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Abstract—In this paper we demonstrate how path reachability
can be taken into account when selecting among predetermined
grasps in a bin-picking application, where grasps are supplied
independently of the robot at hand. We do this by creating a
map of the workspace to optimally place the bin with regards
to the existence of an inverse kinematic solution and a collision-
free path, a necessary condition for systems with obstructions
in the workspace. Furthermore, we densely re-map this region
and based on this map predict whether a grasp is reachable by
the robot. Moreover, an algorithm is implemented to weight the
grasps in terms of path existence, length and time consumption.
The algorithm was tested with grasps generated by the neural
network in simulation and the results indicate that faster picking
can be achieved when taking path reachability into consideration.

Index Terms—bin-picking, robot kinematics, grasping

I. INTRODUCTION

Bin-picking is a concoction of technologies, and branches
within those technologies. Attempting a solution of the bin-
picking problem by solving it part by part seems a good
strategy due to the complexity of the system as a whole.
Combining solutions to subsystems is reasonably assumed
to lead to the solution of the system as a whole. Following
this reasoning, much research has been done on one of two
things; finding high quality grasp candidates based on the
geometry and pose of the objects to be picked, and finding
good trajectories to reach a pose associated with the grasp.
However, this dividing strategy can be problematic: it may not
be feasible to reach the pose for the robot due to constraints
in the workspace [1].

There exists extensive previous work on the notion of
grasping an object given that the end-effector is already at
the appropriate contact point to initiate the actual grasping,
e.g.: [2]. A grasp may be deemed good through the appropriate
metrics, for example the force closure property [3], but must be
rejected if the robot cannot reach it [1]. For a given grasp, the
existence of an Inverse Kinematic (IK) solution is sufficient, if
the workspace is otherwise clear of obstructions [4]. However,
for most practical implementations, both arm kinematics and
reachability considerations are necessary.
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Fig. 1: Photo of the bin-picking set-up at SINTEF Digital, Trond-
heim. Notice the pedestal (1), camera housing (2), picker (3), fasten-
ing mechanism (4)(5), and bin with reflective steel parts (6).

As an example, consider the system seen in Fig. 1, which
has additional constraints in terms of an eye-in-hand vision
system, is placed upon a pedestal, and the bin it is to pick
from constitutes an additional obstruction in the workspace.
These constraints influence the robot’s ability to move freely
in its workspace. An inverse kinematic solution is hence only
necessary, and the existence of a collision-free path to the
appropriate pose must be ensured, for the grasp pose to be
reachable for the robot.

The use of a grasp planner (e.g.: [5], [6] and [7]) is a popular
choice to generate grasps for picking. The grasps chosen
for picking in this set-up are supplied by a dual-resolution
convolutional neural network trained on simulated data [8].
The input to the network is a point cloud of the current
distribution of parts in the bin, and the output is multiple
grasp pairs, {di,vi}, where i ∈ {1, . . . ,N}, N ∈N, di ∈R3 is a
point and vi ∈R3 is an approach vector. The network supplies
four lists of grasp pairs, one for each quadrant in the bin. A
grasp is said to be valid if there are no local collisions with
other objects in the bin. The output pairs from the network are
ordered based on their closeness to the world z-axis and in the



direction of the camera frame. The motivation behind focusing
solely on grasp planning in the neural network, is that it can
be robot agnostic. The implementation to include reachability
considerations to re-arrange the output pairs in this paper is
designed as a separate module to sustain the modular nature
of the bin-picking system.

In this paper, we show that by mapping the workspace of
the robot manipulator arm, positioning the bin based on this
mapping, and thoroughly re-mapping this space with potential
grasps offline can increase picking success by placing the bin
in a more accessible region, as well as prioritizing grasps
corresponding to short path lengths and time consumption.
Using this mapping data in conjunction with the output from
the neural network to connect these subsystems, we can re-
arrange the preferred output from the neural network in terms
of the robots ability to pick the objects, prioritizing grasps
reachable by the robot. Mapping in this context refers to
creating a map of the robot abilities. Due to the additional
constraints on the system imposed by the pedestal, the camera
housing, and potential collisions with the bin, in addition to
an IK solution existing, a collision-free motion plan must exist
for a pose to be reachable.

The contributions of this work include utilizing the com-
bined result of IK solutions and motion-plan existence in
the workspace to place the bin optimally. Optimally in this
context refers to the region of the workspace with the highest
concentration of IK solutions and motion-plans. Furthermore,
in this optimal region, the planner LKBPIECE1 [9] (Lazy
Bi-directional KPIECE with one level of discretization) with
optimization objective path length from the Open Motion
Planning Library (OMPL) [10] was investigated in terms of
several metrics; path existence, path length, planning time
and execution time. Moreover, a method for introducing the
aforementioned metrics of the robot into the grasp selection
process, without the need for explicitly querying an IK solver,
path-planner or collision-checker is described.

Building on the work of [1], [11] and [12] where the
existence of an IK solution is used as a criterion when selecting
a grasp, we propose in this paper also to include existence of a
collision-free path in the grasp selection process. This collision
checking is particularly useful when considering geometric
constraints, exemplified by the large volume of the 3D sensor
in the system at hand.

The rest of this paper is organized in the following way; in
section II, previous research on combined grasp- and path-
planning will be discussed. Section III will formulate the
problem to be solved, and section IV will deal with the
methods used, and a discussion of the results. Lastly, the paper
is concluded and future work is discussed.

II. PREVIOUS RESEARCH

To the extent of the authors’ knowledge, there exists some
ambiguity on the use of the term reachability. In [13], they
define the reachability of a robot as ”its ability to move its
joints and links in free space in order for its hand to reach the
given target”, indicating the term involving some movement

from one state to another. However, for example in [11], [12]
and [14] it refers to the existence of an inverse kinematic
solution only. In the rest of this paper, reachability will refer to
the existence of an IK solution, and the term path reachability
will refer to instances where an IK solution and a collision-free
path exists.

Due to the presence of the pedestal and the camera housing,
collisions in the workspace can occur. A pose in the workspace
that is reachable might not be path reachable due to the
geometry of the camera housing which could collide with the
robot or the pedestal during the traversal of a path.

When combining motion-planning and grasp planning, there
exists a substantial amount of research that either implements
grasp planning in motion planners or robot capabilities in grasp
planners, as a way to include reachability.

In [14], information on the robot kinematics, the local
environment of the object to be grasped, and the force-closure
property of the grasp is encoded in a grasp-scoring function,
which is used to rank a precomputed set of grasps.

The use of offline generated ”capability maps” for manipula-
tors, a term used by [11] and applied to improve grasp planning
in [12], is useful when incorporating robot kinematics with
grasp planning. The capability map contains information about
the reachability of the robot and aids in predicting if a grasp
is reachable. In addition, [11] include directional preferences
in the map, so that information on appropriate approach
directions can be incorporated. When capturing the workspace
structure in this map, the whole workspace of the robot was
discretized, and sampled to obtain a uniform distribution of
possible Tool Centre Point (TCP) configurations. For each
of these TCP configurations, IK calculations were done, and
if a solution existed, the point was marked reachable. This
procedure results in a representation containing the probability
of a grasp being reachable by the robot. By feeding a grasp
planner this capability map, the grasp planner is decoupled
from explicit implementation of the robot kinematics, but
information on the success probability will be available such
that unreachable grasps can be discarded early.

An integrated planner, Grasp-RRT, is presented in [16],
combining the search for a valid trajectory, a feasible grasp and
an inverse kinematic solution, the central elements of grasping.
The method does not rely on precomputed grasps like in [11]
and [12], but finds feasible grasps whilst planning a path for
the robot.

In [1], a framework for workspace aware online grasp
planning is provided. By using a precomputed representation
of the reachable workspace called the reachability space where
potential TCP poses are queried, they use this to bias the robot
towards more reachable regions of the workspace. Planning for
a grasp is only done in these more accessible regions, limiting
the time spent searching for grasps in less reachable regions.

III. PROBLEM FORMULATION

The bin-picking system set-up used in this paper comprises
a UR5 robotic manipualtor arm, a Zivid 3D camera and a
vacuum gripper to pick reflective parts from a bin. To supply



a grasp, it is important to obtain sufficient depth information
from the images of the distribution of parts in the bin. An
eye-in-hand configuration provides flexibility in this regard.
Information from the camera is used to compute multiple
grasps based on how objects are placed in the bin. When the
sensor is attached to the robotic arm performing the grasping,
additional constraints on how the manipulator can move whilst
avoiding self-collisions and collisions with the bin or other
parts of the environment is imposed. A characteristic of the
grasps supplied by the network [8], is that they are decoupled
from the robot tasked with reaching them. The network has no
knowledge about the existence, and kinematics, of the robot.
This raises the issue of reachability, and the need for coupling
these two aspects; optimal grasp generation in terms of the
object geometry, and prioritizing grasps that are reachable for
the robot.

The issue at hand is determining with what amount of ease
the robot can reach a specific pose in the workspace, and to
find a way to judge which grasps are favourable for reaching
with the robotic manipulator arm. The following sections detail
the results obtained attempting a solution to this problem.
The following results were obtained in simulation, using a
simulator supplied by Universal Robotics [17], and upon it,
working with the Robot Operating System (ROS) workspace
structure for the physical system.

IV. METHODS AND RESULTS

A. Current placement of bin in workspace
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Fig. 2: Visualization of current set-up as seen in RViz. 1) pedestal
where the robot is placed, 2) robot pose at the scan configuration
and Zivid 3D camera, 3) example path from scan configuration to an
experimental grasp, 4,5,6) actual placement of the bin corners in the
physical setup, 7) experimentally generated grasps for investigation
in the current bin area.

The current placement of the bin is based on the optimal
range of the Zivid 3D camera, which is 50-60cm from the
objects. This 3D camera is placed within a camera housing

of substantial size (marked 2 and 3 in Fig. 2) which further
limits the arm configuration space. Due to this demand, the
UR5 was placed upon a pedestal, see Fig. 2. Since the output
of the neural network is a point and an approach vector
only, a change in joint configurations whilst keeping the TCP
stationary at the point, may lead to multiple viable solutions.
As a result of this characteristic, several coordinate frames
were sampled with the origin at the same point, but with
different orientations. It is worth noting, that since additional
constraints on the system in terms of the pedestal and the
camera housing were present, the need for finding a collision-
free path was detrimental.

B. Expanding possible regions for bin placement

First, the level in the workspace at which the reach of the
robot was the greatest, constrained by the geometry of the
workspace and itself had to be identified. Utilizing RViz as
a visualization tool, a larger portion of the workspace was
sampled and tested. It was vital that the sampling was broad
enough in all directions to capture also the limits of the
workspace. Viewing Fig. 3, the portion of the workspace that
was investigated can be seen. The workspace part of interest
was divided into two cubes of equal size, on each side of
the robot base. The rest of the workspace was deemed less
accessible due to the layout of the robot cell, and therefore
unnecessary to map. The triangular structure at the back of
the robot for example, is physical.

Fig. 3: Outline of the regions of the workspace being mapped. For
implementation reasons the mapped region was divided in two.

The two cubes seen in Fig. 3 were discretized, and an 11×6
grid in the xy-direction, with an increment of 0.1 in the z-
direction, was created. MoveIt and OMPL [10] were used to
plan a path directly to the sampled pose, succeeding only if
there existed an IK solution and a collision-free path. The right
cube was mapped first, and then the left.

In each xy-plane, a 2D heatmap was produced to visualize
the results. Maps such as the one in Fig. 4 were created for all
the increments in the z-direction to also reveal optimal height
in terms of path reachability. The path reachability coverage
from both cubes in Fig. 3 were combined, and the optimal
level in terms of best average path reachability was revealed
to be the level flush with the base at z = 0, seen in Fig. 3
as the opaque orange level. The level map at z = 0 can be
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Fig. 4: Path reachability heatmap seen from above: Optimal level
based on average hit rate along with a concentrated area with high
reachability. The numbers in the squares represent percentage path
reachability for the points and the colors reflect this scale from red
(low) to green (high)
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Fig. 5: Reachability heatmap seen from above: Coverage of IK
solutions in the top level of the workspace. The numbers in the
squares represent percentage IK solutions for the points and the colors
reflect this scale from red (low) to green (high).

seen in Fig. 4. This result was not unanticipated as it is the
level closest to the centre of the workspace, the base. It is also
the region of the theoretical workspace with the largest span.
Even though it was likely the best option, due to the imposed
constraints of the pedestal and the camera housing, it had to
be validated. This level had an average path reachability of
53.53%, but as can be seen from Fig. 4, there is a distinct
area where the path reachability is very high. In addition to
being the level with the highest average path reachability, the
dark green ”patch” in the middle was also the region with the
highest concentration of successes when comparing this area
with the other level maps in the z-direction. For comparison,
the heatmap portraying only the IK solutions at this same level
is shown in Fig. 5. It is clear that the path reachability heatmap
is a more conservative estimate of accessible regions in the
workspace.

Note, that the representation of the optimal level as can
be seen in Fig. 4 is directionless and does not take into
account which approach directions are more favourable for the
robot. The number in the squares are path reachability indices
calculated by the following formula [11];

ni j =
ri j

Ni j
·100 i, j = 1,2, . . . ,11 (1)

where ni j is the total path reachability score in percent for
a point represented by a square in the level map, ri j is the
number of path reachable TCP frames in the point, and Ni j is
the total number of possible TCP test frames in said point.

C. New bin placement and mapping

When placing the bin based on the workspace mapping on
path reachability, the bin was placed such that the point with
100% path reachability in the middle of Fig. 4 was roughly
centered in the bin. As per this point, the bin was optimally
placed in both x-, y-, and z-direction, in terms of maximizing
path reachability.

After positioning the bin, it was desirable to thoroughly
map this area in the same manner as the workspace was
mapped, and use information on potential TCP placements as
a compliment to the grasps supplied by the neural network to
incorporate the robot kinematics and its abilities in the grasp
selection process. Since the bin and its immediate surroundings
is the main region of the workspace the robot will operate in,
this can be viewed as a task-specific workspace mapping. The
objective was to use known, offline gathered data such as path
lengths and computing times, to constitute an additional step
in the grasp selection process by being able to guide the grasps
from the network, {di,vi}, towards easy to reach regions of
the bin.

When mapping this space, see Fig. 6a, several metrics were
of interest to collect; the homogeneous transformation of the
test grasp, Ttest

j , consisting of the rotation matrix of the test
grasps given in the base frame, Rtest

j and the position vector
of the test grasps in the base frame dtest

j , the length of the
calculated path to the test grasp, the planning time needed by
the planner and the execution time of the path. Provided a
grasp from the neural network, we could find the test grasp
that most resembles the true grasp, and then be able to return
information on path length and time. Take for instance the
network outputting 50 grasps in order ranked on the quality
of the grasp. We then wish to rearrange this ranked list based
on similar test grasps and their attributes. Note, that for both
the workspace mapping (volume shown in Fig. 3) and for the
mapping of the new bin placement, it was necessary to attempt
a plan several times to saturate the results [18]. This is due
to the randomized nature of sampling-based motion-planners,
which if given enough time will find a path if one exists,
but is unable to return information on the existence of a path
[19]. Tests were repeated 5 times, as this seemed a sufficient
number to get a representative average, while at the same time
not being too time-consuming. The effect of testing once for
a path, and testing five time for a path can be seen in Fig.
6b, where the average path reachability goes from 86.93% to
95.70%.

The sampling in the bin is based upon the size of the
objects to be picked and their size compared to the bin. The
bottom area of the bin is 26× 36cm and the radius of the
cylinder objects is 3.2cm. In a worst case situation with regards
to surface area available for grasping, the objects will stand
upright, and approximately 7× 10 objects would fit on the
borders. Allowing for two samples per part, there are 14×20
points sampled evenly in the bin. In each of these points, there
are 27 different orientations to ensure sufficient exploration
of the possibility of another joint configuration providing a



(a) New placement of bin in the
workspace. In each point sam-
pled in the bin, one orientation
of a test grasp is shown here,
illustrated by one coordinate
system in each point.

(b) Comparison between one
planning instance and five
instances, saturating the re-
sults. Top: one planning in-
stance. Bottom: five planning
instances.

Fig. 6: New bin placement and path reachability in the area

solution. This brings the number of total test grasps to 7560,
for which it is possible to compare neural network grasps
with, and conclude on the robots ability. In Fig. 6a the new
placement of the bin is shown, along with one orientation of
test grasps.

After a map of the bin space containing information on
metrics of interest for each test grasp was saved in a look-up
table, an algorithm which composes the path reachability test
had to be implemented:

• Given the grasps from the neural network, the test grasp
resembling it the most is to be identified.

• The path length, planning- and execution time for this
corresponding test grasp is then looked up in the table.

• A cost function is evaluated based on the attributes of the
test grasp for each grasp from the network.

• The grasps from the network are re-arranged based on
this cost and returned to the picking loop.

The first step to identifying this test grasp is a check of the
distance between the network grasp point and all test grasp
points in the data set, and choosing the test grasp closest. So,
for each grasp from the network and all the test grasps, we
calculate the Euclidean distance φ1 : R3×R3→ R≥0:

φ1(dnn
i ,dtest

j ) = |dnn
i −dtest

j |, (2)

where dnn
i is the position vector of the grasp from the neural

network and dtest
j is the jth test grasp position vector. After

the point closest resembling the neural network grasp point is
found, there are 27 options for rotation, where a comparison
of the 3D rotations must be done to identify the approach
angle closest in magnitude. Based upon the work of [20], the

following metric, φ2 : SO(3)×SO(3)→ R≥0, is applied to all
test grasps and compared to the neural network grasps,

φ2(Rnn
i ,Rtest

j ) =
∥∥∥log(Rnn

i (Rtest
j )>)

∥∥∥ , (3)

where SO(3) is the special orthogonal group of order 3, R≥0
is the set of non-negative real numbers, log(·) is the matrix
logarithm, Rtest

j is the rotation part of the transformation matrix
describing the test grasp j, and Rnn

i is the same for the neural
network grasps. The ‖.‖ (2-norm), gives the magnitude of the
rotation angle [20]. The metric returns values in the interval
[0,π), where the objective is to find the smallest geodesic
distance between the neural network grasp and test grasps.
The pseudo code for the implemented algorithm is outlined in
Algorithm 1.

Algorithm 1: Algorithm for re-arranging grasps to account
for robot abilities
Input: Robot capabilities in terms of test grasps and

list of grasps from neural network
Output: Re-arranged list of grasps in terms of path

reachability
for all grasp from neural network Tnn

i do
for all test grasps Ttest

j do
calculate φ1(dnn

i ,dtest
j ) and φ2(Rnn

i ,Rtest
j );

end
return the closest test grasp in φ1 and φ2;

end
for each test grasp corresp. to a network grasp do

if the grasp is path reachable then
calculate cost of each grasp;
Ji = αφ3 +βφ4 +δφ5;

else
Ji = ∞;

end
end
sort grasps with respect to J;

The algorithm ensures that path reachable grasps with low
computation times and short paths are prioritized over less
ideal grasps, and allows the highest rated grasp to be the one
best for the robot. Information on IK, path-existence, collision-
checking and time consumption is implicitly included in the
cost function J as it is calculated offline, and is accessible
faster than the time it would require to do the operations
sequentially for each grasp from the network.

Viewing the algorithm, φi, i ∈ [3,4,5] refers to the nor-
malized average values of path length, planning time and
execution time of the path to the test grasps. α , β and δ are
weighting parameters enabling prioritization of characteristics
that are more important than others.

D. Testing

The grasps from the neural network are given relative to
the current placement of the bin, the placement seen in Fig. 2.
Transforming the grasps to the new bin, as shown in Fig. 6a,
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Fig. 7: Comparison of the average cost of the first 10 grasps from
the neural network (column to the right) and the first 10 grasps from
the re-arranged list based on path reachability (column to the left)
The average cost is split into the average sub costs of path length,
planning time and execution time for the grasps.

enables testing of the algorithm. To evaluate the functionality
of the algorithm, all weights, α , β and δ were set to 1 such
that path length, planning time and execution time of the paths
were considered equally important, since these three aspect
influence how fast a full picking cycle is.

A comparison between the list of grasps from the neural
network and the re-arranged list of grasps when considering
path reachability, had to be investigated. To do so, the first 10
grasps from the network, unsorted on path reachability, and
the first 10 grasps from the re-arranged list were recorded.
The average cost J = αφ3 + βφ4 + δφ5 of these groups was
calculated and plotted in a bar chart, seen in Fig. 7. There is
one plot for each quadrant in the bin.

Viewing the figure, the columns to the right in each group
represent the average cost of the first 10 grasps from the
network, not considering path reachability. The columns to
the left in each group represent the average cost of the first 10
grasps of the sorted list. The value of 10 was chosen to obtain
a representative average when comparing the cost J. When
comparing the two, it can be seen that when including path
reachability, grasps with a short path length, planning time
and execution time, are prioritized. Note that the y-axis goes
to infinity since some of the grasps preferred by the network
were unreachable by the robot in the south west quadrant of
the bin, this is illustrated in Fig 7 by the grey column. When
comparing the results for the south-east and south-west regions
in the bin in terms of a higher cost, this is consistent with the
slightly lower level of path reachability in these regions as can
be seen in Fig 6b.

The time the algorithm requires to process and sort the
grasps from the neural network and the map in one quadrant
is under a quarter of a second, and in theory it should be able
to process all four quadrants in under a second to account
for path reachability. However, this must be tested on the
physical set-up in real-time [21]. The results indicate that faster
picking can be achieved when including path reachability as a

separate module in the bin-picking system, whilst still keeping
the neural network focused on grasp planning alone.

V. CONCLUSIONS

In this work, a mapping of the workspace of the system
shown in Fig. 1 has been undertaken. Based on this mapping,
the region of the workspace with the highest path reachability
was chosen as the best location for placing the bin, when
considering that a robot needs to reach the objects to be picked.
Due to the constraints on the end-effector, and the constraints
in the robot cell such as the pedestal and the bin, collision-
free paths had to be found and considered. After placing the
bin, an algorithm for predicting whether or not a path could
be found to the grasp pose was implemented on the system,
separate from the neural network which supplies the grasps.
The algorithm evaluates a cost function including metrics such
as path length, which is used to skew the grasps chosen for
picking towards grasps reachable by the robot, and where a
path exists. The algorithm was tested on grasps generated by
the neural network in simulation and the results indicate that
faster picking can be achieved when taking path reachability
into consideration.

In the future, the algorithm should be tested on the physical
system in depth to investigate if the picking time is influenced
considerably by the extra check on the path reachability. In
addition, a new robot configuration to capture depth images
from should be found and considered when creating the path
reachability map, if re-positioning of the bin is undertaken.
Furthermore, it would be of interest to also include in the cost
function, how well a grasp’s likeness is to the test grasp it is
coupled with in the algorithm.
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