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Abstract 
BACKGROUND: Type 2 diabetes (T2D) is predicted to affect about 500 million individuals 
by 2030, and is closely linked to cardiovascular disease. Exercise is considered a cornerstone 
in both the prevention and treatment of T2D, but despite the clear-cut evidence and well-
established recommendations few patients with T2D exercise enough according to today’s 
guidelines. 

OBJECTIVES: To compare two different time-efficient high intensity exercise protocols in 
patients with T2D, and to investigate the effect on glycemic control and cardiovascular risk 
factors. 

METHODS: Subjects with T2D were recruited and randomly assigned to either low-volume 
high intensity interval training (HIT) or extremely low-volume sprint interval training (SIT). 
Both groups exercised three days a week for 12 weeks. Changes in glycosylated hemoglobin 
(HbA1c), aerobic capacity (VO2peak), blood lipids, blood pressure and body composition were 
measured. 

RESULTS: HIT and SIT combined reduced HbA1c significantly (-0.54 percentage points, p = 
0.005) only in the patients with the poorest glycemic control at baseline. Both HIT and SIT 
improved VO2peak, with no significant difference between groups. HIT, but not SIT, improved 
body fat percentage and visceral fat area. In hypertensive subjects blood pressure was reduced 
following HIT and SIT combined. 

CONCLUSION: Time-efficient interval training of high intensity can improve glycemic 
control in type 2 diabetes-patients with poorly controlled hyperglycemia, but not in well-
controlled subjects. Aerobic capacity, body composition and hypertension can be improved in 
type 2 diabetes following substantially less weekly time of training than currently 
recommended, given that intensity of training is high.  
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Introduction 
Diabetes mellitus affects at least 300 million 

adults worldwide [1, 2]. Nearly 95 % of these 

have type 2 diabetes (T2D), a metabolic 

disease characterized by chronically elevated 

blood glucose levels [3]. This makes T2D one 

of the most common chronic diseases, and the 

incidence is increasing even faster than 

expected only few years ago [4, 5]. A growing 

presence of obesity and a sedentary lifestyle 

are considered main factors responsible for the 

increase, and by 2030 7.7 % of the adult 

population will be affected, corresponding to a 

number of more than 500 million individuals 

[1, 2]. In addition, up to 50 % of all patients with T2D are undiagnosed [6, 7], because the 

classic symptoms are often not severe enough to be noticed at the early stages [3]. 

The hyperglycemia in T2D is a consequence of defects in insulin secretion, insulin action, or 

both [3]. These defects result from a combination of genetic predisposition, unhealthy diet and 

physical inactivity [8]. The American Diabetes Association (ADA) currently recommends the 

use of glycosylated hemoglobin (HbA1c) values of 6.5 % or higher to diagnose diabetes. The 

HbA1c value reflects average blood glucose levels over a 2- to 3-month period of time, and is 

widely used as the standard biomarker for the adequacy of glycemic control [3] . 

Elevated HbA1c is associated with increased risk of cardiovascular disease (CVD) [9, 10]. 

Thus, CVD often appears together with T2D. In fact, patients with T2D have 2-4 times higher 

risk of developing CVD than those without diabetes, independent from other conventional 

risk factors [11, 12], and CVD is accountable for about 70 % of all deaths in T2D [13]. The 

complications of T2D lead to substantially increased risk of hypertension and the 

development of heart failure. In addition, an increasing number of patients with CVD suffer 

from pre-states of diabetes [8]. 

Exercise is considered first-line treatment for T2D, together with medication and diet [14], 

and the evidence for a lowering effect of regular exercise on HbA1c in T2D is compelling [15-

22]. Regular aerobic exercise for 8 weeks or more consistently seems to lower HbA1c about 

0.6 percentage points (pp) in subjects with T2D [15, 21]. 

Abbreviations: 

T2D = type 2 diabetes 
HbA1c = glycosylated hemoglobin 
CVD = cardiovascular disease 
ADA = American Diabetes Association 
ACSM = American College of Sports Medicine 
pp = percentage points  
HIT = high intensity interval training 
SIT = sprint interval training 
CMT = continuous moderate training 
VO2peak = peak oxygen uptake 
HRmax = maximum heart rate 
HOMA-IR = homeostasis model assessment for 
insulin resistance 
HDL = high-density lipoprotein cholesterol 
LDL = low-density lipoprotein cholesterol 
BMI = body mass index 
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Numerous public health institutions worldwide, including a joint position statement from the 

American College of Sports Medicine (ACSM) and the ADA, recommends that individuals 

with T2D undertake at least 150 minutes of moderate to vigorous aerobic exercise at 40-75 % 

of individual peak oxygen uptake (VO2peak) per week [23]. Umpierre et al. [24] concluded that 

there is an association between exercise volume and the amount of change in HbA1c, with a 

significant HbA1c reduction of 0.39 pp for each additional weekly aerobic exercise session. 

However, up to two thirds of patients with T2D attend no regular physical activity at all [25], 

and few achieve the recommended amount of weekly exercise [25-27]. Lack of time is often 

cited as a main reason for inactivity in T2D [28], and this highlights the need for less time-

consuming exercise modalities that can yield similar or even greater health benefits. 

The meta-analysis of Boulé et al. [16] found that higher intensity exercise could have 

additional benefits on cardiorespiratory fitness and HbA1c in persons with T2D, with the only 

study investigating intensities above 75 % of VO2peak [29] being the significantly most 

effective one. A few later studies have added to this knowledge, and recently Karstoft et al. 

[30] showed that repeated bouts of 3-minute walking intervals of an intensity of 70-85 % of 

VO2peak had significantly greater effect on glycemic control and exercise capacity in T2D than 

a similar amount of continuous walking at a lower intensity. Furthermore, it has been 

speculated that intermittent exercise protocols of higher intensities than 75 % of VO2peak 

(HIT) could be more effective in improving CVD risk factors in T2D than today’s practice  

[31, 32]. The few available intervention studies that have compared HIT with continuous 

moderate training (CMT) in T2D show promising results on HbA1c, blood lipids and/or body 

composition [33-35], but the protocols used in these studies did not take full advantage of the 

time-saving possibilities of HIT, and generally were as time-consuming as today’s 

recommendations. 

The aim of this study was to compare the effects of two different time-efficient high intensity 

exercise protocols on cardiovascular risk factors in patients with T2D. The main hypothesis 

was that low-volume high intensity interval training (HIT) would improve HbA1c more than 

extremely low-volume sprint interval training (SIT). We also hypothesized that HIT was most 

effective in improving VO2peak, insulin resistance (HOMA-IR), body composition, blood 

pressure and blood lipoprotein and triglyceride content. 

A secondary aim was to gain knowledge about the minimum weekly amount of high intensity 

exercise needed to provide clinically relevant benefits for patients with T2D. To our 

knowledge no study has previously compared different high intensity protocols in this patient 
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group. We aimed to investigate training modalities that can potentially be both effective and 

outplay the lack of time-barrier often cited as the main reason for inactivity in T2D. 

Background for HIT and SIT 
A convincing amount of intervention studies and reviews show that HIT can yield greater 

improvements in aerobic capacity (VO2peak) than CMT in both healthy [36-39] and diseased 

populations [40-45], at least when the total energy expenditure is similar in both groups. Most 

of the HIT protocols used in the mentioned trials [36, 39-43] consisted of 4x4-minute 

intervals at an intensity of approximately 90 % of maximum heart rate (HRmax) (85 % of 

VO2peak) separated by 3-minute active rest periods at approximately 70 % of HRmax (60 % of 

VO2peak). The rationale is that the rest periods make it possible to complete short work periods 

at a high intensity that challenges the heart’s pumping ability [41]. In addition, exercise is 

completed in a shorter time-frame than CMT of similar energy expenditure, providing a time-

efficient and highly effective alternative. 

Lately, trials involving SIT have become increasingly popular. 4-6 30-second sprint intervals 

at all-out intensity was found more effective than isocaloric CMT in improving VO2peak in 

healthy subjects [46]. In addition, SIT was found as effective as higher-volume CMT in 

improving VO2peak [47] and peripheral vascular structure and function [48] in young, healthy 

subjects. These results suggest that significantly reducing the total exercise volume does not 

negatively affect exercise responses when the interval work periods are of maximum 

intensity. Total training time in the interval groups was 67 % lower than in the groups 

performing continuous moderate training [47, 48]. 

Kessler et al. [49] recently reviewed the effect of HIT and SIT on several CVD risk factors. A 

minimum of eight weeks of high intensity training was shown to promote superior 

improvements in aerobic fitness and similar improvements in some CVD risk factors 

compared to CMT. A minimum intervention period of 12 weeks was needed in order to 

improve fasting glucose levels, blood pressure and anthropometric measures, while eight 

weeks of HIT were sufficient to improve high-density lipoprotein cholesterol (HDL) in three 

out of ten studies. HIT was ineffective in improving total cholesterol, low-density lipoprotein 

cholesterol (LDL) and triglycerides. 

A more focused review have evaluated the effects of HIT on CVD risk factors in patients with 

cardiometabolic disorders [44]. Only trials that matched HIT with CMT of the same total 

energy expenditure were included. Fasting blood glucose levels showed a tendency to 
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improve more following HIT than CMT, and VO2peak increased significantly more following 

HIT than CMT. HIT and CMT were associated with similar improvements in blood pressure, 

body composition and blood lipids, and the meta-analysis concluded that further studies are 

needed to confirm any beneficial effect on insulin sensitivity or glucose transportation [44]. A 

similar review by Weston et al. [45] concluded that HIT was superior to CMT in improving 

CVD risk factors in patients with lifestyle-induced chronic diseases. 

One study particularly relevant for T2D was done by Tjønna et al. [42] on patients with the 

metabolic syndrome. This condition is a clustering of cardiovascular risk factors, diagnosed 

from a combination of elevated waist circumference, elevated triglycerides, reduced HDL, 

elevated blood pressure, and elevated fasting glucose [50]. Most patients with T2D will have 

the metabolic syndrome by the proposed criteria [50]. Tjønna et al. showed 16 weeks of HIT 

to be more effective than a similar amount of CMT in improving VO2peak, fasting blood 

glucose and insulin sensitivity in these patients. HDL increased significantly following HIT, 

but not CMT, while none of the other blood lipid variables changed significantly in either 

group. Blood pressure, waist circumference and body mass index (BMI) showed similar 

improvements in both groups. After the study, significantly more patients in the HIT than 

CMT group (46 % vs. 37 %) were no longer diagnosed with the metabolic syndrome, and the 

authors concluded that high intensity exercise was superior to moderate intensity exercise in 

reversing risk factors of the metabolic syndrome [42]. 

In line with these results, Earnest et al. [51] recently found six weeks of HIT more effective 

than eucaloric CMT for improving metabolic syndrome score in men at risk for insulin 

resistance. The conclusion from the study was that HIT appeared to have a more robust 

exercise effect on metabolic syndrome than CMT. In addition, insulin resistance was 

significantly improved following HIT both 24 and 72 hours after the last exercise sessions, 

whereas no change was seen following CMT. HIT also reduced body mass, body fat mass and 

waist circumference. 

No study to our knowledge has compared SIT to CMT in subjects with increased CVD risk. 

However, just two weeks and six total sessions of 4-6 30-second sprint intervals has been 

shown to improve insulin action in both healthy [52, 53] and sedentary, overweight 

individuals [54]. A 2-week SIT intervention also decreased waist circumference and systolic 

blood pressure in overweight men [54], while four weeks of SIT were sufficient to improve 

VO2peak and stroke volume during submaximal exercise in overweight/obese women [55]. 
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While there is growing evidence for the benefits of high-intensity interval training in patients 

at high risk of T2D [42, 51], randomized controlled trials on time-efficient HIT and SIT in 

patients already diagnosed with T2D are lacking. A study by Terada et al. [34] found that HIT 

was feasible for subjects with T2D, while Backx et al. [33] showed that HIT can effectively 

decrease LDL, total cholesterol, HbA1c, waist circumference and BMI in T2D-patients. 

However, the interventions in both studies [33, 34] included up to 300 minutes of weekly 

exercise, at least as time-consuming as the CMT it was compared to. This is double of the 

minimum recommendations of ADA and ACSM, and one can argue that these protocols were 

not suited to reduce the time-barrier often reported when patients with T2D explain their 

reasons for inactivity [28]. 

Mitranun et al. [35] recently showed that 10 weeks of HIT was more effective in improving 

VO2peak than CMT of the same total energy expenditure and duration in older patients with 

T2D. The three weekly HIT exercise sessions consisted of 4-6 1-minute intervals at 80-85 % 

of VO2peak, and total weekly training time in both groups was 90-120 minutes, considerably 

shorter than today’s recommendation of minimum 150 minutes. HbA1c, total cholesterol, 

HDL, LDL and systolic blood pressure only improved following HIT, whereas measures of 

body composition and insulin resistance changed similarly in both groups. The study shows 

that reduced total training time can yield improvement in CVD risk factors in T2D, especially 

if the intensity of exercise is high. However, we feel that the time-saving potential of HIT was 

not fully taken advantage of in the study, as the low-intensity breaks between each interval 

were as long as three minutes, and total training time matched that of CMT. 

A pilot study recently showed that only two weeks with a total of six sessions of more time-

efficient HIT reduced blood glucose significantly in individuals with T2D [56]. The training 

sessions consisted of 10 bouts of 1-minute intervals at 90 % of HRmax, each separated by 75 

seconds at moderate intensity. Total training time was only 75 minutes per week, or half of 

the ADA and ACSM recommendations [23]. Bird and Hawley [57] suggested that such time-

saving HIT protocols could be a vital alternative strategy to overcome the time-barrier and 

enable more people to gain the health benefits of exercise, and Hawley and Gibala [58, 59] 

have pointed out an urgent need to address this question in randomized controlled trials. In 

addition to its time-saving nature, HIT is associated with more joy than CMT [60], and 

increased enjoyment could be crucial for reducing inactivity in sedentary individuals [61]. 

Indeed, Wisløff et al. [41] reported that patients with heart failure found HIT more motivating 

than CMT, based on informal comments from different participants. Also, Babraj et al. [52] 
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proposed that SIT can be used as a strategy to reduce metabolic risk factors in subjects who 

are not willing to part-take in more time-consuming traditional aerobic exercise regimes.  
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Methods 

Design 
Our study was a 12-week, single center, parallel-group randomized controlled trial conducted 

in Trondheim, Norway between August 2013 and January 2014. The study was approved by 

the regional ethical committee. 

Participants 
Subjects were recruited from a list of candidates that had volunteered, but eventually were not 

needed, in a previous intervention study by our research group. Additional recruitment was 

conducted through newspaper advertisement and websites, and through posters at local 

medical centers in Trondheim. 

Patients were screened through an interview upon first meeting. To be considered for 

participation subjects had to be aged 20-65 years, diagnosed with T2D for less than 10 years, 

and able to exercise three times a week for twelve weeks. Subjects were excluded from the 

study if they were treated with insulin, or if they reported to achieve greater than the 

minimum exercise guidelines of 150 minutes per week prior to the start of the study. 

Other exclusion criteria included a history of overt cardiovascular disease, cardiac artery 

disease, moderate to severe valvular disease, atrial fibrillation or other severe arrhythmia, 

congenital heart disease, untreated hypertension of >140/90, left ventricular hypertrophy, 

retinopathy, neuropathy, micro- or macroalbuminuri, BMI >35, or a disease or disability 

making training difficult. Subjects who experienced ischemia at exercise electrocardiography 

performed during pre-testing were also excluded. 

Following screening a total of 21 participants were found eligible for randomization. Each 

subject reviewed and signed a written informed consent approved by the regional ethical 

committee before taking part in the study. All the subjects were on antihyperglycemic 

medication, and were told not to change the dosage of medication throughout the intervention. 

The subjects were also encouraged not to change their food habits during the period, and were 

asked to fill out a habitual activity diary for each of the 12 weeks of exercise. 

Initial assessment 
Pre-testing took place within one week prior to the start of the training intervention. Blood 

samples were collected from the antecubital vein following 10 hours of overnight fasting. 

Blood glucose, HbA1c, insulin C-peptide, total cholesterol, HDL, LDL, triglycerides and high 

sensitive c-reactive protein (hs-CRP) was analyzed using standard local procedures at St. 
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Olavs Hospital. To estimate β-cell function we used overall insulin resistance and the 

homeostasis assessment model (HOMA-IR). 

Resting heart rate, systolic and diastolic blood pressure was measured with an automatic self-

inflating oscillometric device (Criticare Comfort Cuff 506N, Criticare Systems Inc., 

Waukesha, Wisconsin, USA) with an 11 cm standard cuff. Three subsequent measurements 

were performed after five minutes of rest in a seated position, and the average value of the 

three measurements was calculated for each variable and used in later analysis. 

Body height was measured by a wall mounted height scale. Waist circumference was 

measured with a measuring tape, using the average value from three subsequent 

measurements. Measures were taken in expiration, midway between the lower lateral costal 

margin and the iliac crest, with the subject standing. Other body composition measurements 

were made using InBody 720 (Biospace CO, Ltd, Seoul, Korea), and body weight, body mass 

index (BMI), muscle mass, body fat weight, body fat percentage, and visceral fat area were 

recorded.  

Exercise test 
Later the same day a treadmill (Woodway PPS 5, Woodway, Weil am Rheim, Germany) test 

to exhaustion was executed to obtain peak oxygen consumption (VO2peak). Before 

measurements of VO2peak the subjects were informed about the test, and instructed to exercise 

to their maximum limit. The test started on a treadmill with 3 % inclination, and the speed and 

inclination were individually adjusted for a 5-minute warm-up. Work economy was defined 

and recorded as the submaximal heart rate value obtained following three minutes of walking 

at an individually set pace and a treadmill inclination of 3 %. 

After the warm-up period the subjects wore a mask for metabolic measurements using 

MasterScreen Spirometer (Jaeger Oxycon Pro, Jaeger GmbH & Co KG, Würzburg, Germany) 

or Metamax II (Cortex, Leipzig, Germany). The following VO2peak test was performed using a 

ramp protocol where the speed was constant and the inclination increased with 2 % every 

minute until VO2peak was reached. The mean of the three highest 10 second measurements in 

succession was used to determine VO2peak. A subjective rating of perceived exertion (RPE; the 

Borg Scale) from 6 (“no feeling of exertion”) to 20 (“very, very hard”) was obtained 

immediately following the test. 

Heart rate was continuously recorded with Polar RS 400 monitors (Polar Electro, Kempele, 

Finland) during the test to obtain maximum attainable heart rate. Maximum heart rate (HRmax) 
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was determined from adding 5 beats to the peak HR-values obtained during the test. Heart 

rate recovery was recorded as the difference between peak heart rate and heart rate one minute 

(HRR1) and two minutes (HRR2) following exhaustion, with the subjects standing still on the 

treadmill between measurements. 

Randomization 
Following pre-testing the subjects (n = 21) were randomized into one of the following groups 

for a 12-week intervention period. 

1. A 10x1-minute interval group (HIT, n = 10) 

2. A 2x20-seconds interval group (SIT, n = 11) 

Randomization was stratified by sex and completed by a computer program. Blinding of the 

participants was not done in this study, but blood samples were completed by personnel 

unaware of group allocation. 

Exercise intervention 
Both groups exercised three days a week for 12 weeks, for a total of 36 sessions, at the time of 

each participant’s convenience. If a subject failed to show up for one session and was unable 

to compensate with an extra session the following week, an extra week of exercise was added 

to the intervention period. A compliance of at least 90 % (33 completed sessions at prescribed 

intensity) was considered acceptable. 

All training sessions were performed on a treadmill, and all sessions were supervised by an 

instructor. Most of the training was performed at our test laboratory at St. Olavs Hospital in 

Trondheim, at the Department of Circulation and Medical Imaging. However, a few subjects 

(n = 2, one subject in each training group) performed some of the sessions at other venues due 

to long travel distances between their location and the test laboratory. The compliance and 

intensity of these sessions were the same as for the sessions at the hospital. 

Exercise training intensity was determined based on the HRmax-values obtained from the 

maximal graded exercise test to exhaustion performed at pre-testing. During the intervention 

period Polar RS 400 heart rate monitors (Polar Electro, Kempele, Finland) were used at each 

exercise session to monitor heart rate and ensure the required exercise intensity was achieved 

and maintained. 
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1. HIT: Low-volume high intensity interval training (10x1-minute) 

 

Figure 1: Theoretical outline of the HIT protocol. The figure describes heart rate (percentage of HRmax) at a given time 
(minutes). 

The HIT exercise protocol is illustrated in figure 1. Exercise started with warming up for 3 

minutes at 70 % of HRmax before performing 10x1-minute intervals at approximately 90 % of 

HRmax, with 75 seconds of active recovery at approximately 70 % of HRmax between each 

interval. The treadmill speed and inclination were held constant during all 10 intervals in each 

session, and the heart rate goal was supposed to be reached around the fourth interval. The 

session was concluded with a 3-minute cool-down at 70 % of individual HRmax. The protocol 

has previously been described by Little et al. [62]. 

As the subjects got fitter and/or more familiarized with treadmill exercise, the speed and/or 

inclination was adjusted to make sure the intensity matched their fitness level throughout the 

intervention period. 

Training time per session in the HIT group was 27 minutes and 15 seconds, giving a total of 

81 minutes and 45 seconds of exercise each week, with 30 minutes of the time spent at high 

intensity. This corresponded to a weekly training time of approximately half of the ADA and 

ASCM recommendations. 
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Picture 1: Participant performing 10x1-minute high-intensity interval training (HIT) on an elevated treadmill. 

 

2. SIT: Extremely low-volume sprint interval training (2x20 seconds) 

 

Figure 2: Theoretical outline of the SIT protocol. The figure describes heart rate (percentage of HRmax) at a given time 
(minutes). Note that the figure is only illustrative, as heart rate was controlled to achieve correct intensity at the low-
intensity periods, but not during the all-out intervals at supramaximal intensity. 
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The SIT exercise protocol is illustrated in figure 2. Exercise started with warming up for 3 

minutes at 70 % of HRmax before performing 2x20 seconds of maximum intensity intervals, 

with 3 minutes and 20 seconds of active recovery at 70 % of HRmax between each interval. 

Exercise was completed with 3 minutes cooling down at 70 % of HRmax. The treadmill was 

set to an inclination of 20 %, and the first few sessions were used to find the maximum speed 

the subjects could manage for exactly 20 seconds at this inclination. Speed was adjusted (i.e. 

increased) throughout the intervention period to make sure that the subjects exercised at an 

all-out intensity even as they got more fit or used to treadmill running. The same intensity 

protocol is previously described for stationary bicycle by Metcalfe et al. [63]. 

Training time per session in the SIT group was 10 minutes, giving a total of 30 minutes of 

exercise each week – one fifth of the ADA and ACSM recommendations. Exercise time at the 

supramaximal intensity level was 40 seconds per session and 2 minutes per week. 

 

Picture 2: Participant performing supervised 2x20-second sprint interval training (SIT) on an elevated treadmill. 

Post-testing 
Post-testing was completed between 72 and 96 hours following the last exercise session to 

make sure acute effects of exercise were avoided. Procedures were equal to baseline testing, 

and the same measurements were done. Blood sampling was performed at the same time of 
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day (8.00 – 9.00 am.) for both baseline and post-test in order to avoid diurnal changes in the 

blood variables measures. 

Outcomes 
The primary outcome of this study was the effect of HIT and SIT on HbA1c, within and 

between groups. Important secondary outcomes were the efficacy of HIT and SIT in 

improving insulin resistance, blood lipid measurements, anthropometry, VO2peak and blood 

pressure. 

Data analysis 
Data was checked for normal distribution with quantile-quantile (Q-Q) plots. For normally 

distributed variables, within group improvement from baseline to post-test was identified by 

paired samples t-tests, while between group differences and changes were identified using 

independent samples t-tests. Where skewness from normal distribution was observed, non-

parametric statistics were performed to find within group (Wilcoxon’s Signed Rank Test) and 

between group changes (Mann-Whitney U Test). Simple Pearson product-moment correlation 

analyses were used to identify baseline correlations between variables and correlations of the 

change between variables from baseline to post-test. 

All data analysis was carried out using a standard statistical software program (SPSS version 

21.0; SPSS Inc, Chicago, Illinois, USA). 
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Results 

Participants 
Figure 3 shows the flow of the 

participants from baseline to post-test. A 

total of 18 subjects completed the 

training intervention as scheduled. Three 

subjects – two in the SIT group and one 

in the HIT group – dropped out during 

the intervention, leaving n = 9 (five men 

and four women) in both groups. One 

subject in each group reported calf pain 

related to the exercise as the reason for 

dropping out, whereas one subject in the 

SIT group did not show up for a sufficient amount of training sessions each week and 

eventually dropped out with no further explanation. 

All study participants reported that no change in drug dose or food intake was made 

throughout the intervention. The self-reported habitual activity was similar in both exercise 

groups, and did not change from week 1 to week 12 in any of the groups (data not shown). 

Baseline characteristics 
BASELINE CHARACTERISTICS    

 HIT (n = 9) SIT (n = 9) p-value of the difference 

Age (years) 56.5 ±6.5 49.6 ± 10.6 0.11 
Years with T2D 4.2 ± 2.1 5.3 ± 2.5 0.32 
HbA1c (%) 6.53 ± 0.96 7.87 ± 1.21 0.019 
Height (cm) 168.7 ± 10.5 174.7 ± 12.4 0.29 
BMI 26.3 ± 3.0 29.5 ± 3.9 0.06 
Fat percentage 28.8 ± 6.7 31.4 ± 6.2 0.41 
Systolic blood pressure  (mmHg) 129.3 ± 16.3 135.3 ± 11.0 0.38 
Diastolic blood pressure (mmHg) 76.8 ±7.2 84.44 ± 12.0 0.09 
    

Table 1: Baseline data are presented as mean ± standard deviation. P-values show between group differences. HbA1c = 
glycosylated hemoglobin, BMI = body mas index. 

There were significant baseline differences in HbA1c between the groups (p = 0.02). No other 

variable differed significantly between the groups at baseline. However, diastolic blood 

pressure as well as several anthropometric variables (i.e. weight, BMI, total fat weight, 

visceral fat area and waist circumference) showed a tendency to be higher in the SIT group 

than in the HIT group (p = 0.06-0.09, table 1). 

Figure 3: Flow chart of the study. 
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Analysis (n = 18) 

Analyzed after 12 weeks (n = 9) Analyzed after 12 weeks (n = 9) 

Follow-up 

Lost to follow-up (n = 1)  Lost to follow-up (n = 2) 

Group Allocation 

HIT (n = 10) SIT (n = 11) 

Randomization (n = 21) 



Blood analyses 
HbA1c did not change in either group following the exercise 

intervention (Table 2). However, the 50 % subjects with the 

highest initial HbA1c values (>7.2 %, n = 9), regardless of 

exercise group, decreased their HbA1c value by a mean of -0.54 

pp (-0.88, -0.21, p = 0.005) (Figure 2). The 50 % subjects with 

the lowest initial HbA1c values (<7.2 %, n = 9), showed no 

significant change from baseline to post-test, although there 

was a tendency of slightly worsened HbA1c in these subjects 

(0.19 pp [-0.05, 0.38], p = 0.055). The amount of change 

differed significantly between the “high” and “low” group (p-

value of the difference = 0.001). 

There were no significant effects of training on any other blood 

variable measured in any of the exercise groups, and no 

between group differences (Table 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

p = NS 

p = 0.005 

Figure 4 (above): Data represents mean change in glycosylated 
hemoglobin (HbA1c) for the 50 % subjects with lowest and highest 
baseline levels of HbA1c. n = 9 in both groups 

  Table 2 (left): Baseline and post data are presented as mean ± standard 
deviation. Mean change is mean within group change ± standard deviation. 95 
% confidence intervals (CI) and p-values of the change are shown in separate 
columns. Right column p-values show differences in changes between groups.  

HbA1c = glycosylated hemoglobin, hs-CRP = high-sensitive c-reactive protein. n = 
9 for all variables in both groups unless otherwise stated. 

*Related-Samples Wilcoxon Signed Rank Test 
**Independent-Samples Mann-Whitney U Test 
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Anthropometry 
No effects of training were seen on anthropometric measures in the 

SIT group (Table 3). HIT reduced body fat percentage by 4.5 % (-

1.3 pp [-2.6, -0.04], p = 0.044), and visceral fat area by 5.0 % (-5.3 

cm2 [-10.4, -0.3], p = 0.041). These effects on body composition 

were seen without any significant change in total body weight or 

BMI (Table 3). Despite no significant changes in the SIT group, 

neither body fat percentage nor visceral fat area changed 

significantly more following HIT than SIT from baseline to post-test 

(p-value of the difference = 0.10 and 0.56, respectively). 

Mean reduced waist circumference did not reach statistical 

significance following HIT (-1.3 cm [-2.8, 0.3], p = 0.09). However, 

waist circumference changed differently between the two exercise 

groups (p-value of the difference = 0.046) (Table 3). 

Maximal oxygen uptake and work economy 
Both HIT and SIT improved VO2peak, both in relative (mL/kg/min) 

and absolute values (L/min). Mean improvements in relative VO2peak 

was 10.4 % (3.3 mL/kg/min [1.6, 5.0], p = 0.002) following HIT and 

4.3 % (1.4 mL/kg/min [0.1, 2.7], p = 0.034) following SIT. The 

between group difference of the improvements was almost 

significant (p-value of the difference = 0.056). 

Both training modalities also improved work economy measured as 

heart rate at a given submaximal work load (Table 4), with no 

significant between group difference (p-value of the difference = 

0.11). Only HIT improved heart rate recovery two minutes after the 

exercise test to exhaustion (11.0 bpm [2.4 – 19.6], p = 0.02), and the 

improvements were significantly different from SIT (Table 4, p of 

the difference = 0.025). 

 
Table 3 (left): Baseline and post data are presented as mean ± standard 
deviation. Mean change is mean within group change ± standard deviation. 95 
% confidence intervals (CI) and p-values of the change are shown in separate 
columns. Right column p-values show differences in changes between groups.  

BMI = body mass index. n = 9 for all variables in both groups 
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Blood pressure 
SIT decreased diastolic blood pressure by -5.8 

mmHg (-11.4, -0.2, p = 0.044). No other 

significant blood pressure changes were seen in 

any of the training groups (Table 5), and no 

between group differences of the change existed. 

In both groups combined, diastolic (-8.7 mmHg [-

14.5, -2.8], p = 0.013) as well as systolic (-8.4 

mmHg [-14.8, -2.1], p = 0.016) blood pressure 

decreased in the patients with hypertension (>135 

systolic [n = 9] and/or >85 diastolic [n = 6]) at 

baseline, but not in the patients with normal blood 

pressure at the start of the intervention (systolic; n 

= 9, 0.9 mmHg [3.3, 5.0], p = 0.63, diastolic; n = 

12, -0.3 mmHg [-4.3, 3.6], p = 0.86). Both 

systolic (p-value of the difference = 0.013) and 

diastolic (p-value of the difference = 0.015) blood 

pressure changed significantly more in the 

hypertensive than normotensive patients. 

  

Table 4 (left): Baseline and post data are presented 
as mean ± standard deviation. Mean change is 
mean within group change ± standard deviation. 95 
% confidence intervals (CI) and p-values of the 
change are shown in separate columns. Right 
column p-values show differences in changes 
between groups. 

VO2peak = peak oxygen uptake, HR = heart rate, HRR 
= heart rate recovery, RPE = rating of perceived 
exertion, RER = respiratory exchange ratio. n = 9 for 
all variables in both groups 

Table 5 (right): Baseline and post data are 
presented as mean ± standard deviation. Mean 
change is mean within group change ± 
standard deviation. 95 % confidence intervals 
(CI) and p-values of the change are shown in 
separate columns. Right column p-values show 
differences in changes between groups. 

BP = blood pressure. n = 9 for all variables in 
both groups. 
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Correlations 
Correlations between selected variables are 

summed up in table 6. At baseline HbA1c 

correlated positively with insulin resistance 

(HOMA), BMI, visceral fat area and 

triglycerides and negatively with VO2peak, 

even though none of the correlations were 

strong enough to reach statistical significance 

(Table 6). There was a strong positive 

correlation between HOMA-IR and visceral 

fat area at baseline (r = 0.71, p = 0.001). 

Changes in HbA1c and HOMA-IR from 

baseline to post-test were significantly 

associated with changes in blood lipids (Table 

6). The positive correlation between changes 

in HbA1c and visceral fat mass was not 

significant (r = 0.41, p = 0.09). 

 

 

 

  

Table 6: Pearson product-moment correlations are 
presented as r-values at baseline and r-values of the 
change from baseline to post-test. Exact p-values are 
reported, and significant correlations (p < 0.05) are flagged 
(*) 

HbA1c = glycosylated hemoglobin, HOMA-IR = homeostasis 
model assessment of insulin resistance, BMI = body mass 
index, LDL = low-density lipoprotein cholesterol, HDL = 
high-density lipoprotein cholesterol, VO2peak = peak oxygen 
uptake 
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Discussion 
The main finding from this study was that HbA1c only improved following HIT and SIT in the 

T2D-patients with the poorest glycemic control at baseline. In well-controlled subjects, 

neither 10x1-minute intervals at 90 % of HRmax (HIT) nor 2x20-second sprint intervals at 

supramaximal intensity (SIT) improved long-term glycemic control. Consequently, HIT did 

not improve HbA1c more than SIT as hypothesized. Both groups improved VO2peak, with no 

significant difference between HIT and SIT. Contrary to SIT, HIT also reduced body fat 

percentage and visceral fat area. HIT and SIT combined reduced both systolic and diastolic 

blood pressure in hypertensive, but not normotensive, patients. 

HbA1c 
HIT and SIT combined improved HbA1c in the 50 % subjects with the poorest long-term 

glycemic control in this study, and the -0.54 pp reduction is comparable to improvements seen 

in earlier training studies and meta-analyses [15-22]. A reduction by such magnitude is 

considered clinically significant, compares well to the reductions achieved by common 

glucose-lowering medication [10, 64], and could lead to substantially reduced risk of 

macrovascular and microvascular complications and all-cause mortality [9, 10]. 

However, when including all subjects no changes in HbA1c were seen in any of the exercise 

groups in this study. This is in line with the results of Terada et al. [34], who found no effect 

on HbA1c following 12 weeks of HIT. In contrast, Mitranun et al. [35] recently found 

significant improvements in HbA1c following a HIT protocol similar to the one in our study 

and the Terada-study. 10 weeks and 30 sessions of 4-6 1-minute intervals at 80-85 % of 

VO2peak improved long-term glycemic control, as opposed to isocaloric CMT. The reason for 

the discrepancy between our results and the results of Mitranun et al. is unclear, but could be 

due to the relatively higher initial HbA1c values (7.6 ± 0.2 %) in the HIT group in that study, 

compared to both our (6.5 ± 1.0 %) study and the Terada-study (6.6 ± 0.6 %). This suggestion 

is supported by a recent systematic review [21], and is strengthened by the significant exercise 

effect on HbA1c seen in the present study when evaluating subjects with baseline levels higher 

than 7.2 %, regardless of exercise group. Umpierre et al. [24] have suggested that exercise 

volume is more important than exercise intensity for improving HbA1c in patients with T2D, 

and it could be argued that the volume of exercise needs to be higher than in the present study 

to be effective in improving HbA1c in subjects with relatively well-controlled T2D. 

The importance of improving long-term glycemic control in T2D-patients with higher HbA1c 

is pointed out by the fact that these patients have an increased relative risk of 4.2 of dying 
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from ischemic heart disease, substantially higher than patients with lower HbA1c [65]. 

Lowering HbA1c in T2D is also found to decrease the absolute risk of developing coronary 

heart disease within 10 years by 5-17 %, as well as decreasing all-cause mortality within the 

same time frame by 6-15 % [66]. The effect seen in the patients with the poorest long-term 

glycemic control in our study, could suggest that both HIT and SIT potentially have their 

place in an exercise regime for patients with T2D, but further studies are needed to confirm 

this effect. 

Insulin resistance 
The homeostasis model assessment (HOMA-IR) is widely used for assessing insulin 

resistance in patients with T2D, and correlates well with the more expensive and time-

consuming glycemic clamp technique [67, 68]. Even though the results did not reach 

statistical significance, our study shows a non-significant improvement in insulin resistance in 

the HIT group and no change following SIT (Table 2). The tendency of an improvement 

following HIT seems to be mainly related to decreased fasting plasma glucose concentrations, 

but also to a lesser degree decreased C-peptide concentrations. 

The role of exercise in preventing and treating insulin resistance through improvements in 

insulin sensitivity is well documented in subjects with T2D [69-72], but to our knowledge the 

study of Mitranun et al. [35] is the only one to previously investigate HOMA-IR response to 

high intensity interval training in this patient group. They found that HOMA-IR decreased 

significantly by -0.6 following HIT, similar to the decreases following isocaloric CMT. The 

improvements are greater than in our study (-0.23), and the differences can possibly be 

explained by the higher baseline HOMA-IR values in the Mitranun-study. The potential for 

improved insulin resistance following HIT is also shown by Earnest et al. [51], who found 

that six weeks of HIT at 90-95 % of VO2peak is effective in improving HOMA-IR in pre-

diabetic men at risk for insulin resistance, whereas isocaloric CMT did not affect insulin 

resistance in this population. 

Reduced insulin resistance following exercise in T2D could result from adaptations that 

increase insulin action in skeletal muscle. Defects in insulin-mediated glucose-uptake in T2D 

have been tracked to defects in the function and distribution of the GLUT-4 protein in skeletal 

muscle cells [73, 74]. GLUT-4 is responsible for the insulin-regulated transport of glucose 

into muscle cells [75, 76], and a training-induced increase in GLUT-4 content is frequently 

seen following regular aerobic exercise in T2D [77-79]. Another possible explanation for 

improved insulin resistance following exercise is increased mitochondrial content in skeletal 
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muscle. Muscle oxidative capacity is a significant predictor of insulin sensitivity [80], and 

patients with T2D are reported to have reduced mitochondrial capacity [81]. HIT has been 

shown to increase skeletal muscle mitochondrial content together with reduced hyperglycemia 

in patients with T2D [56]. However, it is unclear whether skeletal muscle adaptations were 

responsible for the trend of improved HOMA-IR following HIT in our study, as neither 

GLUT-4 nor mitochondrial content were measured. 

No study to our knowledge has previously investigated HOMA-IR following SIT. However, 

three weekly sessions of 4-6 30-second sprints have been shown to increase insulin sensitivity 

in healthy adults [52, 53] and in obese men [54], without changes in circulating fasting plasma 

glucose or insulin concentrations. Even lower-volume SIT, equal to the weekly amount of 

exercise in the present study, is shown to improve insulin sensitivity in men, but not in 

women [63]. Direct measures of insulin sensitivity were not done in our study – however, 12 

weeks of low-volume SIT did not improve insulin resistance (HOMA) or fasting plasma 

glucose concentration in patients with T2D. 

Blood lipids 
Our results suggest that HIT, but not SIT, could be effective in improving lipid profile in 

patients with T2D, even though the beneficial effects did not reach statistical significance. 

The 5.3 % improvements in HDL (0.07 mmol/L [-0.002, 0.14], p = 0.055) are smaller than 

those seen by Mitranun et al. [35], whereas the 15.4 % (-0.22 mmol/L, p = 0.10) reduction in 

triglyceride content following HIT is in line with the results from that study. However, two 

other intervention studies found that HIT was ineffective in altering HDL and triglycerides in 

T2D [33, 34]. Also, our study does not support the significant effect of HIT on lowering LDL 

and total cholesterol seen by Mitranun et al. [35] and following higher-volume HIT [33]. 

The mechanisms to explain any favorable effects on lipid profile following exercise are not 

fully understood. However, low levels of HDL and high levels of triglycerides are likely 

related to both insulin resistance and an increased amount of visceral fat [82], and in the 

present study HOMA-IR was strongly correlated to both visceral fat area, triglycerides and 

HDL at baseline (table 6). In addition, changes in HOMA-IR were negatively correlated with 

changes in HDL (r = -0,69, p = 0.001) and positively correlated with changes in triglycerides 

(r = 0.59, p = 0.01), indicating an association between altered lipid profiles and  insulin 

resistance. The correlations between changes in visceral fat area and HDL (r = -0.12, p = 

0.63) and visceral fat area and triglycerides (r = 0.41, p = 0.09) were not significant. 
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Patients with T2D generally have high triglyceride levels compared with the general 

population, often in combination with low levels of HDL [83, 84]. The levels of LDL and 

total cholesterol do not differ significantly from the general population [83]. Low values of 

HDL and high values of LDL, total cholesterol and triglycerides are associated with increased 

CVD risk [85], and every 0.1 mmol/L decrease in HDL is associated with a 2-3 % increased 

risk of coronary heart disease [86]. It is difficult to conclude on certain health benefits from 

the small and non-significant improvements in blood lipids following HIT in our study, 

especially when considering the inconsistent results from earlier studies [33-35]. However, 

given the low HDL and high triglyceride values often seen in patients with T2D, any 

improvements could prove beneficial. Small increases in HDL and decreases in triglycerides 

are previously seen in T2D following regular non-interval based exercise [17-20, 22], and the 

promising results following HIT in the present study should be further investigated in later 

studies. 

Our study is the first to date to evaluate lipid profiles following SIT in T2D, and possibly the 

first to do so in any population or patient group. No changes were seen in any of the blood 

lipid variables following the sprint interval intervention, and from our results it does not seem 

likely that a small weekly amount of SIT is sufficient to alter lipid profile in patients with 

T2D. 

Anthropometry 
Despite no reduction in BMI or total body weight, HIT did reduce body fat percentage and 

visceral fat area significantly, and tended to reduce total fat weight and waist circumference 

(Table 3). None of these effects were seen following SIT. Interestingly, the SIT group tended 

to have a higher mean total body weight, BMI, fat weight and visceral fat area than the HIT 

group at baseline (p-value of the difference = 0.05-0.09 for all variables), and one could argue 

that the room for improvement was greater in the SIT group. Even so, improvements were 

seen in the HIT group only, and at post-test the HIT group had significantly lower waist 

circumference (p-value of the difference = 0.03), and total fat weight (p-value of the 

difference = 0.03) than the SIT group. 

In patients predisposed to T2D high levels of visceral fat lead to elevated levels of free fatty 

acids in blood plasma, which could lead to impaired insulin secretion [87]. This might explain 

the strong positive correlation between visceral fat area and HOMA-IR (r = 0.71, p = 0.001) 

seen at baseline in our study. Increased triglyceride synthesis in skeletal muscle during and 

after acute exercise prevents fatty acid-induced insulin resistance [88], and offers a possible 
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explanation for a combined reduction in insulin resistance and abdominal fat. However, in our 

study the correlation between the reduction in visceral fat area and HOMA-IR failed to reach 

statistical significance (r = 0.30, p = 0.22). 

The results from HIT in our study are in line with the results of Mitranun et al. [35] and 

Terada et al. [34], who also found that HIT was effective in reducing fat percentage and 

visceral fat in T2D without significant reductions in BMI or body weight. Similar results have 

been seen following continuous moderate training of higher volume [19, 29, 89, 90]. Our 

results show that HIT can potentially give the same benefits with reduced weekly exercise 

time. Reducing visceral fat area and waist circumference could be especially important in this 

patient group, as intra-abdominal fat is a greater risk factor for T2D than overall adiposity [91, 

92]. Over 50 % of patients with T2D are obese (BMI >30.0) [93], and even those who are not 

may have an increased amount of intra-abdominal fat [3]. Decreasing waist circumference in 

T2D is associated with a reduction in HbA1c as well as reduced risk of developing CVD. [94]. 

Possible mechanisms underlying the abdominal fat loss following HIT have previously been 

discussed by Boutcher [95]. Only a few sessions of high intensity interval training is enough 

to increase whole body and skeletal muscle capacity for fatty acid oxidation [96, 97]. 

Increased fat oxidation both during and after HIT could result from inhibited anaerobic 

glycogenolysis, meaning that ATP is predominantly resynthesized from intramuscular 

triglycerides [98]. Postexercise fat metabolism could also be influenced by the catecholamines 

generated by HIT and/or the need to remove lactate and H+ and resynthesize glycogen [95]. 

However, our results clearly indicate that even at high intensity a certain volume of exercise is 

needed to reduce abdominal fat and improve other anthropometric variables in T2D. Whyte et 

al. [54] has previously shown that waist circumference was reduced in overweight men 

following only two weeks of SIT, but this does not seem to be true in patients with T2D. It is 

likely that the total weekly energy expenditure from exercise was too low to cause an effect 

on body weight and body composition in the SIT group in our study. 

Aerobic capacity 
As hypothesized, both HIT and SIT improved peak aerobic capacity, but the difference in 

improvement between the groups marginally failed to reach significance (p-value of the 

difference = 0.056). Subjects with T2D frequently have lower aerobic capacity than healthy 

subjects of similar age and body mass [99, 100], and improving VO2peak could be crucial, as 
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low aerobic capacity is a powerful and independent predictor of long-term cardiac mortality in 

this patient group [101]. 

The 10.4 % increase in VO2peak following HIT in the present study is highly comparable to the 

results from the metaanalysis by Boulé et al. [16], who found an 11.8 % increase following at 

least 8 weeks of structured, continuous aerobic exercise equivalent to the ADA and ACSM 

recommendations. An improvement of this size could be sufficient to reduce the risk of 

cardiac mortality from T2D [101, 102]. Our results clearly indicate that the same benefits can 

be reached with high intensity training even if total training time is reduced to half of the 

recommendations. This is supported by the findings of Mitranun et al. [35], who showed that 

HIT is more effective than isocaloric CMT in improving VO2peak in patients with T2D. 

7 – 12 % increases in VO2peak following only a few weeks of SIT is previously seen in healthy 

[46, 47, 63], and overweight subjects [54, 55], but our study is the first to extend these 

findings to subjects with T2D. Despite the longer duration of the intervention in our study, the 

subjects only increased their VO2peak by 4.3 %. This could be explained by the fact that the 

weekly amount of SIT was even lower than in most of the earlier studies. However, Metcalfe 

et al. [63] found a 12 % increase following a similar protocol to ours, and one can not rule out 

that the rate of improvement is different in healthy subjects compared to patients with T2D. 

Despite the substantially higher volume of high-intensity exercise in the HIT group, HIT did 

not improve VO2peak significantly more than SIT. The findings are similar to Tjønna et al. 

[103], who found that low-volume HIT was as effective as high-volume HIT in improving 

VO2peak in overweight men. The results from our study could indicate that the extremely high 

intensity of all-out supramaximal exercise makes up for the smaller total volume of exercise 

in the SIT group. However, these findings should be interpreted with caution and challenged 

in later studies, as there was a clear trend of greater improvements following HIT than SIT. 

From the existing literature it could be speculated that HIT and SIT affect different factors to 

increase VO2peak. Wisløff et al. [41] showed that a combination of central (i.e. increased 

stroke volume of the heart) and peripheral adaptations (i.e. enhanced mitochondrial function 

through increased skeletal muscle oxidative capacity) was responsible for improvements in 

VO2peak following high intensity aerobic intervals in heart failure patients. Sprint interval 

training has been shown to improve mitochondrial function [96, 104] and to increase VO2peak 

[47, 54, 55, 63] without change in the stroke volume [105]. According to Gibala et al. [106], it 

could be that SIT severely stresses cellular and peripheral vasculature, while the brief exercise 

bouts are insufficient to stress the heart. Thus, a certain volume of high-intensity training is 
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possibly needed in order to improve central functions associated with VO2peak, a speculation 

supported by Gibala and McGee [107]. Mitochondrial function is generally reduced in 

individuals with T2D [81, 108, 109], and could be an important predictor of insulin sensitivity 

[80]. HIT has been shown to improve mitochondrial function in obese men with T2D [56], 

and although no direct measures of mitochondrial function were done in the present study it 

seems possible that similar adaptations occur following SIT in T2D. 

Both groups improved work economy at a fixed absolute submaximal intensity, with no 

between group differences. The improvements likely result from the increased aerobic 

capacity as well as improved mechanical and neuromuscular skills following the intervention. 

At the start of the study, many of the subjects were unaccustomed to walking on a treadmill, 

and 36 sessions of practicing that skill probably contributed to the improvement. 

Heart rate recovery two minutes after the treadmill test to exhaustion improved following HIT 

only, and significantly more than following SIT. No effect was seen on 1-minute HRR in any 

of the exercise groups. Decreased HRR is associated with increased risk of CVD and all-cause 

death among patients with T2D, and a higher fitness level derived from exercise training may 

positively affect autonomic function and HRR in patients with diabetes [110]. It is unclear 

why HIT improved 2-minute HRR more than SIT in the present study, but we could speculate 

that it is related to the trend of greater improvements in VO2peak in the HIT group. 

Blood pressure 
Decreased systolic blood pressure is previously seen following SIT in overweight men [54], 

but to our knowledge ours is the first study to show decreased diastolic blood pressure in any 

patient group following SIT. It is difficult to say why diastolic blood pressure was reduced 

following SIT only, but there was a tendency of higher baseline values in the SIT group than 

in the HIT group (p = 0.09), so the room for improvement was possibly larger. 

Previously, HIT has improved systolic, but not diastolic blood pressure in T2D [35]. It is 

unclear why similar effects on systolic blood pressure were not seen in our study, but earlier 

studies and metaanalyses show conflicting results on the effect of exercise on blood pressure 

in T2D [17, 19, 20, 22]. 

Raised blood pressure of >135 mmHg systolic and/or >85 mmHg diastolic is far more 

common in patients with T2D than in the general population [111]. However, in our study 

about half of the subjects were normotensive at baseline, with blood pressure levels 

approximately equal to the recommended levels of 120 mmHg systolic and or 80 mmHg 
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diastolic. One could argue that these subjects already had optimal blood pressure, and as one 

might expect did not improve systolic or diastolic blood pressure following the exercise 

intervention. Interestingly, in the subjects with systolic blood pressure above 135 mmHg (n = 

9) and in the subjects with diastolic blood pressure above 85 mmHg (n = 6) at baseline, the 

combined decrease following HIT and SIT was ≈ 8.5 mmHg for both systolic and diastolic 

blood pressure. These reduction levels compare well to the reductions seen in an earlier study 

on HIT in hypertensive patients without T2D [112].  

The mechanisms for the blood pressure lowering effect of exercise are complex and not fully 

understood. Blood pressure in the aorta is regulated by several mechanisms, and the most 

rapid to change are peripheral resistance and stroke volume. Decreased sympathetic tone is 

most likely involved in training-induced blood pressure reduction [113]. However, blood 

volume, viscosity of the blood and the elasticity of the large arteries can also be changed. 

Physical activity on a regular basis can increase the production of NO and enhance perfusion 

and flow in the peripheral vascular system [114]. 

The risk of fatal and non-fatal diabetes-related complications are higher in hypertensive than 

normotensive patients with T2D, even when adjusted for other risk factors associated with 

hypertension [115]. Few exercise studies have been conducted on patients with T2D and 

raised, untreated blood pressure, but lowering blood pressure by 2.1/0.9 mmHg is shown to 

reduce the risk of major cardiovascular events in T2D by approximately 10 % [116]. From 

our results it seems possible that low-volume interval training could positively affect blood 

pressure in hypertensive patients with T2D, as opposed to normotensive patients. This effect 

should be further investigated in later studies, but reductions by the magnitude indicated in 

this study could potentially reduce CVD risk substantially in these patients. 

It should be noted that blood pressure measurements performed at a clinic can be imprecise 

and inconsistent for a number of reasons. The main concerns are that clinic measurements 

lead to an overestimation of blood pressure because of the white-coat effect [117], and that it 

can potentially mask hypertension due to uncalibrated devices or inaccurate and inconsistent 

placement of the cuff [118-120]. Recording of 24-hour ambulatory blood pressure is currently 

considered the gold standard. Research show a significant difference between 24-hour and 

clinic measurements [121], and that daytime ambulatory blood pressure is more effective at 

predicting mortality than clinic blood pressure [122]. Ideally, 24-hour measurement would 

have been performed for more accurate results, but economical and practical considerations 

made that difficult in the current study. 
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Limitations 
It is possible that the relatively small sample size in this study prevented more significant 

improvements within group and masked significant between group changes on some 

variables. There were several trends of improvement, especially in the HIT group, and it is 

possible that these results would have reached significance if the group size had been 

somewhat larger. Given the small sample sizes, particularly large between-group changes 

from baseline to post-test would perhaps be required to show outcomes of statistical 

significance. 

When interpreting findings from the present study, the tendency of baseline differences in 

some of the characteristics should be taken into consideration. These differences included 

significant between group differences in the primary outcome variable, HbA1c, at baseline. 

There was also large individual variability in some of the changes. 

Another limitation is the use of clinic blood pressure measurements in our study. 24-hour 

recordings could possibly have yielded different results, as one can not rule out that the white-

coat effect or measuring inaccuracy played a role. However, the same cuff and equipment 

were used for all measurements, and every blood pressure was taken and interpreted by the 

same investigator, which should reduce the risk of random bias. 

Ours is the first study to investigate SIT on a treadmill, which makes the all-out nature of the 

sprint intervals slightly different than in previous studies performed on a stationary bicycle. 

On a bicycle the subjects are able to go all-out from the first second of each high-intensity 

interval, and power decreases as fatigue sets in towards the end of each interval. In our 

treadmill protocol the intensity was kept constant during the entire high-intensity interval. 

However, both training methods allow for the subjects to be totally exhausted at the end of 

each interval, and it seems unlikely that the effects should be very different from each other. 

  

29 
 



Conclusion 
In type 2 diabetes-patients with poor glycemic control, a small amount of weekly exercise 

could be enough to yield improvements in glycosylated hemoglobin and several 

cardiovascular risk factors associated with the disease. Our results add to the growing body of 

evidence that high intensity interval training is effective in improving aerobic capacity in a 

number of patient groups, and is the first to show that sprint interval training improves 

VO2peak in type 2 diabetes. Both exercise protocols in this study are the most time-efficient yet 

to be investigated in type 2 diabetes, and could be implemented to reduce the time-barrier 

associated with exercise in these patients. However, it seems likely that a larger volume of 

total exercise is necessary to gain optimal results on glycemic control and cardiovascular risk. 
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