Rerandomization – Everything Is Under Attack, pages 233–
251. Springer International Publishing, Cham, 2017.

[8] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson.
Universal Re-encryption for Mixnets, pages 163–178. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[9] Fritz Hohl. Time limited blackbox security: Protecting mobile
agents from malicious hosts, 1998.

[10] Kaspersky Lab Global Research and Analysis Team.
Gauss: Abnormal distribution. In-depth research anal-
ysis report, KasperSky Lab, August 9th 2012. se-
curelist.com/en/analysis/204792238/gauss abnormal distribution.

Malware encryption schemes 49

[11] James Riordan and Bruce Schneier. Environmental key genera-
tion towards clueless agents. In Giovanni Vigna, editor, Mobile
Agents and Security, volume 1419 of Lecture Notes in Computer
Science, pages 15–24. Springer Berlin Heidelberg, 1998.

[12] Victor Shoup. Sequences of games: a tool for taming complexity
in security proofs. Cryptology ePrint Archive, Report 2004/332,
2004.

[13] Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious
Code. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[14] Adam Young and Moti Yung. Cryptovirology: extortion-based
security threats and countermeasures. In Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on, pages 129–140,
May 1996.

[15] Adam Young and Moti Yung. Malicious Cryptography: Exposing
Cryptovirology. John Wiley & Sons, 2004.

[16] Adam Young and Moti Yung. The drunk motorcyclist protocol
for anonymous communication. In Communications and Network
Security (CNS), 2014 IEEE Conference on, pages 157–165, Oct
2014.

50 H. Galteland and K. Gjøsteen

Paper ii

Subliminal channels in post-quantum digital
signature schemes

Herman Galteland and Kristian Gjøsteen

ePrint 2019/574

Subliminal channels in post-quantum digital

signature schemes

Herman Galteland∗ and Kristian Gjøsteen

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology
{herman.galteland, kristian.gjosteen}@ntnu.no

Abstract

We analyze digital signatures schemes submitted to NIST’s
Post-Quantum Cryptography Standardization Project in search
for subliminal channels.

Keywords. Subliminal channels, post-quantum, digital signa-
tures.

1 Introduction

The National Institute of Standards and Technology’s (NIST) current
Post-Quantum Cryptography Standardization Project (PQCSP) [19] is
analyzing and testing post quantum secure public key encryption, key
encapsulation mechanism, and digital signature schemes submitted
by the cryptographic research community. NIST’s goal is to have a
selection of standardized schemes for future use.

In this paper we analyze the proposed digital signature schemes
submitted to PQCSP for subliminal channels, covert communication
channels that uses existing cryptographic protocols to send informa-
tion, called subliminal messages, the protocols were not intended for.

∗This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.nsm.stat.
no

53

Knowledge of subliminal channels is important for those who want
to use them and for those who want avoid them. Privacy concerned
users could use subliminal channels to bypass censorship or avoid
surveillance. When constructing secure systems developers might
avoid schemes with subliminal channels to prevent, for example, in-
formation leakage or malicious actors secretly breaching their system.
It is likely that some of the digital signatures schemes submitted to
PQCSP will be used. It is therefore useful to know about any sub-
liminal channels present in these schemes.

We use the following model when we look for subliminal channels,
where we try to fulfill the goals of the sender and receiver of the
subliminal messages.

Subliminal channel model The subliminal sender wants to com-
municate discreetly with a subliminal receiver over a channel con-
trolled by an adversary. We shall assume that the subliminal sender
is sending message-signature pairs that the subliminal receiver later
can observe.

Hiding information directly in the message is steganography, which
is not our current topic of interest. Therefore we shall assume that
the message part of the message-signature pairs will not be under
the subliminal senders’ control. Instead, the subliminal sender gener-
ates the signatures and will try to embed subliminal messages in the
signatures.

We assume that the subliminal sender and the subliminal receiver
share a key for a suitable symmetric cryptosystem (that may even be
stateful). In particular, this means that the subliminal message to be
embedded will be indistinguishable from random bits.

We may allow the subliminal receiver to know the signing key,
but it is better if the receiver does not need the signing key. The
subliminal sender may also be the one generating the key, and in this
case we may allow cheating during key generation.

The subliminal sender’s goal is to send as much information as
possible without detection. That is, except for the subliminal receiver,
anyone who inspects the generated signatures should not be able to
decide if they contain subliminal messages or were generated honestly.

54 H. Galteland and K. Gjøsteen

This should hold even if the one who inspects the signatures also
chooses the messages to be signed.

We note that even when the subliminal channel is used, the signa-
ture scheme should remain secure in the ordinary sense. (It may seem
like this follows from indistinguishability, since if the scheme is inse-
cure when the subliminal channel is used, a distinguisher would try to
break the scheme and distinguish in that way. However, since check-
ing for subliminal channels is something that we want to do regularly,
any subliminal channel distinguisher must be fast. Which means that
it may not have time to run an attack against the signature scheme.)

1.1 Examples of subliminal channels

One would expect a deterministic signature scheme to be free from
subliminal channels. Signatures of the RSA-FDH scheme [7] have the
form SignRSA−FDH = (HFDH(M))d mod n, for an RSA decryption
key d and modulus n. There are no random value to exploit, however,
it is possible to use it to send (short) subliminal messages. Using the
halting strategy [22] we can in some sense make a 1 bit subliminal
channel. However, this is a generic attack.

Any sufficiently non-deterministic digital signature scheme allows
a generic subliminal channel. For example, to send n bits, generate
signatures until the first n bits of the signature matches the message.
We can generalize the approach using the leftover hash lemma [35],
where we generate signatures until the hash of the signature matches
the message to be sent. This holds for any signature scheme. Of
course, the computational cost of this approach is exponential in n,
so this will be a low-bandwidth channel.

It is possible to derandomize signature schemes by replacing the
random bits with the output of a pseudo-random function applied to
the message. In general this will not prevent subliminal channels [12].
In most construction, it is hard to verify that the signature generation
is deterministic without knowledge of the secret key. (Another option
is to sign the same message twice. We assume the subliminal sender
keeps track of messages sent.) It is, however, possible to check if
there was a subliminal channel present assuming that the secret value
becomes public at a later point.

Subliminal channels in p.q. digital signature schemes 55

The PSS message encoding scheme, used with the RSA or Rabin
primitive to make a signature scheme [7], has a subliminal channel
that only requires public values to recover the message. Taking RSA
as an example, we have SignPSS−RSA = (0||w||r∗||M)d mod n, for
a RSA private key d, modulus n, hash value w, random value r∗,
and message M . Using the RSA public key e we can recover the
randomness r∗. Replacing the random value r∗ with a subliminal
message ms we can make a subliminal channel. The Rabin primitive
works in the same way.

A subliminal channel using Schnorr Signatures [49] requires the
secret values to recover the message, which has to be shared with the
subliminal receiver. A Schnorr signature has the form SignSchnorr =
(y, e) = (r+se, e), where s is the secret key, e is a hash value, and r is
a random value. We can use s to recover r by computing r = y − se.
It is then trivial to replace the randomness with a subliminal message
ms to make a subliminal channel.

1.2 Our contributions

We modify the proposed digital signature schemes submitted to the
PQCSP to reliably send subliminal messages, typically by exploiting
any random values, while keeping the signatures valid. We show how
to insert and recover subliminal messages and give an overview of the
subliminal bandwidth of each channel found.

1.3 Related work

Simmons motivated his work on the subliminal channel with the pris-
oners’ problem [50], where two prisoners wish to plan their escape
and the warden allows them to send signed message if he can read
the content of the messages. The problem for the prisoners is to
communicate covertly using their monitored communication channel,
to plan their escape. The problem of the warden is to discover and
prevent the existence of subliminal channels, to prevent prisoners es-
caping. Using digital signatures Simmons showed that such channels
exist [51–53], and since then more have been found in various digital
signature schemes [4, 12, 38, 57]. Of subliminal channels in post-

56 H. Galteland and K. Gjøsteen

quantum secure digital signature schemes: Hartl et al. showed how
to insert subliminal messages in signature schemes based on the multi-
variate quadratic polynomial problem [31]. Kwant et al. constructed
a backdoor (Kleptography [56]) in the NTRU and the pqNTRUsign
digital signature scheme, which can be used as a subliminal channel,
and a subliminal channel in the NTRU scheme [37]. The subliminal
channel of the pqNTRUsign scheme can send a few bits per signature.

Desmedt made the first attempt of making a subliminal-free au-
thentication and signature scheme [21], and since then more schemes
have been constructed to prevent subliminal channels [11, 12, 25, 53,
54]. Divertible protocols [10, 14, 15, 43] are separable by an unno-
ticeable third party (a warden) sitting in between two communicat-
ing principals (the prisoners), where the third party can rerandomize
messages to remove any subliminal channel. Cryptographic reverse
firewalls [17, 42] can, in theory, be used to prevent subliminal chan-
nels and existing constructions are based on Decisional Diffie–Hellman
and use rerandomization techniques to remove subliminal messages,
which are not suitable for post-quantum secure schemes.

1.4 Notation

We try to follow the notation given in each signature scheme as much
as we can, where we describe each scheme’s notation when they are
introduced. We denote the subliminal message in plain ms or in bold
ms to fit with the notation of each scheme. Let sgn(x) denote the
sign of x and is equal to 1 if x ≥ 0 or equal to −1 if x < 0. When
the distribution of random elements are not specified, other than that
they are random, we assume it is uniform.

1.5 Overview

In Section 2 we briefly describe each scheme submitted to NIST’s
Post-Quantum Cryptography Standardization Project and show the
subliminal channel(s) we have found. In Section 3 we summarize and
give a table of each channel’s subliminal bandwidth.

Subliminal channels in p.q. digital signature schemes 57

2 Proposed digital signature schemes

2.1 Ideas

While we analyze many different schemes, many ideas are reused for
many different schemes and we discuss some of the theory here.

In addition to the public and secret channels described in Sec-
tion 1.1 we also note the following subliminal channels. Some schemes
use random values that are included in the clear, which can be used to
embed encrypted subliminal messages. A few lattice based schemes
use a large random value to hide a small secret value, where we can
insert information in the higher order digits of the random value.

Some signature schemes require the signatures to have a specific
form. By using probabilistic encryption we can simply encrypt the
subliminal messages many times until we get a signature of the desired
form. This will reduce the available bandwidth, but the cost is usually
just a few bits, especially if stateful encryption is used.

The random elements used in the signature scheme are sampled
according to some distribution. For non-uniform distributions we can
sometimes do rejection sampling on the randomness used to encrypt
the subliminal message such that the output is close to the desired
distribution.

2.2 CRYSTALS – Dilithium

The Dilithium digital signature scheme is based on Fiat-Shamir with
Aborts [39] where the security is based on the shortest vector problem.
The scheme uses the polynomial rings R = Z[X]/〈Xn + 1〉 and Rq =
Zq[X]/〈Xn + 1〉, for an integer n. An element x ∈ R, and x ∈ Rq, is
denoted in plain, and vectors and matrices are denoted in bold. An
element in B60 ⊂ R has 60 coefficients that are either −1 or 1 and
the rest are 0.

Signatures have the form

SignDilithium = (z,h, c),

where z = y + cs1, y ∈ Rlq is uniformly random, s1 ∈ Rlq is part of
the secret key, h is a Boolean vector used to recover high-order bits,

58 H. Galteland and K. Gjøsteen

Table 1: CRYSTALS – Dilithium parameters and subliminal message
bounds for high order digits subliminal channel.

Parameter set
Parameter Description I II III IV

n degree 256 256 256 256
l dimension 2 3 4 5
γ1 randomness bound 523776 523776 523776 523776
β bound 375 325 275 175

‖ms‖∞ message bound 523 523 523 523
|r′i| masking value [375, 624] [325, 674] [275, 724] [175, 824]

and c ∈ B60 is the hash of the message digest and the higher-order
bits of a public matrix multiplied by the vector y. The vector z has
max norm ‖z‖∞ ≤ γ1 − β − 1.

2.2.1 Subliminal channel using secret values

Assume that the sender and receiver both know the secret key sk =
(ρ,K, tr, s1, s2, t0). The sender can replace the random value y with
a subliminal message ms, that is, let SignDilithium = (z,h, c), where
z = ms + cs1. With the secret key the receiver can retrieve the
subliminal message as ms = z− cs1. We can encrypt the subliminal
messages again, using fresh randomness, if the produced signature is
not a valid signature.

2.2.2 Subliminal channel using high order digits

The scheme requires that ‖cs1‖∞ ≤ β and ‖z‖∞ ≤ γ1 − β − 1. We
can insert a subliminal message in the high order digits of y if β is
small compared to the coefficients of y.

Proof of concept For the proposed parameters, the coefficients
of the random value have at most six digits and the coefficients of
the error term ‖cs1‖∞ have at most three digits. By bounding the
randomness ‖y‖∞ ≤ γ1−2β−1 we should be able to send subliminal
messages with three digit coefficients. Let y = 1000ms + r′ and

z′ = 1000ms + r′ + cs1,

Subliminal channels in p.q. digital signature schemes 59

where ms ∈ Rlq and r′ ∈ Rlq. The bounds on the coefficients of
ms and the coefficient interval of the masking randomness r′ are in
Table 1. Note that each coefficient of r′ need to have the same sign
as the subliminal message, sgn(r′i) = sgn(msi) for all i ∈ {1, . . . , n},
for the message recovery to be correct. The subliminal message ms

is bounded such that ‖z′‖∞ ≤ γ1 − β − 1, and the coefficients of the
masking value r′ are chosen such that 0 ≤ ‖r′ + cs1‖∞ ≤ 999. The
receiver computes ⌊

z′

1000

⌋

to recover the subliminal message ms. When we encrypt the sublimi-
nal message we can encrypt it one more time if the produced signature
does not meet the requirements of the signature algorithm. We should
also pick the masking values r′ such that ‖z′‖∞ ≤ γ1 − β − 1.

2.3 DME

The DME signature scheme is based on multivariate polynomials.
The scheme uses the field Fp where vectors are denoted in plain low-
ercase.

Signatures have the form

SignDME = (x, z0, h1),

where z0 ∈ FN1
p is a message, h1 : {1, . . . , N1} → {1, . . . , e · n · m}

is a map used to add a random padding to the messages, and x =
F−1(z0) ∈ FN1

p , where F is the public multivariate polynomial. If z0
is not in the image of F , pad z0, using h1, to get z ∈ Im(F) and set
x = F−1(z). The values N1, e, n, and m are parameters. A verifier
computes z = F (x), discards the padding using h1 to get z′0, and
verifies that z′0 = z0.

2.3.1 Subliminal channel using public values

Anyone with the public key can recover z = F (x) and, specifically,
the random padding which can be replaced with a subliminal message.
The scheme offers two parameter sets where up to 16 and 32 bits are

60 H. Galteland and K. Gjøsteen

added to messages, respectively. If the padded message z is not in
the image of F , for a chosen padding, we can encrypt the subliminal
message again, using fresh randomness, until we find a z which is.

2.4 DRS

The DRS signature scheme is a variation of the scheme by Plantard
et al. [47], where both schemes are based on GGH [30]. The security
of the scheme is based on the guaranteed distance decoding problem.
The scheme uses a diagonal dominant lattice L(P), with public basis
P that has large coefficients. An element x ∈ L(P) is an integer
vector.

Signatures have the form

SignDRS = (k, v, w),

where k satisfies kP = v −w, v ∈ Zn is the hash of the message, and
w ∈ Zn is a reduced vector of v that satisfies w ≡ v mod L(S) and
‖w‖∞ < D. The public basis P has big coefficients and is constructed
from the secret basis S using unimodular matrices U , and D is a max
norm bound.

2.4.1 No channel found

We were unable to find a subliminal channel in the DRS signature
scheme.

2.5 DualModeMS

The DualModeMS scheme has two layers, an inner and an outer. The
inner layer is a Matsumoto-Imai multivariate construction [40] based
on FHEv, and the outer layer modifies the output of the inner layer
by using the method of Szepieniec, Beullens, and Preneel [55]. The
scheme uses the fields F2 and Fn2 , where vectors are denoted in bold
lower case, matrices are denoted in bold uppercase and polynomials
are denoted in capital plain letters.

The output of the inner algorithm is

s = (φ(Z),v)× S−1,

Subliminal channels in p.q. digital signature schemes 61

where φ(Z) is a root represented as a binary vector, S is an invertible
n + ν × n + ν matrix, and v ∈ Fν2 are the random vinegar variables.
A signature of the DualModeMS scheme has the form

SignDualModeMS = (s1, . . . , sσ,h, openpaths),

where the si’s are output of the inner algorithm, h is a random set
of linear combination of the public key, and openpaths is a set of
Merkle tree paths used to compute the public key.

2.5.1 Subliminal channel using public values

For a chosen vector s′, that contains a subliminal message in the last
ν bits, we can find a vector v = s′ × S such that s = (φ(Z),v)× S−1

contains an encrypted subliminal message in the last ν bits. If s′ is
not in the image of S−1 we can encrypt the subliminal message again,
using fresh randomness.

The subliminal message mi ∈ Fν2 is inserted in the last ν bits of
si ∈ Fn+ν2 , for i = 1, . . . , σ. The scheme provides three parameter
sets. The dimension ν is 11, 18, and 32, respectively. The number
of inner signatures σ is 64, 96, and 256, respectively. If, for a chosen
subliminal message, the inner algorithm does not terminate we can
encrypt the subliminal message again, using fresh random values, and
try again.

2.6 Falcon

The Falcon signature scheme is a combination of the GPV frame-
work [27], over the NTRU lattice, with fast Fourier sampling. The
scheme uses the polynomial ring Z[x]/〈φ〉, where φ ∈ Z[x] is a monic
and irreducible cyclotomic polynomial of degree n. Vectors are de-
noted in lowercase bold and matrices in uppercase bold.

Signatures have the form

SignFalcon = (r, s),

where r ∈ {0, 1}320 is a uniformly sampled salt, and is used in a hash
together with the message to get a point c ∈ Zq[x]/〈φ〉. A preimage

62 H. Galteland and K. Gjøsteen

t = cB−1 is computed, for a secret basis B, and is used to find two
short polynomials s1, s2 ∈ Zq[x]/〈φ〉 such that s1+s2h ≡ c mod q, for
a NTRU public key h = gf−1 mod q. The polynomial s2 is encoded
as the bit string s.

2.6.1 Random values included in the clear

The random value r ∈ {0, 1}320 can be replaced by a subliminal mes-
sage ms ∈ {0, 1}320.

2.7 GeMSS

The GeMSS scheme is based on the digital signature scheme called
Quartz [45], modified using the ideas of the Gui digital signature
scheme [24]. The scheme uses the fields F2 and Fn2 . Vectors are de-
noted in bold lowercase, matrices in bold uppercase and polynomials
in capital plain letters.

The signature algorithm of the GeMSS scheme uses a subroutine
called GeMSS inversion, which output the n+ ν bit vector

s = (φ(Z),v)× S−1,

where φ(Z) is a root represented as a binary coefficient vector, S is a
secret invertible n+ν×n+ν matrix, and v ∈ Fν2 are random vinegar
variables. A signature of GeMSS has the form

SignGeMSS = (Snb ite,Xnb ite, . . . ,X1),

where (Si,Xi) is the output si of the inversion algorithm discussed
above. The first component Si ∈ Fm2 is the first m bits of the output
si and the second component Xi ∈ Fn+ν−m2 is the remaining n+ν−m
bits. The last ν bits of si is contained in the second component Xi.

2.7.1 Subliminal channel using public values

For a chosen vector s′, that contains a subliminal message in the last
ν bits, we can find a vector v = s′ × S such that s = (φ(Z),v)× S−1

contains an encrypted subliminal message in the last ν bits. If s′ is

Subliminal channels in p.q. digital signature schemes 63

not in the image of S−1 we can encrypt the subliminal message again,
using fresh randomness.

The subliminal message mi ∈ Fν2 is inserted in the last ν bits of
si ∈ Fn+ν2 , for i = 1, . . . , nb ite. The scheme provides three parameter
sets. The dimension ν is 12, 20, and 33, respectively, and the number
nb ite is 4 for all sets. If the inversion algorithm does not terminate,
for a chosen subliminal message, we can encrypt the message again,
using fresh randomness, and try again.

2.8 Gravity – SPHINCS

Gravity–SPHINCS is an extension of Goldreich’s construction of a
stateless hash based signature scheme [29], and share many similar-
ities with SPHINCS [8]. The scheme outputs bit strings, where a
binary number v ∈ {0, 1}n is denoted in plain. The scheme uses
four types of trees; hyper tree, subtrees (Merkle trees [41]), WOTS
public key compression trees, and PORST public key compression
trees. The signature is composed of a PORST signature (improved
version of HORST few times signatures [8]), Winternitz one time sig-
natures [34], and Merkle authentication paths.

Signatures have the form

SignGravity−SPHINCS = (s, σd, oct, σd−1, Ad−1, . . . , σ0, A0, Ac),

where s is a hash and a public salt, σd is a PORST signature, oct is
an authentication value for the PORST signatures, σd−1, . . . , σ0 are
Winternitz signatures, and Ad−1, . . . , A0, Ac are Merkle authentica-
tion paths.

2.8.1 Random values included in the clear

The public salt s is constructed using a hash function with a secret
salt and the message as input, where the verifier cannot verify that
the random value s was computed using this hash function without
the secret salt. The sender can replace the random value s with a
subliminal message ms.

The PORST signature σd = (sx1 , sx2 , . . . , sxk), where the xi’s are
indices and the si are generated using a pseudorandom function G

64 H. Galteland and K. Gjøsteen

with a secret seed and an address in the hyper tree as input. We can
replace the random values with a subliminal message. The security
of the scheme will be reduced as we can now make a collision in the
PORST signatures with probability 2−128, which is acceptable.

The submission proposes tree parameter sets. The binary string
of length n is 256 for all parameter sets, and the dimension k is 24,
32, and 28, respectively.

2.9 Gui

The Gui scheme is based on the Hidden Field Equations cryptosystem
using the minus and vinegar modification (HFEv-) [45]. The scheme
uses a finite field Fq and the field extension Fqn . Field elements are
denoted in lowercase plain. Vectors are denoted in lowercase bold or
in uppercase plain. The affine transformations and maps are denoted
in uppercase plain and their inverses are denoted with the prefix Inv.

The signature algorithm of the Gui scheme uses a subroutine
called HFEv- inversion that outputs

z = InvT · ((y||v1|| . . . ||vν)− cT),

where invT is the inverse of the affine transformation T , y is a root
of a polynomial Y , v1, . . . , vν are random vinegar elements, and cT is
a random masking value. The output of the signature scheme is

SignGui = (Sk||Xk|| . . . ||X1||r),

where r is a random bit string and (Si, Xi) is the output of the HFEv-
inversion algorithm. Si is the first n − a elements and Xi is the last
a + ν elements, where the last ν elements are the random vinegar
values.

2.9.1 Random values included in the clear

The random value r ∈ {0, 1}l can be replaced by a subliminal message

ms ∈ {0, 1}l, where l = 128 for all parameter settings.

Subliminal channels in p.q. digital signature schemes 65

2.9.2 Subliminal channel using secret values

Using the verification algorithm we can recover all Si’s, from the first
and the Xi’s. Then we can recover the random values v1, . . . , vν , in
each (Si, Xi), using the secret key, which contains T and cT .

In each Xj , for j = 1, . . . , k, the subliminal message msi ∈ Fq
replaces the random values vi, for i = 1, . . . , ν. The scheme offers
three parameter sets. The number of random elements ν is 16, 20
and 28, respectively. The number k is 2 for all sets and the group
size q is 2 for all sets. If the signing algorithm does not terminate, for
a chosen subliminal message, we can encrypt the subliminal message
again, using fresh randomness.

2.10 HiMQ – 3

The HiMQ – 3 is based on multivariate quadratic equations. The
scheme uses a finite field Fq. The affine transformations and maps
are denoted in uppercase plain and vectors in lowercase bold.

Signatures have the form

SignHiMQ−3 = T−1(s),

where T−1 : Fnq → Fnq is an invertible affine or linear map, depending
on the parameter set, and s = (s1, . . . , sν , sν+1, . . . , sn) is a solution
of the central map F , where the first ν elements of s are random.

2.10.1 Subliminal channel using secret values

The random elements of s can be replaced with a subliminal message.
The message can be recovered using the secret map T .

The subliminal message msi ∈ Fq replaces the first ν random
values si, in s, for i = 1, . . . , ν. The authors offer three variation
the scheme, HiMQ – 3, HiMQ – 3F and HiMQ – 3P, where each
variation has one parameter set. The number of group elements q is
28, for all variations. The number of random values ν is 31, 24, and
31, respectively. The variations HiMQ – 3F and HiMQ – 3P has a
different central map, but the output of the signature algorithms is the
same as HiMQ – 3. If the signing algorithm does not terminate we can
encrypt the chosen subliminal message again, using fresh randomness.

66 H. Galteland and K. Gjøsteen

2.11 LUOV

The LUOV, Lifted Unbalanced Oil and Vinegar, scheme is based on
the Unbalanced Oil and Vinegar and is a modification of the Oil and
Vinegar scheme by Patarin [44]. The scheme uses the finite field F2

and the extension F2r . Vectors are denoted in lowercase bold and
matrices in uppercase bold.

Signatures have the form

SignLUOV =

(
1ν −T
0 1m

)(
v
o

)
,

where 1ν and 1m are identity matrices, −T is a ν×m binary matrix,
v is a vector of random elements, and o is a unique solution of the
central map F .

2.11.1 Subliminal channel using secret values

Let A =

(
1ν −T
0 1m

)
, then A is an upper triangular binary (ν+m)×

(ν +m) matrix and is invertible. Using A we can recover the vector
v by

A−1SignLUOV =

(
v
o

)
.

The vector v is generated by squeezing a vinegar-sponge, where
the sponge is generated using the message and a private seed. Only
the sender, which has the private seed, can verify that the vinegar-
sponge, and the random values v, is computed according to the pro-
tocol. We can replace the random vector v ∈ Fν2r with a subliminal
message ms ∈ Fν2r . The scheme offers six parameter sets. The number
of random elements ν is 256, 351, 404, 242, 330, and 399, respectively.
The field extension r is 8, 8, 8, 48, 64, and 80, respectively. We can
encrypt the subliminal message again, using fresh randomness, if the
signing algorithm rejects the produced signature.

2.12 MQDSS

The MQDSS signature scheme is built from the SSH 5-pass identi-
fication scheme [48] using the Fiat-Shamir transform. The scheme

Subliminal channels in p.q. digital signature schemes 67

uses the finite field Fq for a prime, or a prime power, q. Vectors are
denoted in lowercase bold and matrices in uppercase bold.

Signatures have the form

SignMQDSS = (R, σ0, σ1, σ2),

where R is a random value, σ0 is a digest of the commitments of

(r
(j)
0 , t

(j)
0 , e

(j)
0) and of (r

(j)
1 ,F(t

(j)
0 + r

(j)
1)−F(t

(j)
0)−F(r

(j)
1) +e

(j)
0), σ1

contains r responses of the form resp
(j)
1 = (α(j)r

(j)
0 −t

(j)
0 , α(j)F(r

(j)
0)−

e
(j)
0), and σ2 contains r responses of the form resp

(j)
2 = r

(j)

b(j)
, for

b(j) ∈ {0, 1}, and r of the commitments in σ0. The random elements

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 are sampled from Fq, gener-

ated using a pseudo random generator PRGrte. The values r
(j)
1 =

s − r
(j)
0 , for j ∈ {1, . . . , r}. The first challenge ch1 = (α(0), . . . , α(r))

is computed as H1(H(pk||R||M), σ0), for hash functions H1 and H.
The second challenge ch2 = (b(0), . . . , b(r)) is the output of the hash
function H2 and is computed as H2(H(pk||R||M), σ0, ch1, σ1). The
multivariate system F is generated as XOFF(SF), for an extendable
output function XOF , and SF is the output of a pseudorandom gen-
erator PRGsk(sk). The secret key s is generated as PRGs(Ss), for
a pseudorandom generator PRGs, and Ss is the output of a pseudo-
random generator PRGsk(sk).

2.12.1 Random values included in the clear

The random value R is generated using a hash function with the
message and the secret key as input. Only the sender, which has the
secret key, can verify that the random value R is computed according
to the protocol. We can replace the random vector with a subliminal
message ms ∈ {0, 1}k. The scheme offers two parameter options. The
security parameter k is 256 and 384, respectively.

2.12.2 Subliminal channel using secret values

Using the secret key sk the subliminal receiver can recover r
(j)
0 , t

(j)
0 ,

and e
(j)
0 , for j ∈ {1, . . . , r}, by doing the following.

68 H. Galteland and K. Gjøsteen

Generate the second challenge ch2 = (b(0), . . . , b(r)) using pk, R
and M , and s using sk. These are used to recover the random values

r
(j)
0 ’s from σ2 = (r

(1)

b(1)
, . . . , r

(r)

b(r)
). If b(j) = 0 then r

(j)
0 = r

(j)

b(j)
, if b(j) = 1

then r
(j)
0 = s− r

(j)

b(j)
, for j ∈ {1, . . . , r}.

Generate the first challenge ch1 = (α(0), . . . , α(r)) using pk, R and
M , and the multivariate system F using sk. These, together with the

r
(j)
0 ’s, are used to recover the t

(j)
0 ’s and e

(j)
0 ’s from σ1 = {(α(j)r

(j)
0 −

t
(j)
0 , α(j)F(r

(j)
0)−e

(j)
0)}j∈{1,...,r}. Use α(j) and r

(j)
0 to recover t

(j)
0 , and

use α(j) and F(r
(j)
0) to recover e

(j)
0 , for j ∈ {1, . . . , r}.

Replace the random values with a subliminal message ms with a
combined bit length of 3rndlog2 qe. The submission offer two param-
eter sets. The integer r is 269 and 403, respectively, the integer n is
48 and 64, respectively, and the field order q is 31 for all sets.

2.13 Picnic

The two building blocks of Picnic [16] are a hash function and a block
cipher. The hash function is used in a zero knowledge proof and the
block cipher is used to generate the public key. The public key is
an encryption of a random value, using the secret key as encryption
key, and the signature is a proof of knowledge of the secret key using
the message as a nonce. The scheme uses a zero knowledge proof
to prevent information about the secret key to leak. The scheme
specifically use ZKB++, an optimized version of ZKBoo [28], for the
zero-knowledge proofs and the block cipher LowMC [2]. The scheme
uses bytes, byte arrays, integers, integer vectors, and bits, where ev-
erything is denoted in plain.

Signatures have the form

(e, b0, . . . , bT−1, z0, . . . , zT−1),

where e is a hash of all values used in the computation and the mes-
sage, the bi’s are parts of the commitments used in the scheme, and
the zi’s are parts of the randomness used.

Subliminal channels in p.q. digital signature schemes 69

2.13.1 Random values included in the clear

In total there are T triples of randomness used. Each zi consists of
two of the three random values of a triplet, where the sender does not
know which two is selected before the signature is generated as the
choice depends on the randomness used. Set two of the three random
values to be subliminal messages and, using techniques from secret
sharing, the third is chosen such that all three values sums to zero.
This makes a two out of three threshold scheme and the receiver can
recover all three random values from any two values.

Each triplet in the random value are S bits long and there are
T triples, hence the subliminal message has length ms ∈ {0, 1}2ST .
The scheme proposes three security levels. For each security level the
value S is 128, 192, and 256, respectively, and the value T is 219, 329,
and 438, respectively.

2.14 pqNTRUsign

The pqNTRUsign signature scheme [32, 33] uses the NTRU lattice:
the polynomial ring Rq = Zq[x]/〈xN ± 1〉, for an integer N . An
element x ∈ Rq is denoted in bold.

Signatures have the form

SignpqNTRUsign = r + (−1)baf .

The random value r is either sampled from a uniform or a Gaussian
distribution, the bit b is either zero or one, the value a is used to
adjust a signature such that it meets a congruence requirement, and
the value f is part of the secret key.

2.14.1 Subliminal channel using high order digits

For a valid signature we know that ‖af‖2 ≤ Bs, for a norm bound
Bs, and ‖af‖∞ ≤ ‖af‖2 ≤ Bs. We can insert a subliminal message in
the high order digits of r if Bs is small compared to the coefficients
of r.

70 H. Galteland and K. Gjøsteen

Table 2: pqNTRUsign parameters and subliminal message bounds for
high orders digits subliminal channel.

Parameter set
Parameter Description Uniform–1024 Gaussian–1024

N dimension 1024 1024
Bs norm bound 98 500
‖r‖∞ randomness bound 16384 —
σ standard deviation — 250
b bit 0 {0, 1}

‖ms‖∞ message space 16 1
|r′i| masking value [98, 901] —

Proof of concept – uniform distribution The pqNTRUsign
scheme with uniform distribution has the parameters b = 0, Bs = 98,
and ‖r‖∞ ≤ 16384, see Table 2. The coefficients of af is at most three
digits long, which leaves us with two digits for the message space. Set
the random value r = 1000ms + r′ and

Sign′pqNTRUsign = 1000ms + r′ + af ,

where the bounds on ms and coefficient interval of r′ are in Table 2.
Note that each coefficient in the masking randomness r′ needs to have
the same sign as the subliminal message, that is, sgn(r′i) = sgn(msi)
for all i ∈ {1, . . . , N}, for the message recovery to be correct. The
subliminal message ms is bounded such that ‖Sign′pqNTRUsign‖∞ ≤
‖SignpqNTRUsign‖∞, for a valid signature SignpqNTRUsign, and the
coefficients of the masking randomness are chosen such that 0 ≤
‖r′ + af‖∞ ≤ 999. To recover the subliminal message, the receiver
computes

⌊
Sign′pqNTRUsign

1000

⌋

to remove the error term and retrieve the subliminal message ms.
The signature is bounded, the max norm should not be too big, and
has to meet a congruence requirement. We can encrypt the subliminal
messages again, using fresh randomness, such that these requirements
will be met. Resample r′ if ‖1000ms + r′‖∞ > ‖r‖∞.

Subliminal channels in p.q. digital signature schemes 71

Proof of concept – Gaussian distribution The pqNTRUsign
scheme with discrete Gaussian distribution has the parameter setting
p = 2, Bs = 500, and r is sampled from a discrete Gaussian with
standard deviation σ = 250, see Table 2. It is expected that 95 %
of the sampled values from the discrete Gaussian are in the interval
(−500, 500), and it is reasonable that 5 % will be outside the interval.
If a sampled value ri > 500 then ri + aifi > 0 since ‖af‖∞ ≤ 500.
Similarly, if ri < −500 then ri + aifi < 0. In other words, to send
the bit msi = 1 pick a ri > 500 and to send the bit msi = 0 pick a
ri < −500.

Five percent of N = 1024 is 51.2, hence it is reasonable to send 51
bits in the subliminal message. The placement of these 51 bits has to
be specified before the signature is sent, say, index set {i1, i2, . . . i51} ⊂
{1, 2, . . . , 1024}. The random value is sampled according to the scheme
and permuted such that the values at index i ∈ {i1, i2, . . . i51} are
larger than 500 or smaller than −500 to send msi = 1 and msi = 0,
respectively. If there not enough large values we can resample the
random vector. The signature is required to be bounded, the max
norm should not be too big, and meet a congruence. If the produced
signature is does not meet theses requirements sample a new random
value which will be modified again.

2.15 pqRSA

Post-Quantum RSA is based on factorization and uses large param-
eters to make it secure in the post quantum setting. Values are rep-
resented as byte strings and the computation is over the integers in
little endian form.

Signatures have the form

SignpqRSA = (R,X),

where R is a uniform random value and X is an encoding of H(R,M)d

mod N , for a RSA private key d, modulus N , and message M .

72 H. Galteland and K. Gjøsteen

2.15.1 Random values included in the clear

Replace the 32 byte long random string R with a subliminal message
ms.

2.16 pqsigRM

The pqsigRM is a signature scheme based on a punctured Reed-Muller
code with random insertion and on CFS [18]. All elements are denoted
in plain.

Signatures have the form

SignpqsigRM = (M, e, ir),

where ir is a random value generated using AES, M is the message,
and eT = Q−1e′T , where e′ is a punctured error vector with weight w
and Q is a permutation matrix. The error vector is generated by first
computing a syndrome s, which is decoded to find a (nonpunctured)
error vector and then punctured to get e′.

2.16.1 Random values included in the clear

Replace the random value ir with a subliminal message ms. The exact
size of the value is not mentioned in the submission. Looking at the
signature size it seems to be 16 bytes long.

2.17 qTesla

The qTesla signature scheme is a variant of the TESLA signature
schemes [1, 3, 6], which is based on the scheme by Bai and Gal-
braith [5]. The hardness of the scheme is based on the decisional ring
learning with error problem. The scheme uses the polynomial rings
R = Z[x]/〈xn + 1〉 and Rq = Zq[x]/〈xn + 1〉, for a dimension n and
integer q. An element in x ∈ R is denoted in plain.

Signatures have the form

SignqTesla = (c′, z),

where z = y + sc and c′ is a hash value. The value y ∈ Rq is a uni-
formly random value. The value s ∈ Rq is a secret key sampled from

Subliminal channels in p.q. digital signature schemes 73

a Gaussian distribution overRq with standard deviation σ. The value
c ∈ Rq is a polynomial with coefficients in {−1, 0, 1}. It is required
for a valid signature that ‖z‖∞ ≤ B − LS , for bound parameters B
and LS . Using the signature and the public values a and t the verifier
can compute w = az−tEnc(c′), where the value w should be bounded
by q/2−LE and the L least significant bits of ay− ec is bounded by
2L − LE for the signature to be valid.

2.17.1 Subliminal channel using secret values

The receiver can recover the random value y with the secret key sk =
(s, e, seedy, seeda). The sender replaces the random value y with a
subliminal message ms, that is, let SignqTesla = (c′, z), where z =
ms + sc. The receiver computes sc = sEnc(c′) and ms = z − sc to
retrieve the subliminal message. If the signature is not valid we can
encrypt the subliminal message again, using fresh randomness, and
try again.

2.17.2 Subliminal channel using high order digits

For a valid signature we know that ‖sc‖∞ ≤ LS , where LS is a norm
bound parameter. We can insert a subliminal message in the high
order digits of y if LS is small compared to the coefficients of y.

Proof of concept In all three parameter settings sc has at most
four digits and y has up to seven digits, see Table 3. Set y =
10000ms + r′ and

z′ = 10000ms + r′ + sc,

where the bounds on ms and r′ are given in Table 3. Note that
each coefficient in the masking randomness r′ needs to have the same
sign as the subliminal message, that is, sgn(r′i) = sgn(msi) for all
i ∈ {1, . . . , n}, for the message recovery to be correct. The subliminal
message ms is bounded such that ‖z′‖∞ ≤ B, and the coefficients of
the masking randomness are chosen such that 0 ≤ ‖r′+sc‖∞ ≤ 9999.
The receiver computes ⌊

z′

10000

⌋

74 H. Galteland and K. Gjøsteen

Table 3: qTesla parameters and subliminal message bounds for high
orders digits subliminal channel.

Parameter set
Parameter Description qTesla–128 qTesla–192 qTesla–256

n dimension 1024 2048 2048
LS norm bound 758 1138 1516
B randomness bound 220 − 1 221 − 1 222 − 1

‖ms‖∞ message space 104 209 419
|r′i| masking value [758, 9241] [1138, 8861] [1516, 8483]

to remove the error term and retrieve the subliminal message ms.
If the signature is not valid we can encrypt the subliminal message
again, using fresh randomness. Resample masking values r′ such that
‖10000ms + r′‖∞ ≤ B − LS .

2.18 RaCoSS

The RaCoSS signature scheme uses random codes and is based on
CFS [18] and KKS [36]. The scheme uses binary vectors and matri-
ces, where vectors are denoted in lowercase plain and a matrices in
uppercase plain.

Signatures have the form

SignRaCoSS = (z, c),

where c is a bit string with hamming weight w, z = Stc + y, St is a
secret key, and y is a random value. The vector y ∈ {0, 1}n is sampled
from the Bernoulli distribution, where yi = 1 with probability ρ and
yi = 0 with probability 1 − ρ for all indices i. The value ρ = 0.057
and y is a sparse vector.

2.18.1 Subliminal channel using secret values

A subliminal receiver with the secret key St can recover the random
value by computing y = z−Stc. The scheme proposes one parameter
set, where n = 2400.

To encode a subliminal message in the sparse vector y we divide
it into blocks, where a blocks consisting of only zeroes is sending the

Subliminal channels in p.q. digital signature schemes 75

bit 0 and a block consisting of at east one 1 is sending the bit 1. It
is reasonable to see 2400 · 0.057 ≈ 137 ones in a Bernoulli sampled
vector, and, assuming messages consists of an almost equal number
of ones and zeroes, we can have a block length of 10 we can send 240
bits of information. Sample each block according to the Bernoulli
distribution and reject any sample that does not produce the block
we want. Concatenate the blocks to make a vector y′ and permute its
coefficients to produce y. The permutation could be shared together
with the secret key or be produced using a hash function with the
secret and a counter as input.

2.19 Rainbow

The Rainbow signature scheme [23] is a generalization of the Oil and
Vinegar structure. The scheme uses a finite field Fq, where vectors
are denoted in lowercase bold. The affine transformations and maps
are denoted in uppercase plain letters and their inverse is denoted
with the prefix Inv. Field elements are denoted in lowercase plain
letters.

Signatures have the form

SignRainbow = (InvT · (y − cT), r),

where invT is the inverse of the affine map T , y is a solution under
the central map F and consists of ν1 random values, cT is a random
masking value and a part of the secret key, and r ∈ {0, 1}l is a random
salt.

2.19.1 Random values included in the clear

We can replace the random value r ∈ {0, 1}l with a subliminal mes-
sage, where l is 128 for all parameter sets.

2.19.2 Subliminal channel using secret values

We can insert a subliminal message ms ∈ Fν1q in the first ν1 elements
of y and the receiver can recover it by using the map T and masking
value cT , both contained in the secret key.

76 H. Galteland and K. Gjøsteen

The scheme offers nine parameter sets. The number of random
values ν1 is 32, 36, 40, 64, 68, 56, 92, 76, and 84, respectively. The
number of group elements q is 24, 31, 28, 31, 28, 24, 28, 24, and 31,
respectively. The random elements are used to make a solvable system
and if the chosen subliminal message does not produce such a system
we can encrypt the message again, using fresh randomness.

2.20 RankSign

The RankSign signature scheme is based on the RankSign cryptosys-
tem [26], this submission proposes a variation of the existing cryp-
tosystem by adding a small random error in the signature. The
scheme uses a finite field Fqm , where q is a power of a prime p and m
is a positive integer. Vectors are denoted in bold.

Signatures have the form

SignRankSign = (e, seed),

where seed is a counter and e is an error vector that satisfies eTHpub =
G(M, seed), for a public parity-check matrix Hpub, hash function G,
and message M .

2.20.1 Random values included in the clear

The seed is l bits, which can be replaced by a subliminal message ms.
The submission is unclear on the exact value of l, other than it is an
integer input to their signature algorithm. From the implementation
it seems that the seed uses the data type unsigned char, which is
one byte. This implies that l = 8 for all parameter sets. If the
corresponding syndrome (of the error vector e) is not decodable we
can encrypt the subliminal message again, using fresh randomness.

2.21 SPHINCS+

SPHINCS+ is based on SPHINCS [8], a stateless hash based signature
scheme. The scheme outputs byte strings, where a byte string b is
denoted in bold.

Subliminal channels in p.q. digital signature schemes 77

Signatures have the form

SignSPHINCS+ = (R,SIGFORS ,SIGHT),

where R is a random value generated using a pseudo random func-
tion, SIGFORS is a FORS signature and SIGHT is a hyper tree
signature. The FORS signature (an improvement of the few times
signature scheme HORST [8]) contains private key values, generated
using a pseudorandom function, and their associated authentication
paths. The hyper tree signature contains XMSS signatures [13]. A
XMSS signature contains WOTS signatures [34] and their associated
authentication paths, where the WOTS signature takes as input the
messages and the public and secret keys.

2.21.1 Random values included in the clear

The random value R is constructed using a pseudorandom function
with a salt, an optional value, and the message as input. The salt
is part of the secret key and the verifier cannot verify that the ran-
dom value was computed using the pseudorandom function. We can
replace R with a subliminal message ms.

The private key values in SIGFORS are generated with a pseu-
dorandom function and can be used as a subliminal channel. The
signature contains k random values, where each are n bytes.

The submission offers six parameter set. The security parameter
n is 16, 24, or 32 bytes long, respectively, and the number of FORS
trees k is 10, 30, 14, 33, 22, 30, respectively.

2.22 SRTPI

The SRTPI signature scheme is based on the Non-symmetric Simul-
taneous Algebraic Riccati Equations problem, which is showed to be
NP hard [46]. The scheme works over a field Fq, where matrices are
denoted in plain uppercase.

Signatures have the form

SignTPSig = (m,Xm),

78 H. Galteland and K. Gjøsteen

where m is the message and Xm is a matrix, where Xm = X0 +
C+Mm + (I − C+C)U0(I − CC+). The matrices X0 and U0 are
random and part of the secret key. The matrix C is random and part
of the public key. The matrix C+ is the Moor-Penrose pseudoinverse
of C. The matrix

Mm =



In1 M1,2 M1,3

0 −In2 L2,3

0 0 0n3


 ,

where M1,2 contains the hashed values of the message, in a permuted
order, M1,3 = −M1,2L2,3+L1,2L2,3+L1,3, and I is the identity matrix.
The matrices L1,2, L1,3, and L2,3 are random and part of the secret
key.

2.22.1 No channel possible

The signature scheme is deterministic and the only difference between
two signatures is the messages, and the adversary will notice if any of
the secret random matrices is changed for a signature. Any changes
in X0 or U0 will be detected by a verifier, as the public matrix Q
depends them. It is impossible to recover L, M , or π since we need
C and C+ to be invertible, where both C and C+ are noninvertible
by construction. No (reliable) subliminal channel is possible in the
SRTPI signature scheme.

2.23 WalnutDSA

The WalnutDSA scheme is based on the Reversing E-Multiplication
problem over a braid group. The braid group BN is defined by the
set of Artin generators {b1, b2, . . . , bN−1} and a braid β ∈ BN has the
form β = bε1i1 b

ε2
i2
· · · bεkik , where ij ∈ {1, 2, . . . , N − 1} and εj ∈ {−1, 1}.

The scheme uses the colored Burau representation,

ΠCB : BN → (GL(N,Fq(t1, t−11 , . . . , tN , t
−1
N))× SN),

which represents the braid as a N×N matrix over the ring of Laurent
polynomials with N variables over the field Fq and a permutation
σ ∈ SN of N letters. We denote the colored Burau representation

Subliminal channels in p.q. digital signature schemes 79

(GL(N,F) × SN) as CB(F), for a field F. E-Multiplication is an
operation, denoted by ?, between a matrix-permutation pair and the
colored Burau representation of a braid

? : CB(Fq)× CB(Fq(t1, t−11 , . . . , tN , t
−1
N))→ CB(Fq).

When we E-Multiply a colored Burau representation of a braid with
a matrix-permutation pair we remove all information of the braid by
inserting a set of chosen T-values in the Laurent polynomials.

A signature is a rewritten braid and a hash of the message

SignWalnutDSA = (H(m),R(v1 · w−1 · v · E(H(m)) · w′ · v2),

where (w,w′) is the secret key, E(H(m)) is a braid encoding of the
hashed message, v, v1, and v2 are random values called cloaking ele-
ments, and R : BN → BN is a braid rewriting algorithm.

An element ν is a cloaking element for the matrix-permutation
pair (M,σ) if (M,σ) ? ΠCB(ν) = (M,σ). The cloaking element is
given by ν = wb2iw

−1, where bi is a generator and the corresponding
permutation of w ∈ BN satisfies i 7→ σ−1(a) and i+ 1 7→ σ−1(b). The
integers a, b are public values.

2.23.1 Rewritten random values

The scheme proposes three possible methods for rewriting braids:
(1) Rewrite the given braid to the Birman–Ko–Lee (BKL) Normal
Form [9] then shorten the braid using Dehornoy’s FullHRed algo-
rithm [20]; (2) Stochastic rewriting, that is, randomly rewrite the
braid using lookup tables; and (3) Stochastic rewrite first then shorten
the braid with FullHRed.

The BKL algorithm rewrites a braid, and every equivalent braid,
to its unique normal form. This makes it hard to insert a subliminal
message.

The FullHRed algorithm of Dehornoy rewrites the braid, to a fully
reduced braid, by removing handles of the form bεi · · · b−εi , for an Artin
generator bi and ε ∈ {−1, 1}. Given a chosen braid msβ we suspect
that we could use the FullHRed algorithm backward to change the

80 H. Galteland and K. Gjøsteen

chosen braid to a cloaking element v1 = wb2iw
−1. Assuming this is

possible, then

msβ
′ = R(v1 · w−1 · v · E(H(m)) · w′ · v2),

where ms is our chosen subliminal message, β′ ∈ BN , and msβ
′ is

a fully reduced braid. We leave it as an open problem, to prove
that it is possible to use Dehornoy’s algorithm backwards, since the
Walnut DSA signature scheme has not been accepted into NIST’s
second round.

The stochastic rewriting algorithm partitions the braid and re-
places two consecutive generators b

εj
ij
b
εj+1

ij+1
in each partition with a

relation found in a lookup table. Nothing is changed if no relation
was found. We can alter this algorithm such that our chosen sublim-
inal message inserted into the cloaking element stays unchanged and,
possibly, write additional messages into the signature.

The random braid w used to construct the cloaking elements has
length L, which is 15 and 30 for each parameter set. For option 2 we
can at least use three random braids of combined length 3L to insert
a subliminal message.

3 Summary

In Table 4 and 5 we show the bandwidth of each subliminal channel,
using the given parameter sets of the proposed signature schemes.

Subliminal channels in p.q. digital signature schemes 81

Table 4: The bandwidth of the subliminal channels found. Public
channels require public values to recover the subliminal message and
Secret channels needs secret values. A dash (—) denotes no channel
possible, a blank space denotes no channel found, and a plus (+)
denotes that both the public and secret channel can be used to send
a single subliminal messages. The underlined schemes are accepted
to the round 2 of NIST’s PQCSP.

Signature
scheme

Parameter
set

Signature
length (bits)

Subliminal bandwidth (bits)
Public Secret

CRYSTAL– I 11096 4624 (41.67 %) 9726 (87.66 %)
Dilithium II 16352 6936 (42.41 %) 14590 (89.22 %)

III 21608 9247 (42.80 %) 19453 (90.03 %)
IV 26928 11559 (42.93 %) 24317 (90.30 %)

DME (3,2,24) 144 16 (11.11 %)
(3,2,48) 288 32 (11.11 %)

DRS all sets

DualModeMS 128 256016 704 (0.27 %)
192 635320 1728 (0.27 %)
256 1192232 8192 (0.69 %)

Falcon 512 4939 320 (6.48 %)
768 7951 320 (4.02 %)
1024 9866 320 (3.24 %)

GeMSS 128 384 48 (12.50 %)
192 704 80 (11.36 %)
256 832 132 (15.87 %)

Gravity– S 101120 6400 (6.33 %)
SPHINCS M 231432 8448 (3.65 %)

L 281344 7424 (1.64 %)

Gui 184 360 128 (35.56 %) + 32 (8.89 %)
312 504 128 (25.40 %) + 40 (7.94 %)
448 664 128 (19.28 %) + 56 (8.43 %)

HiMQ 3 600 248 (41.33 %)
3F 536 192 (35.82 %)
3P 536 248 (46.27 %)

LUOV 8-63-256 2552 2048 (80.25 %)
8-90-351 3528 2808 (79.59 %)
8-117-404 4168 3232 (77.54 %)
48-49-242 13600 11616 (85.41 %)
64-68-330 24800 21120 (85.16 %)
80-86-399 37600 31920 (84.89 %)

MQDSS 31-48 263056 256 (0.10 %) + 193680 (73.63 %)

31-64 542400 384 (0.07 %) + 386880 (71.33 %)

Picnic L1FS 272000 56064 (20.61 %)
L1UR 431432 56064 (12.99 %)
L3FS 613920 126336 (20.58 %)
L3UR 974504 126336 (12.96 %)
L5FS 1062592 224256 (21.10 %)
L5UR 1675792 224256 (13.38 %)

82 H. Galteland and K. Gjøsteen

Table 5: The bandwidth of the subliminal channels found. Public
channels require public values to recover the subliminal message and
Secret channels needs secret values. A dash (—) denotes no channel
possible, a blank space denotes no channel found, and a plus (+)
denotes that both the public and secret channel can be used to send
a single subliminal messages. The underlined schemes are accepted
to the round 2 of NIST’s PQCSP.

Signature
scheme

Parameter
set

Signature
length (bits)

Subliminal bandwidth (bits)
Public Secret

pqNTRUSig Uniform 11264 4096 (36.36 %)
Gaussian 16384 51 (0.31 %)

pqRSA sign/pqrsa15 262400 256 (0.10 %)
sign/pqrsa20 8388864 256 (≈ 0 %)
sign/pqrsa25 268435712 256 (≈ 0 %)
sign/pqrsa30 8589934848 256 (≈ 0 %)

pqsigRM 5-11 2080 128 (6.15 %)
6-12 4128 128 (3.10 %)
6-13 8224 128 (1.56 %)

qTesla 128 21760 6861 (31.53 %) 20479 (94.11 %)

192 45312 15785 (34.84 %) 43006 (94.91 %)
256 47360 17840 (37.67 %) 45055 (95.13 %)

RaCoSS 4688 240 (5.12 %)

Rainbow Ia 512 128 (25.00 %) + 128 (25.00 %)
Ib 624 128 (20.51 %) + 178 (28.58 %)
Ic 832 128 (15.38 %) + 320 (38.46 %)
IIIb 896 128 (14.29 %) + 317 (35.39 %)
IIIc 1248 128 (10.26 %) + 544 (43.59 %)
IVa 736 128 (17.39 %) + 224 (30.43 %)
Vc 1632 128 (7.84 %) + 736 (45.10 %)
VIa 944 128 (13.56 %) + 304 (32.20 %)
VIb 1176 128 (10.88 %) + 416 (35.39 %)

RankSign I 11016 8 (0.07 %)
II 12008 8 (0.07 %)
III 17288 8 (0.05 %)
IV 23432 8 (0.03 %)

SPHINCS+ 128s 64640 1408 (2.18 %)
128f 135808 3968 (2.92 %)
192s 136512 2880 (2.11 %)
192f 285312 6528 (2.29 %)
256s 238336 5888 (2.47 %)
256f 393728 7936 (2.02 %)

SRTPI all sets — —

WalnutDSA 128 (Option 1) 5173
128 (Option 2) 11332 180 (1.59 %)
128 (Option 3) 5135
256 (Option 1) 9982
256 (Option 2) 21557 360 (1.67 %)
256 (Option 3) 9932

Subliminal channels in p.q. digital signature schemes 83

References

[1] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane
Krämer, and Giorgia Azzurra Marson. An efficient lattice-based
signature scheme with provably secure instantiation. Cryptology
ePrint Archive, Report 2016/030, 2016. https://eprint.iacr.
org/2016/030.

[2] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE.
Cryptology ePrint Archive, Report 2016/687, 2016. https:

//eprint.iacr.org/2016/687.

[3] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagde-
len, Edward Eaton, Gus Gutoski, Juliane Krämer, and Filip
Pawlega. Revisiting TESLA in the quantum random oracle
model. Cryptology ePrint Archive, Report 2015/755, 2015.
https://eprint.iacr.org/2015/755.

[4] Ross Anderson, Serge Vaudenay, Bart Preneel, and Kaisa Ny-
berg. The newton channel. In Ross Anderson, editor, Informa-
tion Hiding, pages 151–156, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[5] Shi Bai and Steven D. Galbraith. An improved compression
technique for signatures based on learning with errors. In Josh
Benaloh, editor, Topics in Cryptology – CT-RSA 2014, pages
28–47, Cham, 2014. Springer International Publishing.

[6] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jeffer-
son E. Ricardini, and Gustavo Zanon. Sharper ring-LWE sig-
natures. Cryptology ePrint Archive, Report 2016/1026, 2016.
https://eprint.iacr.org/2016/1026.

[7] Mihir Bellare and Phillip Rogaway. The exact security of dig-
ital signatures-how to sign with rsa and rabin. In Proceedings
of the 15th Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques, EUROCRYPT’96, pages
399–416, Berlin, Heidelberg, 1996. Springer-Verlag.

84 H. Galteland and K. Gjøsteen

[8] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing,
Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou,
Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn.
SPHINCS: Practical stateless hash-based signatures. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015, pages 368–397, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[9] J S Birman, K H Ko, and Lee Jae Sik. A new approach to the
word and conjugacy problems in the braid groups. Adv. Math.,
139(math.GT/9712211):322–353. 31 p, Jul 1998.

[10] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible pro-
tocols and atomic proxy cryptography. In Kaisa Nyberg, ed-
itor, Advances in Cryptology — EUROCRYPT’98, pages 127–
144, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[11] Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer
Steinwandt. A subliminal-free variant of ecdsa. In Jan L. Ca-
menisch, Christian S. Collberg, Neil F. Johnson, and Phil Sallee,
editors, Information Hiding, pages 375–387, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[12] Jens-Matthias Bohli and Rainer Steinwandt. On subliminal
channels in deterministic signature schemes. In Choon-sik Park
and Seongtaek Chee, editors, Information Security and Cryp-
tology – ICISC 2004, pages 182–194, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[13] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss
- a practical forward secure signature scheme based on minimal
security assumptions. In Bo-Yin Yang, editor, Post-Quantum
Cryptography, pages 117–129, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[14] Mike Burmester, Yvo G. Desmedt, Toshiya Itoh, Kouichi Saku-
rai, and Hiroki Shizuya. Divertible and subliminal-free zero-
knowledge proofs for languages. J. Cryptol., 12(3):197–223, June
1999.

Subliminal channels in p.q. digital signature schemes 85

[15] Mike V. D. Burmester and Yvo Desmedt. All languages in np
have divertible zero-knowledge proofs and arguments under cryp-
tographic assumptions. In Ivan Bjerre Damg̊ard, editor, Ad-
vances in Cryptology — EUROCRYPT ’90, pages 1–10, Berlin,
Heidelberg, 1991. Springer Berlin Heidelberg.

[16] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig,
and Greg Zaverucha. Post-quantum zero-knowledge and signa-
tures from symmetric-key primitives. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1825–1842, 2017.

[17] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun
Guo, and Mingwu Zhang. Cryptographic reverse firewall via
malleable smooth projective hash functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, pages 844–876, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[18] Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier.
How to achieve a McEliece-based digital signature scheme. In
Colin Boyd, editor, Advances in Cryptology — ASIACRYPT
2001, pages 157–174, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[19] Cryptographic Technology group at NIST. Post-quantum
cryptography. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography, 2016. Accessed: 2019-04-29.

[20] Patrick Dehornoy. A fast method for comparing braids. Advances
in Mathematics, 125(2):200 – 235, 1997.

[21] Yvo Desmedt. Subliminal-free authentication and signature. In
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luck-
ham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and
Christoph G. Günther, editors, Advances in Cryptology — EU-

86 H. Galteland and K. Gjøsteen

ROCRYPT ’88, pages 23–33, Berlin, Heidelberg, 1988. Springer
Berlin Heidelberg.

[22] Yvo Desmedt. Simmons’ protocol is not free of subliminal chan-
nels. In Proceedings of the 9th IEEE Workshop on Computer
Security Foundations, CSFW ’96, pages 170–, Washington, DC,
USA, 1996. IEEE Computer Society.

[23] Jintai Ding and Dieter Schmidt. Rainbow, a new multivari-
able polynomial signature scheme. In John Ioannidis, Ange-
los Keromytis, and Moti Yung, editors, Applied Cryptography
and Network Security, pages 164–175, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[24] Jintai Ding and Bo-Yin Yang. Degree of regularity for HFEv
and HFEv-. In Philippe Gaborit, editor, Post-Quantum Cryp-
tography, pages 52–66, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[25] Qingkuan Dong and Guozhen Xiao. A subliminal-free variant of
ecdsa using interactive protocol. In 2010 International Confer-
ence on E-Product E-Service and E-Entertainment, pages 1–3,
Nov 2010.

[26] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles
Zémor. RankSign : an efficient signature algorithm based on
the rank metric. CoRR, abs/1606.00629, 2016.

[27] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trap-
doors for hard lattices and new cryptographic constructions. In
Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing, STOC ’08, pages 197–206, New York, NY, USA,
2008. ACM.

[28] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for boolean circuits. Cryptology ePrint
Archive, Report 2016/163, 2016. https://eprint.iacr.org/

2016/163.

Subliminal channels in p.q. digital signature schemes 87

[29] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, New York, NY, USA,
2004.

[30] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key
cryptosystems from lattice reduction problems. In Proceedings
of the 17th Annual International Cryptology Conference on Ad-
vances in Cryptology, CRYPTO ’97, pages 112–131, London, UK,
UK, 1997. Springer-Verlag.

[31] Alexander Hartl, Robert Annessi, and Tanja Zseby. Subliminal
channels in high-speed signatures. JoWUA, 9:30–53, 2018.

[32] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silver-
man, and William Whyte. Transcript secure signatures based on
modular lattices. Cryptology ePrint Archive, Report 2014/457,
2014. https://eprint.iacr.org/2014/457.

[33] Jeffrey Hoffstein, Jill Pipher, William Whyte, and Zhenfei Zhang.
A signature scheme from learning with truncation. Cryptology
ePrint Archive, Report 2017/995, 2017. https://eprint.iacr.
org/2017/995.

[34] Andreas Hülsing. W-ots+ – shorter signatures for hash-based
signature schemes. In Amr Youssef, Abderrahmane Nitaj,
and Aboul Ella Hassanien, editors, Progress in Cryptology –
AFRICACRYPT 2013, pages 173–188, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[35] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random gener-
ation from one-way functions. In Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing, STOC ’89,
pages 12–24, New York, NY, USA, 1989. ACM.

[36] Gregory Kabatianskii, E. Krouk, and Ben Smeets. A digital
signature scheme based on random error-correcting codes. In
Proceedings of the 6th IMA International Conference on Cryp-
tography and Coding, pages 161–167, Berlin, Heidelberg, 1997.
Springer-Verlag.

88 H. Galteland and K. Gjøsteen

[37] Robin Kwant, Tanja Lange, and Kimberley Thissen. Lattice
klepto: Turning post-quantum crypto against itself. Cryptol-
ogy ePrint Archive, Report 2017/1140, 2017. https://eprint.

iacr.org/2017/1140.

[38] Dai-Rui Lin, Chih-I Wang, Zhi-Kai Zhang, and D. J. Guan. A
digital signature with multiple subliminal channels and its appli-
cations. Comput. Math. Appl., 60(2):276–284, July 2010.

[39] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to
lattice and factoring-based signatures. In Proceedings of the 15th
International Conference on the Theory and Application of Cryp-
tology and Information Security: Advances in Cryptology, ASI-
ACRYPT ’09, pages 598–616, Berlin, Heidelberg, 2009. Springer-
Verlag.

[40] Tsutomu Matsumoto and Hideki Imai. Public quadratic
polynomial-tuples for efficient signature-verification
and message-encryption. In D. Barstow, W. Brauer,
P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli,
G. Seegmüller, J. Stoer, N. Wirth, and Christoph G. Günther,
editors, Advances in Cryptology — EUROCRYPT ’88, pages
419–453, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[41] Ralph C. Merkle. A certified digital signature. In Gilles Bras-
sard, editor, Advances in Cryptology — CRYPTO’ 89 Proceed-
ings, pages 218–238, New York, NY, 1990. Springer New York.

[42] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic re-
verse firewalls. Cryptology ePrint Archive, Report 2014/758,
2014. https://eprint.iacr.org/2014/758.

[43] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge
interactive proofs and commutative random self-reducibility. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances
in Cryptology — EUROCRYPT ’89, pages 134–149, Berlin, Hei-
delberg, 1990. Springer Berlin Heidelberg.

[44] Jacques Patarin. The Oil and Vinegar signature scheme. pre-
sented at the Dagstuhl Workshop on Cryptography, 1997.

Subliminal channels in p.q. digital signature schemes 89

[45] Jacques Patarin, Nicolas Courtois, and Louis Goubin. QUARTZ,
128-bit long digital signatures. In David Naccache, editor, Topics
in Cryptology — CT-RSA 2001, pages 282–297, Berlin, Heidel-
berg, 2001. Springer Berlin Heidelberg.

[46] Y. Peretz. On multivariable encryption schemes based on simul-
taneous algebraic riccati equations over finite fields. Finite Fields
Appl., 39(C):1–35, May 2016.

[47] Thomas Plantard, Willy Susilo, and Khin Than Win. A digital
signature scheme based on CV P ?∞. International Workshop on
Public Key Cryptography, pages 288–307, 2008.

[48] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-
key identification schemes based on multivariate quadratic poly-
nomials. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, pages 706–723, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[49] C. P. Schnorr. Efficient identification and signatures for smart
cards. In Gilles Brassard, editor, Advances in Cryptology —
CRYPTO’ 89 Proceedings, pages 239–252, New York, NY, 1990.
Springer New York.

[50] Gustavus J. Simmons. The prisoners’ problem and the sublimi-
nal channel. Advances in Cryptology: Proceedings of Crypto 83,
pages 51–67, 1984.

[51] Gustavus J. Simmons. The subliminal channel and digital signa-
tures. In Thomas Beth, Norbert Cot, and Ingemar Ingemarsson,
editors, Advances in Cryptology, pages 364–378, Berlin, Heidel-
berg, 1985. Springer Berlin Heidelberg.

[52] Gustavus J. Simmons. A secure subliminal channel (?). In
Hugh C. Williams, editor, Advances in Cryptology — CRYPTO
’85 Proceedings, pages 33–41, Berlin, Heidelberg, 1986. Springer
Berlin Heidelberg.

[53] Gustavus J. Simmons. An introduction to the mathematics of
trust in security protocols. In Computer Security Foundations

90 H. Galteland and K. Gjøsteen

Workshop VI, [1993] Computer Security Foundations Workshop
VI, pages 121–127. IEEE Computer Society Press, 1993.

[54] Gustavus J. Simmons. Results concerning the bandwidth of sub-
liminal channels. IEEE Journal on Selected Areas in Communi-
cations, 16(4):463–473, May 1998.

[55] Alan Szepieniec, Ward Beullens, and Bart Preneel. MQ signa-
tures for PKI. Cryptology ePrint Archive, Report 2017/327,
2017. https://eprint.iacr.org/2017/327.

[56] Adam Young and Moti Yung. Kleptography: Using cryptogra-
phy against cryptography. In Walter Fumy, editor, Advances in
Cryptology — EUROCRYPT ’97, pages 62–74, Berlin, Heidel-
berg, 1997. Springer Berlin Heidelberg.

[57] Xianfeng Zhao and Ning Li. Reversible watermarking with sub-
liminal channel. In Kaushal Solanki, Kenneth Sullivan, and Upa-
manyu Madhow, editors, Information Hiding, pages 118–131,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Subliminal channels in p.q. digital signature schemes 91

Paper iii

Cloud-assisted Asynchronous Key Transport
with Post-Quantum Security

Gareth T. Davies, Herman Galteland, Kristian Gjøsteen and
Yao Jiang

In submission, ePrint 2019/1409

Cloud-assisted Asynchronous Key Transport
with Post-Quantum Security

Gareth T. Davies1, Herman Galteland2, Kristian Gjøsteen2, and
Yao Jiang2

1Bergische Universität Wuppertal
davies@uni-wuppertal.de

2NTNU – Norwegian University of Science and Technology
{herman.galteland,kristian.gjosteen,

yao.jiang}@ntnu.no

Abstract

In cloud-based outsourced storage systems, many users wish
to securely store their files for later retrieval, and additionally
to share them with other users. These retrieving users may not
be online at the point of the file upload, and in fact they may
never come online at all. In this asynchronous environment,
key transport appears to be at odds with any demands for for-
ward secrecy. Recently, Boyd et al. (ISC 2018) presented a
protocol that allows an initiator to use a modified key encapsu-
lation primitive, denoted a blinded KEM (BKEM), to transport
a file encryption key to potentially many recipients via the (un-
trusted) storage server, in a way that gives some guarantees of
forward secrecy. Until now all known constructions of BKEMs
are built using RSA and DDH, and thus are only secure in the
classical setting.

We further the understanding of secure key transport pro-
tocols in two aspects. First, we show how to generically build
blinded KEMs from homomorphic encryption schemes with cer-
tain properties. Second, we construct the first post-quantum
secure blinded KEMs, and the security of our constructions are
based on hard lattice problems.

95

Keywords: Lattice-based cryptography, Post-quantum cryptogra-
phy, Group Key Exchange, Blinded Key Encapsulation, NTRU, For-
ward Secrecy, Cloud Storage

1 Introduction

Consider the following scenario: a user of a cloud storage service
wishes to encypt and share a file with a number of recipients, who
may come online to retrieve the file at some future time. In modern
cloud storage environments, access control for files is normally done
via the storage provider’s interface, and the user is usually tasked with
performing any encryption and managing the resulting keys. However
the users do not trust the server, and in particular may be concerned
that key compromise may occur to any of the involved parties at some
point in the future – they thus desire some forward secrecy guarantees.
A number of approaches can be taken for transporting a (randomly
chosen) file encryption key from the initiator to the recipients. The
first option is public-key encryption – simply encrypting under each
recipient’s public key. This approach does not provide any forward
secrecy, however if the initiator were to use puncturable encryption
then this would provide a (currently inefficient) solution for achieving
forward secrecy. The users could also perform a (necessarily interac-
tive) group key exchange protocol, however this requires all recipients
to be online: a disqualifying criterion for many usage scenarios. The
challenge of providing efficient key transport that allows asynchronous
fetching by the recipients and simultaneously gives some forward se-
crecy guarantees appears to invoke trade-offs.

Recent work by Boyd et al. [10] (hereafter BDGJ) provided a so-
lution that utilized the high availability of the storage provider. The
initiator essentially performs key encapsulation, using an (public) en-
capsulation key belonging to the server, and sends an encapsulated
value (out-of-band) to each recipient. Then, each recipient blinds this
value in such a way that when it asks the server to decapsulate, the
server does not learn anything about the underlying file encryption
key, and the homomorphic properties of the scheme enable successful
unblinding by the recipient. This encapsulation-and-blinding proce-

96 G. Davies et al.

dure was named by the authors as a blinded KEM (BKEM), and the
complete protocol built from this was named as a cloud-assisted of-
fline group key exchange (OAGKE). Forward secrecy is achieved if
the recipients delete their ephemeral values after recovering the file
encryption key, and if the server deletes its decapsulation key after all
recipients have been online and recovered the file.

A conceptual overview of the construction, which can achieve all
these security properties, is described in Figure 1, and we refer to their
paper for full details [10]. In the protocol, the server runs the KG and
Decap algorithms to help the initiator share file encryption key k. The
blinding algorithm Blind, executed by the responder, should prohibit
the server from learning any information about the file encryption
key. After the server has decapsulated a blinded encapsulation, the
responder can use the unblinding algorithm Unblind to retrieve the file
encryption key.

S

(ek , dk)← KG k̃ ← Decapdk (C̃)

I

(C, k)← Encapek

R

(C̃, uk)← Blindek (C)

k ← Unblinduk (k̃)

1. ek

2. C

3. C̃

4. k̃

Figure 1: A simplified overview of an OAGKE protocol [10] between
an initiator I, server S and potentially many recipients R (one is given
here for ease of exposition), built using a BKEM. File encryption key
k is used by I to encrypt one or more files. The numbered arrows
indicate the order in which operations occur.

While the approach appears promising, their two constructions
built from DDH and RSA, are somewhat ad hoc, and further do not
resist attacks in the presence of quantum computers. In this work we

Cloud-assisted Asynchronous Key Transport 97

wish to construct a post-quantum secure OAGKE protocol, where we
need the individual components – a blinded KEM (parameterized by
a homomorphic encryption scheme), a collision resistant hash func-
tion, a digital signature scheme, and a key derivation function – to
all be post-quantum secure. Achieving post-quantum security of all
components except for the BKEM has been covered extensively in
prior work, and thus we focus on finding post-quantum constructions
of BKEMs. Much work has been done on constructing regular key
encapsulation mechanisms (KEMs) [1, 18, 19,21,30, 32] that are post-
quantum secure [8, 14, 31, 35, 36] (the ongoing NIST standardization
effort [40] specifically asks for KEMs), however BKEMs do not gener-
alize KEMs, since decapsulation operates on blinded ciphertexts.

Providing post-quantum-secure BKEMs invokes a number of tech-
nical challenges. The Blind algorithm must modify the file encryption
key by incorporating some randomness r, in such a way that after
decapsulation (by the server) the recipient can strip off r to recover
the file encryption key. In the DDH setting this is straightforward
since the recipient can simply exponentiate the encapsulation, and
apply the inverse on the received value from the server (the RSA set-
ting is similarly straightforward), and, importantly, the encapsulation
(with the underlying file encryption key) and multiple blinded sam-
ples (each with a value that is derived from the file encryption key)
will all look like random group elements. In the security game for
BKEMs (as provided by BDGJ), the adversary receives: an encapsu-
lation of a ‘real’ key, a number of blinded versions of this encapsulation
(blinded encapsulations), a number of blinded versions of the ‘real’ key
(blinded keys), and either this ‘real’ key or a random key, and must
decide which it has been given. If the blinded key samples (the k̃s)
leak information about the file encryption key then the adversary’s
task in this game becomes much easier. For example, if the blinding
algorithm alters the file encryption key such that the blinded keys
are located close to it then exhaustive search becomes possible. We
overcome this hurdle by using a big blinding value to hide the file
encryption key. Similarly the blinded encapsulation samples (the C̃s)
can leak information about the blinding value used to hide the file
encryption key, which can be used to recover the file encryption key.

98 G. Davies et al.

For example, if the blinded encapsulation is a linear combination of
the original encapsulation, the blinding value, and some small error
then the distance between the blinded encapsulation and the origi-
nal encapsulation could reveal the blinding value, or a small interval
containing it, and therefore the file encryption key. By making sure
blinded encapsulations look fresh then all blinded encapsulation sam-
ples and the encapsulation looks independent of each other. We use
these techniques to provide secure BKEMs built from (a variant of)
NTRU [29,41] and ideas from Gentry’s FHE scheme [24].

The second shortfall of the work of BDGJ lies in the non-generic
nature of their constructions. The two provided schemes appear to
have similar properties, yet do not immediately indicate how any fur-
ther BKEM schemes could be constructed. We show how to generi-
cally build BKEMs from homomorphic encryption schemes with min-
imal properties. This allows us to more precisely cast the desirable
properties of schemes used to build BKEMs, generalizing the way that
the responder alters the content of an encapsulation (ciphertext) by
adding an encrypted random value. Essentially, the resulting blinded
ciphertext is an encryption of the sum of a file encryption key and
the random value. The server can decrypt the blinded ciphertext to
retrieve the blinded key, and then the responder can unblind by re-
moving (subtracting) the random value.

1.1 Related work

Boyd et al. [10] formalized OAGKE and BKEMs, and they provided
two BKEM constructions, based on Diffie-Hellman and RSA. To our
knowledge these are the only BKEM constructions in the literature.

Many works focused on secure messaging have shown how to per-
form secure key transport in the presence of pre-keys of the recipi-
ents [17, 38, 42], we wish to avoid this assumption in our system ar-
chitecture. Puncturable encryption has developed rapidly in recent
years [6, 22, 27, 28], however current constructions are still impracti-
cal or unsuitable for the cloud-based key transport scenario that we
consider.

Gentry introduced the first fully homomorphic encryption (FHE)
scheme, based on lattice problems, and gave a generic framework [24].

Cloud-assisted Asynchronous Key Transport 99

After Gentry’s breakthrough several FHE schemes where constructed
following his framework [11,16,23,26], where all of these schemes rely
on the learning with errors (LWE) problem. Two FHE schemes based
their security on an overstretched variant of the NTRU problem [9,33],
however, subfield lattice attacks against this variant was subsequently
found [2, 15], and consequently these schemes are no longer secure.
As a side note, our NTRU based BKEM construction relies on the
hardness of the LWE problem.

To make a blinded KEM from existing post-quantum secure KEM
schemes we need, for each individual scheme, a method for altering the
encapsulations in a predictable way. Most of the post-quantum secure
KEM schemes submitted to NIST are built from a PKE scheme, where
we can use our techniques to make a BKEM if the PKE scheme sup-
ports one homomorphic operation. FrodoKEM is the only submission
that advertises its additive homomorphic properties of its FrodoPKE
scheme [3]. Other submissions based on lattices [34], LWE [4, 5, 20],
or NTRU [7, 13] are potential candidates for a BKEM construction.
Note that the NTRU submission of Chen et al. [13] does not use the
Gaussian distribution to sample their polynomials, and NTRU Prime
of Bernstein et al. [7] uses a large Galois group to construct their
polynomial field, instead of a cyclotomic polynomial. Furthermore,
the NTRU construction of Stehlé and Steinfeld [41] chooses the dis-
tribution of the secret keys such that the public key looks uniformly
random and they provide a security proof which relies on this.

1.2 Our contribution

Our aim in this work is to further the understanding of blinded KEMs
and their possible instantiations, in order to deliver secure key trans-
port protocols in cloud storage environments. Specifically, we provide:

• a generic homomorphic-based BKEM construction, and show
that it meets the expected indistinguishability-based security
property for BKEMs, under feasible requirements.

• two instantiations of our homomorphic-based BKEM, built from
primitives with post-quantum security. The proof chain is as

100 G. Davies et al.

follows.

Hard
problems

Quantum, Gentry [24]−−−−−−−−−−−−−−−−→
or Lyubashevsky et al. [37]

IND-CPA
HE

This work−−−−−−→ IND-secure
HE-BKEM

1.3 Organization

In Section 2 we provide the necessary background of ideal lattices
and the discrete Gaussian Distribution. In Section 3 we formally
define BKEM and their security. In Section 4 we construct a generic
homomorphic BKEM schemes and analyze its security requirements.
In Section 5 we provide two homomorphic-based BKEM constructions
and prove that they are secure.

2 Preliminaries

This section introduces terminology and results from [24, 25, 39], and
provides an introduction to our notation and building blocks for con-
structing post-quantum secure homomorphic encryption schemes. To-
wards the end of this section we detail two specific constructions of
post-quantum secure homomorphic encryption schemes [24,41].

2.1 Notation

Given n linearly independent vectors {b1, . . . ,bn} ∈ Rm, the m di-
mensional lattice L generated by the vectors is L = {∑n

i=1 xibi | xi ∈
Z}. If n = m then L is a full-rank n-dimensional lattice, we will always
use full-rank lattices in this paper.

Suppose B = {b1,b2, · · · ,bn} is a basis of I, let the half-open
parallelepiped associated to the basis B be P(B) = {∑n

i=1 xibi | xi ∈
[−1/2, 1/2) ,bi ∈ B}.

Let R = Z[x]/(f(x)) be a polynomial ring, where f(x) is a monic
polynomial of degree n. Any ideal I ⊆ R yields a corresponding
integer sublattice called ideal lattice of the polynomial ring. For con-
venience, we identify all ideals of R with its ideal lattice.

Let ‖v‖ be the Euclidean norm of a vector v. Define the norm of
a basis B to be the Euclidean norm of its longest column vector, that
is, ‖B‖ = max1≤i≤n(‖bi‖).

Cloud-assisted Asynchronous Key Transport 101

For a full-rank n-dimensional lattice L, let L∗ = {x ∈ Rn | 〈x,y〉 ∈
Z,∀y ∈ L} denote its dual lattice. If B is a basis for the full-rank
lattice L, then (B−1)T is a basis of L∗. Let γ×(R) = maxx,y∈R

‖x·y‖
‖x‖·‖y‖

be the multiplicative expansion factor.
For r ∈ R, define r mod B to be the unique vector r′ ∈ P(B) such

that r−r′ ∈ I. We call r mod B to be the distinguished representative
of the coset r+ I. Denote R mod B = {r mod B | r ∈ R} to be the
set of all distinguished representatives in R, this set can be chosen to
be the same as the half-open parallelepiped P(B) associated to the
basis B. For convenience we treat R mod B and P(B) as the same
set.

Let Bc(r) denote the closed Euclidean ball centered at c with ra-
dius r, for c = 0 we write B(r). For any n-dimensional lattice L and
i = 1, . . . , n, let the ith successive minimum λi(L) be the smallest ra-
dius r such that B(r) contains i linearly independent lattice vectors.

The statistical distance between two discrete distributions D1 and
D2 over a set S is ∆(D1, D2) = 1

2

∑
s∈S |Pr[D1 = s]−Pr[D2 = s]|.

2.2 Discrete Gaussian Distributions over Lattices

Definition 1 (Discrete Gaussian Distribution). Let L ⊆ Rn be a lat-
tice, s ∈ R+, c ∈ Rn. For all x ∈ L, let ρs,c(x) = exp(−π ‖x− c‖2 /s2).
For a set S let ρs,c(S) =

∑
x∈S exp(−π ‖x− c‖2 /s2). Define the dis-

crete Gaussian distribution over L centered at c with standard devi-
ation s to be the probability distribution

DL,s,c(x) =
ρs,c(x)

ρs,c(L)
,

for all x ∈ L.

If the standard deviation of a discrete Gaussian distribution is
larger than the smoothing parameter, defined below, then there are
known, useful, results of discrete Gaussian distributions that we will
use in this paper.

Definition 2 (Smoothing parameter). For any lattice L and real value
ε > 0, let the smoothing parameter ηε(L) denote the smallest s such

102 G. Davies et al.

that ρ1/s(L
∗ \ {0}) ≤ ε. We say that “s exceeds the smoothing pa-

rameter” if s ≥ ηε(L) for negligible ε.

Below we show that the discrete Gaussian distribution is spherical
if its standard deviation is larger than the smoothing parameter.

Lemma 1 (Micciancio and Regev [39]). Let L be any full-rank n
dimensional lattice. For any c ∈ Rn, real ε ∈ (0, 1), and s ≥ ηε(L) we
have

Pr[‖x− c‖ > s · √n | x← DL,s,c] ≤ 1 + ε

1− ε · 2
−n

For a discrete Gaussian distribution over L centered at 0, with
standard deviation s, DL,s,0 we let the translated discrete Gaussian
distribution over L centered at any c, with standard deviation s, be
DL,s,c. Below we show that the statistical distance between the origi-
nal discrete Gaussian distribution and its translated discrete Gaussian
distribution is negligible when ‖c‖ is small.

Lemma 2 (Brakerski and Vaikuntanathan [12]). Let L be any full-
rank n-dimensional lattice. For any s ≥ ηε(L), and any c ∈ Rn, we
have then the statistical distance between DL,s,0 and DL,s,c is at most
‖c‖/s.

2.3 Gentry’s homomorphic encryption scheme

Let GHE = (KGGHE,EncGHE,DecGHE,AddGHE) be an (additively) Ho-
momorphic encryption scheme derived from ideal lattices, with al-
gorithms as defined in Figure 2. The scheme is similar to Gentry’s
somewhat homomorphic scheme [24]. The parameters of the GHE
scheme are chosen as follows.

• Choose a polynomial ring R = Z[x]/(f(x)) according to a secu-
rity parameter λ;

• Choose a basis BI of the ideal I ⊆ R;
• IdealGen is an algorithm which takes (R,BI) as input and out-

puts public and secret bases Bpk
J and Bsk

J of some ideal J , where
I and J are relatively prime;

Cloud-assisted Asynchronous Key Transport 103

• Samp is an algorithm which takes (BI ,x ∈ R, s) as input and
outputs a sample from the coset x + I according to a discrete
Gaussian distribution with standard deviation s. In our con-
struction we use the following two distributions.

– Samp1(BI ,x, s) = x +DI,s,−x;
– Samp2(BI ,x, s) = x +DI,s,0;

• The plaintext space P = R mod BI is the set of distinguished
representatives of cosets of I with respect to the basis BI .

KGGHE(R,BI) :

(Bpk
J ,B

sk
J)

$←− IdealGen(R,BI)

pk = (R,BI ,B
pk
J ,Samp)

sk = Bsk
J

return pk, sk

EncGHE(pk, s, π ∈ P) :
ψ′ ← Samp(BI , π, s)

ψ ← ψ′ mod Bpk
J

return ψ

DecGHE(sk, ψ) :

π ← (ψ mod Bsk
J) mod BI

return π

AddGHE(pk, ψ1, ψ2) :

ψ ← ψ1 + ψ2 mod Bpk
J

return ψ

Figure 2: The algorithms of the GHE homomorphic encryption
scheme, which is similar to Gentry’s somewhat homomorphic encryp-
tion scheme [24].

Correctness. Let XEnc denote the image of Samp and XDec denote
R mod Bsk

J = P(Bsk
J). Notice that all ciphertexts are in XEnc + J,

because XDec is the set of distinguished representatives with respect
to Bsk

J . The correctness requirement of this encryption scheme is
XEnc ⊆ XDec. Furthermore, for the addition algorithm AddGHE to
output valid ciphertexts we require that XEnc +XEnc ⊆ XDec.

Let rEnc be the smallest value such that XEnc ⊆ B(rEnc) and let
rDec be the largest value such that XDec ⊇ B(rDec). By the spherical
property of discrete Gaussian distribution (Lemma 1) we know that,
for Samp1 as above, XEnc is located inside the ball B(s

√
n) with high

104 G. Davies et al.

probability and rEnc = s
√
n. For a general Samp algorithm, which is

located in B(lSamp), we have that rEnc ≤ (n+
√
nlSamp) ‖BI‖ [24]. For

rDec we know that rDec = 1/(2 ·
∥∥((Bsk

J)−1)T
∥∥) [24].

Obviously, if rEnc ≤ rDec then the encryption scheme is correct.
For GHE, if rEnc ≤ rDec, the probability of decryption error is less
than 1+ε

1−ε · 2−n, which is negligible.

2.4 The revised NTRU encryption scheme

The NTRU encryption scheme variant by Stehlé and Steinfeld [41],
which relies on the LWE problem, has the similar structure as Gentry’s
homomorphic encryption scheme. We modify the NTRU scheme to use
a discrete Gaussian distribution as the noise distribution instead of an
elliptic Gaussian. Choose the parameters of the scheme as follows.

• R = Z[x]/(xn + 1), where n ≥ 8 is a power of 2;

• q is a prime, 5 ≤ q ≤ Poly(n), Rq = R/q;

• p ∈ R×q , I = (p);

• the plaintext space P = R/p;

• set the noise distribution to be DZn,s,0.

The algorithms of the scheme are given in Figure 3.

Correctness Let ψ′ = fπ + p(fe1 + ge2) ∈ Rq and ψ′′ = fπ +
p(fe1 +ge2) ∈ R (not modulo q), if ‖ψ′′‖∞ ≤ q/2 then the decryption
algorithm will output π (see Lemma 12 of [41]). We will perform a
single homomorphic addition and want to find a bound on the sum of
two ciphertexts. Discrete Gaussian samples are bounded by s

√
n with

high probability (Lemma 1) and the message space parameter p is a
polynomial with small coefficients, where we let pi denote the largest
coefficient of p. We have

‖f(ψ1 + ψ2)‖∞ =
∥∥f(π1 + π2) + pi(f(e1 + e′1) + g(e2 + e′2))

∥∥
∞

≤ 2(p2
i (s
√
n)2 + p2

i s
√
n+ pis

√
n+ pi + (s

√
n)2)

≤ 8p2
i s

2n.

Cloud-assisted Asynchronous Key Transport 105

KGNTRU(n, q ∈ Z, p ∈ R×q , s > 0) :

while (f mod q) /∈ R×q do
f ′ ← DZn,s,0

f = p · f ′ + 1
while (g mod q) /∈ R×q do
g ← DZn,s,0

h = pg/f ∈ Rq
(pk, sk)← (h, f)
return (pk, sk)

EncNTRU(pk = h, s, π ∈ P) :
e1, e2 ← DZn,s,0

ψ ← π + pe1 + he2 ∈ Rq
return ψ

DecNTRU(sk = f, ψ) :
ψ′ = f · ψ ∈ Rq
π ← ψ′ mod p
return π

AddNTRU(ψ1, ψ2) :
ψ ← ψ1 + ψ2 ∈ Rq
return ψ

Figure 3: The algorithms of the revised NTRU encryption scheme [41].

The standard deviation s is greater or equal to ηε(Zn) and has to
satisfy ηε(Zn) ≤ s and 8p2

i s
2n < q/2 for the decryption to be correct,

with high probability.

2.5 Hard lattice problems

The following lattice problems, assumed to be hard, are used in the
paper.

Definition 3 (Shortest Vector Problem (SVP)). Given a basis B for
a n-dimensional lattice L, output a nonzero vector v ∈ L of length at
most λ1(L).

Definition 4 (Ideal Shortest Independent Vector Problem (SIVP)).
Fix the following parameters; a polynomial ring R, and a positive real
γ ≥ 1. Let BI be a basis for an ideal lattice I of R. Given BI , and
the parameters, output a basis B′I of I with ‖B′I‖ ≤ γ · λn(I).

Reduce Hard problems to the semantic security of Gentry’s
encryption scheme The following two theorems describe Gentry’s
reduction from worst-case SIVP to the semantic security of the en-
cryption scheme GHE, via the ideal independent vector improvement
problem (IVIP).

106 G. Davies et al.

Theorem 1 (Gentry [24] (Corollary 14.7.1), reduce IVIP to semantic
security). Suppose that sIVIP < (

√
2sε−4n2(max{‖BI‖})2)/(n4γ×(R)·

‖f‖max{‖BI‖}), where s is the Gaussian deviation parameter in the
encryption scheme GHE. Also suppose that s/2 exceeds the smoothing
parameter of I, that IdealGen always outputs an ideal J with s · √n <
λ1(J), and that [R : I] is prime. Finally, suppose that there is an
algorithm A that breaks the semantic security of GHE with advantage
ε. Then there is a quantum algorithm that solves sIVIP-IVIP for an ε/4
(up to negligible factors) weight fraction of bases output by IdealGen.

Theorem 2 (Gentry [24] (Theorem 19.2.3 and Corollary 19.2.5), re-
duce SIVP to IVIP). Suppose dSIVP = (3 · e)1/n · dIVIP, where e is
Euler’s constant. Suppose that there is an algorithm A that solves
sIVIP-IVIP for parameter sIVIP > 16 · γ×(R)2 · n5 · ‖f‖ · g(n) for some
g(n) that is ω(

√
log n), whenever the given ideal has det(J) ∈ [a, b],

where [a, b] = [dnIVIP, 2 ·dnIVIP]. Assume that invertible prime ideals with
norms in [a, b] are not negligibly sparse. Then, there is an algorithm
B that solves worst-case dSIVP-SIVP.

In summary we have the following informal result, which we will
use to prove that our GHE-BKEM (see Section 5.4) is post quantum
secure.

Theorem 3 (Gentry [24]). If there exists an algorithm that breaks
the semantic security of GHE with parameters chosen as in Theorem
1 and Theorem 2, then there exists a quantum algorithm that solves
worst-case SIVP.

Reduce Hard problems to the semantic security of the revised
NTRU encryption scheme We define the ring learning with error
problem as follows. For s ∈ Rq, an error distributionD over Rq, define
As,D to be a distribution that outputs tuples of the form (a, as+ e),
where a is sampled uniformly at random from Rq and e is sampled
from D. The problem is to distinguish between tuples sampled from
As,D and uniformly random ones.

Definition 5 (Ring-LWE). Let D be a distribution over a family of
distributions, each over Rq. The Ring Learning With Errors Prob-
lem with parameters q, and D (R-LWEq,D) is as follows. Let D be

Cloud-assisted Asynchronous Key Transport 107

sampled from D and s be sampled uniformly at random from Rq.
Given access to an oracle O that produces samples in R2

q , distinguish
whether O outputs samples from the distribution As,D or U(R2

q). The
distinguishing advantage should be non-negligible.

Lyubashevsky et al. [37] proposed a reduction from SIVP or SVP
(both are thought to be hard problems) to R-LWE.

Theorem 4 (Lyubashevsky et al. [37]). Let α <
√
logn/n and q =

1 mod 2n be a poly(n)-bounded prime such that αq ≥ ω(
√

log n).
Then there is a polynomial-time quantum reduction from O(

√
n/α)-

approximate SIVP (or SVP) on ideal lattices to R-LWEq,Ds
given only

l(≥ 1) samples, where s = α · (nl/ log(nl))1/4.

We will consider a different variant of the R-LWE problem, namely
R-LWE×HNF, which is the same as R-LWEq,D except for the oracle O
that outputs samples from the distribution A×s,D or U(R2

q), where
A×s,D outputs (a, as+ e) with a ∈ R×q , s ∈ D. The analysis in the end
of Section 2 of Stehlé and Steinfeld [41] shows that when q = Ω(n),
R-LWE×HNF remains hard.

The security proof of NTRU encryption scheme is similar to the se-
curity proof of Lemma 3.8 provided by Stehlé and Steinfeld [41]. The
proof technique relies on the uniformity of public key and p ∈ R×q .
However, we chose a slightly different error distribution for our con-
struction in Section 5.5, but the adaption to our setting is straight-
forward.

Lemma 3. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits
into n irreducible factors modulo prime q ≥ 5. Let 0 < ε < 1/3,
p ∈ R×q and s ≥ 2n

√
ln(8nq) · q1/2+ε. For any IND-CPA adversary A

against NTRU encryption scheme, there exists an adversary B solving
R-LWE×HNF such that

AdvIND-CPA
NTRU (A) ≤ AdvR-LWE×

HNF
(B) + q−Ω(n).

3 Blinded KEM

The blinded KEM primitive is the most important building block
that BDGJ used to construct their key transport protocol [10] – also

108 G. Davies et al.

required are a signature scheme, a public-key encryption scheme, a
hash function and a key derivation function. In this paper we only
focus on blinded KEMs.

A blinded KEM scheme BKEM is parameterized by a key encap-
sulation mechanism KEM = (KG, Encap,Decap), a blinding algorithm
Blind and an unblinding algorithm Unblind; put together we have that
BKEM = (KG,Encap,Blind,Decap,Unblind).

The key generation algorithm KG outputs an encapsulation key
ek ∈ KE and a decapsulation key dk ∈ KD. The encapsulation algo-
rithm Encap takes as input an encapsulation key and outputs a (file
encryption) key k ∈ KF together with an encapsulation C ∈ C of that
key. The blinding algorithm takes as input an encapsulation key and
an encapsulation and outputs a blinded encapsulation C̃ ∈ C and an
unblinding key uk ∈ KU . The decapsulation algorithm Decap takes a
decapsulation key and a (blinded) encapsulation as input and outputs
a (blinded) key k̃ ∈ KB. The unblinding algorithm takes as input an
unblinding key and a blinded key and outputs a key.

Definition 6 (Correctness of a BKEM). Scheme BKEM has correct-
ness if Unblinduk (k̃) = k, when (ek , dk) ← KG, (C, k) ← Encapek ,
(C̃, uk)← Blindek (C) and k̃ ← Decapdk (C̃).

(Note that the KEM scheme has correctness if Decapdk (C) = k,
when (ek , dk)← KG and (C, k)← Encapek .)

We parameterize all BKEM schemes by a public key encryption
scheme (PKE), since any PKE scheme can trivially be turned into
a KEM. We modify the above definition to be a PKE-based BKEM,
where the KEM algorithms are described in Figure 4.

Definition 7 (PKE-based BKEM). Let BKEM be a blinded KEM,
where the underlying scheme KEM = (KG,Encap,Decap) is parame-
terized by a PKE scheme PKE = (KGPKE,Enc,Dec) as in Figure 4.
We call such a BKEM a PKE-based BKEM.

3.1 Security

We define indistinguishability under chosen-plaintext attack (IND-CPA)
for public-key encryption and indistinguishability (IND) for blinded
KEMs, respectively.

Cloud-assisted Asynchronous Key Transport 109

KG(λ) :
pk, sk← KGPKE(λ)
(ek , dk)← (pk, sk)
return ek , dk

Encapek :

k
$←−M

C ← Encek (k)
return C, k

Decapdk (C̃) :

k̃ ← Decdk (C̃)
return k̃

Figure 4: KEM algorithms parameterized by a PKE scheme
PKE = (KGPKE,Enc,Dec).

Definition 8. Let PKE = (KGPKE,Enc,Dec) be a public key encryp-
tion scheme. The IND-CPA advantage of any adversary A against PKE
is

AdvIND-CPA
PKE (A) = 2

∣∣∣Pr[ExpIND-CPA
PKE (A) = 1]− 1/2

∣∣∣ ,

where the experiment ExpIND-CPA
PKE (A) is given in Figure 5 (left). We

say that PKE is IND-CPA-secure if AdvIND-CPA
PKE (A) is negligible for

any probabilistic polynomial-time adversary A.

ExpIND-CPA
PKE (A) :

b
$←− {0, 1}

(pk, sk)← KGPKE

(m0,m1, state)
$←− A(pk)

Cb ← Encpk(mb)
b′ ← A(state, Cb)

return b′ ?
= b

ExpIND
BKEM(A, r) :

b
$←− {0, 1}

(ek , dk)← KG
(C, k1)← Encapek

k0
$←− KF

for j ∈ {1, . . . , r} do
(C̃j , uk j)← Blindek (C)
k̃j ← Decapdk (C̃j)

b′ ← A(ek , C, kb, {(C̃j , k̃j)}1≤j≤r)
return b′ ?

= b

Figure 5: IND-CPA experiment ExpIND-CPA
PKE (A) for PKE scheme PKE

(left). Indistinguishability experiment ExpIND
BKEM(A, r) for a BKEM

scheme BKEM (right).

Definition 9. Let BKEM = (KG,Encap,Blind,Decap,Unblind) be a
blinded KEM. The distinguishing advantage of any adversaryA against

110 G. Davies et al.

BKEM getting r blinded encapsulations and their blinded decapsula-
tion tuples is

AdvIND
BKEM(A, r) = 2

∣∣∣Pr[ExpIND
BKEM(A, r) = 1]− 1/2

∣∣∣ ,

where the experiment ExpIND
BKEM(A, r) is given in Figure 5 (right). We

say that BKEM is IND-secure if AdvIND
BKEM(A, r) is negligible for any

probabilistic polynomial-time adversary A.

4 Homomorphic-based BKEM

We now show how to turn a homomorphic encryption scheme with cer-
tain properties into a BKEM, and analyze the security requirements
of such a BKEM. We eventually prove that the homomorphic-based
BKEM is post-quantum secure as long as the underlying homomor-
phic encryption scheme is post-quantum secure.

4.1 Generic homomorphic-based BKEM

We look for PKE schemes with the following homomorphic property:
suppose C and C ′ are ciphertexts of k and k′, resp., then Decsk(C ⊕1

C ′) = k⊕2 k
′, where ⊕1 and ⊕2 denote two group operations. We see

two reasons to look at such PKE schemes.
The first reason is that in a BKEM scheme we want the blinding

algorithm to alter the file encryption key k. Having a homomorphic
encryption (HE) scheme makes this possible and we can construct a
blinding algorithm. The second reason is that we want k′ to hide k
such that the adversary is unable to gain information about k even
with knowledge of k̃ = k ⊕2 k

′. With a homomorphic encryption
scheme we can combine two independently random ciphertexts and
make a third one.

We can construct blinding and unblinding algorithms, using this
homomorphic property, to create a BKEM with correctness. To blind
an encapsulation C (with corresponding file encryption key k) the
Blind algorithm creates a fresh encapsulation C ′ (with corresponding
blinding value k′) using the Encapek algorithm, the blinded encapsu-
lation C̃ is computed as C̃ ← C ⊕1 C

′. The unblinding key uk is the

Cloud-assisted Asynchronous Key Transport 111

inverse element of k′ with respect to ⊕2, that is, uk ← k′−1. The
blinding algorithms outputs C̃ and uk . The decapsulation algorithm
can evaluate the blinded encapsulation because of the homomorphic
property. The blinded key k̃ is the output of the decapsulation al-
gorithm, that is, k̃ ← Decapdk (C̃). To unblind k̃ the unblinding al-
gorithm outputs k̃ ⊕2 uk , which is (k ⊕2 k

′) ⊕2 (k′−1) = k, and so
the BKEM scheme has correctness. Formally, we define the BKEM
scheme constructed above as follows.

Definition 10 (Homomorphic-based BKEM). Let BKEM be a PKE-
based BKEM, as in Definition 7. Suppose the underlying public
key encryption scheme is a homomorphic encryption scheme HE =
(KGHE,Enc,Dec) such that for any k, k′ ∈M and any key pair (sk, pk)
$←− KGHE it holds that

Decsk(Encpk(k)⊕1 Encpk(k
′)) = k ⊕2 k

′

where (M,⊕2) is the plaintext group and (C,⊕1) is the ciphertext
group. Furthermore, let the blinding and unblinding algorithms oper-
ate according to Figure 6. We call such a scheme BKEM a homomor-
phic-based BKEM.

Blindek (C) :
(C ′, k′)← Encapek
C̃ ← C ⊕1 C

′

uk ← k′−1

return C̃, uk

Unblinduk (k̃) :

k ← k̃ ⊕2 uk
return k

Figure 6: Blinding and unblinding algorithms of the homomorphic
based BKEM.

We stress that all BKEM schemes we consider in the rest of this
paper are homomorphic-based BKEMs.

The homomorphic encryption scheme HE does not need to be fully
homomorphic, since we only need one operation in the blinding algo-
rithm: a somewhat group homomorphic encryption scheme is suffi-
cient.

112 G. Davies et al.

4.2 Security requirements

In the indistinguishability game IND for BKEMs the adversary A
has r blinded samples, which are the following two sets: {k̃i = k ⊕2

k′i}i=1...r and {C̃i = C ⊕1 C
′
i}1,...,r, in addition to an encapsulation C

of the real file encryption key. We want the blinded samples and the
encapsulation to be random looking such that the combination of all
these values does not reveal any information about the underlying file
encryption key k that is being transported.

First, we show how to choose the blinding values k′i to make the
blinded keys k̃i look random. Then, we show how to make the blinded
encapsulations C̃i look like a fresh output of the encapsulation al-
gorithm, similar to circuit privacy [24]. Finally, we show how an
IND-CPA-secure HE scheme ensures that the encapsulation does not
reveal any information about the file encryption key.

Eventually, we provide the main theorem in this paper stating
how to achieve an IND secure BKEM scheme. Particularly, if the
underlying HE scheme is post-quantum IND-CPA secure then the cor-
responding homomorphic-based BKEM scheme is post-quantum IND
secure.

4.2.1 Random-looking blinded keys

We want the blinded key to look like a random element of the space
containing blinded keys. In the IND game the adversary will be given
several blinded keys of the form k̃ = k ⊕2 k

′, where k is the file en-
cryption key and k′ is a blinding value, and wishes to gain information
about k.

Let k be sampled uniformly at random from the file encryption
key set, denoted KF , and let k′ be sampled uniformly at random from
the blinding value set, denoted KR. We would like that the size of KF
is large enough to prevent a brute force attacker from guessing the key
k, say |KF | = 2λ for some security parameter λ. If KR is a small set
then the value of any blinded key k̃ = k ⊕2 k

′ will be located within
a short distance around k, so the adversary can successfully guess k
with high probability. We always assume that KR is at least as large
as KF .

Cloud-assisted Asynchronous Key Transport 113

If a given blinded key k̃ can be expressed as a result of any file
encryption key k and a blinding value k′, with respect to an oper-
ation, then our goal is to ensure that the adversary cannot get any
information of the true file encryption key hidden in k̃, and ideally we
wish it to be indistinguishable from a random element.

Definition 11 (ε-blinded blinded key). Let BKEM be a blinded KEM
with blinded key set KB. Let k be sampled uniformly random from
the file encryption key set KF and let k′ be sampled uniformly random
from the blinding value set KR. We define a ε-blinded blinded key set
S := {k̃ ∈ KB | ∀k ∈ KF ,∃1k′ ∈ KR such that k̃ = k ⊕2 k

′}: we say
that BKEM has ε-blinded blinded keys if

Pr
[
k̃ = k ⊕2 k

′ ∈ S | k $←− KF , k′ $←− KR
]

= 1− ε.

Suppose the adversary is given any number of ε-blinded blinded
keys from S with the same underlying file encryption key k. By the
definition of the ε-blinded blinded set the file encryption key k can be
any value in KF and all values are equally probable. In other words,
guessing k, given ε-blinded blinded keys, is the same as guessing a
random value from KF . To prevent giving the adversary a better
chance at guessing the key k we wish the blinded keys to be located
inside the ε-blinded blinded key set S with high probability, which
means we want ε to be small.

4.2.2 Fresh-looking blinded encapsulations

Blinded encapsulations are constructed from two encapsulations, one
containing the file encryption key and one containing a blinded value,
where we want it to look like a fresh encapsulation, containing the
result of the two values with respect to ⊕2. In the IND game for
BKEMs the adversary A gets r blinded samples and has knowledge
of the set {C̃i = C ⊕1 C

′
i}1,...,r, where C is an encapsulation of a

file encryption key k and C ′i is an encapsulation of a blinding value.
We want this set to be indistinguishable from the output set of the
encapsulation algorithm.

Definition 12 (ε-blinded blinded encapsulation). Let HE-BKEM be a
homomorphic-based BKEM. Let ek be any encapsulation key and C0

114 G. Davies et al.

be an encapsulation with the underlying file encryption key k0. We
say that HE-BKEM has ε-blinded blinded encapsulation if the statistical
distance between the following distributions is at most ε:

X = {C0 ⊕1 C
′ | k′ $←− KR, C ′ ← Encek (k′)},

Y = {C | k′ $←− KR, C ← Encek (k0 ⊕2 k
′)}.

The above property ensures that the output of the blinding algo-
rithm looks like a fresh encapsulation expect for probability ε. Note
that the BKEM constructions of Boyd et al. [10], DH-BKEM [10, Sec-
tion 4.1] and RSA-BKEM [10, Section 4.2], both have 0-blinded blinded
encapsulation.

It is well known that in a fully homomorphic encryption scheme
the product of two ciphertexts is much larger compared to the sum
of two ciphertexts, hence, it is easier to achieve ε-blinded blinded
encapsulation for one addition compared to one multiplication. In
our constructions we will use addition.

4.2.3 Indistinguishability of BKEM

Furthermore, if we want to achieve indistinguishability of blinded
KEM. We require the underlying homomorphic encryption scheme
have some kind of semantic security to protect the message (the file
encryption key) in the ciphertext (the encapsulation).

Theorem 5 (Main Theorem). Let BKEM be a homomorphic based
BKEM designed as in Definition 10 from a homomorphic encryption
scheme HE. Let the file encryption key k and the blinding value k′

be sampled uniformly random from the large sets KF and KR, re-
spectively. Suppose BKEM has ε1-blinded blinded encapsulations and
ε2-blinded blinded keys. For any adversary A against BKEM getting r
blinded encapsulations and their blinded decapsulation samples, there
exists an IND-CPA adversary B against HE such that

AdvIND
BKEM(A, r) ≤ 2r(ε1 + ε2) + AdvIND-CPA

HE (B)

Proof. The proof of the theorem consists of a sequence of games.

Cloud-assisted Asynchronous Key Transport 115

Game 0

The first game is the experiment ExpIND
BKEM(A, r), given in Figure 5

(right). Let E0 be the event that the adversary’s guess b′ equals b (and
let Ei be the corresponding event for Game i). From Definition 9 we
have that

AdvIND
BKEM(A, r) = 2|Pr[E0]− 1/2|.

Game 1

We consider a modified game which is the same as Game 0 expect that
blinded encapsulation and blinded key pairs given to the adversary are
now independent and random compared to the file encryption key.
More precisely, for 1 ≤ j ≤ r:

• When the adversary A queries for the blinded encapsulation of
user j, the game first chooses a random ε-blinded blinded key
(Definition 11), k̃j

$←− S, and computes an encapsulation of this
random key, C̃j ← Encek (k̃j), which is given to A.

• When the adversary A queries for the blinded key of user j, the
game outputs k̃j .

Step 1 We first prove that a real pair of blinded key and blinded
encapsulation output in Game 0 is (ε1 + ε2) statically close to the
modified values output in Game 1.

Suppose k0 ∈ KF is the file encryption key and C0 ← Encek (k0)

is the encapsulation with k0, let X = {(k0 ⊕2 k
′, C0 ⊕1 C

′) | k′ $←−
KR, C ′ ← Encek (k′)} be the statistical distribution of the real pair of
blinded key and blinded encapsulation output in Game 0, and Y =

{(k̃, C̃) | k̃ $←− S, C̃ ← Encek (k̃)} be the statistical distribution of the
modified values output in Game 1. We define a middle distribution
Z = {(k0⊕2 k

′, C) | k′ $←− KR, C ← Encek (k0⊕2 k
′)}. We compute the

statistical distance between X and Y as follows.

116 G. Davies et al.

∆(X,Y) ≤ ∆(X,Z) + ∆(Z, Y)

= ∆(X,Z) +
1

2
(
∑

k̃∈KB

C̃∈C

|Pr[Z = (k̃, C̃)]−Pr[Y = (k̃, C̃)]|)

≤ ε1 +
1

2
(
∑

k̃∈KB

C̃∈C

|Pr[Z = (k̃, C̃) | k̃ ∈ S] ·Pr[k̃ ∈ S]

+ Pr[Z = (k̃, C̃) | k̃ 6∈ S] ·Pr[k̃ 6∈ S]

−Pr[Y = (k̃, C̃)]|)

= ε1+
1

2
(
∑

k̃∈S
C̃∈C

|Pr[Z=(k̃, C̃) | k̃ ∈ S](1−ε2)−Pr[Y =(k̃, C̃)]|

+
∑

k̃ 6∈S
C̃∈C

|Pr[Z = (k̃, C̃) | k̃ /∈ S] · ε2|) (1)

≤ ε1 +
1

2
(
∑

k̃∈S
C̃∈C

|ε2 ·Pr[Y = (k̃, C̃)]|+ 1 · ε2) (2)

≤ ε1 + ε2

Note that in Equation 1 we split the summation into two parts, namely
k̃ ∈ S and k̃ /∈ S. For k̃ ∈ S we have Pr[Z = (k̃, C̃) | k̃ /∈ S] ·Pr[k̃ /∈
S] = 0, and for k̃ /∈ S we have Pr[Z=(k̃, C̃) | k̃ ∈ S]·Pr[k̃ ∈ S] = 0 and
Pr[Y = (k̃, C̃)] = 0. Furthermore, in the Equation 2 holds because
the distributions Z and Y over the set S are equal.

For r samples we get
∣∣∣Pr[E1]− Pr[E0]

∣∣∣ ≤ r(ε1 + ε2).

Step 2 We claim that there exists an adversary B against IND-CPA
security of HE such that

2
∣∣∣Pr[E1]− 1

2

∣∣∣ = AdvIND-CPA
HE (B).

Cloud-assisted Asynchronous Key Transport 117

We construct a reduction B that plays the IND-CPA game by running
A, it simulates the responses of Game 1 to A as follows.

1. B flips a coin b $←− {0, 1}.
2. B queries the IND-CPA challenger to get the public key of its

IND-CPA game, and forwards this public key as the encapsula-
tion key to A.

3. B simulates the encapsulation by randomly choosing two group
key k0, k1, sends challenge query with input (k0, k1) to its IND-
CPA challenger, and forwards the response C to A.

4. B simulates the output of the Blind and Decap algorithms by
using the Encap algorithm. B samples k̃ $←− S, computes C̃ ←
Encek (k̃), and outputs C̃ as the blinded encapsulation and k̃ as
the decapsulation of the blinded encapsulation.

5. When A asks for a challenge, B sends kb to A.
6. After A sends back a guess b′, B sends b to the challenger if
b′ = 1 and 1− b if b′ = 0.

If the challenge ciphertext B received in ExpIND-CPA
HE (B) is Cb then B

perfectly simulates the inputs of A in Game 1 when the output of the
key is a real key. Otherwise (B interacts with ExpIND-CPA

HE (B)), kb is a
random key to A and B perfectly simulate the inputs of A in Game 1
when the output of the key is a random key.

Remark 1. As a specific case of Theorem 5, the DH-BKEM con-
struction of BDGJ has 0-blinded blinded encapsulations and 0-blinded
blinded keys, and the indistinguishibility of DH-BKEM is upper bounded
by DDH advantage (defined in the real-or-random sense instead of left-
or-right). That is

AdvIND
DH-BKEM(A, r) ≤ AdvDDH(B).

This observation matches with the result of Boydetal. [10, Theorem 1].

118 G. Davies et al.

5 Instantiating Homomorphic-based BKEMs

We provide two specific homomorphic-based BKEM constructions,
based on Gentry’s homomorphic encryption scheme (see Section 2.3)
and the NTRU variant by Stehlé and Steinfeld (see Section 2.4). We
show that our BKEM schemes are post-quantum secure, by Theo-
rem 5, as long as the underlying HE schemes are post-quantum se-
cure [24, 37,41].

5.1 Two Homomorphic-based BKEM

Let HE = (KGHE,EncHE,DecHE) be a homomorphic encryption scheme
described in Section 2.3 or Section 2.4. Let L be any full-rank n-
dimensional lattice, for any ε ∈ (0, 1), s ≥ ηε(L), and r ≥ 6πsn

ε . The
abstract construction of HE-BKEM is in Figure 7. Suppose HE-BKEM
has ε2–blinded blinded keys, a detailed description of these designs
follows in Section 5.2.

KG(λ) :
pk, sk← KGHE(λ)
(ek , dk)← (pk, sk)
return ek , dk

Blindek (C) :

k′ $←− KR
C ′ ← EncHE(ek , r, k′)
C̃ ← AddHE(C,C ′)
uk ← −k′ mod B
return C̃, uk

Encapek :

k
$←− KF

C ← EncHE(ek , s, k)
return C, k

Unblinduk (k̃) :

k ← k̃ + uk mod B
return k

Decapdk (C̃) :

k̃ ← DecHE(dk, C̃)
return k̃

Figure 7: HE-BKEM, where B is the basis of the plaintext space P.

Cloud-assisted Asynchronous Key Transport 119

5.2 Constructions of random-looking blinded keys

We want the blinded keys to be in the ε-blinded blinded key set S
with high probability, and we analyze the requirements of the blinding
values. We provide two constructions of the ε-blinded blinded keys set
S as follows.

Construction I. A file encryption key of HE-BKEM is a random
element located in a subspace of the underlying HE scheme’s message
spaceM. We want to take a small file encryption key k and add a large
blinding value k′ to produce a slightly larger blinded key k̃, hence, the
corresponding key sets should satisfy KF ⊆ KR ⊆ KB ⊆M.

SupposeM is the message space of the HE scheme with generators
1, x, . . . , xn−1 and order q, i.e. M = {d0 +d1x+ · · ·+dn−1x

n−1 | di ∈
Fq}. The addition of two elements inM is defined as follows

(a0 + a1x+ · · ·+ an−1x
n−1) + (b0 + b1x+ · · ·+ bn−1x

n−1)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)xn−1

Suppose KF = {d0 + d1x + · · · + dn−1x
n−1 | di ∈ Zb

√
q/2c} and

KR = {d0 + d1x + · · · + dn−1x
n−1 | di ∈ Zbq/2c}. Notice that for

any ci ∈ {b
√
q/2c, . . . , bq/2c} and any ai ∈ Zb

√
q/2c there exists a

unique bi = ci − ai ∈ Zbq/2c. In other words, for these restricted
c0 + c1x+ · · ·+ cn−1x

n−1 and for any a0 + a1x+ · · · an−1x
n−1 ∈ KF

there exists a unique b0+b1x+· · · bn−1x
n−1 ∈ KR such that (a0+a1x+

· · · an−1x
n−1) + (b0 + b1x+ · · · bn−1x

n−1) = c0 + c1x+ · · ·+ cn−1x
n−1.

Then

S = {d0 + d1x+ · · ·+ dn−1x
n−1 | di ∈ {b

√
q/2c, . . . , bq/2c}}

Note that for any i ∈ {0, . . . , n− 1}

Pr[ai + bi ∈ {b
√
q/2c, . . . , bq/2c} | ai $←− Zb

√
q/2c, bi

$←− Zbq/2c]

= 1− b
√
q/2c − 1

bq/2c .

Hence, the probability of a blinded key locates in the ε-blinded blinded
set is

120 G. Davies et al.

Pr
[
k̃ = k + k′ ∈ S | k $←− KF , k′ $←− KR

]
=

(
1− b

√
q/2c − 1

bq/2c

)n

≈ 1− n

b
√
q/2c

.

Using this construction we can have a HE-BKEM with ε-blinded
blinded keys for ε = n/b

√
q/2c. For suitably large q, the above ε can

be made negligible.

Construction II. Let the file encryption key k be an element in a
subset of M, we want to add a random blinding value k′ from the
whole message spaceM to produce a random-looking blinded key k̃,
hence, the corresponding key sets should satisfy KF ⊆ KR = KB =
M.

For any blinded key k̃ ∈ M and any file encryption key k ∈ KF
there exists a unique random value k′ = k̃−k mod B ∈M such that
k̃ = k+k′ mod B, thus the ε-blinded blinded set S isM and we have

Pr
[
k̃ = k + k′ mod B ∈ S | k $←− KF , k′ $←−M

]
= 1.

In this construction, HE-BKEM has ε-blinded blinded keys with ε = 0.

Remark 2. Both of these constructions can be applied to our HE-BKEM
schemes.

5.3 Construction of fresh-looking blinded encapsula-
tions

We claim that the above constructed HE-BKEM has 2ε-blinded blinded
encapsulations. The idea is to take the small constant ciphertext and
add a ciphertext with big errors and the resulting ciphertext should
look like the big error ciphertext. The details are showed in the fol-
lowing lemma.

Lemma 4. Let HE-BKEM be a homomorphic based BKEM with the
underlying homomorphic encryption scheme, described in Section 2.3

Cloud-assisted Asynchronous Key Transport 121

or Section 2.4. Let ek be any encapsulation key, recall that the encryp-
tion algorithm EncHE(ek , s, ·) uses the discrete Gaussian distribution
DL,s,0 as the error distribution. Suppose C0 = EncHE(ek , s, k0) is
an encapsulation of the underlying file encryption key k0. For any
ε ∈ (0, 1), s ≥ ηε(L), and r ≥ s

√
n
ε the statistical distance of the

following distributions is at most 2ε

X = {C0 ⊕1 C
′ | k′ $←− KR, C ′ ← EncHE(ek , r, k′)}

Y = {C | k′ $←− KR, C ← EncHE(ek , r, k0 ⊕2 k
′)},

which means HE-BKEM has 2ε-blinded blinded encapsulation.

Proof. From Lemma 1 we have Pr[x /∈ B(s
√
n) | x ← DL,s,0] ≤ ε,

which means the size of the error output by the distribution DL,s,0 is
upper bounded by s

√
n expect for negligible probability ε.

For Gentry’s scheme, suppose C0 = k0 + e0, where e0 ← DL,s,0.
From Lemma 2 we know that for a small error ‖e0‖ ≤ s

√
n and big

randomness r ≥ ‖e0‖/ε the statistical distance between DL,r,0 and
DL,r,e0 is at most ε. So the following approximation holds

C0 ⊕1 EncHE(ek , r, k′) = k0 + e0 + k′ +DL,r,0

≈ k0 + k′ +DL,r,0

= EncHE(ek , r, k0 ⊕2 k
′).

The above result can be easily adapted to NTRU encryption scheme.

5.4 Indistinguishability of GHE-BKEM

The following result says GHE-BKEM is an IND-secure BKEM with
post-quantum security.

Corollary 1. Let GHE-BKEM be a homomorphic-based BKEM de-
scribed in Section 5.1. For negligible ε1 = ε, ε2, choose parameters
as in Lemma 4, Theorem 1 and Theorem 2. Suppose GHE-BKEM
has ε2-blinded blinded keys. Then GHE-BKEM has 2ε1-blind blinded
encapsulation. Furthermore, if there is an algorithm that breaks the

122 G. Davies et al.

indistinguishability of GHE-BKEM, i.e. the distinguishing advantage
of this algorithm against GHE-BKEM getting r blinded encapsulation
and their blinded decapsulation tuples is non-negligible, then there ex-
ists a quantum algorithm that solves worst-case SIVP.

Proof. By Lemma 4 we know GHE-BKEM has 2ε1-blinded blinded
encapsulation.

Theorem 5 states that if there is an algorithm that breaks the in-
distinguishability of GHE-BKEM then there exists an algorithm breaks
IND-CPA security of GHE and by Theorem 3 we have a quantum al-
gorithm that solves worst-case SIVP.

5.5 Indistinguishability of NTRU-BKEM

The following result says NTRU-BKEM is an IND-secure BKEM with
post-quantum security.

Corollary 2. Let NTRU-BKEM be a homomorphic based BKEM con-
structed in Section 5.1. For negligible ε1 = ε, ε2, choose parameters as
in Lemma 4, Lemma 3, and Theorem 4. Suppose NTRU-BKEM has
ε2-blinded blinded keys. Then NTRU-BKEM has 2ε1-blinded blinded
encapsulation. Furthermore, if there is an algorithm that breaks the
indistinguishability of NTRU-BKEM, then there exists a quantum al-
gorithm that solves O(

√
n/α)-approximate SIVP (or SVP) on ideal

lattices.

Proof. By Lemma 4 we know NTRU-BKEM has 2ε1-blinded blinded
encapsulation.

Theorem 5 states that if there is an algorithm that breaks the
indistinguishability of NTRU-BKEM then there exists an algorithm
that breaks IND-CPA security of NTRU. By Lemma 3 there exists an
adversary solving R-LWE×HNF and by Theorem 4 there exists a quantum
algorithm that solves SIVP.

References

[1] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor
Shoup. Tag-KEM/DEM: A New Framework for Hybrid Encryp-

Cloud-assisted Asynchronous Key Transport 123

tion and A New Analysis of Kurosawa-Desmedt KEM. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
pages 128–146, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg.

[2] Martin Albrecht, Shi Bai, and Léo Ducas. A Subfield Lattice
Attack on Overstretched NTRU Assumptions. In Proceedings,
Part I, of the 36th Annual International Cryptology Conference
on Advances in Cryptology — CRYPTO 2016 - Volume 9814,
pages 153–178, Berlin, Heidelberg, 2016. Springer-Verlag.

[3] Erdem Alkim, Joppe W. Bos, Léo Ducas, Karen East-
erbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov,
Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM: Learning With Er-
rors Key Encapsulation. https://frodokem.org/files/
FrodoKEM-specification-20190330.pdf. Submission to the
NIST Post-Quantum Standardization project, round 2.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum Key Exchange—A New Hope. In 25th
USENIX Security Symposium (USENIX Security 16), pages 327–
343, Austin, TX, August 2016. USENIX Association.

[5] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M. Schanck, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
Kyber (version 2.0). https://pq-crystals.org/kyber/data/
kyber-specification-round2.pdf. Submission to the NIST
Post-Quantum Standardization project, round 2.

[6] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session Resump-
tion Protocols and Efficient Forward Security for TLS 1.3 0-RTT.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptol-
ogy - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 117–
150. Springer, 2019.

124 G. Davies et al.

[7] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange,
and Christine van Vredendaal. NTRU Prime: reducing at-
tack surface at low cost. https://ntruprime.cr.yp.to/papers.
html.

[8] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas
Stebila. Frodo: Take off the Ring! Practical, Quantum-Secure
Key Exchange from LWE. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, Oc-
tober 24-28, 2016, pages 1006–1018. ACM, 2016.

[9] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig.
Improved Security for a Ring-Based Fully Homomorphic Encryp-
tion Scheme. In Proceedings of the 14th IMA International Con-
ference on Cryptography and Coding - Volume 8308, IMACC
2013, pages 45–64, Berlin, Heidelberg, 2013. Springer-Verlag.

[10] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang.
Offline Assisted Group Key Exchange. In Liqun Chen, Mark
Manulis, and Steve Schneider, editors, Information Security -
21st International Conference, ISC 2018, Guildford, UK, Septem-
ber 9-12, 2018, Proceedings, volume 11060 of Lecture Notes in
Computer Science, pages 268–285. Springer, 2018.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Lev-
eled) Fully Homomorphic Encryption Without Bootstrapping. In
Proceedings of the 3rd Innovations in Theoretical Computer Sci-
ence Conference, ITCS ’12, pages 309–325, New York, NY, USA,
2012. ACM.

[12] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomor-
phic encryption from ring-lwe and security for key dependent
messages. In Phillip Rogaway, editor, Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2011. Proceedings, volume 6841

Cloud-assisted Asynchronous Key Transport 125

of Lecture Notes in Computer Science, pages 505–524. Springer,
2011.

[13] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hüls-
ing, Joost Rijneveld, John M. Schanck, Peter Schwabe, William
Whyte, and Zhenfei Zhang. NTRU). https://ntru.org/f/
ntru-20190330.pdf. Submission to the NIST Post-Quantum
Standardization project, round 2.

[14] Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee,
and Yongha Son. A Practical Post-Quantum Public-Key Cryp-
tosystem Based on \textsf spLWE. In Seokhie Hong and
Jong Hwan Park, editors, Information Security and Cryptology
- ICISC 2016 - 19th International Conference, Seoul, South Ko-
rea, November 30 - December 2, 2016, Revised Selected Papers,
volume 10157 of Lecture Notes in Computer Science, pages 51–74,
2016.

[15] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algo-
rithm for NTRU problems and cryptanalysis of the GGH multi-
linear map without a low-level encoding of zero. LMS Journal of
Computation and Mathematics, 19(A):255–266, 2016.

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic Encryption for Arithmetic of Approximate Num-
bers. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, pages 409–437, Cham, 2017.
Springer International Publishing.

[17] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican,
and Kevin Milner. On Ends-to-Ends Encryption: Asynchronous
Group Messaging with Strong Security Guarantees. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 1802–1819. ACM, 2018.

[18] Ronald Cramer and Victor Shoup. Design and Analysis of Prac-
tical Public-Key Encryption Schemes Secure against Adaptive

126 G. Davies et al.

Chosen Ciphertext Attack. Cryptology ePrint Archive, Report
2001/108, 2001. https://eprint.iacr.org/2001/108.

[19] Ronald Cramer and Victor Shoup. Design and Analysis of Prac-
tical Public-Key Encryption Schemes Secure Against Adaptive
Chosen Ciphertext Attack. SIAM J. Comput., 33(1):167–226,
January 2004.

[20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy,
and Frederik Vercauteren. Saber: Module-LWR Based Key Ex-
change, CPA-Secure Encryption and CCA-Secure KEM. In An-
toine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, edi-
tors, Progress in Cryptology – AFRICACRYPT 2018, pages 282–
305, Cham, 2018. Springer International Publishing.

[21] Alexander W. Dent. A Designer’s Guide to KEMs. In Ken-
neth G. Paterson, editor, Cryptography and Coding, pages 133–
151, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[22] David Derler, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom Filter Encryption and Applications to Efficient
Forward-Secret 0-RTT Key Exchange. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Tel Aviv, Is-
rael, April 29 - May 3, 2018 Proceedings, Part III, volume 10822
of Lecture Notes in Computer Science, pages 425–455. Springer,
2018.

[23] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully
Homomorphic Encryption. Cryptology ePrint Archive, Report
2012/144, 2012. https://eprint.iacr.org/2012/144.

[24] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD
thesis, Stanford, CA, USA, 2009. AAI3382729.

[25] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trap-
doors for Hard Lattices and New Cryptographic Constructions.

Cloud-assisted Asynchronous Key Transport 127

In Proceedings of the Fortieth Annual ACM Symposium on The-
ory of Computing, STOC ’08, pages 197–206, New York, NY,
USA, 2008. ACM.

[26] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
pages 75–92, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[27] Matthew D. Green and Ian Miers. Forward Secure Asynchronous
Messaging from Puncturable Encryption. In 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 305–320. IEEE Computer Society, 2015.

[28] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-
RTT Key Exchange with Full Forward Secrecy. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part III, volume
10212 of Lecture Notes in Computer Science, pages 519–548,
2017.

[29] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A
ring-based public key cryptosystem. In Joe Buhler, editor, Algo-
rithmic Number Theory, Third International Symposium, ANTS-
III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, vol-
ume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

[30] Dennis Hofheinz and Eike Kiltz. Secure Hybrid Encryption from
Weakened Key Encapsulation. In Alfred Menezes, editor, Ad-
vances in Cryptology - CRYPTO 2007, pages 553–571, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[31] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter
Schwabe. High-speed key encapsulation from NTRU. In Inter-

128 G. Davies et al.

national Conference on Cryptographic Hardware and Embedded
Systems (CHES), pages 232–252. Springer, 2017.

[32] Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid
Encryption Scheme. In Matt Franklin, editor, Advances in Cryp-
tology – CRYPTO 2004, pages 426–442, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[33] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan.
On-the-fly Multiparty Computation on the Cloud via Multikey
Fully Homomorphic Encryption. In Proceedings of the Forty-
fourth Annual ACM Symposium on Theory of Computing, STOC
’12, pages 1219–1234, New York, NY, USA, 2012. ACM.

[34] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan
He, Zhenfei Zhang, Zhe Liu, Hao Yang, Bao Li, and Kunpeng
Wang. LAC Lattice-based Cryptosystems. Submission to the
NIST Post-Quantum Standardization project, round 2.

[35] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal
Lattices and Learning with Errors over Rings. In Henri Gilbert,
editor, Advances in Cryptology - EUROCRYPT 2010, 29th An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, Monaco / French Riviera, May 30
- June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer, 2010.

[36] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A
Toolkit for Ring-LWE Cryptography. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture
Notes in Computer Science, pages 35–54. Springer, 2013.

[37] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
Ideal Lattices and Learning with Errors over Rings. J. ACM,
60(6):43:1–43:35, November 2013.

Cloud-assisted Asynchronous Key Transport 129

[38] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement
Protocol. https://signal.org/docs/specifications/x3dh/,
November 2016.

[39] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case
Reductions Based on Gaussian Measures. SIAM J. Comput.,
37(1):267–302, April 2007.

[40] NIST Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization. Accessed:
2019-11-15.

[41] Damien Stehlé and Ron Steinfeld. Making NTRU As Secure As
Worst-case Problems over Ideal Lattices. In Proceedings of the
30th Annual International Conference on Theory and Applica-
tions of Cryptographic Techniques: Advances in Cryptology, EU-
ROCRYPT’11, pages 27–47, Berlin, Heidelberg, 2011. Springer-
Verlag.

[42] The Messaging Layer Security (MLS) Protocol. Internet draft, in
progress. https://datatracker.ietf.org/wg/mls/about. Ac-
cessed: 2019-11-25.

130 G. Davies et al.

Paper iv

Attacks on the Basic cMix Design: On the
Necessity of Commitments and Randomized

Partial Checking
Herman Galteland, Stig F. Mjølsnes and Ruxandra F. Olimid

Published in Paradigms in Cryptology – Mycrypt 2016.
Malicious and Exploratory Cryptology

Attacks on the Basic cMix Design: On the

Necessity of Commitments and Randomized

Partial Checking∗

Herman Galteland1, Stig F. Mjølsnes2, and Ruxandra F.
Olimid2

1Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology,

herman.galteland@ntnu.no

2Department of Information Security and Communication
Technology,

NTNU – Norwegian University of Science and Technology
{sfm, ruxandra.olimid}@ntnu.no

Abstract

The cMix scheme was proposed by Chaum et al. in 2016
as the first practical set of cryptographic protocols that offer
sender-recipient unlinkability at scale. The claim was that the
cMix is secure unless all nodes collude. We argue that their
assertion does not hold for the basic description of cMix, and
we sustain our statement by two different types of attacks: a
tagging attack and an insider attack. For each one, we discuss
the settings that make the attack feasible, and then possible
countermeasures. By this, we highlight the necessity of imple-
menting additional commitments or mechanisms that have only
been mentioned as additional features.
Keywords. cryptographic protocols, sender-recipient unlink-
ability, anonymity, mixnets, attacks

∗The final publication is available at Springer via http://dx.doi.org/

978-3-319-61273-7\protect_22

133

1 Introduction

1.1 cMix

The cMix protocol by Chaum et al. [6] is an improved mixing net-
work [5] which aims to provide an anonymous communication tool for
its users at large scales. The mixing should be such that no one is
able to relate an output message to a user input message, that is, no
one is able to link a sender with a recipient. An important advantage
over its predecessors is that cMix performs expensive computations
(like public key encryption) during a precomputation phase, keeping
the real-time phase, which is in charge with actual message delivery,
fast. The protocol is a part of a larger system, called Privategrity,
but its authors describe cMix independently.

The authors of Ref. [6] claim that cMix is the first practical system
that provides sender-recipient unlinkability, unless all nodes collude.
We argue that their assertion does not hold for the basic description of
the protocol (as given in [6, Section 4]) and we sustain our statement
by two different types of attacks. Each of them has its own effect
on the design of the original protocol. By this, we want to highlight
the necessity of using additional commitment mechanisms, whereas
Ref. [6] mentions this as additional features.

1.2 Related Work

The cMix system is designed to be resistant to most of the usual mix
network attacks. This paper focuses on the cryptanalysis of cMix,
and Subsection 2.2 introduces in detail the adversarial model from [6].
We present here a very brief survey of proposed general attacks on
anonymous overlay networks.

Tagging attacks are a potential threat to all mix networks [14]. An
adversary can put an identifier tag on an input message to the mix
network and attempt to recognize the tag in the output messages. If
successful, the adversary can break the anonymity of a specific sender.
We show in Section 3 that cMix is vulnerable to a tagging attack.

Replay attacks are attacks in which an adversary retransmits a
valid message several times, making it possible to analyze the outgoing

134 H. Galteland, S. F. Mjølsnes and R. F. Olimid

traffic [3]. We do not analyze replay attacks against cMix system, as
they are eliminated by the adversarial model (see Subsection 2.2).

Intersection attacks and statistical disclosure attacks use informa-
tion acquired by observing mix networks where the users can freely
choose the mix node for their messages (free mix nodes) [3, 9, 10]. In
such systems different batches can be distinguished since they come
from different mix nodes. If a sender use the same mix nodes for every
message then the adversary can separate the routes by analyzing the
network flow.

Traffic analysis attacks is a family of attacks that observes the
network traffic in order to deduce informational patterns in commu-
nication and targets connection-based systems. Unlike message-based
systems like cMix, connection-based systems use free mix nodes that
do not batch and permute messages. By counting packets [19] and
timing communication [8] the adversary is able to distinguish between
different paths in the (free) mix network. Contextual attacks [18] (or
traffic confirmation attacks [20], or intersection attacks [2]) analyze
the traffic when specific users and recipients use a protocol, their com-
munication pattern, and how many messages they send and receive.

The authors of cMix recognize that their proposal is potentially
vulnerable to attacks that make anonymous systems fail, like the
broadband intersection attacks, contextual attacks, or DoS (Denial
of Service) [6].

1.3 Results

We focus on the security analysis of the basic cMix description as
described in [6, Section 4], and show that it is susceptible to two
attacks, which differ by action type.

Tagging Attack. The cMix paper [6] introduces commitments [4]
to overcome tagging attacks. The paper states that “tagging attacks
do not work before the exit node”, and “if a tagging attack is detected,
at least the last node should be removed from the cascade” [6, Section
4.3]. Therefore the authors might be aware of a possible attack that
can be performed by the exit node. However, they do not consider any
prevention for this. We introduce a simple tagging attack launched

Attacks on the Basic cMix Design 135

by the exit node. Although a prevention mechanism is immediate (by
adding an extra commitment) we consider it for completeness, as an
example of a possible tagging attack against the system. In personal
communications, the authors of cMix acknowledged that the actual
design of the system adds the additional commitment we refer to as
a countermeasure [11].

Insider Attack. The cMix paper [6] claims that attacks are unsuc-
cessful unless all nodes collude. We contradict this by showing that
the last node can break the unlinkability, essentially by creating a mix
network consisting of itself only. The attack will succeed by the last
node deviating from the protocol rules and choose its own output.
We argue that this attack remains undetected in the original version
of cMix, and becomes detectable only if additional checks like Ran-
domized Partial Checking (RPC, see Subsection 2.3) are considered
(suggested by the authors of [6] as a special feature). We show the
necessity of using randomized partial checking. However, an inappro-
priate use of RPC could allow a coalition of nodes (all except one) to
link a large fraction of the senders to their recipients.

1.4 Outline

Section 2 describes the cMix scheme and presents the adversarial
model. The two following sections contain our results: Section 3
describes a simple tag attack similar to the tag attack described in the
original cMix paper [6]. Section 4 presents the insider attack where
the adversary controls the last node and makes the overall mixing
process independent of the preceding nodes. Section 6 concludes and
indicates possible future research directions.

2 Preliminaries

2.1 cMix Description

Figure 2 describes the cMix protocol from [6]. We ignore the return
steps, since they are irrelevant for our attacks. Note that this does not
restrict the applicability of our results, since the same permutation

136 H. Galteland, S. F. Mjølsnes and R. F. Olimid

Uj user j
M a batch of β messages M = (M1, . . . ,Mβ), each Mi sent by a distinct user
Ni node i from the set of n mix nodes {N1, . . . , Nn}
ei the share of node Ni of the secret key e
d the public key of the system, where d =

∏n
i=1 g

ei

E(·) a multi-party group-homomorphic encryption under the system public key d
πi a random permutation on a batch, applied by node Ni
Πi the composed permutation performed by all nodes from N1 to Ni
ki,j the derived secret key shared between node Ni and the sending user of slot j
ki the vector of derived secret keys shared between node Ni and all users in a batch,

ki = (ki,1, . . . , ki,β)
Kj the product of all shared keys for the sending user of slot j, Kj =

∏n
i=1 ki,j

ri, si random values of node Ni for the batch, where ri = (ri,1, . . . , ri,β) and si =
(si,1, . . . , si,β), resp.

Ri,Si the direct product of the first i values, Ri =
∏i
j=1 rj and Si =

∏i
j=1 sj , resp.

Figure 1: Notations

is used for both forward and return paths. Once the permutation is
disclosed both directions of communication are compromised.

cMix has two phases: a precomputation phase and a real-time
phase. By design, the heavy public key computations are performed
in the precomputation phase, which can be performed on separate
hardware (for each node). Since the precomputation phase does not
require any input from the users it can be performed offline and while
a batch is being filled up with messages.

The scheme consists of a sequence of n mix nodes that process
β messages at a time (a batch of messages); made simple, each node
performs a permutation on the input and blinds the output by multi-
plying it with a random value. The last node Nn makes an exception,
as it usually behaves differently from the other nodes (see Figure 2).

Besides the last node there is another entity with a special role in
the system – the network handler – that interacts both with the users
and the whole set of nodes. The network handler receives messages
from the users and arranges them into batches; once a batch is full
it is sent to the first node in the mix network. After the last node
performs its mixing it sends the batch back to the network handler,
which can then forward or broadcast the messages to the destination.
The mixing should be such that no one is able to relate an output
message to a user input message, that is, no one is able to link a

Attacks on the Basic cMix Design 137

Precomputation Phase

• Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, selects a random ri, computes
the encryption E(r−1

i) and sends it to the network handler. The network handler

computes the product of all the received values, produces E(R−1
n) =

∏n
i=1E(r−1

i)
and sends it to the first node.

• Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(E(Πi−1(R−1
n)×S−1

i−1))×
E(s−1

i), where Π0 is the identity permutation and S−1
0 = 1. The last node sends

the vector of random components (i.e. the first component) of the ciphertext
(x, c) = E((Πn(Rn)× Sn)−1) to the other nodes and stores the vector of message
components (i.e. the second component) locally for the real-time phase.

• Step 3 (postprocessing). Using the random component x, each node Ni, 1 ≤ i ≤ n,
computes its individual decryption share for (x, c) as Di(x) = x−ei , stores it
locally to use in the real-time phase and publicly commits to it.

Real-Time Phase

• Step 0. Each user constructs its message MK−1
j (for slot j) by multiplying the

message Mj with the inverse of the key Kj and it sends it to the network handler,

which collects all messages and combines them to get a vector M×K−1.
• Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, sends ki × ri to the network

handler, which uses them to compute M × Rn = M × K−1×∏n
i=1ki × ri and

sends the result to N1.
• Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(Πi−1(M×Rn)×Si−1)×si,

where Π0 is the identity permutation and S0 = 1. The last node Nn sends a
commitment to its message Πn(M×Rn)× Sn to every other node.

• Step 3 (postprocessing). Each node Ni, 1 ≤ i ≤ n − 1, sends its precomputed
decryption share for (x, c) = E((Πn(Rn)× Sn)−1) to the network handler, while
the last node Nn sends its decryption share multiplied by the value in the previous
step and the message component: Πn(M ×Rn) × Sn × Dn(x) × c. Finally, the
network handler retrieves the permuted message as Πn(M) = Πn(M × Rn) ×
Sn ×

∏n
i=1Di(x)× c.

Figure 2: The cMix Protocol (forward path) [6]

sender with a recipient.

Before using the system each sender Uj must establish a private
symmetric key with each of the nodes Ni, which they use as a seed in
a pseudorandom generator to derive the secret keys ki,j . To blind a
message Mj before it is sent to the network handler, user Uj multiplies
Mj with a key composed by the derived keys shared with each of the
nodes Kj =

∏n
i=1 ki,j . The network handler arranges messages into

a batch and sends it through the mix network. Each node applies
its permutation to the batch and the last node sends it back to the
network handler. The output is a permuted batch of messages.

138 H. Galteland, S. F. Mjølsnes and R. F. Olimid

During the mixing step of the precomputation phase each node
performs encryption under a public key of the system; the related
private key is split across all nodes in the network. The encryp-
tion scheme suggested by the authors of [6] is the multi-party group-
homomorphic encryption based on ElGamal [12] described by Be-
naloh [1]. Moreover, all computations of the protocol are performed
in a prime order cyclic group G that satisfies the decisional Diffie-
Hellman security assumption. We denote by G∗ the set of nonidentity
elements in G.

Refer to Figure 2 for the detailed self-contained description of the
cMix process, using the notation defined in Figure 1.

2.2 Adversarial Model

The adversarial model in [6] assumes authenticated channels among
the mix nodes and between the network handler and each mix node.
This implies that the adversary can read, forward, and delete mes-
sages, but not modify, inject, or replay messages without detection.
The adversary can compromise the users (up to all except two), and
the mix nodes (up to all except one). Compromised nodes can behave
malicious but cautious, since the attacker aims to remain undetected.
Within this attacker model, the authors of cMix claim that the out-
put is unlinkable to the input, even if the adversary knows the set of
senders and the set of recipients for every batch of messages.

The security analysis in the Appendix A of the cMix paper as-
sumes secure authenticated channels for which the adversary cannot
read the content, only the length of a message. All our attacks hold
under these stronger security assumptions.

2.3 Features and Extensions

The cMix paper [6] dedicates a section to special features and exten-
sions of the system. It shortly discusses the utility of adding RPC
(Randomized Partial Checking) to cMix, an integrity check mech-
anism introduced by Jacobsson, Juels and Rivest [15], and further
analyzed and developed in Refs. [16, 17]. The usage of RPC in the
cMix system is that each node commits to a randomly chosen per-

Attacks on the Basic cMix Design 139

• Goal: Tag a message Mj belonging to user Uj and recognize it in the permuted
batch of messages, linking the sender Uj to its recipient.

• Step 1. The corrupted node Nn creates a tag vector t which consists of β−1 ones
and one tag t ∈ G∗ in slot j (i.e. t = (1, . . . , 1, t, 1, . . . , 1)), computes kn× rn× t
and sends it to the network handler (Real-time Phase.Step 1).

• Step 2. The network handler sends the set of all decryption shares {Di(x)|1 ≤ i <
n} to the last node (Real-time Phase.Step 3). Node Nn can retrieve the permuted
messages as Πn(M× t) = Πn(M×Rn × t)×Sn ×

∏n
i=1Di(x)× c and recognize

the tagged message in slot j′.
• Step 3. The corrupted node Nn creates the inverse tag vector t−1, which consists

of β − 1 ones and one tag t−1 ∈ G∗ in slot j′, computes c′ = c× t−1, and sends
Πn(M×Rn)× Sn ×Dn(x)× c′ to the network handler.

Figure 3: The Tagging Attack

mutation, publishes its input and output, and validates that it has
followed the protocol correctly by revealing a (large) fraction of its
secret input/output pairs, where these pairs are selected by the other
nodes (or by a random oracle). The cMix system protects the user’s
privacy by putting nodes in pairs, such that each node belongs to
only one pair. Nodes in a pair reveal their secret information such
that none of the messages can be followed from the input of the first
node to the output of the second node.

3 The Tagging Attack

Our first attack is similar to the tag attack described in the cMix
paper [6], but it uses a different value to remove the tag. Dur-
ing the precomputation phase the nodes compute the value (x, c) =
E((Πn(Rn)×Sn)−1), where the last node stores the vector of message
components c locally and sends the vector of random components x
to all other nodes. Each node computes its decryption share using x
and commits to this value. Note that it is uncertain whether c is being
committed to or not in the description of the basic cMix protocol.

The authors of cMix introduce commitments to detect potential
tagging attacks and to expose any attempt of using the decryption
shares to remove the tag. However, the commitments are independent
of c, so it is possible to perform a similar attack which uses c instead
of Dn(x) to remove the tag. The downside is that the adversary needs

140 H. Galteland, S. F. Mjølsnes and R. F. Olimid

to corrupt the last node (which has access to c) and the network han-
dler (under the assumption of secure authorized channels). Figure 3
describes the tag attack.

For the tag attack to be successful we need to assume that it is
possible to recognize valid messages in the output. To tag a message
Mj the last node creates a tag vector t = (1, . . . , t, . . . , 1), where t is in
position j, multiplies it with the keys and random values kn× rn× t,
and sends the result to the network handler. The tag goes through
the mixnet attached to message Mj and arrives at the last node as
Πn−1(M × Rn × t) × Sn−1. The last node will permute the batch
and do the computations according to the protocol, and publish its
commitment to the value Πn(M×Rn×t)×Sn. This triggers all other
nodes to send their decryption share to the network handler, which
forwards them to Nn. The last node can then retrieve the batch of
permuted messages and find the invalid message Mjt in slot j′ of the
permuted batch. The last node creates the inverse tag t−1, which has
t−1 in slot j′, and replaces the message components with the altered
value c′ = c× t−1. The network handler computes

Πn(M×Rn×t)×Sn×c′×
n∏

i=1

Di(x) =

Πn(M×Rn×t)×Sn×(Πn(Rn)×Sn)−1×t−1 =

Πn(M×t)×t−1 = Πn(M)

and delivers the permuted batch as normal. That is, the adversary has
successfully linked a sender with a recipient without being detected.

To make this attack detectable, the last node should publish
a commitment to the vector of message components c in the Pre-
computation Phase.Step 3, or the system should implement RPC as
an integrity check mechanism. Although prevention can be simply
achieved by natural solutions like the ones mentioned, we introduce
the attack for completeness; it stands as an example of tagging at-
tack performed by the last node, a type of attack the authors of cMix
seem to be aware of (see [6], Section 4.2: “tagging attacks do not work
before the exit node” and “if a tagging attack is detected, at least the
last node should be removed from the cascade”).

Attacks on the Basic cMix Design 141

At the time of writing, the authors of cMix acknowledged that the
actual design of the system implements the countermeasure we refer
to and commits to the vector of message components c, as explained
above [11].

4 The Insider Attack

Our second attack allows the last node to ignore all permutations in-
troduced by the previous nodes and perform the overall mixing pro-
cess by itself. Hence, the output of the real-time phase will be a batch
of messages permuted with a known permutation making it easy to
link all senders and recipients. To succeed, the adversary needs to
corrupt the last node (which controls the output of the mixing pro-
cess) and the network handler (which knows the content of the values
E(R−1

n) and M ×Rn, under the assumption of secure authenticated
channels). Figure 4 describes the insider attack.

During Precomputation Phase.Step 1 the corrupted network han-
dler computes and sends E(R−1

n) to the first and the last nodes. The
honest nodes operates as normal, where the last, dishonest, node dis-
cards the input it receives from the previous node and chooses its
own output. The last node draws a random vector A = (A1, . . . , Aβ),
encrypts the inverted values, E(A−1), and computes πn(E(R−1

n) ×
E(A−1)) = πn(E(R−1

n ×A−1)). The last node publishes the random
components, that is x, of πn(E(R−1

n × A−1)) = (x, c) to the other
nodes such that they can prepare their decryption shares.

In Real-Time Phase.Step 1 the network handler sends M×Rn to
the first and the last node. In the mixing step the last node discards
what it receives from the previous node, selects its output πn(M ×
Rn×A), commits to this batch of messages, and sends πn(M×Rn×
A) × c × Dn(x) to the network handler. As the network handler
receives the decryption shares from the other nodes it can retrieve
the permuted messages and forward them to the receivers:

πn(M×Rn×A)×c×
n∏

i=1

Di(x) = πn(M×Rn×A)×πn(R−1
n ×A−1)

= πn(M).

142 H. Galteland, S. F. Mjølsnes and R. F. Olimid

• Goal: Perform the mixing process with only the last node using only a known
permutation to permute the batch of messages.

• Step 1. The network handler computes and sends E(R−1
n) to the first and last node

(Precomputation Phase.Step 1). The last node discards the input it is given form
the previous node and publishes the component of random elements of πn(E(R−1

n ×
A−1)), for a random and invertible A (Precomputation Phase.Step 3).

• Step 2. The network handler computes and sends M×Rn to the first and last node
(Real-Time Phase.Step 1). The last node discards the input it is given form the
previous node, publishes a commitment to πn(M×Rn ×A), and sends πn(M×
Rn ×A)× c×Dn(x) to the network handler (Real-Time Phase.Step 3).

• Step 3. The network handler retrieves the permuted batch of messages as πn(M) =
πn(M×Rn ×A)× πn(R−1

n ×A−1) and publishes it. The adversary can recover
M by applying πn

−1.

Figure 4: The Insider Attack

Note that the output batch is only permuted with the permutation
πn, which is known to the last node. Hence, the adversary can easily
deanonymize all of the senders by applying πn

−1 to the output.

The RPC mechanism ensures with high probability that each node
follows its instructions, hence, this will prevent the last node from
deviating from the protocol. Since our insider attack changes the
entire batch, RPC will detect the attack. This shows the necessity of
implementing RPC in the cMix protocol.

Notes on the RPC mechanism.

The RPC mechanism makes the nodes reveal a (large) fraction of their
secret information, which could break the anonymity of the users [17].
As an example, let’s assume that each node performs only one permu-
tation and proves the correctness of its output for this permutation.
Further assume that an adversary corrupts all except one, honest,
node and therefore only needs the permutation from this node to
deanonymize the users. When using RPC, the honest node would
reveal information about its permutation. Hence, the adversary can
easily break the anonymity for a substantial portion of the users using
the information made public by the RPC mechanism.

Even in the scenario where there are two honest nodes that are
paired, the adversary can get some information about the senders
and receivers [17]. Nodes in a pair reveal information such that no

Attacks on the Basic cMix Design 143

Ni

First mixing

Ni+1

Second mixing

Mj

}
3Mj

Figure 5: RPC: Two paired nodes revealing each separate half of
their permutation. Continuous lines means information is revealed
and dashed lines means information is not revealed

messages can be followed from the input of the first node to the out-
put of the second node in a pair. This means that if a message, say
Mj , is revealed by the first node, then it will not be revealed by the
second node (see Figure 5). Given enough rounds of cMix, an adver-
sary might eventually link senders and recipients that are frequently
talking with each other. Therefore, two honest nodes (a single pair)
are usually not enough to protect the anonymity of all users.

5 Rebuttal from the Authors of cMix

The authors of the original cMix paper [6] made the following rebuttal
to the initial submission of this paper:

[...]Galteland, Mjølsnes, and Olimid propose a tagging
attack and an insider attack against the cMix protocol, as
described in the preliminary cMix eprint [6]. But security
mechanisms specified in this preliminary cMix eprint pre-
vent both attacks. In addition, alternative integrity mech-
anisms (e.g., trap messages) specified in the current cMix
paper [7] provide additional ways to prevent these attacks.
In particular, as presented in the preliminary cMix eprint,
Random Partial Checking (RPC) [16] prevents both at-
tacks.[...]

The tagging attack does not work because RPS prevents

144 H. Galteland, S. F. Mjølsnes and R. F. Olimid

it, as explained in the preliminary cMix eprint [6, Section
7.3]. In addition, cMix stops the attack by commitment:
it commits to the value the Galteland et al. allege makes
the tagging attack possible. Our system design and proto-
type implements this commitment, even though the origi-
nal cMix eprint does not mention this detail. Before read-
ing the paper by Galteland et al., we were aware of this
attack and of similar ones. After coming across an ear-
lier version of their paper [13], we contacted the authors to
inform them that our design and implementation included
commitments to prevent these types of attacks, which they
do acknowledge. [...]

Despite some interesting features, the insider attack
does not work because RPC detects it, as Galteland et al.
also acknowledge. The preliminary cMix eprint [6, Section
7.3] prescribes using RPC. [...]

We disagree with their claim that we overlooked impor-
tant details underlying these alleged attacks. The attacks
proposed by Galteland et al. do not work: security mech-
anisms specified in the preliminary cMix eprint prevent
both attacks.

As a response to their remarks, both our attacks are valid under
the basic protocol description given in [6, Section 4]. The commit-
ment mechanism required to overcome the first attack is not used or
referred to in the original paper, as acknowledged in the authors’ re-
sponse. Furthermore, the cMix paper describes RPC as an extension,
therefore usage of RPC can hardly be understood as necessary [6].
We claim the necessity of RPC or an equivalent mechanism. RPC
is not included in the formal analysis, hence it is left outside the se-
curity theorems and performance discussions. Whereas we find that
RPC is crucial for the security of the system, and it might introduce
a significant performance penalty. The response note informs us that
proper security mechanisms protecting against the attacks we have
presented are used in their prototype and explained in a new paper,
but both of those are currently unavailable to us for inspection.

Attacks on the Basic cMix Design 145

6 Conclusions

We demonstrate by examples that the cMix scheme, as it was initially
defined in its basic settings, would allow linkability between senders
and recipients, hence compromising the anonymity of the users. We
describe the actions an adversary could follow to succeed for both
types of attacks (the tagging attack and the insider attack). The
attacks succeed in the secure authenticated channels settings, and
under the assumption that the adversary can corrupt the network
handler. This is a natural assumption that was also made by that the
authors of cMix.

By discussing the attacks, we highlight the necessity of the use
of commitments and the RPC integrity mechanisms, which have only
been mentioned as additional features in cMix scheme, and where
these mechanisms are not fully included in the security proofs. How-
ever, the authors of cMix have expressed that their demonstration
software implements the commitment mechanism that prevents our
tagging attack.

This paper is restricted to a theoretical exposure of some attacks
against the cMix standalone set of cryptographic protocols. Future
analysis work can include experimental activities for practical attacks
on real-world cMix implementations. Of course, the scalability of
performance, throughput, and latency are key issues. An enterprising
theoretical work would be to analyze the cMix security within the
context of the larger system Privategrity.

Acknowledgements.

Herman Galteland is funded by Nasjonal sikkerhetsmyndighet (NSM),
www.nsm.stat.no.

References

[1] Josh Benaloh. Simple verifiable elections. In Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006
on Electronic Voting Technology Workshop, EVT’06, Berkeley,
CA, USA, 2006. USENIX Association.

146 H. Galteland, S. F. Mjølsnes and R. F. Olimid

[2] Oliver Berthold and Heinrich Langos. Dummy traffic against
long term intersection attacks. Privacy Enhancing Technologies:
Second International Workshop, PET 2002 San Francisco, CA,
USA, April 14–15, 2002 Revised Papers, pages 110–128, 2003.

[3] Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The
disadvantages of free mix routes and how to overcome them. De-
signing Privacy Enhancing Technologies: International Work-
shop on Design Issues in Anonymity and Unobservability Berke-
ley, CA, USA, July 25–26, 2000 Proceedings, pages 30–45, 2001.

[4] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum
disclosure proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–
189, October 1988.

[5] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–90, February
1981.

[6] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna
Krasnova, Joeri de Ruiter, and Alan T. Sherman. cMix:
Anonymization by high-performance scalable mixing. Cryptol-
ogy ePrint Archive, Report 2016/008, 2016. http://eprint.

iacr.org/, version 20160530:183553 from May, 30 2016.

[7] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna
Krasnova, Joeri de Ruiter, and Alan T. Sherman. cMix: Mix-
ing with minimal real-time asymmetric cryptographic operations.
submitted to Privacy Enhanced Technologies (PETS) 2016, 2016.

[8] George Danezis. The traffic analysis of continuous-time mixes.
Privacy Enhancing Technologies: 4th International Workshop,
PET 2004, Toronto, Canada, May 26-28, 2004. Revised Selected
Papers, pages 35–50, 2005.

[9] George Danezis, Claudia Diaz, and Carmela Troncoso. Two-
sided statistical disclosure attack. Privacy Enhancing Technolo-
gies: 7th International Symposium, PET 2007 Ottawa, Canada,
June 20-22, 2007 Revised Selected Papers, pages 30–44, 2007.

Attacks on the Basic cMix Design 147

[10] George Danezis and Andrei Serjantov. Statistical disclosure or
intersection attacks on anonymity systems. Information Hiding:
6th International Workshop, IH 2004, Toronto, Canada, May
23-25, 2004, Revised Selected Papers, pages 293–308, 2005.

[11] Joeri de Ruiter. Personal communication in e-mail. from July,
28 2016.

[12] Taher El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In Proceedings of CRYPTO
84 on Advances in Cryptology, pages 10–18, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[13] Herman Galteland, Stig F. Mjølsnes, and Ruxandra F. Olimid.
Attacks on cmix - some small overlooked details. Cryptology
ePrint Archive, Report 2016/729, 2016. http://eprint.iacr.

org/2016/729.

[14] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson.
Hiding routing information. In R. Anderson, editor, Proceed-
ings of Information Hiding: First International Workshop, pages
137–150. Springer-Verlag, LNCS 1174, May 1996.

[15] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix
nets robust for electronic voting by randomized partial checking.
In Proceedings of the 11th USENIX Security Symposium, pages
339–353, Berkeley, CA, USA, 2002. USENIX Association.

[16] Shahram Khazaei and Douglas Wikström. Randomized partial
checking revisited. In Proceedings of the 13th International Con-
ference on Topics in Cryptology, CT-RSA’13, pages 115–128,
Berlin, Heidelberg, 2013. Springer-Verlag.

[17] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Formal
analysis of chaumian mix nets with randomized partial checking.
In Proceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, pages 343–358, Washington, DC, USA, 2014.
IEEE Computer Society.

148 H. Galteland, S. F. Mjølsnes and R. F. Olimid

[18] Jean-François Raymond. Traffic analysis: Protocols, attacks,
design issues, and open problems. In International Workshop
on Designing Privacy Enhancing Technologies: Design Issues in
Anonymity and Unobservability, pages 10–29, New York, NY,
USA, 2001. Springer-Verlag New York, Inc.

[19] Andrei Serjantov and Peter Sewell. Passive attack analysis for
connection-based anonymity systems. Computer Security – ES-
ORICS 2003: 8th European Symposium on Research in Com-
puter Security, Gjøvik, Norway, October 13-15, 2003. Proceed-
ings, pages 116–131, 2003.

[20] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed.
Anonymous connections and onion routing. In Proceedings of the
1997 IEEE Symposium on Security and Privacy, SP ’97, pages
44–54, Washington, DC, USA, 1997. IEEE Computer Society.

Attacks on the Basic cMix Design 149

Paper v

Jurisdictional adversaries monitoring and
reconstructing the Tor network
Herman Galteland and Kristian Gjøsteen

In submission, arXiv:1808.09237

Jurisdictional adversaries monitoring and

reconstructing the Tor network

Herman Galteland∗ and Kristian Gjøsteen

Department of Mathematical Sciences,
Norwegian University of Science and Technology, NTNU

{herman.galteland, kristian.gjosteen}@ntnu.no

Abstract

We model and analyze passive adversaries that monitor Tor
traffic crossing the border of a jurisdiction the adversary is con-
trolling. We show by simulations that a single jurisdiction is
able to connect incoming and outgoing traffic crossing its bor-
der, tracking the traffic, and that a coalition of jurisdictions is
able to reconstruct parts of the Tor network, revealing user-
website connections. We use two algorithms to estimate the
capabilities of the adversaries, the first simulates a Tor network
and the second analyzes data from the simulation and recon-
structs the network.

Keywords. Onion routing, anonymity, simulations.

1 Introduction

The Onion Router (Tor) protocol [9] is a well-established onion rout-
ing system that tries to provide a low-latency communications chan-
nel while also defending against network-level adversaries trying to

∗This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.nsm.stat.
no.

153

reveal who is talking to whom. It is well understood how the Tor net-
work behaves when an adversary compromises a fraction of the onion
routers, and in particular that if the entire network is monitored little
or no security is left.

In this paper we analyze the power of (coalitions of) less power-
ful adversaries who do not monitor onion router traffic directly, but
instead partition the network into jurisdictions and monitor traffic
crossing from one partition into another.

These kinds of adversaries are interesting because they are real, in
particular of the form of programs to monitor traffic crossing borders.
In 2008 the Swedish parliament passed a bill allowing the Swedish Na-
tional Defence Radio Establishment (Försvarets radioanstalt) to mon-
itor both wireless and cable signals passing the Swedish border [17].

In 2016, the Norwegian government appointed a group of ex-
perts to investigate whether or not the Norwegian Intelligence Service
should be allowed access to communication crossing the Norwegian
border, similar to the Swedish National Defence Radio Establishment.
The investigating report concluded that the Norwegian Intelligence
Service should be allowed to monitor the Norwegian border [11], how-
ever, this has not yet been put into effect.

Denmark [18], France [6], and the United Kingdom [29] have simi-
lar laws on how to gather and store digital information. It seems likely
that other countries either have or plan to have similar programs.

1.1 Related work

Formal analysis of the Tor protocol comes in two variants. The first
use an abstract model of the protocol and gives security bounds based
on a worst case adversary [2, 13, 15, 16, 19, 20]. The second includes
a detailed description of the protocols in their analysis when proving
the security bound [3, 22, 37].

Adversaries that observe both ends of a Tor circuit can connect
the user with the website it is communicating with [25, 28]. The liter-
ature has considered adversaries controlling: an autonomous system
(AS) [14, 34], an Internet exchange point (IXP) [26], and several ASes
and IXPs [22, 27]. It has been shown that ASes can observe both ends
of Tor circuits [37]. Tor path selection algorithms has been proposed

154 H. Galteland and K. Gjøsteen

to avoid detection from ASes [1, 12].

An adversary with access to timing, packet size, and direction of
packets sent over an encrypted HTTP tunnel can reveal the identity
of the server and user by traffic analysis attacks [4, 7, 21, 24, 33, 39].
Countermeasures to traffic analysis attacks includes padding mes-
sages [8] and morphing Tor traffic to mimic traffic associated to other
servers [39]. Note that hiding the packet length is insufficient [10].

Tor network simulators [31, 35] makes it possible to analyze the
effectiveness of adversaries versus the Tor protocol.

A stepping stone is an intermediate node used by an attacker to
conceal his identity. Algorithms used to detect stepping stones analy-
ses streams of traffic to confirm or reject the existence of intermediate
nodes between the analyzed traffic streams [5, 38].

1.2 Our contribution

In this paper we model and discuss a specific adversary versus the
Tor protocol. The jurisdictional adversary is similar to an adversary
controlling AS(es) or IXP(s), however, ASes and IXPs are typically
located inside a jurisdiction whereas we consider a passive adversary
that only monitors traffic crossing the border of a jurisdiction. Fur-
ther, an adversary controlling an AS or an IXP would see all traffic
inside their network whereas an adversary monitoring jurisdictional
borders would not.

We simulate a Tor network, which includes the adversaries mon-
itoring and storing traffic crossing their border. A chosen coalition
of jurisdictions is trying to reconstruct the simulated Tor network by
analyzing the stored data using traffic analysis. We do not morph the
Tor traffic since the adversaries are only interested in the existence of
traffic and not what it looks like.

Algorithms used to detect stepping stones analyzes streams of
traffic to find intermediate nodes between the streams. Similarly,
our reconstruction algorithm attempts to connect stream of traffic
between known onion routers to recreate circuits. The techniques
used to detect stepping stones could be used to detect onion routers.
The difference between the stepping stone literature and our work is
the adversary we are modeling and analyzing, where we assume that

Jurisdictions monitoring and reconstructing Tor 155

the location of all onion routers is already known and we want to
connect Tor traffic to reconstruct Tor circuits.

1.3 Overview

The model for our overlay network of Tor is in Section 3, this model is
used to classify the types of traffic, and connections, the jurisdictional
adversaries can observe, and create. The simulation algorithm is de-
scribed in Section 4 and the reconstruction algorithm in Section 5.
In Section 6 we present the reconstruction test results. We conclude
with a possible countermeasure against the adversaries and summa-
rize the adversaries in Section 7. We include the parameters used for
the reconstruction results in Appendix A.

2 Background

2.1 Tor

The Onion Router protocol is an anonymous communication proto-
col [9]. The Tor protocol uses intermediate nodes called onion routers
to achieve anonymity. A user establishes a circuit of onion routers
in the Tor network to communicate with a server, where each onion
router only knows the identity of its neighboring nodes. The first
onion router of a circuit is a guard node G and when a user creates a
new circuit he picks the guard node from a small set of onion routers,
the default Tor configuration is three guard nodes. The last onion
router communicates with the server on behalf of the user and is
called an exit node E. The Tor protocol does not ensure encryption
between the exit and the server and a malicious actor could abuse
the information. Only a few onion routers get marked as an exit and
it is believed that the majority of the exit nodes are honest. The in-
termediate node, between the guard and exit, is a relay node R. We
let circuit node refer to any of the nodes in a circuit. For simplicity
we assume that all circuits consist of one user, three onion routers,
and one server, which is the default Tor configuration. Restricting
circuits to contain only three onion routers is not essential for our
reconstruction algorithm.

156 H. Galteland and K. Gjøsteen

The user establishes a secret key with each onion router in the
circuit and encrypts data in layers when sending it to the server, where
each onion router removes one layer of encryption before relaying the
data to the next node. When the server sends data back to the user
each onion router encrypts the data and adds a layer. Note that we
are only interested in the flow of information and will not include any
encryption in our simulation.

3 Modeling jurisdictional adversaries

We describe the overlay network of the Tor network and use this
model to determine what types of traffic a jurisdiction could observe
and reconstruct.

3.1 Overlay network

The overlay network of the Tor network describes how information is
sent between circuit nodes. A node in the overlay network represents
a jurisdiction and an edge represents a communication connection
between two jurisdictions. A jurisdiction contains a number of circuit
nodes, where we assume the jurisdictions know which node is located
inside its border. Information is sent in the overlay network when
circuit nodes communicate. If two communicating circuit nodes are
located in the same jurisdiction then no information is sent, and if the
two circuit nodes are located in two different jurisdictions a network
path in the overlay network is chosen. This path shows how the traffic
is sent between jurisdictions, from the first jurisdiction containing
the sender circuit node to the last jurisdiction containing the receiver
circuit node, and determines which jurisdiction is able to observe the
traffic data sent between the two circuit nodes.

Note that we make a simplification. Traffic between two circuit
nodes inside a jurisdiction could very well cross the jurisdiction’s bor-
ders in the physical network. In fact, since routing is dynamic, it
could cross borders one day and not cross borders the next. Hence,
the adversaries get less information in our model than in the real
world.

Jurisdictions monitoring and reconstructing Tor 157

U G R E W

J1

Type 1

J2

Type 0

J3

Type 2

J4

Type 3

J5

Type 1

t1 t1 t2 t3

Figure 1: An example of the overlay network with a Tor circuit. U
denotes a user, G a guard node, R a relay node, E an exit node, W a
website, J1, . . . , J5 denotes five distinct jurisdictions, and t1, t2, t3 de-
notes timestamps for packets traveling between two circuit nodes. J1
and J5 observe Type 1 traffic, an endpoint. J2 observes Type 0, traffic
passing through. J3 observes Type 2 traffic, where an incoming and
an outgoing packet share a common node G and the timestamp differ-
ence |t1− t2| is close to an expected value. J4 observes Type 3 traffic,
where the observed incoming and outgoing packets do not share a
node but the timestamp difference |t2 − t3| is close to an expected
value. The solid line shows the network paths and the dashed line
shows the Tor circuit

3.2 Observable traffic

As a Tor user communicates with a website they both generate traffic
data. The user sends data packets to the first node of the circuit,
which forwards it to the next node in the circuit and so forth until
the website receives the user’s packets, similar for the website. Packet
data sent between two circuit nodes are transferred over a network
path and all jurisdictions in the path observe the packets’ metadata
information. We assume a jurisdiction learns the sender, receiver, and
direction of the packet and has the timestamp for when it observed
the packet. A packet is observed when it crosses the border of a
jurisdiction. A packet can be incoming, entering the jurisdiction,
outgoing, leaving the jurisdiction, or passing through a jurisdiction.

The jurisdictional adversaries want to reconstruct the Tor circuits
to reveal the sender and user, breaking the relationship anonymity [30]
of the Tor protocol. Using the observed packet data a jurisdiction can

158 H. Galteland and K. Gjøsteen

combine incoming and outgoing packets using traffic analysis. When
an onion router receives a packet it will either encrypt or decrypt it, to
add or remove an onion layer. This cryptographic computation takes
time and there will be a timestamp difference between the observed
incoming and outgoing packet. If the timestamp difference is close
to an expected value then the two observed incoming and outgoing
packets are most likely part of the same circuit, which means they can
be connected. The time it takes to send a packet over a network cable
is negligible compared to the time it takes for a circuit node to do its
cryptographic computations and we assume that sending packets over
a cable takes no time at all. We classify the types of connections a
jurisdiction can create from its observed packets into four categories,
see Figure 1 for a visual description;

Type 0 A single packet passing through the jurisdiction, where the
sender and receiver node of the packet is not located inside the
jurisdiction’s borders.

Type 1 A single packet ending in the jurisdiction, where either the
sender or the receiver node of the packet is located inside the
jurisdiction and is an endpoint of the circuit (a user or a web-
site).

Type 2 One incoming and one outgoing packet share a common
node inside the jurisdiction and the packets’ timestamp differ-
ence is close to an expected value.

Type 3 One incoming and one outgoing packet that do not share
a common node, but their timestamp difference is close to an
expected value.

Packets that can be connected are combined and stored as partial
circuits, each partial circuit contains a path of circuit nodes repre-
senting a partial Tor circuit and timestamps. We say a partial circuit
has length n if its path consists of n circuit nodes. The timestamps
are collected from the packet(s) it is created from, and all timestamps
of any packet which would make the same partial circuit. (Many sim-
ilar packets each with one timestamp makes one partial circuit with
many timestamps.) The timestamps may be ordered into different
sets to show the direction and flow of traffic over the partial circuit.

Jurisdictions monitoring and reconstructing Tor 159

Type 4

U G R E

R E W

t1

t2

(a) Two partial circuits
that share two nodes,
and there are enough
timestamps that are
equal t1 = t2.

Type 5

U G R

R E W

t1

t2

(b) Two partial circuits
that share one node,
and there are enough
timestamps differences
|t1 − t2| that are close
to an expected value.

Type 6

U G R E Wt1 t2

(c) Two partial circuits
that do not share any
nodes, however, there
are enough timestamps
differences |t1− t2| that
are close to an expected
value.

Figure 2: Examples of partial circuits and how they can be connected.
U denotes a user, G a guard node, R a relay node, E an exit node, W
a website, and t1, t2 denotes timestamps for packets traveling between
two circuit nodes.

3.3 Reconstructable traffic

It is very unlikely that a single jurisdiction is able to reveal the
sender and receiver of any circuit. A coalition, however, can combine
their analyzed partial circuits and potentially create complete Tor
circuits, breaking the relationship anonymity. The colluding jurisdic-
tions share their partial circuits with each other and try to combine
them. We want to track the packets traveling from one jurisdiction
to the next and look for partial circuits with paths that overlap, such
that we can make a longer path by combining them. We classify the
types of connections a coalition can create from its partial circuit, see
Figure 2 for a visual description;

Type 4 Two partial circuits with paths that share two common
nodes, where the two nodes are located at the end of the first and
at the beginning of the second, and there are enough timestamp
pairs, one from each partial circuit, that are identical.

Type 5 Two partial circuits with paths that share a common node,
where that node is located at the end of the first and at the
beginning of the second, and there are enough timestamp pairs,

160 H. Galteland and K. Gjøsteen

one from each partial circuit, that have a timestamp difference
that is close to an expected value.

Type 6 Two partial circuits with paths that do not share any com-
mon nodes, but there are enough timestamp pairs, one from
each partial circuit, that have a timestamp difference that is
close to an expected value.

Two partial circuits which combines into a Type 4 connection should
have identical timestamps. They share two nodes and the timestamps
sent between these two nodes are should be present in both partial
circuits.

Note that Type 5 and 6 connections are similar to Type 2 and 3
connections, the only difference is that partial circuits are being con-
nected instead of single packets and in our reconstruction algorithm
we reuse many of the methods for connecting these types of traffic.

4 Simulation algorithm

We describe our algorithm simulating the Tor network. The flow of
information is sent in our overlay network, detailed in Section 3. In
our simulator we assume that the adversaries are able to recognize
Tor traffic and only generate Tor traffic, since onion routers usually
only send Tor traffic to each other and all onion routers are known.
Further, we assume that the adversaries have analyzed the distribu-
tion of timing patterns of Tor traffic. They will use this knowledge
to statistically connect traffic entering and exiting their jurisdiction.

We initiate a network of jurisdictions, place onion routers, and
define the user and website distributions. When a user communicates
with a website, creates a new circuit, or destroys circuits we generate
data. All traffic generated is sent between circuit nodes in the form
of packets. Any data crossing the border of a jurisdiction is observed
and stored, either as incoming or outgoing traffic. This data will be
used in the reconstruction algorithm, detailed in Section 5.

We try to simulate the real world as best as we can, where infor-
mation about the Tor network is gathered from the Tor data analysis
website “Tor metrics” [36].

Jurisdictions monitoring and reconstructing Tor 161

4.1 Initializing an overlay network

Each initialized jurisdiction represents a real world country. Two
jurisdictions are connected by an edge if they share a border or if
they connected to the same underwater internet cable [32].

Guard, Relay, and Exit nodes are placed in jurisdictions, where
the location of each node is gathered from Tor metrics [36].

Users and websites are not placed in a jurisdiction at initialization,
they are chosen and created during the simulation. The distribution
of Tor users is gathered from Tor metrics [36] and a user can commu-
nicate with a website from any jurisdiction, hence, the websites are
uniformly distributed.

4.2 Generate packets

The simulation runs for n iterations and each iteration generates data
for a user that communicates with a website.

We pick either an existing ready user or create a new. If there is
a ready user, we create a new circuit if its existing one has been up
for more that 10 minutes. If there is no ready user we make a new
user with a fresh circuit. Creating circuits generates traffic data.

When a user and website communicate they sends data over the
circuit, where each node in the circuits sends packets to each other. A
packet includes a timestamp, the sender and receiver node, the circuit
ID of the Tor circuit, and packet length. It has the form

Timestamp Sender > Receiver (Circuit ID) Length.

Note that the circuit ID is only used to verify the output of the
reconstruction algorithm.

4.3 Time and timestamps

A global TIME parameter is used to maintain the order of the user’s
activity, it is increased by a positive value between each iteration.
The global parameter stays fixed during an iteration while the active
user’s time continues. As a packet is forwarded in the circuit the
nodes perform cryptographic operations on it, although we do not do

162 H. Galteland and K. Gjøsteen

the actual computations we add an onion router delay to the user’s
time. Similarly, we add a sender delay between packets sent from the
user and website.

A lognormal distribution is used to sample these delays. Each
onion router uses its own distribution to compute its delays, and
it is sampled from a family of lognormal distributions. We do not
know which distribution each onion router is using. We only know
the family of distribution, which is chosen such that the circuit round-
trip latency of the simulated network is close to the real Tor network’s
latency [36].

When the user has finished its activity in the current iteration it
is getting ready for its next by waiting, as if reading the website it is
communicating with. An activity delay is added to the user’s time,
which is uniform. Whenever the TIME parameter is larger than the
user’s time activity delay it can be chosen as a ready user.

4.4 Write observed traffic data

Each jurisdiction in the network path between two circuit nodes ob-
serves and stores the traffic. Each jurisdiction writes data to file as
either incoming or outgoing traffic, this data will be used in the re-
construction algorithm.

4.5 Runtime

The runtime of the simulation algorithm is mainly dominated by writ-
ing and storing all data generated, the number of iterations n deter-
mines how much data is generated. For each iteration we generate
traffic data for one Tor user, as it communicates with a website. Us-
ing the simulation parameters in Table 1, one iteration will on av-
erage generate 14,000 packets. However, more than one jurisdiction
observes each packet and on average 60,000 packets are stored each
iteration.

In wall-clock runtime for the simulation algorithm for: n = 1000
is roughly 5 minutes, n = 10000 is 4 hours, and n = 100000 is 11
hours.

Jurisdictions monitoring and reconstructing Tor 163

5 Reconstruction algorithm

We describe our reconstruction algorithm, where a coalition of juris-
dictions wants to reconstruct Tor circuits and reveal the sender and
website.

We partially reconstruct a simulated Tor network, created using
the algorithm described in Section 4, using the packets generated in
the simulation. Each jurisdiction (from a chosen set of collaborators)
process their observed data to make partial circuits, which will be
connected further to create complete Tor circuits. The jurisdictions
output is verified by comparing it with the real circuits created in
the simulation. We assume all Tor circuits has length five, this is not
essential for our algorithm.

5.1 Process observed packets

Each jurisdiction processes its observed packets to make partial cir-
cuits, using the classification discussed in Section 3. All packets are
labeled either as incoming, entering the jurisdiction, or outgoing, leav-
ing the jurisdiction. We iterate over all incoming packets and try to
combine each one with an outgoing packet. We only look at the out-
going packets which are close to the incoming packet, with respect
to time. We first look for trivial connections: incoming or outgoing
packets which can be classified as a Type 0 or 1 (packets passing
through or packets ending inside the jurisdiction). If the incoming
packet is not a trivial connection we look for an outgoing packet that
shares a common node with the incoming packet, that is, we try to
make a Type 2 connection. If there are no outgoing packets with a
common node we look for Type 3 connections, where we want to find
the outgoing packet which fits best with the incoming packet based on
their timestamp difference. For Type 2 and 3 we combine packets if
their timestamp difference is close to some expected value, this value
is the expected onion router delay and is derived from the family of
lognormal distributions used in the simulation algorithm.

All connections made are stored as partial circuits, which con-
tains the following information: a path of circuit nodes, four sets of
timestamps, a probability score, and a list of circuit IDs.

164 H. Galteland and K. Gjøsteen

The four sets of timestamps shows the flow of data traveling over
the path. Two of the sets represents packets traveling in one direction,
say from left to right, where one contains incoming timestamps on
the left side and one contains outgoing timestamps on the right side.
Similar for the remaining two sets where the direction is opposite of
the first two (from right to left).

The probability score is used to evaluate how likely the circuit is
part of a Tor circuit. The score is based on the time difference of
the packets the partial circuit is made from. Partial circuits made
from Type 0 and 1 connections have a score of zero. The score is
the output of the probability density function of a lognormal distri-
bution with the time difference as input. The distribution is derived
from the family of lognormal distributions. The closer the difference
is to the expected onion router delay the higher the score is. For
Type 2 and Type 3 connections we only connect an incoming packet
with the outgoing packet which results in the highest score. A partial
circuit’s probability score is equal to the sum of each of its packet
pair’s score.

To verify our data we use the Tor circuit IDs, where each circuit ID
is collected from the packets used to make the partial circuit. Each
Tor circuit has one unique ID, but a partial circuit can have more
than one ID stored. Note that we do not use the circuit IDs during
the reconstruction process, they are only used to verify the output.

When a jurisdiction has analyzed all of its packets we discard all
partial circuits that are most likely not part of a true Tor circuit, that
is, if it has a low probability score. We set the discard limit based on
trial and error, with a small discard limit we get a high false positive
rate and with a large discard limit we get a low reconstruction rate.

5.2 Process partial circuits

Colluding jurisdictions share their partial circuits with each other to
create complete Tor circuits. We start by finding partial circuits that
share two nodes, to find Type 4 connections. Then we look for partial
circuits that share one node, to make Type 5 connections. Following
by looking for partial circuits that have enough timestamps pairs, one
from each partial circuit, that have a timestamp difference close to

Jurisdictions monitoring and reconstructing Tor 165

the expected value, that is, Type 6 connections. If any new partial
circuit was created while looking for these three types of connections
we restart the partial circuit combination process, which is continued
until there are no more circuits to combine.

We create a new partial circuit when we combine two, where we
keep some of the data and discard some. We combine the two paths
and any overlapping nodes are merged together. The new partial
circuit only needs four sets of timestamps, where we take two from
the first partial circuit, say the two leftmost, and two from the second,
say the two rightmost. We calculate a new probability score for the
circuit, where we use the timestamps that is going to be discarded to
calculate the score, using the same method we use to scoring packets.
All circuit IDs contained in the two partial circuits are included in
the new.

The reconstruction algorithm terminates when there are no more
partial circuits to combine. The output is all partial circuits of length
three or longer, with a large enough probability score. Length five
partial circuits are the potential complete Tor circuits.

5.3 Evaluate results

In the simulation we store all Tor circuits created, including their
circuit IDs, and we use this to check the output of the reconstruction
algorithm.

We compare the partial circuit’s path with all simulated Tor cir-
cuits with a circuit ID that is equal to one of the partial circuit’s
stored IDs. The partial circuit is correct if the reconstructed path is
equal to, or part of, one of the simulated paths. That is, a partial
circuit is considered correct if its path is part of a simulated Tor cir-
cuit’s path and it was created using packet data that was indeed sent
over that Tor circuit.

We split the output into two groups: incorrect partial circuits,
showing the false positive rate, and correct partial circuits, from which
we get the reconstruction rate and the relationship revealing rate. The
reconstruction rate shows how much of the simulated Tor circuits the
algorithm reconstructed, and the relationship revealing rate shows
how many user-website connections we found.

166 H. Galteland and K. Gjøsteen

5.4 Runtime

The main contributing factor to the runtime of the reconstruction al-
gorithm is the number of packets, the second is the number of times-
tamps. The algorithm can be split into two parts: the first analyzes
packets to make partial circuits, the second analyzes and combines
partial circuits.

Let J denote the set of colluding jurisdictions, cooperating in
analyzing packets and partial circuits. Each jurisdiction J ∈ J ana-
lyzes its incoming and outgoing packets to combine them and stores
the timestamps. Let p denote the number of incoming packets J has
stored, we assume J also has p outgoing packets. We look through all
p incoming packets and for each of them we compare it with some of
the outgoing packets, we only connect packets that have timestamps
close to each other and keep a short list of outgoing packets with
timestamps close to the current incoming packet’s timestamp. Iterat-
ing over the packets is at most O(p log p). For each packet we connect,
we store its timestamp in a sorted list and inserting a timestamp is
O(p/k), where k is the number of partial circuits made by jurisdiction
J . The runtime of the packet analysis algorithm, for each jurisdiction
J , is O((p2 log p)/k), where p is the number of packets (incoming or
outgoing) J has stored and k is the number of partial circuits J has
made. The number of colluding jurisdictions |J | is a small constant.
As an optimization, we store all partial circuits a jurisdiction makes
and we only need to run the packet analysis algorithm for a jurisdic-
tion once. (If we want to change the set of collaborating jurisdictions
we do not have to redo the packet analysis every time.)

All partial circuits made by the colluding jurisdictions are an-
alyzed in the second part of the reconstruction algorithm. Let K
denote the total number of partial circuits. When we combine partial
circuits that share at least one common node we have a O(K logK)
method for iterating through them, similar to the packet analysis
method. However, when we combine partial circuits that do not share
any common node we need a O(K2) method for iterating through
them. We want to see if each partial circuit fits with all other, based
on their combined path and timestamps. If two partial circuits’ com-
bined path is logical, looks like a Tor circuit, then we evaluate their

Jurisdictions monitoring and reconstructing Tor 167

timestamps and give a probability score for how well the two partial
circuits fit together. Let t denote the number of timestamps a partial
circuit has. Evaluating the timestamps is O(t log t), using the method
for packet analysis, and if the new probability score is high enough
we create a new partial circuit and insert timestamps into sorted
lists, which is O(t). The runtime of the packet analysis algorithm is
O(K2t2 log t).

The wall-clock runtime of the reconstruction algorithm for: a sim-
ulated network with 1000 iterations and five jurisdictions is three
hours, a simulated network with 10000 iterations and five jurisdic-
tions is two and a half days.

5.5 Improvements

Our implementation is not perfect, and here we mention possible im-
provements to the reconstruction algorithm. The implementation is
written in python, where an implementation written in a different
language could be more efficient. Furthermore, each jurisdiction an-
alyzes their own data and can be run in parallel.

6 Reconstruction results

In the result we look at: the false positive rate, the reconstruction
rate, and the relationship revealing rate. The false positive rate shows
how many of the partial circuits are incorrect, the reconstruction and
the relationship revealing rate only look at the partial circuits that are
correct. The reconstruction rate shows how much of the simulated Tor
circuits is reconstructed, partial circuits of length three or longer are
used to find the reconstruction rate. The relationship revealing rate
shows how many partial circuits reveal the user-website connection.

6.1 Results

We simulate a Tor network, with a specified number of iterations,
and use the output of the simulation algorithm as input to the recon-
struction algorithm. We run the simulation algorithm once and the
reconstruction algorithm several times. Every time we reconstruct we

168 H. Galteland and K. Gjøsteen

6 8 10 12 14
0

20

40

60

80

Number of jurisdictions

P
er

ce
n
ta

g
e

Reconstruction %

Relationship revealing %

False positive %

6 8 10 12 14
0

20

40

60

80

Number of jurisdictions

P
er

ce
n
ta

ge

Reconstruction %

Relationship revealing %

False positive %

(a) Reconstructing a simulated net-
work with a large number of itera-
tions.

(b) Reconstructing a simulated net-
work with a small number of itera-
tions.

Figure 3: Comparing reconstruction results. The more iterations used
in the simulation the more data is generated, more data means more
connections can be made – both correct and false ones.

change the number of colluding jurisdictions. We include two recon-
struction tests, in the first we look at how many simulation iterations
affects the reconstruction results and in the second we look at how
the coalition size affects the reconstruction results. The parameters
used for the simulations are in Table 1, and the parameters used for
the reconstructions are in Table 2.

In the first reconstruction test we compare reconstruction results
from a simulation with a large number of iterations with reconstruc-
tion results from a simulation with a small number of iterations, see
Figure 3. The average number of active Tor users in the simulation
algorithm is close to the reported number of active users on Tor Met-
rics. The number of iterations specified for a simulation changes how
many users have been active, but the average number of active users
should still be the same for all simulations. We see that all three rates
are higher in the reconstruction results of the larger simulation. The
larger simulation generates more data and the reconstruction algo-
rithm has more to process, this means the reconstruction algorithm

Jurisdictions monitoring and reconstructing Tor 169

10 20 30 40
0

20

40

60

Number of jurisdictions

P
er

ce
n
ta

g
e

Reconstruction
Relationship revealing
False positive

Figure 4: Reconstruction results for an increasing number of jurisdic-
tions.

can make more connections and make more errors. By setting the cut-
off bound for the probability score higher in the larger reconstruction
we would get a lower false positive, reconstruction and relationship
revealing rate, and get a result closer to the smaller reconstruction.
Hence, having a larger number of iterations in the simulations only
means longer computation time, and we will therefore only run the
reconstruction algorithm on the smaller simulation for the second re-
construction test.

In the second reconstruction test we look at how the coalition size
affects the reconstruction results, see Figure 4. The simulated net-
work is always the same, we only change the number of jurisdictions
cooperating for each run of the reconstruction algorithm. After the
simulation algorithm is completed the jurisdictions are sorted based
on the amount of data they have stored, from big to small. The
jurisdiction coalition chosen for the n’th run of the reconstruction
algorithm is the first 5n jurisdictions in the sorted list. This means
that for each run of the reconstruction algorithm the coalition con-
sists of the jurisdictions used in the previous run plus five new ones.
For each new run of the reconstruction algorithm the five new juris-
dictions have less and less data to contribute to the coalition, hence,
all three rates flatten out and stabilize after 40 jurisdictions.

170 H. Galteland and K. Gjøsteen

U G R E W

Figure 5: Path selection where the jurisdictional adversaries are un-
able to connect the user U with the website W , since they can only
observe traffic sent to and from the guard node G, the relay node R,
and the exit node E.

We can only speculate as to why the reconstruction rate peaks
at 65 percent and the relationship rate peaks at 10 percent for the
second reconstruction test. This is partly because of how the Tor
network builds circuits and partly because of our implementation.
If a Tor circuit’s traffic doesn’t cross the border of a jurisdiction,
then no data is recorded and it can never be reconstructed. The
jurisdictions used for the reconstruction simply do not observe enough
data. Furthermore, we believe that each jurisdiction discards too
much information when analyzing their own data. When we combine
incoming and outgoing traffic we get a pile of leftovers, traffic that
has not been used to reconstruct. A better algorithm could possibly
reduce the amount of leftover traffic and find ways to use the leftovers.

7 Discussions

7.1 Path selection countermeasure

To be able to reconstruct a Tor circuit the jurisdictional adversaries
need to observe traffic sent to and from the user and the website.
If the traffic sent from the user to the guard node does not cross a
jurisdictional border then no traffic can be observed and the circuit
can never be fully reconstructed, similar for when the exit node and
the website communicate. If the user specifies its Tor circuit such
that the traffic that crosses the jurisdictional borders is sent between
onion routers then the adversaries cannot see the user or the website
and are never able to connect them.

Jurisdictions monitoring and reconstructing Tor 171

The following Tor circuit selection prevents the jurisdictional ad-
versaries breaking the relationship anonymity. A user U wants to
connect to a website W . The user chooses the onion routers as fol-
lows: the guard node G should be situated in the same jurisdiction as
the user U , the relay node R can be in any jurisdiction, and the exit
node E should be located inside the same jurisdiction as the website
W . See Figure 5.

Note that this path selections only avoids the jurisdictional ad-
versaries, it is possible that other types of adversaries could break
the relationship anonymity if the users use this path selections. For
example, an adversary corrupting single onion routers can see traffic
sent inside a jurisdiction if a circuit visits a corrupted node, and can
possibly see the user or website of the circuit.

7.2 Passive global adversaries

We claim that the best attack the jurisdictional adversary can do is
to passively observe Tor traffic, and a coalition of jurisdictions are
therefore a passive global adversary versus the Tor network.

Tor uses a TLS connection between circuit nodes (except between
the exit node and the website), which provides confidentiality and
message integrity [8] and implies that Tor is IND–CCA [23]. Any
active attack against messages sent between circuit nodes will be de-
tected and prevented. The best attack the adversaries can do is to
passively observe Tor traffic, and possibly stop traffic.

Each jurisdictional adversary indirectly monitor all onion routers
inside its jurisdiction. If the jurisdictional adversaries cooperates in
reconstructing Tor circuits they quickly become global, since they
monitor a large portion of the onion router. In addition, a large set
of jurisdictions has the power to reveal the relationship of a circuit if
they choose to do so.

References

[1] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. LAS-
Tor: A Low-latency AS-aware Tor Client. IEEE/ACM Trans.

172 H. Galteland and K. Gjøsteen

Netw., 22(6):1742–1755, December 2014.

[2] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian
Meiser, and Esfandiar Mohammadi. AnoA: A framework for
analyzing anonymous communication protocols. In Proceedings
of the 2013 IEEE 26th Computer Security Foundations Sympo-
sium, CSF ’13, pages 163–178, Washington, DC, USA, 2013.
IEEE Computer Society.

[3] Michael Backes, Aniket Kate, Sebastian Meiser, and Esfan-
diar Mohammadi. (Nothing else) MATor(s): Monitoring the
Anonymity of Tor’s Path Selection. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 513–524, New York, NY, USA, 2014.
ACM.

[4] George Dean Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy vulnerabilities in encrypted http
streams. In Proceedings of the 5th International Conference on
Privacy Enhancing Technologies, PET’05, pages 1–11, Berlin,
Heidelberg, 2006. Springer-Verlag.

[5] Avrim Blum, Dawn Song, and Shobha Venkataraman. Detec-
tion of interactive stepping stones: Algorithms and confidence
bounds. In Erland Jonsson, Alfonso Valdes, and Magnus Alm-
gren, editors, Recent Advances in Intrusion Detection, pages 258–
277, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[6] Conseil d’Etat. Loi no. 2015-912 du 24 juillet 2015. Le livre VIII
“Du renseignement”, 2015.

[7] Thomas Demuth. A passive attack on the privacy of web users
using standard log information. In Roger Dingledine and Paul
Syverson, editors, Proceedings of Privacy Enhancing Technolo-
gies workshop (PET 2002). Springer-Verlag, LNCS 2482, April
2002.

[8] T. Dierks and E. Rescorla. The transport layer security (TLS)
protocol version 1.2. RFC 5246, RFC Editor, August 2008. http:
//www.rfc-editor.org/rfc/rfc5246.txt.

Jurisdictions monitoring and reconstructing Tor 173

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The second-generation onion router. In Proceedings of the
13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[10] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas
Shrimpton. Peek-a-boo, i still see you: Why efficient traffic anal-
ysis countermeasures fail. In Proceedings of the 2012 IEEE Sym-
posium on Security and Privacy, SP ’12, pages 332–346, Wash-
ington, DC, USA, 2012. IEEE Computer Society.

[11] Digitalt grenseforsvar. https://forsvaret.no/etjenesten/

dgf. Accessed: 2017-10-04.

[12] Matthew Edman and Paul Syverson. As-awareness in Tor path
selection. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS ’09, pages 380–389,
New York, NY, USA, 2009. ACM.

[13] Nathan S. Evans, Roger Dingledine, and Christian Grothoff. A
Practical Congestion Attack on Tor Using Long Paths. In Pro-
ceedings of the 18th Conference on USENIX Security Symposium,
SSYM’09, pages 33–50, Berkeley, CA, USA, 2009. USENIX As-
sociation.

[14] Nick Feamster and Roger Dingledine. Location diversity in
anonymity networks. In Proceedings of the 2004 ACM Workshop
on Privacy in the Electronic Society, WPES ’04, pages 66–76,
New York, NY, USA, 2004. ACM.

[15] Joan Feigenbaum, Aaron Johnson, and Paul Syverson. A
model of onion routing with provable anonymity. In Proceed-
ings of the 11th International Conference on Financial Cryp-
tography and 1st International Conference on Usable Secu-
rity, FC’07/USEC’07, pages 57–71, Berlin, Heidelberg, 2007.
Springer-Verlag.

174 H. Galteland and K. Gjøsteen

[16] Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Proba-
bilistic analysis of onion routing in a black-box model. ACM
Trans. Inf. Syst. Secur., 15(3):14:1–14:28, November 2012.

[17] Försvarsdepartementet. lag (2008:717), 2008.

[18] Forsvarsminister. Lov nr. 602 af 12-06-2013, 2013.

[19] Nethanel Gelernter and Amir Herzberg. On the limits of prov-
able anonymity. In Proceedings of the 12th ACM Workshop on
Workshop on Privacy in the Electronic Society, WPES ’13, pages
225–236, New York, NY, USA, 2013. ACM.

[20] Alejandro Hevia and Daniele Micciancio. An indistinguishability-
based characterization of anonymous channels. In Nikita Borisov
and Ian Goldberg, editors, Privacy Enhancing Technologies: 8th
International Symposium, PETS 2008 Leuven, Belgium, July
23-25, 2008 Proceedings, pages 24–43, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[21] Andrew Hintz. Fingerprinting websites using traffic analysis.
In Proceedings of the 2nd International Conference on Privacy
Enhancing Technologies, PET’02, pages 171–178, Berlin, Heidel-
berg, 2003. Springer-Verlag.

[22] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and
Paul Syverson. Users get routed: Traffic correlation on Tor by
realistic adversaries. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS
’13, pages 337–348, New York, NY, USA, 2013. ACM.

[23] Jonathan Katz and Moti Yung. Unforgeable encryption and cho-
sen ciphertext secure modes of operation. In Gerhard Goos, Juris
Hartmanis, Jan van Leeuwen, and Bruce Schneier, editors, Fast
Software Encryption: 7th International Workshop, FSE 2000
New York, NY, USA, April 10–12, 2000 Proceedings, pages 284–
299, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[24] Marc Liberatore and Brian Neil Levine. Inferring the source of
encrypted http connections. In Proceedings of the 13th ACM

Jurisdictions monitoring and reconstructing Tor 175

Conference on Computer and Communications Security, CCS
’06, pages 255–263, New York, NY, USA, 2006. ACM.

[25] Steven J. Murdoch and George Danezis. Low-cost traffic analysis
of Tor. In Proceedings of the 2005 IEEE Symposium on Secu-
rity and Privacy, SP ’05, pages 183–195, Washington, DC, USA,
2005. IEEE Computer Society.

[26] Steven J. Murdoch and Piotr Zieliński. Sampled traffic analy-
sis by internet-exchange-level adversaries. In Proceedings of the
7th International Conference on Privacy Enhancing Technolo-
gies, PET’07, pages 167–183, Berlin, Heidelberg, 2007. Springer-
Verlag.

[27] Rishab Nithyanand, Oleksii Starov, Phillipa Gill, Adva Zair, and
Michael Schapira. Measuring and Mitigating AS-level Adver-
saries Against Tor. In Proceedings of the Network and Distributed
Security Symposium - NDSS ’16. Internet Society, February
2016.

[28] Lasse Øverlier and Paul Syverson. Locating hidden servers. In
Proceedings of the 2006 IEEE Symposium on Security and Pri-
vacy, SP ’06, pages 100–114, Washington, DC, USA, 2006. IEEE
Computer Society.

[29] Parliament of the United Kingdom. Investigatory powers act
2016, 2016.

[30] Andreas Pfitzmann and Marit Hansen. A terminology for talk-
ing about privacy by data minimization: Anonymity, unlinkabil-
ity, undetectability, unobservability, pseudonymity, and identity
management, 2010.

[31] shadow-plugin-tor wiki. https://github.com/shadow/

shadow-plugin-tor/wiki. Accessed: 2018-02-19.

[32] Submarine Cable Map. https://github.com/telegeography/

www.submarinecablemap.com. Accessed: 2018-10-25.

176 H. Galteland and K. Gjøsteen

[33] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical identifica-
tion of encrypted web browsing traffic. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, SP ’02, Washington,
DC, USA, 2002. IEEE Computer Society.

[34] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jen-
nifer Rexford, Mung Chiang, and Prateek Mittal. RAPTOR:
Routing attacks on privacy in Tor. In Proceedings of the 24th
USENIX Security Symposium, August 2015.

[35] The Tor path simulator, torps. https://github.com/torps/

torps. Accessed: 2018-06-07.

[36] Tor Metrics. https://metrics.torproject.org/. Accessed:
2018-10-23.

[37] Chris Wacek, Henry Tan, Kevin S. Bauer, and Micah Sherr. An
empirical evaluation of relay selection in Tor. In NDSS, 2013.

[38] Xinyuan Wang, Douglas S. Reeves, and S. Felix Wu. Inter-
packet delay based correlation for tracing encrypted connections
through stepping stones. In Proceedings of ESORICS 2002, pages
244–263, October 2002.

[39] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson. Spot me if you can: Uncovering spoken phrases in en-
crypted voip conversations. In 2008 IEEE Symposium on Secu-
rity and Privacy (sp 2008), pages 35–49, May 2008.

Jurisdictions monitoring and reconstructing Tor 177

A Simulation and reconstruction parameters

Table 1: Parameters and data of the simulations used in the results.

Iterations Packets sent Data stored

Small simulation 1000 14, 001, 560 0.69 GB
Large simulation 10000 141, 404, 190 5.16 GB

Table 2: Parameters and data of the reconstruction algorithm.

Probability score
lower bound

Jurisdictions Type 2 Type 3

Figure 3
US, GB, AU, CA, NZ,
DK, FR, NL, NO,
BE, DE, IT, ES, SE

10 20

Figure 4

DE, US, FR, RU, GB,
PL, NL, UA, JP, DK,
CN, CA, NO, BG, AE,
IT, SE, CH, TR, GR,
FI, AT, RO, MD, CZ,
ID, ES, PT, IN, IS,
HU, BE, IE, BR, AU,
SG, SC, TH, SK, LU,
HR, HK, PK, MY, LV,
DJ, ZA, KR, IR, EG,
LT, VE, VN, MX, TW,
PH, AR, CR, IL, EE,
SA, PA, CL, SI, CO,
BN, KZ, GE, BY, CY,
AZ, MA, AO, OM, NZ,
RS, CW, KG, CM, JO,
KE, BD, ZM, KN, SN,
QA, NA, TZ, BA, DO,
UZ, AL, AM, MN, LK,
GH, SD, MZ, PY, KW

10 20

178 H. Galteland and K. Gjøsteen

Paper vi

Verifiable Random Secrets and
Subliminal-Free Digital Signatures

Herman Galteland and Tjerand Silde

In submission

Verifiable Random Secrets and Subliminal-Free

Digital Signatures

Herman Galteland∗and Tjerand Silde

Department of Mathematical Sciences,
Norwegian University of Science and Technology, NTNU
{herman.galteland, tjerand.silde}@ntnu.no

Abstract

We propose a protocol for subliminal-free post-quantum dig-
ital signatures. This is the first construction to achieve sublim-
inal-free digital signatures in the post-quantum setting. The
core of our protocol is a way to generate subliminal-free verifi-
able secret randomness, called a verifiable random secret (VRS)
scheme, which is of independent interest. The VRS ensures that
the randomness used in the signature is honestly generated, and
contains no extra embedded information.

A VRS is an interactive protocol between two parties where
the goal is to create some randomness in a way such that at the
end of the protocol run the randomness is known to the prover
but not to the verifier. The verifier will learn a commitment to
the randomness and a proof of correctness, so that he can verify
that the randomness was generated honestly, and to allow him
to verify that it is used properly in subsequent applications.
We require the randomness to be unpredictable to both parties
until the protocol is completed, and unpredictable to the verifier
even after the protocol is over.

Subliminal digital signatures were introduced by Simmons
(CRYPTO 1983) and he proposed an interactive subliminal-free

∗This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.nsm.stat.
no.

181

signature protocol for signatures based on the hardness of the
discrete logarithm problem, but it was never proved secure. We
propose a VRS similar to Simmons’ solution, combine the VRS
with Schnorr-signatures, and prove it secure.

Our main contribution is a post-quantum secure subliminal-
free digital signature scheme combining a lattice-based VRS
with lattice-based signatures. The VRS uses the commitment
scheme from Baum et al. (SCN 2018) and their efficient zero-
knowledge proofs of linear relations together with the proof of
shuffle of known content by Baum et al. (IN SUBMISSION‡)
which is built on top of the same commitment scheme. The
VRS can be used to create verifiable secret randomness to be
used in the lattice-based signature framework by Lyubashevsky
(EUROCRYPT 2012).

Subliminal digital signatures can e.g. be a threat against
two-factor authentication systems when the second device is
malicious. Boneh et al. (IEEE S&P 2019) gave a solution to
this problem for signatures based on the hardness of computing
discrete logarithms over elliptic curves, and our protocol can be
an alternative solution for lattice-based signatures.

Keywords: post-quantum cryptography, subliminal chan-
nels, digital signatures, verifiable random secrets, zero knowl-
edge-proofs.

1 Introduction

A subliminal channel is a solution to Simmons’s Prisoners’ Prob-
lem [46], where two prisoners want to communicate covertly over an
overt channel controlled by a Warden. The prisoners are allowed to
send signed messages, to verify who sent the message, but the mes-
sages themselves have to be sent in the clear so that the Warden can
read their content. To communicate covertly the prisoners can create
a subliminal channel, where the subliminal messages are encoded into
the signatures. Only the prisoners, which have some shared secret
knowledge, can recover the subliminal messages, and all signatures
look normal to everyone else.

The goal of the subliminal sender and receiver, the prisoners, is

‡Will be published on eprint and/or in conference proceedings spring 2020.

182 H. Galteland and T. Silde

to communicate covertly, and the goal of the Warden is to prevent
any subliminal channel. In this paper we will focus on achieving the
Warden’s goal of creating a subliminal-free signature scheme.

Constructing subliminal-free digital signature schemes for classical
adversaries is solved [8, 9, 19, 52]. Constructing post-quantum secure
subliminal-free digital signature schemes has been an open problem
until now, and designing such a protocol is the main contribution in
our paper.

1.1 Warden Model

The subliminal sender S and receiver R want to reliably communicate
discretely over a communication channel controlled by the Warden W.
Before a signature is generated S and W interact to jointly produce
a random value, known to S but secret to W, which will be used to
create a signature, and S creates a proof that the random value was
honestly generated and that the signature was indeed created using
that random value. The sender sends the message-signature-proof
tuple to W, which verifies the signature and checks the proof. If, and
only if, the proofs are valid then W sends the message-signature pair to
R. The proofs are only sent to W and cannot be used to send subliminal
messages.

The sender will be able to choose his own public and secret signing
keys, however, S will not be able to change the keys during the signing
process. Warden will abort any messages if the signature is invalid
with respect to the verification key of S and close the channel. Also,
if S aborts during the signing process, e.g. if the signature does not
include the subliminal bits and he wants to re-try, Warden closes the
channel.

We assume that S and R may have shared secret information be-
fore they start communicating: a secret key for a suitable symmetric
cryptosystem, and the signing key. The secret key is used to encrypt
the subliminal messages to make them indistinguishable from a ran-
dom value, and the signing key can be used to recover subliminal
messages. The sender is allowed to cheat during key generation to
produce any desired key.

We are not interested in hiding information in the messages them-

VRFs and Subliminal-Free Digital Signatures 183

selves, called steganography. We will assume that S is given a message
to sign. We are only interested in the case where S tries to encode
subliminal messages into the signature.

1.2 Subliminal-Free Digital Signatures

Our work builds upon the subliminal-free digital signature scheme
with proof definition of Bohli et al. [8], where they constructed a
subliminal-free variant of ECDSA. We give a similar definition of a
subliminal-free digital signatures scheme and construct a post-quan-
tum subliminal-free digital signatures scheme based on lattices.

We get a subliminal-free digital signature scheme if S is unable
to choose any of the values used to generate a signature, specifically
random values. If S can choose the randomness then he can decide
the final outcome of the signature and insert a subliminal message.
We introduce the verifiable random secrets (VRS) scheme and use
it together with Schnorr-like digital signatures schemes to create a
subliminal-free digital signature scheme. The VRS is used by S and W

to jointly generate a verifiable random number, which will be used to
produce a signatures. The sender also need to include a proof showing
that the random number generated in the VRS was used to produce
the signature.

A VRS is an interactive protocol between a prover and a verifier
that generates verifiable random numbers, that are known only to
the prover and unpredictable for everyone else, and with proofs to
convince the verifier that the randomness was generated honestly.
VRSs are inspired by the verifiable random functions (VRFs) of Micali
et al. [36], the main difference between a VRF and a VRS is that the
random number is secret in a VRS and public in a VRF.

Schnorr-like digital signature schemes follow the same structure as
zero-knowledge proofs of knowledge of opening of a commitment. The
prover sends a new commitment of a random value to the verifier, the
verifier replies with a challenge, and the sender generates a response
using the challenge and the secret opening. This protocol can be
made non-interactive using the Fiat-Shamir heuristic [22], where the
challenge is generated by a hash function. If the message is a part of
the input to the hash function we get a digital signature scheme.

184 H. Galteland and T. Silde

The lattice-based signature scheme of Lyubashevsky [33, 34] fol-
lows the same pattern as Schnorr’s digital signature scheme: commit-
ment, challenge, and response. The signer samples a random vector,
computes the challenge using a hash function, and the response is
generated using the random value, challenge, and secret signing key.
Lyubashevsky’s scheme uses rejection sampling to discard certain sig-
natures, where a signature is sometimes rejected to make the signature
distribution independent of the secret key.

We give two VRS schemes and two subliminal-free digital signa-
ture schemes: a Diffie-Hellman (DH) based VRS with Schnorr sig-
natures and a lattice-based VRS with lattice signatures ala Lyuba-
shevsky. Our main contribution is the lattice based subliminal-free
digital signature scheme. The DH based subliminal-free digital sig-
nature scheme is similar to Simmons’s scheme, where we show that it
is secure and subliminal-free in the Warden Model.

1.3 Related Work

Simmons introduced the notion of subliminal channels as a solution
to his prisoners’ problem [46]. Two partners in crime are arrested
and put into separate parts of a jail. The prisoners wish to commu-
nicate with each other, to plan their escape, and the Warden allows
them to send messages if he can read the content of the messages
sent, hoping to learn about any potential escape plan. The prisoners
are allowed to sign their messages and can verify that they are sent
from a prisoner and not from the Warden. This is an authentication
without secrecy communication channel controlled by the Warden.
The problem of the prisoners is to make a subliminal channel that
stays undetected by the Warden, and the problem of the Warden is
to prevent any subliminal channels. Simmons showed that subliminal
channels exists in digital signature schemes [47–49] and since more
have been found [3, 9, 23, 26, 32, 53].

Desmedt was the first to construct and locate subliminal-free dig-
ital signature schemes [15], which since has been continued [8, 9, 19,
45, 49, 50, 52]. Bohli et al. introduced the notion of a subliminal-free
with proof signature scheme, where the sender of a signature sends a
proof to the Warden, and only to the Warden, that proves the signa-

VRFs and Subliminal-Free Digital Signatures 185

ture sent is subliminal-free [8]. In divertible protocols [6, 12, 13, 40]
a third party can be inserted between the two communication princi-
pals, where the third party can remove or detect subliminal messages.
A cryptographic reverse firewalls [14, 37] sits around a user’s computer
and modifies messages to: maintain the usability of the user’s com-
puter; preserve security of the protocol generating the message, and;
hinder information leaking from the computer to the outside world.

NIST’s post-quantum standardization project have asked for dig-
ital signature schemes [39], and all digital signature schemes accepted
to the second round are not subliminal free [23]. The CRYSTAL-
Dilithium [20] and qTesla [2] submissions, however, are similar to
Schnorr signatures and can potentially become subliminal-free using
our techniques.

The idea of verifiable random secrets is inspired by the notion of
verifiable random functions (VRF) introduced by Micali, Rabin and
Vadhan [36]. A VRF is a pseudo-random function that outputs a
random number and a proof stating that the function, with a given
input, produced the random number. The first VRF constructions [1,
17, 18] had limitations; they are either interactive, had a small input
space, and/or did not achieve full adaptive security. In the recent
years VRF constructions “with all desired properties” [10, 27–31, 43,
51] have been made, which do not have any of these limitations.

1.4 Our Contribution

We introduce the notion of verifiable random secrets scheme and
show how it can be used, together with Schnorr-like digital signature
schemes, to construct subliminal-free digital signature schemes. We
give two constructions following this framework; one Diffie-Hellman
based, similar to Simmons’s subliminal-free DSA scheme, and one
post-quantum scheme based on lattices. Our contribution in the
Diffie-Hellman based scheme is to formalize Simmons’s subliminal-
free DSA scheme and prove it secure.

186 H. Galteland and T. Silde

1.5 Organization

In Section 2 we give general background information and in Section 3
and 4 we give the background information needed for our Diffie-
Hellman based schemes and lattice-based schemes, respectively. We
introduce verifiable random secrets in Section 5 and give definitions
related to subliminal channels and subliminal-free digital signature
schemes in Section 6. Our constructions are in Section 7, and we
comment about the size and efficiency of the schemes in Section 8

2 Preliminaries

2.1 Notation

Let S be a set and Alg(·) an algorithm. Then, by s ← Alg(·) we

mean that s is assigned the output of Alg(·), by s
$← S we mean that

s is assigned an uniformly random element of S (unless a specific
distribution is specified), and by s ← s′ we mean that s is assigned
the value s′. Let λ be the security parameter, then ε(λ) is a negligible
function in the security parameter.

2.2 Schnorr Groups

A Schnorr group is a large prime-order subgroup of Z∗p, the multi-
plicative group of integers modulo p for some prime p. Let q be a
prime and r be a positive integer such that p = qr + 1. Further, for
a h such that 1 < h < p and hr 6≡ 1 mod p, then g ≡ hr mod p is a
generator for a subgroup of Z∗p of order q.

2.3 The Polynomial Ring Rp and the Respective Norms

Let p, r ∈ N+ and N = 2r. Then we define the rings R = Z[X]/〈XN+
1〉 and Rp = R/〈p〉, that is, Rp is the ring of polynomials modulo
XN + 1 with integer coefficients modulo p. We define the norms of
elements

f(X) =
∑

αiX
i ∈ R

VRFs and Subliminal-Free Digital Signatures 187

to be the norms of the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi| ||f ||2 =

(∑
α2
i

)1/2
||f ||∞ = max

i∈{1,...,n}
{|αi|}.

For an element f̄ ∈ Rp we choose coefficients as the representatives

in
[
−p−1

2 , p−1
2

]
, and then compute the norms as if f̄ is an element in

R. For vectors a = (a1, . . . , ak) ∈ Rk we define the 2-norm to be

‖a‖2 =
√∑

‖ai‖22,

and analogously for the ∞-norm. We omit the subscript in the case
of the 2-norm.

2.4 Short elements in Rp

It can be seen from Corollary 1.2 in [35] that sufficiently short ele-
ments in Rp are invertible. In the following, we assume for simplicity
that the parameters are set such that all non-zero elements of∞-norm
at most 2 are invertible in Rp. We furthermore define

C = {c ∈ Rp | ‖c‖∞ = 1, ‖c‖1 = ν} ,

which consists of all elements in Rp that have trinary coefficients
and are non-zero in exactly ν positions. This means that for any
two distinct c, c′ ∈ C, the difference c − c′ is invertible as well. For
convenience, denote by

C̄ =
{
c− c′ | c 6= c′ ∈ C

}

the set of such differences.

2.5 Discrete Gaussian Distribution

The continuous normal distribution over Rk centered at v ∈ Rk with
standard deviation σ is given by

ρ(x)Nv,σ =
1√
2πσ

exp

(−||x− v||2
2σ2

)
.

188 H. Galteland and T. Silde

When sampling randomness for our lattice-based commitment scheme,
we’ll need samples from the discrete Gaussian distribution. This dis-
tribution is achieved by normalizing the continuous distribution over
Rk by letting

N k
v,σ(x) =

ρkNv,σ(x)

ρkNσ (Rk)
,

where x ∈ Rk and ρkNσ (Rk) =
∑

x∈Rk ρ
kN
σ (x). When σ = 1 or v = 0,

they are omitted.

The most efficient way to sample elements from a discrete Gaus-
sian distribution is using rejection sampling. Rejection sampling is a
technique used to sample from a distribution Φ0, using samples from
a similar distribution Φ1. Let Φ0 and Φ1 be two distributions defined
over the same domain S, whose probability mass functions are effi-
ciently computable. Let M be a constant such that Φ0(x) ≤M ·Φ1(x)
for all x ∈ S. Then the distribution generated by the algorithm in
Figure 1 will output samples distributed according to Φ0 while only
using samples from Φ1 and a uniform distribution. The performance
of the algorithm depends strongly on how similar Φ0 and Φ1 are, in
particular, how small the scaling factor M is.

Rejection Sampling

Input: distributions Φ0,Φ1 and constant M s.t. Φ0(x) ≤M · Φ1(x)∀x
Output: x from the distribution Φ0

1 : x
$← Φ1

2 : u
$← [0, 1]

3 : if u ≤ Φ0(x)

M · Φ1(x)
then goto 1

4 : Return: x

Figure 1: Rejection sampling algorithm.

There are other ways to sample elements from a discrete Gaussian
distribution. Another method is called the Box-Muller transform [11].
This method is not as efficient, but on the other hand, it is determin-
istic when given samples from a uniform distribution. We will make

VRFs and Subliminal-Free Digital Signatures 189

use of this in our protocol. The transform works as follows: given
two independent samples u1 and u2 from a uniform distribution on
the unit interval, let

z0 =
√
−2u1 cos(2πu2), and

z1 =
√
−2u1 sin(2πu2).

Then z0 and z1 are independent random variables from the standard
normal distribution N with mean µ = 0 and standard deviation σ =
1. To get samples from a distribution Nσ for σ 6= 1 we just multiply
z0 and z1 by σ. Lastly, we note that if we add z0 and z1, then
z2 = z0+z1 is distributed accordingly to N2σ. However, these samples
are continuous and not discrete; we solve this by rounding to the
closest integer.

2.6 The k-SUM Problem

The k-sum problem (k-SUM) is a variant of the subset sum problem
(SSP). SSP is a NP-complete decision problem where given a set of n
integers a1, a2, . . . , an and a number S; is there a non-empty subset of
a1, a2, . . . , an whose sum is S? This decision problem is as hard as its
search-equivalent. The k-SUM problem is the problem of deciding if
there is a subset of size k of a1, a2, . . . , an whose sum is S. It can easily
be shown that SSP reduces to k-SUM, as a polynomial time k-SUM-
solver easily could be used to solve SSP by trying k = 1, 2, . . . , n until
it finds a solution. Further, the decision variant of k-SUM is as hard
as the search variant of k-SUM, as one could find the subset of size
k by removing elements one-by-one and check if we have a solution
or not for the new set. Given a n and a k, the fastest algorithms for
solving k-SUM runs in O(nk/2) [21].

2.7 Subliminal-Free with Proof Signature Scheme

We include the following definition of Bohli et al. [8] for comparison,
where we give our definition of a subliminal-free signature scheme in
Section 6.3 followed by a note on the differences between our definition
and that of Bohli et al.

190 H. Galteland and T. Silde

Definition 1 (Subliminal-Free with Proof Signature Scheme [8]). A
subliminal-free with proof signature scheme is a quintuple of algo-
rithms (K,KSF ,S,V, C), where

- The key generation algorithm K takes the security parameter
l as input and returns a pair of verification and signing keys
(vk, sk).

- The subliminal-free key generation algorithm KSF takes vk and
sk as input and generates the information ci that the warden
needs for checking the signature computation.

- The signing algorithm S takes a message m and the signing key
sk as input and produces a valid signature σ for m under vk and
a proof t.

- The verification algorithm V takes a message m, a signature σ
and the public verification key vk as input and returns 1 if σ is
a valid signature for m with respect to vk, and 0 otherwise.

- The checking algorithm C takes a message m, a signature σ, a
verification key vk, the checking information ci and a proof t
as input, and returns 1 if V(m,σ, vk) = 1 and (σ, t) is a valid
output of S(m, sk).

Moreover, for any algorithm A taking the security parameter l as in-
put, the probability of giving as output values vk, sk, ci,m, σ1, σ2, t1, t2
such that (vk, sk), ci are computationally indistinguishable from the
output of K and KSF , respectively, σ1 6= σ2 and C(m,σ1, vk, ci, t1) =
C(m,σ2, vk, ci, t2) = 1 is negligible in the security parameter l.

2.8 Diffie-Hellman Problems

Definition 2 (Discrete Logarithm Problem). Fix a cyclic group G
of prime order q with generator g. The advantage of an algorithm A

solving the Discrete Logarithm (DL) problem for G and g is

AdvDL
G (A) = Pr[ExpDL

G (A) = 1],

where the experiment ExpDL
G (A) is given in Figure 2 (left).

VRFs and Subliminal-Free Digital Signatures 191

Definition 3 (Decisional Diffie-Hellman Problem). Fix a cyclic group
G of prime order q with generator g. The advantage of an algorithm
A solving the Decisional Diffie-Hellman (DDH) problem for G and g
is

AdvDDH
G (A) =

∣∣∣Pr[ExpDDH-1
G (A) = 1]−Pr[ExpDDH-0

G (A) = 1]
∣∣∣

where the experiment ExpDDH-b
G (A) is given in Figure 2 (right).

ExpDL
G (A) :

X
$←−G

x← A(g,X)
if gx = X

return 1
else

return 0

ExpDDH-b
G (A) :

x, y, r
$←−Zq

X ← gx;Y ← gy

if b = 0
Z ← gxy

else
Z ← gr

b′ ← A(g,X, Y, Z)
return b′

Figure 2: The DL experiment ExpDL
G (A) (left). The DDH experiment

ExpDDH-b
G (A) (right).

2.9 Commitment Schemes

Commitment schemes were first introduced by Blum [7], and have
since become an essential component in many advanced cryptography
protocols.

Definition 4 (Commitment Scheme). A commitment scheme con-
sists of three algorithms: key generation (KeyGen), commitment (Com)
and opening (Open), where

- KeyGen, on input the security parameter 1λ, outputs public pa-
rameters pp,

- Com, on input a message m, outputs a commitment c and ran-
domness r,

192 H. Galteland and T. Silde

- Open, on input m, c and r, outputs either 0 or 1,

and the public parameters pp are implicit input to Com and Open.

Definition 5 (Completeness). We say that the commitment scheme
is complete if honestly generated commitment are accepted by the
opening algorithm. Hence, we want that

Pr

[
Open(m, c, r) = 1 :

pp← KeyGen(1λ)
(c, r)← Com(m)

]
= 1.

Definition 6 (Hiding). We say that a commitment scheme is hid-
ing if an adversary A, after giving two messages m1 and m2 to a
commitment oracle Ocom and receiving the commitment c to either m1
or m2 (chosen at random), cannot distinguish which message c is a
commitment to. Hence, we want that

2 · |Pr


b = b′ :

pp← KeyGen(1λ)
(m1,m2)← A(pp)

b
$← {0, 1}, c← Ocom(mb)

b′ ← A(c)


−

1

2
| ≤ ε(λ).

Definition 7 (Binding). We say that commitment scheme is binding
if an adversary A, after creating a commitment c to a messages m,
cannot find a valid opening of c to a different message m̂. Hence, we
want that

Pr




m 6= m̂
Open(m, c, r) = 1
Open(m̂, c, r̂) = 1

:

pp← KeyGen(1λ)
m← A(pp)

(c, r)← A(m)
(m̂, r̂)← A(m, c, r)


 ≤ ε(λ).

Definition 8 (Unconditional and Computational Adversaries). We
say that a commitment scheme is unconditionally hiding if the scheme
is hiding against an unbounded adversary, and we say that it is com-
putationally hiding if the scheme is hiding against a bounded prob-
abilistic time adversary. We say that a commitment scheme is un-
conditionally binding if the scheme is binding against an unbounded
adversary, and we say that it is computationally binding if the scheme
is binding against a bounded probabilistic time adversary.

2.10 Digital Signature Schemes

Definition 9 (Digital Signature Schemes). A digital signature scheme
consists of three algorithms: key generation (KeyGen), signing (Sign)
and verification (Verify), where

VRFs and Subliminal-Free Digital Signatures 193

- KeyGen, on input the security parameter 1λ, outputs public pa-
rameters pp, a signing key sk, and a verification key vk,

- Sign, on input a message m and sk, outputs a signature σ,

- Verify, on input m, σ and vk, outputs either 0 or 1,

and the public parameters pp are implicit input to Sign and Verify.

We require the digital signature scheme to be complete (sometimes
also referred to as correct), and to be secure against existential forgery
under an adaptive chosen message attack, following the definitions
from Goldwasser et al. [25].

Definition 10 (Completeness). We say that the digital signature
scheme is complete if honestly generated signatures are accepted by
the verification algorithm. Hence, we want that

Pr

[
Verify(m,σ, vk) = 1 :

(pp, sk, vk)← KeyGen(1λ)
(σ)← Sign(m, sk)

]
= 1.

Definition 11 (Existential Forgeability). We say that the digital sig-
nature scheme is secure against existential forgeability if an adversary
A, after given valid signatures σi of messages mi of A’s choice from
a signing oracle Osign, cannot forge a signature on any new message
under the same public-private key pair. Hence, we want that

Pr

[
m̂ 6∈ {mi}

Verify(m̂, σ̂, vk) = 1
:

(pp, vk)← KeyGen(1λ)
(m̂, σ̂)← AOsign (pp, vk, {mi})

]
≤ ε(λ).

Here {mi} is the set of messages signed by the signing oracle Osign.

2.11 Zero-Knowledge Proofs

These definitions are based on Goldwasser et al. [24]. Let L be a
language, and let R be a relation on L. Then, x is an element in L, if
there exists a witness w such that (x,w) ∈ R.

Definition 12 (Zero-Knowledge Proofs). An interactive zero-knowl-
edge proof protocol Π consists of two parties: a prover P and a verifier
V, and a setup algorithm (Setup), where Setup, on input the secu-
rity parameter 1λ, outputs public setup parameters sp. The protocol
consist of a transcript T of the communication between P and V, with
respect to sp, and the conversation terminates with V outputting ei-
ther 1 or 0. Let 〈P(sp, x, w), V(sp, x)〉 denote the output of V on input
x after its interaction with P, who has a witness w.

194 H. Galteland and T. Silde

Definition 13 (Completeness). We say that a zero-knowledge proof
protocol Π is complete if V outputs 1 when P knows a witness w.
Hence, for any sampling algorithm P0 we want that

Pr


〈P(sp, x, w), V(sp, x)〉 = 1 :

sp← Setup(1λ)
(x,w)← P0(sp)

(x,w) ∈ R


 = 1.

Definition 14 (Soundness). We say that a zero-knowledge proof pro-
tocol Π is sound if a cheating prover P∗ that does not know a witness
cannot convince V. Hence, for any x not in the language L

Pr

[
〈P∗(sp, x, ·), V(sp, x)〉 = 1 :

sp← Setup(1λ)
∀x 6∈ L

]
≤ 1

2
.

Definition 15 (Honest-Verifier Zero-Knowledge). We say that a zero-
knowledge proof protocol Π is honest-verifier zero-knowledge if a hon-
est but curious verifier V∗ that follows the protocol cannot learn any-
thing else than the fact that x ∈ L. Hence, we want, for real accepting
transcript T〈P(sp,x,w),V(sp,x)〉 between a prover P and a verifier V, and
a accepting transcript S〈P(sp,x,·),V(sp,x)〉 generated by simulator S that
only knows x, that

2 · |Pr



b = b′ :

sp← Setup(1λ)
T1 = T〈P(sp,x,w),V(sp,x)〉 ← Π(sp, x, w)
T2 = S〈P(sp,x,·),V(sp,x)〉 ← S(sp, x)

b
$← {0, 1}, T′ ← Tb
b′ ← V∗(T′, sp, x)



− 1

2
| ≤ ε(λ).

2.12 Verifiable Random Functions

We give the definition of a verifiable random function based on the
work by Micali et al. [36].

Definition 16 (Verifiable Random Functions). A verifiable random
function scheme consists of three algorithms: key generation (KeyGen),
function evaluation (Eval) and verification (Verify), where

- KeyGen, on input the security parameter 1λ, outputs a public
function f, an evaluation key sk, and a verification key vk,

- Eval, on input a element x and sk, outputs an evaluation y =
f(sk, x) and a proof π,

- Verify, on input x, y, π and vk, outputs either 0 or 1,

VRFs and Subliminal-Free Digital Signatures 195

and the public function f is implicit input to Eval and Verify.

Definition 17 (Completeness). We say that a verifiable random
function scheme is complete if the verification algorithm always ac-
cepts the result of a honest evaluation of the function. Hence, we want
that

Pr

[
Verify(x, y, π, vk) = 1 :

(f, sk, vk)← KeyGen(1λ)
(y, π)← Eval(x, sk)

]
= 1.

Definition 18 (Uniqueness). We say that a verifiable random func-
tion scheme is uniquely provable if an adversary A, after creating an
evaluation y of x together with a proof π, cannot find another valid
evaluation ŷ and proof π̂ to x. Hence, we want that

Pr




y 6= ŷ
Verify(x, y, π, vk) = 1
Verify(x, ŷ, c, π̂, vk) = 1

:
(f, sk, vk)← KeyGen(1λ)

(x, y, π, ŷ, π̂)← A(f, sk, vk)


 ≤ ε(λ).

Definition 19 (Pseudorandomness). We say that a verifiable ran-
dom function scheme is pseudorandom if an adversary A, after given
valid evaluations yi with proofs πi of inputs xi of A’s choice from a
evaluation oracle Oeval, for a known f, cannot distinguish if a value
y is a valid evaluation of a x of A’s choice with respect to f, or if y
is a random string. Hence, we want that

2 · |Pr




x 6∈ {xi}
b = b′ :

(f, sk, vk)← KeyGen(1λ)
{(yi, πi)} ← AOeval (f, vk, {xi})
x← A(f, vk, {(xi, yi, πi)}),

(y′, π)← Eval(x, sk), ŷ
$← {0, 1}len(y′)

b
$← {0, 1}, y ← by′ + (1− b)ŷ

b′ ← A(f, x, y)



− 1

2
| ≤ ε(λ).

3 Pedersen Commitments and Schnorr Signa-
tures

We present the two building blocks of our discrete logarithm vased
subliminal-free digital signature scheme.

3.1 Pedersen Commitments

An example of a commitment scheme based on the discrete logarithm
problem is the Pedersen commitment, introduced by Pedersen [41].

196 H. Galteland and T. Silde

Definition 20 (Pedersen Commitments). Let 〈g〉 = G = 〈h〉 be a
Schnorr group of prime order q with generators g and h. The Peder-
sen commitment scheme consists of three algorithms: key generation
(KeyGen), commitment (Com) and opening (Open), where

- KeyGen, on input the security parameter 1λ, outputs public pa-
rameters g, h and G,

- Com, on input a message m ∈ Zq, outputs, for r
$← Zq, a com-

mitment c = gmhr and randomness r,

- Open, on input m, c and r, outputs 1 if c
?
= gmhr, and 0 other-

wise

and the public parameters pp are implicit input to Com and Open.

This commitment scheme is computationally binding and uncon-
ditionally hiding, as long as solving the discrete logarithm of g to the
base h is hard. However, if we always let r = 0, we get a commitment
scheme that is unconditionally binding, but not hiding for arbitrary
messages.

3.2 Schnorr Signatures

We will later combine Pedersen commitments with Schnorr signa-
tures [44], which was proven secure in the random oracle model by
Pointcheval and Stern [42].

Definition 21 (Schnorr Signatures). Let G = 〈g〉 be a Schnorr group
of prime order q with generator g, and let H : G × {0, 1}∗ → Zq be a
hash-function. The Schnorr digital signature scheme consists of three
algorithms: key generation (KeyGen), signing (Sign) and verification
(Verify), where

- KeyGen, on input the security parameter 1λ, outputs public pa-

rameters g, q and G, a signing key sk
$← Zq, and a verification

key vk = gsk,

- Sign, on input a message m ∈ {0, 1}∗ and sk, outputs, for

r
$← Zq, a signature σ = (R, y) = (gr, sk · H(R,m) + r mod q),

VRFs and Subliminal-Free Digital Signatures 197

- Verify, on input m, σ and vk, outputs 1 if gy
?
= vk · RH(R,m),

and 0 otherwise,

and the public parameters g, q and G are implicit input to Sign and
Verify.

4 Lattice-Based Cryptography

Here we introduce the building blocks of our lattice-based verifiable
random secret scheme and signature scheme.

4.1 Lattice-Based Commitments

We briefly present the lattice based commitment scheme by Baum
et al. [4], and refer to the paper for more details. The commitment
scheme come together with an efficient zero-knowledge proof of linear
relations that will be useful later.

Definition 22 (Lattice-Based Commitments [4]). Let Rp be the ring
of polynomials modulo XN +1 with integer coefficients modulo p. The
lattice based commitment scheme consists of three algorithms: key
generation (KeyGen), commitment (Com) and opening (Open), where

- KeyGen, on input the security parameter 1λ, outputs a public
matrix A such that

A =

[
a
a′

]
=

[
1 a1 a2

0 1 a3

]
,where a1, a2, a3

$← Rp,

- Com, on input a message m ∈ Rp, samples an r
$← R3

p where
‖r‖∞ = 1, and computes

c = Com(m; r) = A · r +

[
0
m

]
=

[
c1

c2

]
,

and returns c and d = (m; r, 1),

198 H. Galteland and T. Silde

- Open, on input (m, r, f) with f ∈ C̄, verifies the opening by
checking if

f ·
[
c1

c2

]
?
= A · r + f ·

[
0
m

]
,

and that ‖ri‖ ≤ 4σ
√
N for r = (r0, r1, r2) with σ = 11 ·ν ·

√
3N .

It outputs 1 if all these conditions holds, and 0 otherwise. The
challenge space C̄ is defined as in Section 2.4

4.2 Lattice-Based Zero-Knowledge Proofs

We present two zero-knowledge protocols later to be used in our lattice
based verifiable random secret scheme.

Definition 23 (Zero-Knowledge Proof of Linear Relations). Define
the following three commitments:

[x1] = Com(x1; r) =

[
c1

c2

]
,

[x2] = Com(x2; r′) =

[
c′1
c′2

]
,

[x3] = Com(x3; r′′) =

[
c′′1
c′′2

]
.

Let [x1] , [x2] and [x3] be such that x3 = α1x1+α2x2 for some α1, α2 ∈
Rp. Then ΠSum in Figure 3 is a zero-knowledge proof of knowledge
(ZKPoK) of this fact (it is an adapted version of the linearity proof
in [4]), and Figure 4 is the verification algorithm for the proof. This
protocol can easily be extended to prove the linear relation between
more than three elements by increasing the dimension of the protocol
to be the number of summands times the size of each commitment.
Let π ← ΠSum(([x1] , [x2]), [x3] , (α1, α2)) denote the run of the ΠSum-
protocol to prove the relation x3 = α1x1 + α2x2 producing a proof
π = ((t, t′, t′′), β, (z, z′, z′′)). If α1 = α2 = 1, then the scalars are
omitted in the input. Let 0 ∨ 1 ← ΠSumV(([x1] , [x2]), [x3] , (α1, α2), π)
denote the verification of this proof.

VRFs and Subliminal-Free Digital Signatures 199

ΠSum

Prover Verifier

y,y′,y′′ ← N 3
σ

t← ay

t′ ← ay′

t′′ ← ay′′

u← α1a
′y + α2a

′y′ − a′y′′ t, t′, t′′, u

β β ← C

z ← y + βr

z′ ← y′ + βr′

z′′ ← y′′ + βr′′

Abort with probability:

∏

(b,b′)∈{(r,z),(r′,z′),(r′′,z′′)}

(
1−min

(
1,

N 3
σ (b′)

M · N 3
βb,σ(b′)

))
z, z′, z′′

ΠSumV

Figure 3: Protocol ΠSum is a zero-knowledge protocol to prove the
relation x3 = α1x1 +α2x2, given the commitments [x1] , [x2] , [x3] and
the scalars α1, α2.

ΠSumV

Verifier

return Accept iff

1 : ‖zi‖ , ‖z′i‖ , ‖z′′i ‖
?
≤ 2σ

√
N

2 : az
?
= t+ βc1

3 : az′
?
= t′ + βc′1

4 : az′′
?
= t′′ + βc′′1

5 : α1a
′z + α2a

′z′ − a′z′′
?
= (α1c2 + α2c

′
2 − c′′2)β + u

Figure 4: Verification step for the ΠSum protocol.

200 H. Galteland and T. Silde

Zero-Knowledge Proof of Correct Shuffle

Prover Verifier

ρ ρ
$← Rp

M̂i = m̂i − ρ M̂i = m̂i − ρ
Mi = mi − ρ [Mi] = [mi]− ρ

θi
$← Rq, θ0 = θτ = 0

Di = [θi−1Mi + θiM̂i]
{Di}τi=1

β β
$← Rp

s1 = θ1 − β
M1

M̂1

si = θi + θi−1
Mi

M̂i

− si−1
Mi

M̂i

sτ−1 = θτ−1
Mτ

Mτ−1
+ (−1)τ−1β

M̂τ

Mτ−1
{si}τ−1i=1 ΠSumV

Figure 5: The public-coin zero-knowledge protocol of correct shuffle.

Definition 24 (Zero-Knowledge Proof of Correct Shuffle). In the
unpublished work by Baum et al. [5] they give an efficient protocol
ΠShuffle for a Neff-like shuffle of known values [38] for the lattice-
based commitments by Baum et al. [4]. Given a list of elements
(M̂1, M̂2, . . . , M̂τ) from Rp and commitments (c1, c2, . . . , cτ), we can
prove that the ci’s are commitments to the M̂γ(i)’s, for some se-

cret permutation γ of the indices. Let π ← ΠShuffle({M̂i}, {ci}, γ)
denote the run of the shuffle-protocol, with proof π. Let 0 ∨ 1 ←
ΠShuffleV({M̂i}, {ci}, γ) denote the verification of this proof.

4.3 Lattice-Based Signatures

The most efficient lattice based signature schemes are based on the
Schnorr-like signatures by Lyubashevsky [33, 34]. However, the zero-
knowledge proof of opening given by Baum et al. [4] follows this exact
structure. Let Rp be the message space, let H be a hash function
H : Rp × Rp → C and let vk = c be the public verification key,

VRFs and Subliminal-Free Digital Signatures 201

ΠOpen

Prover Verifier

y ← N 3
σ

t← ay t

d d← C

z ← y + dr

Abort with probability:

1−min

(
1,

N k
σ (z)

M · N k
dr,σ(z)

)
z

‖zi‖ ≤ 2σ
√
N

az
?
= t+ dc1

Figure 6: Zero-Knowledge Proof of Knowledge of Opening of c =
Com(x; r).

where c = Com(0; r) is a commitment to 0 with randomness r, and
let the secret key sk = r. Then the protocol ΠOpen in Figure 6
can be turned into a signature scheme by applying the Fiat-Shamir
transform where d = H(t,m), for a messagem ∈ Rp. Let σ = (t, z)←
Sign(m, sk) denote the run of the signature algorithm with signature
σ, and, further, let 0 ∨ 1← Verify(pk,m, σ)) denote the verification
of this signature.

5 Verifiable Random Secrets

A VRF has a lot of useful properties. However, the constructions are
based on the fact that you make the randomness public for anyone
to verify. This makes it useless for e.g. digital signature schemes,
which require the randomness to be secret to provide security. On
the other hand, the verifier must be able to verify that the random
value is generated in some certain unpredictable way, to avoid that
the prover intentionally can choose randomness to his own advantage.
One could imagine this being done in a zero-knowledge proof. The
problem in this case is that we want to generate some random element

202 H. Galteland and T. Silde

we want to use later, and hence, we cannot just prove that we have
generated a random element, but also have to provide information
that can be included in a subsequent application.

A verifiable random secret (VRS) scheme is an interactive protocol
where the prover wants to produce a secret random value, and publish
a commitment of the value together with a proof to convince the
verifier that the secret is randomly generated. This can be done in the
following way: first the prover commits to a random value and sends
the commitment to the verifier. The verifier then returns a random
challenge to the prover, which he in turn uses to generate a final
commitment and a proof. The commitment contains a random value
which was unpredictable for the prover until he got the challenge, and
is secret to the verifier even after the protocol is completed. Anyone
with access to the final commitment and the proof can check that
the commitment was generated in a proper way, and hence, will be
convinced that the content is random.

We want the VRS to have similar security properties as the VRF
and the ZKP. Therefore, we adapt some of the security notions from
VRFs and ZKPs, but change them slightly to fit the new setting.

Definition 25 (Verifiable Random Secrets). A Verifiable Random
Secret-scheme (VRS) consists of a function r(·, ·), an interactive pro-
tocol seed (ΠSeed) and five algorithms: setup (Setup), commit (Com),
challenge (Challenge), generation (Generate) and check (Check),
where

- Setup, on input the security parameter 1λ, outputs public pa-
rameters sp,

- ΠSeed, on input sp, outputs a random seed s,

- Com, on input a seed s, outputs a commitment c̃ of s and an
opening d̃,

- Challenge, on no input, outputs a random challenge t,

- Generate, on input a commitment c̃, an opening d̃ and a chal-
lenge t, outputs a commitment c, an opening d of c (containing
r = r(s, t)) and a proof π,

- Check, on input c̃ and c, challenge t, and proof π, outputs 0
or 1,

VRFs and Subliminal-Free Digital Signatures 203

and the public parameters sp are implicit input to all algorithms fol-
lowing Setup.

Remark 1. In the interactive protocol ΠSeed there may be one or
more participants. Any participant of the protocol may be dishonest
during the seed generation. The output seed may be given to any or
all participants.

The first thing we require from a VRS is that it is complete.

Definition 26 (Completeness). We say that the VRS is complete
if a prover P always can convince a honest verifier V that a honestly
generated proof is valid. Hence, we want that

Pr



Check(c̃, t, c, π) = 1 :

sp← Setup(1λ)
s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t)




= 1.

The interactive VRS is visualized in Figure 7. Further, we use games
to define the security of the scheme, and continue by defining Bind-
ing, Prover bit-Unpredictability, Verifier Secrecy and Honest-Verifier
Secrecy for a VRS.

VRS

Prover sp← Setup(1λ) Verifier

s← ΠSeed(sp)

(c̃, d̃)← Com(s) c̃

t t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t) (c, π)

0 ∨ 1← Check(c̃, t, c, π)

Figure 7: Our abstract verifiable random secret scheme.

Definition 27 (Binding). We say that the VRS is binding, if a cheat-

ing prover P∗ cannot find a new opening d̂ 6= d and a new commitment

204 H. Galteland and T. Silde

ĉ 6= c accepted together with the proof π, where (c, d, π) was gener-
ated in a honest run of the protocol, depending on the commitment c̃
and the challenge t. We define the binding advantage AdvB of the
cheating prover P∗ to be:

AdvB(P∗) = Pr




c 6= ĉ, d 6= d̂
Check(c̃, t, c, π) = 1
Check(c̃, t, ĉ, π) = 1

:

s← ΠSeed(sp)

(c̃, d̃)← P∗(·)
t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t)

(ĉ, d̂)← P∗(s, c̃, d̃, t, c, d, π)



.

Definition 28 (Prover bit-Unpredictability). We say that the VRS
has prover bit-unpredictability if, given a balanced predicate function
f of a cheating prover P∗’s choice, the predicate f(r) of the value
r, where r is a function of the seed s and the challenge t, is un-
predictable for P∗. We let P∗ choose a bit b̂, and define the prover
bit-unpredictability advantage AdvPbU

f of a cheating prover P∗, with
respect to f , to be:

AdvPbU
f (P∗) = 2 · |Pr




Check(c̃, t, c, π) = 1 ∧ f(r) = b̂
∨

Check(c̃, t, c, π) = 0 ∧ b̃ = 1

:

s← ΠSeed(sp)

(c̃, d̃, f, b̂)← P∗(·)
t← Challenge(·)

(c, d, r, π)← P∗(c̃, d̃, t, s)

b̃
$← {0, 1}



− 1

2
|.

Definition 29 ((Strong) Verifier Secrecy). We say that the VRS has
strong verifier secrecy, if a cheating verifier V∗ is unable to distinguish
between a honestly generated value r and a random r sampled from the
set R = {r(s, t) : s← ΠSeed, t← Challenge}, where r is a function of
the seed s and the challenge t. We define the (strong) verifier secrecy

advantage Adv(s)VS of a cheating verifier V∗ to be:

Adv(s)VS(V∗) = 2 · |Pr




b = b̂ :

b
$←− {0, 1}

s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← V∗(c̃)

(c, d, π)← Generate(c̃, d̃, t)

r0 ← r(s, t), r1
$←−R

b̂← V∗(c̃, t, c, π, rb)




− 1

2
|.

Definition 30 ((Strong) Honest-Verifier Secrecy). We say that the
VRS has strong honest-verifier secrecy, if a honest but curious ver-
ifier V∗ is unable to distinguish between a honestly generated value r
and a random r sampled from the set R = {r(s, t) : s ← ΠSeed, t ←
Challenge}, where r is a function of the seed s and the challenge t.

VRFs and Subliminal-Free Digital Signatures 205

We define the (strong) honest-verifier secrecy advantage Adv(s)HVS

of a honest verifier V∗ to be:

Adv(s)HVS(V∗) = 2 · |Pr




b = b̂ :

b
$←− {0, 1}

s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t)

r0 ← r(s, t), r1
$←−R

b̂← V∗(c̃, t, c, π, rb)




− 1

2
|.

Definition 31 ((Weak) Verifier Secrecy). We say that the VRS has
weak verifier secrecy if, given a balanced predicate function f of a
cheating verifier V∗’s choice, the predicate f(r) of the value r, where
r is a function of the seed s and the challenge t, is unpredictable for
V∗. We let V∗ choose a bit b̂, and define the (weak) verifier secrecy

advantage Adv
(w)VS
f of a cheating verifier V∗, with respect to f , to

be:

Adv
(w)VS
f (V∗) = 2 · |Pr




(Check(c̃, t, c, π) = 1

∧f(r) = b̂)
∨

(Check(c̃, t, c, π) = 0

∧b̃ = 1)

:

s← ΠSeed(sp)

(c̃, d̃)← Com(s)
(t, f)← V∗(c̃)

(c, d, π)← Generate(c̃, d̃, t)

b̂← V∗(c̃, t, c, π)

b̃
$← {0, 1}



− 1

2
|.

Definition 32 ((Weak) Honest-Verifier Secrecy). We say that the
VRS has weak honest-verifier secrecy if, given a balanced predicate
function f of an honest verifier V∗’s choice, the predicate f(r) of
the value r, where r is a function of the seed s and the challenge
t, is unpredictable for a honest but curious verifier V∗. We let V∗

choose a bit b̂, and define the (weak) honest-verifier secrecy advantage

Adv
(w)HVS
f of a honest verifier V∗, with respect to f , to be:

Adv
(w)HVS
f (V∗) = 2 · |Pr



Check(c̃, t, c, π) = 1

∧f(r) = b̂)
:

s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← Challenge(·), f ← V∗(c̃, t)

(c, d, π)← Generate(c̃, d̃, t)

b̂← V∗(c̃, t, c, π)



− 1

2
|.

Remark 2. We note a cheating verifier V∗ always can be turned into a
honest verifier if V∗ have to commit to his challenge before he receives
the commitment of the seed. This would increase the communication
complexity of the protocol, but at the same time make it easier to
prove security.

206 H. Galteland and T. Silde

Remark 3. For the honest-verifier secrecy we want the outcome to
be unpredictable for a cheating verifier, and if he is unable to predict a
bit of the random value then we have achieved what we want and weak
honest-verifier secrecy. If the verifier is unable to distinguish between
a randomly generated and a honestly generated random value, as in
the strong honest-verifier secrecy, then he is unable to predict any bits
of the honestly generated value. That is, strong honest-verifier secrecy
implies weak honest-verifier secrecy.

Definition 33 (ε-Security). A VRS is said to be ε-secure, for an ε
negligible in the security parameter λ, if all of the advantages is less
than ε. That is, we have ε-security if

AdvS(P∗) ≤ ε(λ), AdvPbU
f (P∗) ≤ ε(λ), AdvHVS

f (V∗) ≤ ε(λ),

where AdvHVS
f (V∗) could be Adv

(w)HVS
f (V∗) or Adv

(s)HVS
f (V∗).

Remark 4. We note that in this protocol, both the prover and the
verifier are incentivised to be honest with regards to drawing properly
random elements for the seed s and the challenge t, respectively. For
the former, the prover wants to keep his secret value unpredictable
for the verifier, so that he cannot guess the randomness used in the
subsequent application. For the latter, the verifier wants to make it
infeasible for the prover to control the outcome and infeasible to give
a fake proof of the randomness used in the subsequent application.

Remark 5. We also note that the only contribution of the verifier
(before verifying the proof) is to provide some randomness, and hence,
the protocol is public coin. It follows that we can use the Fiat-Shamir
heuristics to make the protocol non-interactive by letting t = H(sp, c̃)
(and s if it is public), for a hash-function H. In this scenario, the
prover sends the transcript (c̃, c, π) to the verifier, and store c, d him-
self. The verifier then run the Check algorithm as usual to make
sure that everything is correct. However, not that in this case we
lose Prover bit-Unpredictability, where P∗ can try as many times that
he wants before he sends the proof, and hence, he’s able to control a
few bits of r. This may or may not be important for the subsequent
application.

VRFs and Subliminal-Free Digital Signatures 207

6 Subliminal-Free Digital Signatures

6.1 How to Achieve a Subliminal-Free Channel?

Let S be the sender, R be the receiver and W the warden. We consider
S, R and W to all be probabilistic polynomial time algorithms. Let C be
an information channel controlled by W, allowing S to send information
to R. We want to define what it means for C to be a subliminal-free
channel, and in particular, what it means for C to be a subliminal-free
channel when C is a message authentication without secrecy channel.
That is, a covert-free channel where messages from S are sent in the
clear to R together with a signature. Then R can be sure that the
message indeed is from S. Further, W want to be sure that there
is no extra hidden information being sent. There are a lot of ways
to encode information into a message-signature pair, where we are
only interested preventing methods that encodes information into the
signature, see the Warden Model in Section 1.1.

In our model S can hide a subliminal message in the signature,
in which R later can extract using some pre-shared information. Sig-
natures can be either deterministic or probabilistic. If the signature
scheme has been made deterministic by derandomizing it, W could re-
quire S to prove in zero-knowledge that the randomness used in the
signature is deterministically generated. If the signature scheme does
not use any randomness, and is deterministic, S is not required to
prove anything. In the case of probabilistic signatures, a subliminal
signer could easily choose a subliminal message (or an encryption of
a subliminal message) to be the randomness used in the signature,
independent of the message being sent. Hence, if allowing probabilis-
tic signature schemes, we must be able to restrict S’s control over the
choice of randomness used in the signatures. By using a VRS we are
able to do this. Also in this case we require a proof stating that the
signature is honestly generated.

Lastly, we require C to be a reliable channel. In some cases the
honestly generated randomness used in the signature is equal to the
subliminal message S wants to send. This could happen if the sub-
liminal messages is very short, or divided into small pieces of sizes
down to only 1 bit per signature. If S gets to decide if he want to

208 H. Galteland and T. Silde

send the authenticated message or not, after given the message to
send, or after interaction with W, or after signature-generation, then
this can be used to create a subliminal channel. For every signature,
S checks if his subliminal message is embedded or not; if it is, then
S sends the message, otherwise he aborts and tries again. This was
pointed out by Desmedt [16]. It follows that the warden cannot allow
S to abort if he wants the channel to be subliminal-free. However,
if S is using a probabilistic signature scheme and is allowed to gen-
erate the signatures in a verifiable but non-interactive manner, he
will be able to abort without W noticing. This seems to be inherit in
the construction, and we will thereby give two different definitions of
subliminal-free digital signatures, where the relaxed notion will allow
a small subliminal channel in the construction, given that S have to
work exponentially hard to achieve this.

6.2 Subliminal and Subliminal-Free Digital Signatures

We continue by more informally define what we mean by subliminal
and subliminal-free digital signature schemes.

Definition 34 (Subliminal Digital Signatures). Let m be a fixed mes-
sage, S a signature scheme, m̂ a subliminal message chosen by S∗ and
s some secret pre-shared information between S∗ and R∗. Then we
say that S is a subliminal digital signature scheme if S∗ can encode
m̂ into a signature σ using an algorithm EncodeS∗, where σ is a valid
signature of m with respect to S, that can be decoded by R∗ using an
algorithm DecodeR∗ but cannot be decoded nor detected by W. That is,

- EncodeS∗ on input the message m, signing key sk, and sublim-
inal message m̂, outputs a valid signature σ of the message m
and a valid proof π,

- DecodeR∗ on input a message m, a signature σ, and secret pre-
shared information s, outputs the subliminal message m̂.

Definition 35 (Subliminal-Free Digital Signatures). Let m be a fixed
message, S a signature scheme, m̂ a subliminal message chosen by S

and s some secret pre-shared information between S and R. Further,
let σ be a valid signature of m with respect to S and let π be a proof of

VRFs and Subliminal-Free Digital Signatures 209

correctness, both potentially generated by interaction between S and W.
Assume that W will close the channel if S deviates from the protocol.
Then we say that S is a subliminal-free digital signature scheme if S

cannot reliably both create a proof π accepted by W and at the same
time encode a subliminal message m̂ into σ that can be decoded by R

but cannot be decoded nor detected by W.

However, as noted earlier, if S is a probabilistic signature scheme,
then S can undetectably abort the protocol after generating a sig-
nature on m and restart the signing algorithm. We therefore addi-
tionally include a relaxed notion of a subliminal-free digital signature
scheme, where we allow a small subliminal channel.

Definition 36 (Subliminal l-Free Digital Signatures). Let m be a
fixed message, S a signature scheme, m̂ a subliminal message chosen
by S and s some secret pre-shared information between S and R. Fur-
ther, let σ be a valid signature of m with respect to S and let π be a
proof of correctness, both potentially generated by interaction between
S and W. Assume that W will close the channel if S deviates from the
protocol. Then we say that S is a subliminal l-free digital signature
scheme if S cannot reliably both create a proof π accepted by W and at
the same time encode a subliminal message m̂ of size greater or equal
to l into σ that can be decoded by R but cannot be decoded nor detected
by W; unless S does work exponentially in l.

6.3 Subliminal-Free Digital Signature Scheme

Deterministic signatures seems to have an advantage over probabilis-
tic signatures as they can guarantee a subliminal-free digital signa-
ture scheme in the non-interactive setting. However, they are usually
harder to construct and even harder to prove being evaluated cor-
rectly. Probabilistic signatures schemes are used more in practice,
and we want to extend our definition of subliminal-free digital signa-
ture schemes to allow interaction between S and W to ensure that we
can achieve the strongest security guarantees also for these schemes.

Definition 37 (Subliminal-Free Digital Signature Scheme). A sub-
liminal-free digital signature scheme consists of an interactive signing

210 H. Galteland and T. Silde

protocol (ΠSign) and five algorithms: key generation (KeyGen), setup
(Setup), verification (Verify), and checking (Check), where

- KeyGen, on input the security parameter 1λ, outputs public pa-
rameters pp, a signing key sk, and a verification key vk,

- Setup, on input the security parameter 1λ, outputs public pa-
rameters sp,

- ΠSign, on input a message m and sk, outputs a signature σ and
a proof π,

- Verify, on input m, σ and vk, outputs either 0 or 1,

- Check, on input m, σ, vk and π, outputs either 0 or 1,

and the public parameters pp are implicit input to all algorithms fol-
lowing KeyGen and the public setup parameters sp are implicit input
to Sign and Check. We require that Check returns 1 if and only if
Verify returns 1 and π is valid.

In our constructions, see Section 7, we use an interactive VRS as
a part of the signature protocol to ensure that the randomness are
honestly generated and give a proof of this statement. The checking
algorithm is then the checking algorithm of the VRS combined with
the verification algorithm of the signature scheme.

Remark 6. Note that there are some small differences in how we
define subliminal-free digital signatures compared to how it is defined
by Bohli et al. [8]. They require it to be exponentially hard in the
security parameter to find two different pairs of signatures and proofs
that are valid for the same message. This is essentially the same as
in our case when the signature scheme is deterministic, but we also
allow for a probabilistic signature scheme. In addition, they have a
SFKeyGen algorithm generating the checking information for warden.
We have decided to include an algorithm Setup instead. The setup
algorithms generates publicly available information used by the sender
to give a proof of correct signing, and used by the warden to verify this
proof. The proof itself should only be available to the warden, as it
can contain subliminal information that can be decoded if shared with
the receiver, but the setup parameters could be available to anyone.

VRFs and Subliminal-Free Digital Signatures 211

6.4 Subliminal-Free Digital Signatures with Pre-Pro-
cessing

The subliminal-free digital signature scheme require S and W to inter-
act every time S wants to sign a message. We can lower the commu-
nication complexity of our scheme by allowing some pre-processing
between S and W. In this case we make the Setup algorithm into an
interactive protocol ΠSetup, where S and W use the interactive VRS
to generate lots of commitments to some randomness used in the
signatures, together with proofs that the randomness is honestly gen-
erated. Then the commitment and the randomness is also an input to
the signature scheme. As the randomness is independent of the mes-
sage to be signed, this allows us to move all the extra communication
from the signature procedure to the setup procedure, which can be
executed before any messages need to be sent over the channel.

Note that in this case we get a stateful digital signature scheme,
as the warden must ensure that the randomness is used in the correct
order. Otherwise this would open a subliminal channel where the
signer can chose the randomness from a set of values dependent on
the subliminal message he wants to send.

Remark 7. Note that in this case the setup parameters sp are still
public, while the output of the VRS is not.

6.5 Non-Interactive Subliminal-Free Digital Signatures

We can make a trade-off between communication and security by
changing the interactive subliminal-free digital signature scheme into
a non-interactive scheme by letting all the parts of the scheme be
non-interactive algorithms. This would also enforce the VRS to be
a non-interactive algorithm, as a part of the signing algorithm. We
know from earlier that a non-interactive VRS is not bit-unpredictable.
In this case we get a l-subliminal channel, as the sender can run the
non-interactive VRS until he gets a l-bit subliminal message encoded
into the randomness used in the signature, and hence, we have a
l-subliminal signature scheme.

212 H. Galteland and T. Silde

6.6 Security of Subliminal-Free Digital Signatures

We require that the subliminal-free digital signature scheme has the
same security as a normal signature scheme, plus the additional re-
quirement that a cheating prover cannot decide the randomness used
in the signature, and that a cheating verifier can’t use the proof of
correctness to forge signatures. Hence, we want the subliminal-free
digital signature scheme to be complete, sound and secure against
existential forgery.

Definition 38 (Complete). We say that a subliminal-free digital sig-
nature scheme is complete if honestly generated pairs of signatures
and proofs are accepted by both the verification and checking algo-
rithms. Hence, we want that

Pr


 Verify(m,σ, vk) = 1
Check(m,σ, vk, π) = 1

:
(pp, sk, vk)← KeyGen(1λ)

sp← Setup(1λ)
(σ, π)← Sign(m, sk)


 = 1.

Definition 39 (Soundness). A subliminal-free signature scheme is
sound if the sender is unable to establish a subliminal bit channel with
the receiver. A subliminal bit channel is a channel where a subliminal
signer S∗ given a message m cannot encode a subliminal bit m̂ ∈
{0, 1} into a valid signature σ of m, that the subliminal receiver R∗ can
decode, when additionally producing a proof π of correctness accepted
by the warden W with probability nonnegligible greater than one-half.
That is, the subliminal-free signature scheme is sound if

Pr



DecodeR∗ (m,σ, s) = m̂
Verify(m,σ, vk) = 1
Check(m,σ, vk, π) = 1

:

m̂
$←− {0, 1}

(pp, sk, vk)← KeyGen(1λ)
sp← Setup(1λ)

(σ, π)← EncodeS∗ (m, sk, m̂)


 <

1

2
+ ε(λ),

where the algorithms EncodeS∗ and DecodeR∗ are as in Definition 34.

A subliminal bit channel is the simplest subliminal channel, where
the sender wants to send a signal, e.g., “escape tonight”. With prob-
ability one-half the first bit of a signature is equal to the subliminal
bit chosen by the sender, that is, by chance they are able to send a
subliminal bit. However, if the received bit is the intended sublimi-
nal message with probability one-half then it cannot be trustworthy.
The receiver cannot gamble and perform a predetermined, possibly
daring, action based on a random bit. This cannot be a subliminal
bit channel.

VRFs and Subliminal-Free Digital Signatures 213

Definition 40 (Existential unforgeability). We say that a subliminal-
free digital signature scheme is existential unforgable if an adversary
A, after given valid signatures σi and proofs πi of messages mi of A’s
choice from a signing oracle Osign, cannot forge a signature on any
new message under the same public-private key pair. We define the
existential unforgability advantage AdvEUF of an adversary A to be:

AdvEUF(A) = Pr




m̂ 6∈ {mi}
Verify(m̂, σ̂, vk) = 1

:

(pp, vk)← KeyGen(1λ)
sp← Setup(1λ)

{(σi, πi)} ← AOsign (pp, vk, {mi})
(m̂, σ̂)← A({(mi, σi, πi)}i)


 ≤ ε(λ).

7 Our Schemes

In this section we present two subliminal-free digital signature schemes,
one scheme where the security is based on the discrete logarithm
problem, and one scheme where the security is based on the shortest
vector problem in lattices. Both schemes use a VRS to generate a
secret random value used as the randomness in the signature scheme.

7.1 Subliminal-Free Schnorr-Signatures

Our VRS definition and subliminal-free digital signature framework
applied to the Schnorr signature scheme is similar to Simmons’s sub-
liminal-free digital signature scheme [45], where we include security
proofs of our VRS and signature scheme to show that they are secure.
The VRS scheme is detailed in Figure 8 and the subliminal-free digital
signature scheme in Figure 9.

The Diffie-Hellman based VRS (DH-VRS) use deterministic Ped-
ersen commitments [41] and all group operations are over the Schnorr
group G ⊂ Z∗p of prime order q with generator g, where p is prime
and q divides p − 1. Let P and V denote the prover and verifier,
respectively. The idea of the DH-VRS is as follows.

1. P samples a uniformly random seed s and makes a commitment
c̃ of this value.

2. V samples a uniformly random challenge t.

3. P makes a commitment of s + t. The proof π is the pair (c̃, t),
which the verifier has.

214 H. Galteland and T. Silde

Diffie-Hellman Based Verifiable Random Secret Scheme

Prover 〈g〉 = G Verifier

Seed:

s
$← Zq

Com:

(c̃, d̃)← (gs, s) c̃

Challenge:

t t
$← Zq

Generate:

(c, d, π)← (gs+t, s+ t,⊥) c

Check:

c
?
= c̃gt

Figure 8: The Diffie-Hellman based verifiable random secret scheme,
using deterministic Pedersen commitments.

4. Finally, V checks the output commitment and either accept or
reject.

Below we show that the DH-VRS is complete and binding, and has
prover bit-unpredictability and weak honest-verifier secrecy.

Lemma 1 (Completeness). The DH-VRS, detailed in Figure 8, is
complete.

Proof. The verify algorithm Verify(c̃, t, c, π) outputs 1 if c = c̃gt. In
an honest run we have c = gs+t = gsgt = c̃gt.

Lemma 2 (Binding). The DH-VRS, detailed in Figure 8, is binding
and AdvS is negligible.

Proof. Assume Verify(c̃, t, c, π) = 1 and c = c̃gt, for some commit-
ment c̃ and integer t. If P∗ want to find another commitment ĉ satis-
fying ĉ 6= c and Verify(c̃, t, ĉ, π) = 1 then ĉ = gs+tgkq, for an integer
k. However, G is finite and ĉ and ĉ ≡ c in G. Similar for the opening
d. The binding advantage of P∗ is zero.

VRFs and Subliminal-Free Digital Signatures 215

Lemma 3 (Prover bit-Unpredictability). The DH-VRS, detailed in
Figure 8, has prover bit-unpredictability and AdvPbU

f is negligible.

Proof. The cheating prover wants to predict a bit b̂ of r = r(s, t) =
s + t. The Check algorithm forces c to be of the form c̃gt, for some
c̃ ∈ G and t ∈ Zq. Say c̃ = gs for some s ∈ Zq then c = gs+t, the
opening, d = s+ t and r = s+ t. If this is not satisfied then P∗ cannot
win, the only value he can choose is s ∈ Zq. As long as t is in r the
cheating prover will guess a bit in r with probability one-half, hence,
to improve this we need to remove t from r. The prover can make
a guess t′ of the challenge t and set s = s′ − t′, for an integer s′. If
t′ = t then c̃gt = gs

′−t+t = gs
′

= c and r = s′ − t + t = s′, which
P∗ can predict. If t′ 6= t then the Check outputs 0 and the event will
not occur. The probability of guessing t is q−1 and AdvPbU

f = q−1,
which can be made negligible for a large q.

From Lemma 1 we know that the DH-VRS, detailed in Figure 8,
is complete. We would also like to show that the DH-VRS is ε-Secure,
however, this is not possible as it does not have weak honest-verifier
secrecy. The reason is that the value gr leaks a part of the DH-VRS
randomness r, hence, the adversary V∗ can use gr to accurately predict
certain bits of r.

Using the above DH-VRS we can construct verifiable random
numbers. Together with the Schnorr digital signature scheme [44]
we construct a Diffie-Hellman based subliminal-free digital signature
scheme (DH-SFS), where the verifiable random number, generated in
the DH-VRS, is used to produce a Schnorr signature. See Figure 9.
Below we show that the DH-SFS is complete, sound and secure against
existential forgeries.

Lemma 4 (Completeness). The DH-SFS scheme, described in Fig-
ure 9, is complete.

Proof. In an honest run we have that gγpkβ = gd−β·skgβ·sk = gs+t = c
and the Verify algorithm outputs 1, similarly H(pk, gγpkβ,m) =
H(pk, c,m) = β and the Check algorithm outputs 1.

Lemma 5 (Soundness). The DH-SFS scheme, described in Figure 9,
is sound.

216 H. Galteland and T. Silde

Diffie-Hellman Based Subliminal-Free Digital Signature Scheme

Sender 〈g〉 = G, vk ← gsk Warden

Seed:

s
$← Zq

Com:

(c̃, d̃)← (gs, s) c̃

Challenge:

t t
$← Zq

Generate:

(c, d, π)← (gs+t, s+ t,⊥)

β ← H(vk, c,m)

γ ← (s+ t)− β · sk (c, π), (m,β, γ)

Check:

c
?
= c̃gt

c
?
= gγpkβ

Verify:

β
?
= H(vk, gγvkβ ,m)

If both algorithms output 1:

send (m,β, γ) to the receiver

Figure 9: The Diffie-Hellman based subliminal-free digital signature
scheme, using the DH-VRS, to generate a random value and proofs,
and Schnorr digital signatures.

VRFs and Subliminal-Free Digital Signatures 217

Proof. We claim that P∗ is unable to encode a subliminal bit in the
signature, that the receiver is able to decode, with probability greater
than one-half. By Lemma 2 the sender cannot find a new commitment
ĉ 6= c, which will be accepted by the warden, and by our Warden
Model the sender cannot choose the message m and is not allowed
to alter the secret and public key during the signing process. Hence,
the value β is deterministic given c̃ and t. By Lemma 3 the sender is
unable to predict the random value s+ t used to generate γ and the
signature is deterministic.

Lemma 6 (Existential Unforgability). The DH-SFS scheme, in Fig-
ure 9, is secure against existential forgability and AdvEUF−CMA is
negligible.

Proof. Let A be an adversary that can produce forgeries of the DH-
SFS scheme in polynomial time. Then there exist an adversary B that
solves the discrete logarithm problem (Definition 2) in polynomial
time. Use A to produce two forgeries (m̂1, σ̂1) and (m̂2, σ̂2), on two
different messages such that β1 6= β2, using the same random values
and public parameters. Then sk = (γ2 − γ1)/(β1 − β2) and

AdvEUF(A) ≤ AdvDL(B),

where the discrete logarithm advantage of B is negligible.

7.2 Subliminal-Free Lattice-Based Signatures

Our lattice-based VRS scheme is built on top of the commitment
scheme by Baum et al. [4] combined with the verifiable shuffle of
known content by Baum et al. [5]. Let P denote the prover and let V
denote the verifier. All the polynomials are from Rp.

The protocol works as follows: Warden draws 3τ Gaussian dis-
tributed polynomials si with standard deviation σ/κ and sends them
to Sender. He then shuffles the polynomials, commits to them in
the new order and sends the commitments to Warden. The Warden
draws three subset Tj , for i ≤ j ≤ 3, of indices from 1 to 3τ at random
and sends them to Sender. Note that these elements can be repre-
sented as uniform distributed numbers on the unit interval, converted

218 H. Galteland and T. Silde

to Gaussians via the Box-Muller method as described earlier. The
Sender computes the three sums of the underlying messages of the
commitments with the respective indices, and proves that the sums
are correct and that the initial shuffle was correct. Finally he com-
putes the signature of the message, and sends the message-signature
pair together with the commitments and proofs to the Warden. The
Warden verifies that the commitments, the shuffle, and proofs are
correct (the VRS part) and that the signature-message pair is cor-
rect. He also verifies that the randomness generated in the VRS is
the randomness used in the signature. Let y = [y1, y2, y3] be the
underlying messages of the commitments c1, c2, c3 generated by the
VRS. They are all Gaussian distributed polynomials with standard
deviation σ, as they are a sum of κ Gaussian distributed polynomials
with standard deviation σ/κ. The Warden verifies the signature by
checking that t′ is the linear combination y1 + a1y2 + a2y3, that is,
t = ay. If all the proofs are correct then the Warden forwards the
message-signature pair to the Receiver.

The VRS scheme is visualized in Figure 10. In the end of the
protocol, P ends up with a commitment to a random sum of randomly
chosen polynomials. Intuitively, the prover should not be able to
predict any of coordinates of the the final polynomial before he’s
given the set of indices, and the verifier should not be able guess
any of the coordinates of the final polynomial when he only knows
that it’s a sum of a subset of the initial polynomials. We proceed
by proving Completeness, Binding, Prover bit-Unpredictability and
Honest-Verifier Secrecy for the VRS.

Lemma 7 (Completeness). The Lattice-VRS in Figure 10 is compete.

Proof. Assuming that the prover is honest, he will commit to the
given seed-values in a permuted order. He will also be able to generate
an accepting zero-knowledge proof of correct shuffle, as the shuffle-
protocol is complete. Further we assume that the prover commit to
the sum of the correct values given the challenge set of indices, and
then he will be able to generate an accepting zero-knowledge proof of
correct sum, as the sum-protocol is complete. We conclude that the
VRS is complete.

VRFs and Subliminal-Free Digital Signatures 219

Lattice-Based Verifiable Random Secrets

Prover Verifier

Seed:

s = {si} si
$← Nσ/κ, 1 ≤ i ≤ 3τ

Com:

γ
$← S3τ

(c̃i, d̃i)← Com(sγ(i))
c̃ = {c̃i}

Challenge:

Tj
$⊂ {1 + (j − 1)τ, . . . , jτ},

t = {Tj} |Tj | = κ, 1 ≤ j ≤ 3

Generate:

(cj , dj)← Com(
∑

l∈Tj

sγ−1(l))

π′ ← ΠShuffle({si}, {c̃i}, γ)

π′′j ← ΠSum({c̃l}l∈Tj , cj)
(c = {cj},
π = (π′, {π′′j }))

Check:

1
?
= ΠShuffleV({si}, {c̃i}, π′)

1
?
= ΠSumV({c̃l}l∈Tj , cj , π

′′
j)

Figure 10: The lattice-based verifiable random secret scheme, using
the commitment scheme by Baum et al. [4] and the verifiable shuffle
of known content by Baum et al. [5].

Lemma 8 (Binding). The Lattice-VRS in Figure 10 is binding.

Proof. Assuming that a cheating prover P∗ has advantage ε of break-
ing the binding property of the VRS, then P∗ also have a advantage
ε of breaking the binding property of the commitment scheme. The
binding property of the commitment scheme is based on the SIS-
problem, and hence, an attacker A can then turn P∗ into a SIS-solver
with success probability ε. We conclude that the VRS is binding.

220 H. Galteland and T. Silde

Lemma 9 (Prover bit-Unpredictability). The Lattice-VRS in Fig-
ure 10 is prover bit-unpredictable.

Proof. The cheating prover P∗ wants to predict a bit b̂ of rj = r({sl}κl=1,

{ĉl}κl=1, Tj), for 0 ≤ j ≤ 3, that is, a bit b̂ of the values rj =∑
l∈Tj sγ−1(l) for the permutation γ of the underlying messages of

the set of commitments. All values si are drawn at random from a
Gaussian distribution. P∗ is allowed to guess after he know all si’s, but
before he has received the sets Tj of indices. As Tj are random sets of
indices drawn uniformly at random, rj is a random sum of κ random
elements, and hence, rj is random. The probability of guessing any
bits if rj correctly is 1/2, and hence, the prover bit-unpredictability
advantage AdvPbU

f (P∗) is negligible. We conclude that the VRS is
prover bit-unpredictable.

Lemma 10 ((Strong) Honest-Verifier Secrecy). The Lattice-VRS in
Figure 10 has strong honest-verifier secrecy.

Proof. Assume that a honest but curious verifier V∗ is given the value
rb at the end of the protocol. His task is to decide if rb is a sum of
κ elements among the values s1, . . . , sτ or not. This reduces to the
k-SUM problem, for a subset of size κ out of τ elements. If V∗ can
break the strong honest-verifier secrecy of the VRS with a probability
ε, then an attacker A can then turn V∗ into a k-SUM solver with success
probability ε. We conclude that the VRS has strong honest-verifier
secrecy.

Theorem 1. The lattice-based VRS detailed in Figure 10 is complete
and ε-Secure.

Proof. This follows from combining Lemma 7, 8, 9 and 10.

Lemma 11 (Completeness). The Lattice-SFS scheme in Figure 11
is complete.

Proof. This follows directly from the fact that the VRS is complete
and that the signature scheme (without the VRS) is complete. The
VRS ensure that the randomness used in the signature is of the right
form, and hence, the composition of the two schemes is then complete.
We conclude that the signature scheme is complete.

VRFs and Subliminal-Free Digital Signatures 221

Lattice-Based Subliminal-Free Digital Signatures

Sender vk = Com(0, r) Warden

sk = r Seed:

s = {si} si
$← Nσ/κ, 1 ≤ i ≤ 3τ

Com:

γ
$← S3τ

(c̃i, d̃i)← Com(sγ(i))
c̃ = {c̃i}

Seed:

Tj
$⊂ {1 + (j − 1)τ, . . . , jτ},

t = {Tj} |Tj | = κ, 1 ≤ j ≤ 3

Generate :

(cj , dj)← Com(
∑

l∈Tj

sγ−1(l))

π′ ← ΠShuffle({si}, {c̃i}, γ)

π′′j ← ΠSum({c̃l}l∈Tj
, cj)

(t′, z)← Sign(m, sk)

π′′′ ← ΠSum({cj}, t′, (1, a1, a2))
(m, (t′, z)), ({cj},

(π′, {π′′j }, π′′′))

Check:

1
?
= ΠShuffleV({si}, {c̃i}, π′)

1
?
= ΠSumV({c̃l}l∈Tj

, cj , π
′′
j)

1
?
= ΠSumV({cj}, t′, (1, a1, a2), π′′′)

Verify:

1
?
= Verify(vk,m, (t′, z)))

If all algorithms output 1:

Send (m, (t′, z)) to the receiver.

Figure 11: The lattice-based subliminal-free digital signature scheme,
using the lattice-based VRS and a lattice signature scheme based on
Lyubashevsky [33, 34].

Lemma 12 (Soundness). The Lattice-SFS scheme in Figure 11 is

222 H. Galteland and T. Silde

sound.

Proof. The VRS ensures that the randomness is honestly generated,
and because of the prover bit-unpredictability of the VRS, a cheating
prover P∗ has a negligible probability of embedding any information
into the randomness used in the signature. It follows that a cheating
prover doesn’t have a reliable subliminal channel. We conclude that
the signature scheme is sound.

Lemma 13 (Existential unforgability). The Lattice-SFS scheme in
Figure 11 is secure against existential forgability.

Proof. A honest but curious verifier V∗ learns Ar for some public
matrix A and randomness r, where r is the output of the VRS. By
multiplying all s1, . . . , sτ by A, this reduces to solving the k-SUM
problem for k = κ when the set is {Asi}τi=1 and S = Ar. This search
problem is equivalent to the decision problem with the same input,
which we know is hard. The VRS ensures that the randomness is
honestly generated, and because of the strong honest verifier secrecy
of the VRS, V∗ has a negligible probability of learning any information
about the secret signing key used to generate the signature. Further-
more, both zero-knowledge proofs in the VRS can be simulated, and
hence, this additional information does not provide any information
that V∗ can use to win the game.

8 Efficiency and Size

8.1 The Discrete Logarithm SFS

The efficiency of the discrete logarithm subliminal-free digital signa-
ture scheme is summarized in Figure 12, the detailed description is
below.

In the DH-SFS scheme we do an interactive VRS exchange, gen-
erate a proof, and produce a normal Schnorr signature. The Sender
computes two exponentiations, one which will be used to compute the
usual Schnorr signature commitment, and sends two messages to the
Warden. The Warden computes three exponentiations, two of which
are to verify the signature, and sends one message to the Sender and

VRFs and Subliminal-Free Digital Signatures 223

Computation and interaction Signature
Sender Warden Receiver size

Schnorr signature 1E+1M 2E 2GE

DH-SFS 2E+2M 3E+2M 2E 5GE

Figure 12: Efficiency of our subliminal-free digital signature schemes
compared to their non-subliminal-free counterparts. E denotes an
exponentiation GE a group element, and M a message sent.

one to the Receiver (if the proof is valid). The signature consists of
two group elements of the Schnorr group G and three group elements
of Zq. We ignore the hash function evaluations, and multiplication
and addition of group elements. To produce a subliminal-free Schnorr
signature we need four additional exponentiations, send three addi-
tional messages, and have three additional group elements (one from
Zq and two from G).

8.2 The Lattice-Based SFS

In the lattice-based SFS scheme we run the interactive VRS, generate
proofs and produce a signature. The Sender computes 3τ+3 commit-
ments, one shuffle proof, three proofs showing that each of the three
commitments cj is a sum of κ c̃i’s, one proof showing the signature
is honestly generated, and one signature. For a normal signature the
Sender only sends one message, for a subliminal-free signature the
Sender sends two and the Warden sends three.

A normal signature contains four elements from Rp, an subliminal-
free signature requires 45τ + 12κ+ 40 elements from Rp. To give an
estimate of the size the signature we give a rough estimation of τ
and κ. The security of the lattice-based scheme relies on the k-SUM
problem and we want it to be hard to guess the subset of size κ from
the super-set of size τ , to prevent brute force attacks we want τ choose
κ to be larger than or equal to 2128 for 128 bit security. Furthermore,
the best known algorithm for solving the k-SUM problem runs in
O(τκ/2) [21], which means that we also need τκ/2 ≥ 2128. By setting
τ = 256 and κ = 32 we satisfies both of these equations, and a

224 H. Galteland and T. Silde

subliminal-free signature contains 11944 elements from Rp. Using the
parameters provided by Baum et al. [4] for the commitment scheme
we have p ≈ 232 and N = 1024. One element in Rp is then 4.1
KB, and hence, a normal signature is 16.4 KB and a subliminal-free
signature is ≈ 49 MB. The difference is a factor of 3000.

However, we can make the protocol more efficient in the online
phase of sending messages and signatures by doing a lot of work in
a pre-processing phase. Assume that we want to send X messages.
Then most of the work can be done in advance: creating the seeds,
committing to the seeds and shuffle them, prove that the shuffle is
done correct, choose indices, compute the large sums and prove that
the sums are correct. This is almost all of the work in the whole
protocol. This can be done X times in one go, and takes space ≈ 49X
MB. Only the elements t′ needs to be stored until the online phase, in
the correct order, and hence, only 4.1X KB of data. The only thing
to be done in the online phase is to generate the signature and send
over z together with the message, which is only three ring elements,
one less than a normal signature.

Acknowledgments

We thank Kristian Gjøsteen and Yao Jiang for fruitful discussions,
aid and comments that greatly improved the manuscript.

References

[1] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable
Random Functions from Identity-Based Key Encapsulation. In
Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, pages 554–571, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[2] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane
Kramer, Patrick Longa, and Jefferson E. Ricardini. The Lattice-
Based Digital Signature Scheme qTESLA. Cryptology ePrint

VRFs and Subliminal-Free Digital Signatures 225

Archive, Report 2019/085, 2019. https://eprint.iacr.org/

2019/085.

[3] Ross Anderson, Serge Vaudenay, Bart Preneel, and Kaisa Ny-
berg. The Newton channel. In Ross Anderson, editor, Informa-
tion Hiding, pages 151–156, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[4] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine
Oechsner, and Chris Peikert. More efficient commitments from
structured lattice assumptions. In Dario Catalano and Roberto
De Prisco, editors, Security and Cryptography for Networks,
pages 368–385, Cham, 2018. Springer International Publishing.

[5] Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor
Tunge. Electronic voting using lattice-based commitments and
verifiable encryption. Unpublished.

[6] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible pro-
tocols and atomic proxy cryptography. In Kaisa Nyberg, ed-
itor, Advances in Cryptology — EUROCRYPT’98, pages 127–
144, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[7] Manuel Blum. Coin flipping by telephone a protocol for solving
impossible problems. SIGACT News, 15(1):23–27, January 1983.

[8] Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer
Steinwandt. A Subliminal-Free Variant of ECDSA. In Jan L. Ca-
menisch, Christian S. Collberg, Neil F. Johnson, and Phil Sallee,
editors, Information Hiding, pages 375–387, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[9] Jens-Matthias Bohli and Rainer Steinwandt. On subliminal
channels in deterministic signature schemes. In Choon-sik Park
and Seongtaek Chee, editors, Information Security and Cryp-
tology – ICISC 2004, pages 182–194, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

226 H. Galteland and T. Silde

[10] Dan Boneh, Hart William Montgomery, and Ananth Raghu-
nathan. Algebraic Pseudorandom Functions with Improved Effi-
ciency from the Augmented Cascade. In Proceedings of the 17th
ACM Conference on Computer and Communications Security,
CCS ’10, pages 131–140, New York, NY, USA, 2010. ACM.

[11] G. E. P. Box and Mervin E. Muller. A note on the generation of
random normal deviates. Ann. Math. Statist., 29(2):610–611, 06
1958.

[12] Mike Burmester and Yvo Desmedt. All Languages in NP Have
Divertible Zero-Knowledge Proofs and Arguments Under Cryp-
tographic Assumptions. In Ivan Bjerre Damg̊ard, editor, Ad-
vances in Cryptology — EUROCRYPT ’90, pages 1–10, Berlin,
Heidelberg, 1991. Springer Berlin Heidelberg.

[13] Mike Burmester, Yvo G. Desmedt, Toshiya Itoh, Kouichi Saku-
rai, and Hiroki Shizuya. Divertible and subliminal-free zero-
knowledge proofs for languages. J. Cryptol., 12(3):197–223, June
1999.

[14] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun
Guo, and Mingwu Zhang. Cryptographic Reverse Firewall via
Malleable Smooth Projective Hash Functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, pages 844–876, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[15] Yvo Desmedt. Subliminal-free authentication and signature. In
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luck-
ham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and
Christoph G. Günther, editors, Advances in Cryptology — EU-
ROCRYPT ’88, pages 23–33, Berlin, Heidelberg, 1988. Springer
Berlin Heidelberg.

[16] Yvo Desmedt. Simmons’ protocol is not free of subliminal chan-
nels. Proceedings 9th IEEE Computer Security Foundations
Workshop, pages 170–175, 1996.

VRFs and Subliminal-Free Digital Signatures 227

[17] Yevgeniy Dodis. Efficient Construction of (Distributed) Veri-
fiable Random Functions. In Yvo G. Desmedt, editor, Public
Key Cryptography — PKC 2003, pages 1–17, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[18] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random
Function with Short Proofs and Keys. In Serge Vaudenay, editor,
Public Key Cryptography - PKC 2005, pages 416–431, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[19] Qingkuan Dong and Guozhen Xiao. A Subliminal-Free Variant
of ECDSA Using Interactive Protocol. In 2010 International
Conference on E-Product E-Service and E-Entertainment, pages
1–3, Nov 2010.

[20] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTAL-Dilithium. https://pq-crystals.org/dilithium/

data/dilithium-specification-round2.pdf. Submission to
the NIST Post-Quantum Standardization Project, round 2.

[21] Jeff Erickson. Lower bounds for linear satisfiability problems.
In Proceedings of the Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’95, pages 388–395, Philadelphia,
PA, USA, 1995. Society for Industrial and Applied Mathematics.

[22] Amos Fiat and Adi Shamir. How To Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems. In An-
drew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’
86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Hei-
delberg.

[23] Herman Galteland and Kristian Gjøsteen. Subliminal channels
in post-quantum digital signature schemes. Cryptology ePrint
Archive, Report 2019/574, 2019. https://eprint.iacr.org/

2019/574.

[24] S Goldwasser, S Micali, and C Rackoff. The knowledge complex-
ity of interactive proof-systems. In Proceedings of the Seventeenth

228 H. Galteland and T. Silde

Annual ACM Symposium on Theory of Computing, STOC ’85,
page 291–304, New York, NY, USA, 1985. Association for Com-
puting Machinery.

[25] Shafi. Goldwasser, Silvio. Micali, and Ronald L. Rivest. A digi-
tal signature scheme secure against adaptive chosen-message at-
tacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[26] Alexander Hartl, Robert Annessi, and Tanja Zseby. A Sublim-
inal Channel in EdDSA: Information Leakage with High-Speed
Signatures. In Proceedings of the 2017 International Workshop
on Managing Insider Security Threats, MIST ’17, pages 67–78,
New York, NY, USA, 2017. ACM.

[27] Dennis Hofheinz and Tibor Jager. Verifiable Random Functions
from Standard Assumptions. In Eyal Kushilevitz and Tal Malkin,
editors, Theory of Cryptography, pages 336–362, Berlin, Heidel-
berg, 2016. Springer Berlin Heidelberg.

[28] Susan Hohenberger and Brent Waters. Constructing Verifiable
Random Functions with Large Input Spaces. In Henri Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, pages
656–672, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[29] Tibor Jager. Verifiable Random Functions from Weaker Assump-
tions. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, The-
ory of Cryptography, pages 121–143, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[30] Shuichi Katsumata. On the Untapped Potential of Encoding
Predicates by Arithmetic Circuits and Their Applications. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryp-
tology – ASIACRYPT 2017, pages 95–125, Cham, 2017. Springer
International Publishing.

[31] Lisa Kohl. Hunting and Gathering – Verifiable Random Func-
tions from Standard Assumptions with Short Proofs. In Dongdai
Lin and Kazue Sako, editors, Public-Key Cryptography – PKC
2019, pages 408–437, Cham, 2019. Springer International Pub-
lishing.

VRFs and Subliminal-Free Digital Signatures 229

[32] Dai-Rui Lin, Chih-I Wang, Zhi-Kai Zhang, and D. J. Guan. A
digital signature with multiple subliminal channels and its appli-
cations. Comput. Math. Appl., 60(2):276–284, July 2010.

[33] Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications
to Lattice and Factoring-Based Signatures. In Mitsuru Matsui,
editor, Advances in Cryptology – ASIACRYPT 2009, pages 598–
616, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[34] Vadim Lyubashevsky. Lattice signatures without trapdoors. In
David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, pages 738–755, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[35] Vadim Lyubashevsky and Gregor Seiler. Short, invertible el-
ements in partially splitting cyclotomic rings and applications
to lattice-based zero-knowledge proofs. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, pages 204–224, Cham, 2018. Springer Interna-
tional Publishing.

[36] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable ran-
dom functions. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, pages 120–, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[37] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic re-
verse firewalls. Cryptology ePrint Archive, Report 2014/758,
2014. https://eprint.iacr.org/2014/758.

[38] C. Andrew Neff. A verifiable secret shuffle and its application to
e-voting. In Proceedings of the 8th ACM Conference on Computer
and Communications Security, CCS ’01, pages 116–125, New
York, NY, USA, 2001. ACM.

[39] NIST Post-Quantum Cryptography, Round 1 Sub-
missions. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions. Ac-
cessed: 2019-11-29.

230 H. Galteland and T. Silde

[40] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge
interactive proofs and commutative random self-reducibility. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances
in Cryptology — EUROCRYPT ’89, pages 134–149, Berlin, Hei-
delberg, 1990. Springer Berlin Heidelberg.

[41] Torben Pryds Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Joan Feigenbaum,
editor, Advances in Cryptology — CRYPTO ’91, pages 129–140,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[42] David Pointcheval and Jacques Stern. Security proofs for sig-
nature schemes. In Ueli Maurer, editor, Advances in Cryptology
— EUROCRYPT ’96, pages 387–398, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[43] Răzvan Roşie. Adaptive-Secure VRFs with Shorter Keys from
Static Assumptions. In Jan Camenisch and Panos Papadimi-
tratos, editors, Cryptology and Network Security, pages 440–459,
Cham, 2018. Springer International Publishing.

[44] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In CRYPTO, 1989.

[45] G. J. Simmons. An introduction to the mathematics of trust
in security protocols. In [1993] Proceedings Computer Security
Foundations Workshop VI, pages 121–127, June 1993.

[46] Gustavus J. Simmons. The prisoners’ problem and the sublimi-
nal channel. Advances in Cryptology: Proceedings of Crypto 83,
pages 51–67, 1984.

[47] Gustavus J. Simmons. The subliminal channel and digital signa-
tures. In Thomas Beth, Norbert Cot, and Ingemar Ingemarsson,
editors, Advances in Cryptology, pages 364–378, Berlin, Heidel-
berg, 1985. Springer Berlin Heidelberg.

[48] Gustavus J. Simmons. A secure subliminal channel (?). In
Hugh C. Williams, editor, Advances in Cryptology — CRYPTO

VRFs and Subliminal-Free Digital Signatures 231

’85 Proceedings, pages 33–41, Berlin, Heidelberg, 1986. Springer
Berlin Heidelberg.

[49] Gustavus J. Simmons. Subliminal Communication is Easy Us-
ing the DSA. In Tor Helleseth, editor, Advances in Cryptology
— EUROCRYPT ’93, pages 218–232, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

[50] Gustavus J. Simmons. Results concerning the bandwidth of sub-
liminal channels. IEEE Journal on Selected Areas in Communi-
cations, 16(4):463–473, May 1998.

[51] Shota Yamada. Asymptotically Compact Adaptively Secure Lat-
tice IBEs and Verifiable Random Functions via Generalized Par-
titioning Techniques. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, pages 161–
193, Cham, 2017. Springer International Publishing.

[52] Yinghui Zhang, Hui Li, Xiaoqing Li, and Hui Zhu. Provably
Secure and Subliminal-Free Variant of Schnorr Signature. In
Khabib Mustofa, Erich J. Neuhold, A. Min Tjoa, Edgar Weippl,
and Ilsun You, editors, Information and Communication Tech-
nology, pages 383–391, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[53] Xianfeng Zhao and Ning Li. Reversible watermarking with sub-
liminal channel. In Kaushal Solanki, Kenneth Sullivan, and Upa-
manyu Madhow, editors, Information Hiding, pages 118–131,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

232 H. Galteland and T. Silde

Doctoral theses at NTNU, 2020:116

Doctoral theses at N
TN

U, 2020:116

Herman Galteland

H
erm

an Galteland Malicious cryptography

ISBN 978-82-326-4580-0 (printed version)
ISBN 978-82-326-4581-7 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

	154153_Herman Galteland_Innmat
	154153_Herman Galteland_Innmat

