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Underwater Position and Attitude Estimation Using
Acoustic, Inertial, and Depth Measurements

Erlend Kvinge Jørgensen , Thor I. Fossen, Torleiv H. Bryne, and Ingrid Schjølberg

Abstract—This article considers the problem of constructing
an observer for estimating position, velocity, attitude, underwater
wave speed, rate sensor bias, and accelerometer bias that has both
proven stability and close-to-optimal performance with respect to
noise. The observer takes pseudorange, pseudorange difference,
depth, and inertial measurements as input, and has a cascade
structure for which the equilibrium point is proven to be locally
exponentially stable due to the singularities in the attitude represen-
tation. The design of the observer is based on the exogenous Kalman
filter principle, in which estimators with proven stability provide
a linearization point for a linearized Kalman filter, to achieve both
proven stability and close-to-optimal noise properties. Experimen-
tal validation is provided, with ground truth values generated by a
camera positioning system with millimeter accuracy. The observer
is compared to an extended Kalman filter and to a nonimple-
mentable linearized Kalman filter using the true state as the lin-
earization point, and the estimation error is almost identical to the
linearized Kalman filter using the true state as a linearization point.

Index Terms—Cascaded systems, exogenous Kalman filter
(EKF), linearized Kalman filter (LKF), nonlinear filtering, state
estimation.

I. INTRODUCTION

ACCURATE and reliable state estimation is a central part
in reaching the goal of autonomous underwater vehicles.

A common approach for determining position underwater today
is employing a long baseline (LBL) acoustic network, in which
the time of arrival (TOA) of acoustic signals from several known
fixed positions is measured. The TOA measurements relate
directly to the distance, and these distances can be used to
determine position. It is also common to use an inertial measure-
ment unit (IMU), providing body-fixed measurements of specific
force and angular rate. For determining attitude, a combination
of specific force measurements and either a magnetometer or a
gyrocompass measurement is most commonly used in addition
to the body-fixed angular rate sensor. In previous work [1], [2],
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solutions where two or more acoustic receivers are placed on
the vehicle have been suggested, in which difference-in-time-
of-arrival (DTOA) measurements become available, and can be
used as additional information for determining attitude more ro-
bustly. This approach will be further investigated in the following
article. Similar approaches can be found for surface vehicles, in
which several GPS antennas are placed on the vehicle, and the
measurements are used to determine attitude [3], [4].

As mentioned above, it is possible to measure the body-fixed
acceleration and angular rate using an IMU. However, these
measurements are corrupted by both noise and biases. Conse-
quently, it is not sufficient to simply integrate these measure-
ments, and other measurements are needed to estimate the biases
and to take noise into account as optimally as possible. For
position, an LBL or an ultrashort baseline (USBL) system is
usually employed to provide additional information to compen-
sate for the uncertainties in the acceleration measurement. A
review of range-based positioning can be found in [5]. Globally
exponentially stable (GES) observers for underwater navigation
using LBL measurements are suggested in [6] and [7], and a
globally asymptotically stable (GAS) observer is suggested in
[8]. More recent approaches are described in [9]–[11]. Some
classical approaches for underwater navigation using LBL mea-
surements can be found in [12]–[16].

For attitude, it is common to use two or more nonparallel ref-
erence vectors that are known in either body or inertial frame and
measured in the other frame as additional measurements. These
can be used to determine attitude [17]. For constant reference
vectors, a nonlinear observer (NLO) for estimating attitude and
rate sensor bias with global stability properties was suggested
in [18], and extended to time-varying reference vectors in [19].
It is also common to use the multiplicative extended Kalman
filter (EKF) for attitude estimation [20]. Other approaches for
nonlinear attitude determination are suggested, for example, in
[21] and [22], and a survey can be found in [23].

For accurate position estimation, it is central that the attitude
estimate is as accurate as possible, especially the roll and pitch
angle. The reason for this is that the specific force measurement
needs to be rotated from the body frame to the inertial frame
before the gravity vector is subtracted. As the measured acceler-
ation from gravity is about an order of magnitude higher than the
expected acceleration for an underwater vehicle, an inaccurate
rotation will cause significant errors in the velocity and position
estimate. When determining attitude using the specific force
measurement along with a magnetometer or a gyrocompass
measurement, the measured specific force is assumed to be the
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gravity vector, and the magnetic field is assumed to be known
beforehand. However, this approach has some drawbacks: The
magnetometer is prone to both internal and external distur-
bances, and the gyrocompass is very accurate, but it is heavy,
large, and expensive and requires recalibration. Furthermore,
as mentioned above, the accelerometer measurement also has a
bias, which will perturb the attitude estimate if not taken into
account.

There are two ways of taking accelerometer bias into account,
either by precalibration or online estimation. As the accelerom-
eter bias is time varying, precalibration is only valid for a certain
period of time, depending on the quality of the IMU. For online
estimation, if the accelerometer is also used to determine roll and
pitch angle, which is usually the case, a persistent excitation de-
mand is put on the attitude, and very accurate measurements are
required to be able to estimate the accelerometer bias accurately.
This is due to the usage of the accelerometer measurement in
both position and attitude estimation. Schemes for estimating
accelerometer bias offline are suggested in [24] and [25], and
online accelerometer bias estimation schemes are suggested in
[24], [26], and [27].

By employing DTOA measurements, it is, as shown in [2],
possible to estimate attitude using none of the accelerometer,
magnetometer, and gyrocompass measurements. A similar ap-
proach can be found in [28], in which an NLO is proposed, based
on a combination of LBL, USBL, and rate sensor measurements.
This makes it possible to decouple the attitude estimation from
the accelerometer measurement, removing the demand for large
excitations of the system for online accelerometer bias estima-
tion while increasing the accuracy of the accelerometer bias
estimate, thus increasing the accuracy of the position estimate.

The goal of this article is to develop an observer with proven
stability and close-to-optimal performance w.r.t. noise, for deter-
mining position, velocity, attitude (PVA), underwater acoustic
wave speed (AWS), rate sensor bias, and accelerometer bias
using TOA, DTOA, IMU, and depth measurements. Applying
DTOA measurements can increase the accuracy of the attitude
and accelerometer bias estimate, thus increasing the accuracy of
the position estimate. This article builds on the work in [29] and
[30], where an observer is suggested for determining position,
velocity, and AWS using LBL and depth measurements. It
also builds on the work in [2], where a locally exponentially
stable (LES) observer with easily identifiable singular points is
suggested, estimating attitude and rate sensor bias using only
a position estimate and TDOA and rate sensor measurements,
and [1], in which the accelerometer measurement is used to
estimate roll and pitch. These two observers are used as parts
of the proposed observer. Furthermore, the proposed observer
relaxes the assumption made in [1], that accelerometer bias is
known, by estimating accelerometer bias online, and an observer
for determining a rough bias estimate used as a linearization
point is suggested.

A. Exogenous Kalman Filter (XKF)

The suggested observer is based on the XKF principle. The
XKF is a filter design principle proposed in [31] in which an

auxiliary estimator with proven stability provides a linearization
point for a linearized Kalman filter (LKF). The motivation
for this principle is to get an estimation scheme for nonlinear
systems that has both proven stability and close-to-optimal
noise properties. Kalman filters (KFs) with a previous algebraic
transformation and NLOs have proven stability but not close-
to-optimal noise properties, whereas, for example, the particle
filter usually has close-to-optimal noise properties but not proven
stability. Furthermore, the EKF also usually has close-to-optimal
noise properties, but rarely has proven stability. As stated in [31],
if the auxiliary estimator has proven stability, and the model
for the LKF satisfies certain criteria, the LKF will inherit the
stability properties of the auxiliary estimator, whereas also in
most cases, depending on the accuracy of the auxiliary estimator,
it will give estimates with close-to-optimal noise properties. The
accuracy required by the auxiliary estimator to yield the output of
the filter close-to-optimal is system dependent, especially with
regard to the degree of nonlinearity in the system model.

The computational complexity of the XKF is naturally larger
than for the EKF, as an auxiliary estimator is needed. However,
it is significantly lower than other common nonlinear estimation
approaches, such as the particle filter and the unscented Kalman
filter. For more examples of the XKF, see [29] and [32]. For
more details about particle filters and EKF, see, for example,
[33] and [34], and for more details regarding NLOs, see, for
example, [35].

B. Main Contribution

The main contributions of this article are as follows.
Theorem 1, the equilibrium point of a cascaded observer for

estimating PVA, AWS, and rate sensor bias while also estimating
accelerometer bias online, is proven to be LES with known
singularity points. The latter is achieved without any conditions
of the motion of the vehicle. The cascade consists partly of
subsystems investigated in previous papers, and lemmas stating
stability of the cascades of these subsystems are presented.
Furthermore, experiments suggest that the observer also has
close-to-optimal noise properties.

A second contribution is experimental validation of the ob-
server, provided from tests performed in MCLab, a lab testing
facility at the Norwegian University of Science and Technology,
Trondheim, Norway. The observer is compared to an EKF and
a nonimplementable optimal LKF to validate the claim that
the observer has close-to-optimal stationary performance, and
similar stationary performance as the EKF. Due to the presence
of ground truth measurements, the performance of the observer,
along with the relative performance of all estimators, can be
evaluated accurately. Furthermore, implementation aspects and
practical issues are discussed, and solutions to these issues are
proposed.

C. Outline

This article is organized as follows. Section II describes the
system and measurement models. Section III shows the overall
structure of the observer and presents the theoretical results.
Section IV discusses the practical aspects, regarding system
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Fig. 1. Illustration of system with range-difference measurements. Variables
are defined and explained in Section II-C [1]

setup, calibration of equipment, and implementation of the ob-
server. Section V provides the results from the lab experiments.
Section VI gives a short discussion regarding the results and
possible improvement of the system. Section VII contains the
conclusion.

II. SYSTEM AND MEASUREMENT MODELS

In this section, the system and measurements used will be
described. Furthermore, an algebraic transform is performed
in one of the steps in the observer. This transformation is also
described in detail.

A. Acoustic System Description

The acoustic system consists ofN ≥ 3 senders andM + 1 ≥
3 receivers. The senders are placed on the sea bottom with
known fixed positions in the global frame, and the receivers
are placed on the vehicle with known fixed positions in the body
frame. One receiver is chosen as the “base” receiver, and the
vectors between this receiver and the other receivers are denoted
by d1,...,M . A signal is sent simultaneously from each sender,
and from measuring the difference in time it takes for a signal
to reach each receiver, information about the attitude can be
extracted. An illustration of the system is shown in Fig. 1, and
the requirements for the geometry of the senders and receivers
are stated as assumptions in Section II-C.

B. Attitude Representation

In the suggested observer, the attitude is represented
with Euler angles, and, more specifically, the common roll–
pitch–yaw convention where Θ = [ψ, θ, φ]T and Rn

b (Θ) =
Rz(ψ)Ry(θ)Rx(φ). It is known that this representation has
singularities in the dynamic model when the pitch angle reaches
θ = π/2 + kπ, k ∈ Z. However, these pitch angles are very
uncommon for most underwater vehicles used today. Further-
more, the singularities are known, and it is possible to change
the Euler angle representation to a representation with different

singularities if the system detects that the vehicle is approaching
one of the singularities [35]. Alternatively, unit quaternions
can be used [36]. However, the stability analysis is also fairly
straightforward for Euler angles, as it is a very intuitive rep-
resentation, and is not a redundant representation such as, for
example, quaternions, thus omitting the need for more extensive
stability proofs involving coordinate transformations reducing
the degrees of freedom.

C. Measurement Models

The two coordinate frames used in this article are the body
frame and the north-east-down (NED) frame, approximated as a
local inertial frame with origin defined by the Qualisys camera
system. The Qualisys system is used for providing ground truth
information, described in more detail in Section IV-A.

The IMU in the experiment is fixed on the vehicle, known
as a strapdown system. Consequently, the measurements from
the IMU are in the body frame. The measurements used in the
suggested observer are acceleration and angular rate, modeled
as

abimu = ab −Rb
ng

n + ba + εa

= Rb
n(a

n − gn) + ba + εa (1)

ωb
imu = ωb

b/n + bω + εω (2)

where ab and an are the vehicle acceleration in the body and
NED coordinate frame subsequently, gn is the gravity vector
in the NED frame, Rb

n is the rotation matrix from the NED
frame to the body frame,ba is a slowly time-varying acceleration
measurement bias, ωb

b/n is the angular rate of the body frame
relative to the NED frame, expressed in the body frame, bω

is a slowly time-varying rate sensor bias, and εa and εω are
zero-mean Gaussian white noise vectors with covariances Qa

and Qω .
The TOA measurements are modeled as pseudoranges, ranges

affected by an unknown parameter. The model is based on the
formulation in [37], in which the position of the vehicle, the
origin of the body frame, is defined as pn = [x, y, z]T ,
the velocity is defined as vn, and the position of sender i is
defined as p̆n

i = [x̆i, y̆i, z̆i]
T , all in the NED frame. The under-

water AWS is modeled as c =
√
βc0, where c0 is the assumed

wave speed. Furthermore, as the base receiver on the vehicle is
not assumed to be in the origin of the body frame, we define rbbase
as the known vector from the origin of the body frame to the base
receiver, given in the body frame. The geometric range is de-
fined as ρi = cti = ||pn +Rn

b (Θ)rbbase − p̆n
i || = ||pn

br − p̆n
i ||

where pn
br is the position of the base receiver in the NED frame,

c is the wave speed, ti is the TOA from sender i, and || · || is the
2-norm. Consequently, the range measurements are modeled as

yi =
1√
β
(ρi + εy,i), i = 1, . . . , N (3)

where εy,i is the zero-mean Gaussian white noise with variance
σ2
y,i and β > 0 is an unknown multiplicative parameter to take

into account uncertainty in the underwater AWS.
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Fig. 2. Observer structure. Measurements enter through each block on either the top or the bottom, inputs from other blocks enter on the left side, marked with
how the input is used, and outputs come out on the right side.

The DTOA measurements are found on subtracting pseu-
doranges, based on the formulation in [1]. Each pseudorange
difference δi,j is modeled as

δi,j =
1√
β

(||pn +Rn
b d

b
j − p̆i

n|| − ρi + εδ,i,j
)
,

i = 1, . . . , N, j = 1, . . . ,M (4)

where εδ,i,j is the zero-mean Gaussian white noise with variance
σ2
δ,i,j and db

j is the vector j between receivers, expressed in
the body frame. Furthermore, depth measurements are also
employed, modeled as

zm = z + εz (5)

where εz is assumed to be zero-mean Gaussian white noise with
variance σ2

z .
Assumption 1: At least two of the vectors between receivers

dn
j are nonparallel for all t, i.e.,

∃ c s.t.
∑

i∈{1,...,M}

∑

j∈{1,...,M}\{i}
||dn

i × dn
j || ≥ c > 0 ∀ t.

Intuitively, this makes sense, as determining attitude requires
at least two nonparallel vectors [17], and parts of the suggested
observer are based on determining attitude solely by using
TDOA measurements.

Assumption 2: The N senders are not collinear.
This assumption is related to the determination of both po-

sition and attitude. For position estimation, the assumption can
be understood practically by considering three senders in the
two-dimensional (2-D) case (which is relevant because of the
depth measurement). If the three senders are collinear, it will
be impossible to decide based on ranges alone on which side of
the line through all three senders the vehicle actually is, because
the distance to the line and thus the senders will be the same on

each side. Consequently, to determine position unambiguously
with only ranges and a depth measurement, the senders cannot
be collinear.

Assumption 3: The position of a sender and a receiver is
never identical or estimated to be identical.

This is more of a theoretical assumption with regard to
stability, as this is impossible in a real scenario. However, if
the geometric range between a sender and a receiver is 0,
the Jacobian of the pseudorange and pseudorange difference
measurements will be singular.

III. PVA, AWS, RATE SENSOR BIAS, AND ACCELEROMETER

BIAS OBSERVER

As mentioned in Section I-A, the suggested observer is based
on the XKF principle, in which an auxiliary estimator is used
to provide a linearization point for an LKF, which simplifies
proving stability significantly. The overall structure of the pro-
posed observer is shown in Fig. 2. As can be seen from Fig. 2,
there are no feedback loops, and the output of the observer is
the output of Σ4. Consequently, the resulting stability analysis
is a question of the model in the LKF in Σ4 being uniformly
completely observable (UCO) and uniformly completely con-
trollable (UCC), given that the linearization point provided has
proven stability [31]. This is in contrast to the EKF, in which
the stability has not been proven for the suggested model, and
is far more complicated to analyze, as there is a feedback loop
due to the linearization about the LKFs own state estimate. In
Sections III-A– III-D, each subsystem will be shortly presented,
and the theoretical results will be summarized. The subsystems
are described in more detail in the appendices. We define

x̃ := x̂− x (6)
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where x is a state, as the error between the real state and the
estimated state.

Lemma 1: Consider the linear system given by

ẋ(t) = F(t)x(t)

y(t) = H(z, t)x(t) (7)

where z is a state estimated from an external observer in which
the error dynamics is GES. The estimate from this observer is
denoted by ž. Assume the pair (F(t),H(ž, t)) is UCO. Fur-
thermore, assume x(t) is bounded and ||H(z, t)−H(ž, t)|| ≤
kd||z̃||2 for some kd > 0.

Then, the origin x̃ = 0 of the error dynamics of a KF using ž
instead of z in the model in (7) is GES.

Proof: See Appendix B. �

A. Subsystem Σ1: Estimate pn
br, vn

br, β.

Subsystem Σ1 consists of an algebraic transform followed by
a linear KF for estimating position, velocity, and AWS using
pseudorange and depth measurements, and is based on the
approach suggested in [29]. For more details regarding Σ1, see
Appendix A-A.

Lemma 2: Point (p̃n
br, ṽ

n
br, β̃) = (0,0, 0) of the error dy-

namics of the system Σ1 is GES under Assumptions 2 and 3.
Proof: See [29]. Two extra assumptions are formulated in

[29] for the system to be GES, in which one regards an optional
addition to the estimator to increase accuracy in some cases,
and the other is fairly trivial to achieve in practice. Therefore, for
simplicity, these have not been included in this article. However,
they are also necessary assumptions for Σ1 to be stable. �

B. Subsystem Σ2: Estimate Θ, bω

Subsystem Σ2 is an observer based on the XKF principle,
suggested in [2], estimating attitude and rate sensor bias, based
on an estimate of pn and β, and pseudorange difference and
rate sensor measurements. For more details regarding Σ2, see
Appendix A-B.

Lemma 3: Point (p̃n
br, ṽ

n
br, β̃, Θ̃, b̃ω) = (0,0, 0,0,0) of the

error dynamics of the cascaded system Σ1−Σ2 is exponentially
stable under Assumptions 1–3.

Proof: See [2] for proof of the nominal system, combined
with Lemma 1 in which Assumption 3 ensures that ||H(z, t)−
H(ž, t)|| ≤ kd||z̃||2 where z is the output from Σ1. Unfortu-
nately, it is impossible to obtain global stability properties due
to the singularities θ = π/2 + kπ, k ∈ Z. �

C. Subsystem Σ3: Estimate ba

Subsystem Σ3 is a linear KF estimating ba based on ac-
celerometer measurements and taking attitude from Σ2 as a
time-varying input. The system model is given by

Σ3 :
ḃa = εba

yb = ba + εyb

(8)

where εba and εyb are vectors with zero-mean Gaussian white
noise with covariance Qba and Ryb, respectively. Similar to Σ1,
in Σ3, the acceleration of the vehicle is assumed to be unknown

and is modeled as white noise. For more details regarding Σ3,
see Appendix A-C.

Lemma 4: Point (Θ̃, b̃ω, b̃a) = (0,0,0)of the error dynam-
ics of the cascaded system Σ2−Σ3 is exponentially stable under
Assumptions 1–3.

Proof: It is straightforward to show that the model in Σ3 is
uniformly observable and controllable, thus the error dynamics
of a linear KF based on the model are GES. As yb is generated
from a constant vector multiplied with a rotation matrix (see
Appendix A-C), leaving H bounded, it follows from Lemma
1 that the cascade is LES with singularities θ = π/2 + kπ,
k ∈ Z. �

D. Subsystem Σ4: Full-State Double LKF

Subsystem Σ4 is a double LKF using the output from Σ1−Σ3

as linearization point. The observer estimates PVA, AWS, rate
sensor bias, and accelerometer bias using pseudorange, pseudo-
range difference, accelerometer, rate sensor, and depth measure-
ments. The system model is given by

Σ4 :

χ̇ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn

Rn
b (Θ)(abimu − ba − εa) + gn

εβ

εba

T(Θ)(ωb
imu − bω − εω)

εbω

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ1

...

ρN

δ1,1

...

δN,M

z

−Rb
n(Θ)gn + ba

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εy,1

...

εy,N

εδ,1,1

...

εδ,N,M

εz

εα

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

where χ = [pnT ,vnT , β,bT
a ,Θ

T ,bT
ω ]

T , Rn
b is defined in

Section II-B, and T(Θ) is derived in [35], given by

T =

⎡

⎢
⎣

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤

⎥
⎦ (10)

where s · := sin(·), c · := cos(·), and t · = tan(·); εβ is zero-
mean Gaussian white noise with variance σ2

β ; εa, εba , εω ,
εbω , and εα are vectors with zero-mean Gaussian white noise
with covariances Qa, Qba , Qω , Qbω , and Qα, respectively;
ρi is given in (3); δi,j is given in (4); and εy,i, εδ,i,j , and
εz are zero-mean Gaussian white noise, with variances σ2

y,i,
σ2
δ,i,j , and σ2

z , respectively. For more details regarding Σ4, see
Appendix A-D.

Lemma 5: The nominal system Σ4 is UCO and UCC.
Proof: See Appendix C. �
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Fig. 3. Aluminum frame with receiver setup. In the image, the frame is tilted
sideways. Base receiver, receiver 1, and receiver 2 are marked with red circles.
The tube containing the IMU is within the green ellipse.

Theorem 1: Point (p̃n
br, ṽ

n
br, β̃, Θ̃, b̃ω, b̃a, χ̃) = (0,0, 0,0,

0,0,0) of the error dynamics of the cascaded system Σ1−Σ4 is
exponentially stable under Assumptions 1–3.

Proof: The observers providing the linearization points have
been shown to be either GES (Σ1) or LES with singularities
θ = π/2 + kπ, k ∈ Z (Σ2 and Σ2−Σ3). As stated in [31], if
the given model in Σ4 is UCO and UCC, the error dynamics of
the cascade consisting of the LKF in Σ4 using the outputs from
Σ1−Σ3 as linearization points will inherit the stability properties
of the estimators generating the linearization point (in this case,
LES with singularities θ = π/2 + kπ, k ∈ Z). �

IV. SYSTEM SETUP, CALIBRATION, AND

IMPLEMENTATION ASPECTS

A. System Setup

For ground truth measurements, a Qualisys underwater cam-
era positioning system with measurement frequency of ap-
proximately 50 Hz is employed, giving six-degrees-of-freedom
measurements of the ROV, with stated millimeter precision
for position and subdegree precision on the attitude. However,
this is under optimal circumstances, and during testing, some
inaccuracies in attitude occurred. Consequently, only position
and heading were used as ground truth from the Qualisys system,
and the rest of the states were estimated by using an EKF with
the ground truth as input.

The vehicle for which the state is estimated is an aluminum
frame, made for testing of underwater estimation algorithms.
A tube containing the IMU and electronics is attached to the
frame, along with acoustic receivers and markers for the camera
positioning system (see Fig. 3 for an image).

The IMU used is an ADIS16485, a microelectromechanical
IMU with a price of around $1600, with specifications shown in
Table I. The IMU data is read with a frequency of 100 Hz.

TABLE I
IMU SPECIFICATION

Fig. 4. Test vehicle and sender setup. Two senders are visible and marked with
red circles.

The acoustic system used is a development kit provided by
Waterlinked [38], consisting of four senders and three receivers.
An image of the aluminum frame along with two of the senders is
shown in Fig. 4. Waterlinked specializes in short-range accurate
positioning for underwater vehicles. A ranging algorithm has
been developed for use on the development kit. The intended use
of the acoustic system is in parts of inspection, maintenance, and
repair operations in which there is a demand for high-accuracy
state estimation, within a small area of up to 100 m × 100 m. Two
senders were placed on the sea bottom at about 1.5 m depth, and
two senders were placed around 0.7 m above the sea bottom.
Three receivers were attached to the aluminum frame, as this
is the minimum amount of receivers necessary. Adding more
receivers might increase accuracy, but it is also important to show
performance for the minimum amount of receivers required,
with regard to system complexity.

B. Calibration

As there are several system parameters that must be known
accurately, especially with regard to the acoustic system, cali-
bration is needed.

For a description of possible IMU error sources, see [39].
However, as the IMU used is rather expensive, and of high
quality, and the body coordinate system is defined as the IMU
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TABLE II
CALIBRATION RESULTS

coordinate system, no calibration seemed necessary, except for
estimating the magnitude of the gravity acceleration. As the
heading angle was found from the Qualisys system, the pos-
sibility of a rotational offset in yaw angle between the Qualisys
body coordinate system and the IMU coordinate system was
apparent. However, actions were taken to minimize this offset
when choosing the Qualisys body coordinate system, such that
no calibration seemed necessary.

For calibrating sender and receiver positions, a nonlinear opti-
mization scheme was run, minimizing the difference between the
measured pseudorange differences and the geometric range dif-
ferences calculated from the Qualisys system and the difference
between the measured pseudoranges and the geometric ranges
calculated from the Qualisys system with sender and receiver
positions as variables, along with the underwater wave speed.

The results from the calibration can be seen in Table II.

C. Implementation Aspects

As mentioned above, the IMU measurement frequency was
100 Hz. This frequency was chosen to be sufficiently high to
capture the dynamics of the system while not causing too large
of a computational burden. First-order Euler discretization was
chosen for all estimators, as the observers using IMU data are
run with the same frequency as the IMU. The high frequency
compared to the dynamics of the system results in a first-order
discretization scheme being sufficient. The linearization scheme
chosen for the NLOs is the first-order Taylor series approxima-
tion given by

f(v) ≈ f(v̄) +
df(v)

dv

∣
∣
∣
∣
v=v̄

(v − v̄) (11)

where f is a vector function, v is a vector, and v̄ is the lineariza-
tion point. For a discussion regarding implementation aspects of
NLOs, see [40].

1) Pseudorange Measurement Timing Issues: As discussed
in [29], at least three pseudorange measurements are needed
to perform the algebraic transform in Σ1 (four if no depth
measurement is available). Furthermore, at least three pseu-
dorange difference measurements are needed to perform the
algebraic transform in Σ2. In the experiment, the distances

between senders and receivers were small, with a maximum
of 5 m. As the senders are synchronized and send at the same
time, the offset between received signals is negligible. However,
for larger differences in distance between senders and receivers,
each acoustic signal might arrive at significantly different times.
Even though, as mentioned above, the Waterlinked system is
designed for accurate state estimation within a small area of up to
100 m × 100 m, with a maximum difference in received signal
of around 0.1 s, it might still be valuable to discuss handling
these differences for general scenarios.

The simplest way of handling acoustic signal offset when
performing the algebraic transformations in Σ1 and Σ2 is to
simply wait until enough measurements have been received.
Naturally, an offset in measurements will decrease accuracy,
depending on how fast the dynamic of the system is, as the
measurements are assumed to be simultaneous, and delayed
measurements will give inaccurate information. However, it is
important to note that simulations done in [1], [29], and [31]
indicate that in general for the XKF, the linearization point
provided by the auxiliary estimator can be somewhat inaccurate,
depending on system configuration and noise magnitude, and
the output of the observer will still be close-to-optimal w.r.t.
noise.

A more extensive approach might be to take vehicle position
into account, after the position estimator has converged. As the
position of the senders on the sea bottom is assumed to be
known, an upper bound for transmission time can be set. The
accuracy of this scheme depends on many factors; pseudorange
measurement noise, distance to senders, probability of lost mea-
surements, and vehicle velocity.

Receiving acoustic signals from each sender at different times
is not a problem for the subsystems of Σ1 and Σ2 containing
an LKF and Σ4, as the measurement equations are based on
each separate acoustic signal, and can consequently be modified
based on which signal has been received. Offset in acoustic
measurements is not a problem for Σ3 either, as it only uses
IMU measurements and the input from Σ2.

Each acoustic wave needs to be received, registered, and
processed to be used as a pseudorange measurement. This results
in a natural time delay for each measurement. As the data in this
case have been postprocessed, the UNIX timestamp for each
measurement has been used as the timestamp, but in a real-time
system, ways of handling this delay must be applied; see, for
example, [27] and [41].

2) Handling Outliers: Σ1 is suitable for performing outlier
detection. Outliers occurred during testing, and a common out-
lier detection scheme based on the Mahalanobis distance seemed
sufficient. The Mahalanobis distance is given by [42]

dMa = νTk S
−1νk (12)

where νk = yi − ŷi and S = Hk,iPk+1/kH
T
k,i + σ2

y,i is the
filter innovation covariance. Hk,i is the Jacobian of (3) for
measurement i. dMa is calculated for each pseudorange mea-
surement, and a measurement is rejected if dMa is above a given
threshold, i.e., γMa.

As it is necessary to perform outlier detection for all receivers,
M + 1 instances of Σ1 are run, one related to each receiver.
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TABLE III
PERCENTAGE OF TOTAL COMPUTATIONAL LOAD FOR EACH SUBSYSTEM

For the base receiver, the estimated position, velocity, and β
is used in the observer, whereas for the M other receivers,
the observer is used solely for outlier detection. As mentioned
above, the observer is updated with the same frequency as the
pseudorange measurements, typically 1 Hz, but less computa-
tionally demanding outlier detection schemes can be constructed
if necessary.

Handling outliers is similar to handling delayed and lost mea-
surements. If the minimum number of measurements necessary
for the algebraic transformations in Σ1 and Σ2 to be possible
is not accepted, the updates in these subsystems are simply
skipped at the given time, and the system starts waiting for new
measurements.

For other approaches regarding outlier robust underwater
estimation schemes, see, for example, [43]–[45].

3) Computational Load: In general, observers that employ
IMU measurements are run at the same frequency as the IMU,
whereas observers that only employ pseudorange or pseudor-
ange difference measurements are run at the same frequency as
these measurements.

Consequently,Σ1 is run with a frequency of 1 Hz, whereasΣ2

andΣ4 are run with a frequency of 100 Hz. It seemed sufficient to
run Σ3 with a frequency of 1 Hz, although this can be increased
if necessary.
Σ2 and Σ4 are both designed as complimentary filters; ap-

plying IMU measurements as input to the system instead of
in the measurement model. Consequently, the steps with the
main computational load is when pseudorange and pseudorange
difference measurements are available. For the given scenario,
this is at 1 Hz, in which more complex operations are needed,
especially matrix inversions.

From this analysis, it seems that the main computational load
is in Σ2 and Σ4. It is of value to compare the computational
complexity to an EKF for the same model, as this can be seen
as a natural alternative to the suggested observer (although
this would require sacrificing proven stability properties). The
percentage of total computational load for each subsystem is
shown in Table III. As the EKF is a single LKF using its own
state as linearization point, an EKF based on the same system
model as in Σ4 will have half the computational load as Σ4.
Consequently, the computational load for the suggested observer
was around four times that of the EKF in MATLAB for the given
setup and measurement frequencies (this is a rough estimate as
this relationship is very dependent on implementation).

V. TESTING AND RESULTS

In the experiment, the vehicle is fairly stationary in position,
within a rather small volume of around 0.5 m × 0.5 m × 0.5 m.
The reason for this is that the vehicle is required to stay within
a high-accuracy and reliable coverage area of the Qualisys

Fig. 5. Ground truth position and Euler angles from the Qualisys system.

positioning system. First, the vehicle is kept stationary, in which
the roll angle is increased and decreased, then the pitch angle
is increased and decreased. The experiment ends with a more
chaotic maneuver in which roll, pitch, yaw angle, and position
are varied. Ground truth position and attitude can be seen in
Fig. 5.

As mentioned in Section IV-A, the Qualisys system has very
accurate position and attitude measurements during optimal
circumstances. However, optimal circumstances are usually not
the case, due to varying lighting conditions, camera proper-
ties, and other factors. As the gravity vector is dominating the
accelerometer measurement, inaccurate roll and pitch output
from the Qualisys system can have significant effects on the
acceleration measurement rotated to the NED frame. However,
position and heading measurements do not have such high ac-
curacy requirements. Consequently, position and heading from
the Qualisys system were used as very accurate measurements
along with accelerometer measurements in an EKF estimating
position, velocity, acceleration, accelerometer bias, attitude, rate
sensor bias, and gravity. The output from this EKF is used as
ground truth.

As the sensors used did not include a pressure sensor, the
depth measurements are simulated, based on the ground truth
position with added Gaussian noise with a realistic magnitude.
In the authors’ opinion, this does not compromise the results,
as a pressure sensor is very cheap and accurate and has a high
measurement frequency (in the experiment, the simulated depth
measurements had a frequency of 1 Hz).

To show both transient and stationary performances, all sub-
systems were initialized with inaccurate initial vales. As the
suggested observer has proven stability, it will converge for
all initial conditions that does not cause it to encounter one of
the singularities. The tuning parameter values for each subsys-
tem were chosen through a mix of trial and error, considering
stability requirements for the NLO, considering the maximum
expected rate of change for the system, and for measurement
covariance matrices, the noise was assumed independent and the
variance was found by looking at the measurement noise when
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Fig. 6. Raw measured pseudoranges for all three receivers. Pseudorange i is
the range measured from the sender at p̆n

i .

the vehicle was stationary. The tuning parameter values for each
subsystem can be seen in Table IV. P0 is the initial covariance
matrix for the KFs, x0 is the initial estimate for each subsystem,
and ki x j means an i times j matrix containing the value k.
diag(v) is a diagonal matrix with the vectorv along the diagonal.

As the claim is that the observer has close-to-optimal noise
performance, along with the mathematically proven stability, it
is of value to compare to an EKF, as the EKF is assumed to
also have close-to-optimal noise performance and is a relevant
alternative to the suggested observer. The EKF is run with the
same model and tuning as Σ4, except that the linearization
point used is the observer’s own state. The output from the
EKF is denoted by χEKF. Furthermore, it would be useful to
also have an impression of the optimal performance. An LKF
linearized around the true state would give very close-to-optimal
performance, as this would in principle be a linear Kalman filter
for each time step (if higher order terms of the linearization are
neglected, which seems to be a valid assumption in this case).
Consequently, the LKF in Σ4 is also run, using the ground truth
as linearization point. This filter is also tuned in the same way
as the LKF in Σ4, and the output of this filter is denoted by χopt.

A. Results

The raw pseudorange measurements can be seen in Fig. 6,
and it can be seen that the first measurement occurs at t ≈ 2.8 s.
Throughout the experiment, around 0.2% of the pseudorange
measurements were rejected as outliers. It is worth noting that
the pool in which the experiment was conducted is narrow
and shallow, about 40 m × 6.45 m × 1.5 m, suggesting that the
acoustic ranging scheme developed is robust w.r.t. echo and
multipath. The linearization point used in Σ4 consisting of
state estimates from Σ1, Σ2, and Σ3 is denoted as χ̄. The
estimated and real values of dn

1,2 are shown in Fig. 7, the
estimated position errors are shown in Fig. 8, and the Euler
angle errors are shown in Fig. 9. As there is no ground truth
for rate sensor bias and accelerometer bias, the estimates are

TABLE IV
TUNING PARAMETER VALUES

Σ2 consists of several steps (see Appendix A-B for details).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 7. Real and estimated values for dn
1 = [d1,x, d1,y , d1,z ]

T .

Fig. 8. Position estimation errors. Two axis are chosen to show both transient
and stationary behaviors.

Fig. 9. Euler angle estimation errors. Two axis are chosen to show both
transient and stationary behaviors.

Fig. 10. Estimated rate sensor bias. Two axis are chosen to show both transient
and stationary behaviors.

Fig. 11. Estimated accelerometer bias. Two axis are chosen to show both
transient and stationary behaviors.

shown and not the estimate errors. However, estimates from
the EKF generating ground truth mentioned above are avail-
able, and are used in the LKF generating χopt. The calculated
biases in calibration are ba cal = [−1.4, 0.46,−1.7] · 10−2 and
bω cal = [−3.7, 2.8, 3.2] · 10−3, whereas the final estimate for
the suggested observer is baχ = [−1.4, 0.49, 1.8] · 10−2 and
bωχ = [−3.6, 2.8, 3.0] · 10−3. This is within calibration uncer-
tainty approximated by the standard deviations extracted from
the ground truth EKF covariance matrix (around 2.8 · 10−3 for
ba cal and around 3.4 · 10−4 for bω cal), and similar results con-
sidering the magnitude of the measurement noise. Rate sensor
bias estimates are shown in Fig. 10, and accelerometer bias
estimates are shown in Fig. 11.

It is apparent that the linearization point used in Σ4, χ̄, is less
accurate than the output of Σ4, as proposed. This fits well with
the principle of the XKF, in which the estimators providing the
linearization point are designed to have proven stability, and not
for close-to-optimal performance w.r.t. noise, whereas the LKF
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TABLE V
RMSE AFTER CONVERGENCE FOR ALL ESTIMATION SCHEMES

Time of convergence was chosen as t = 160 s for the EKF and t = 50 s for the other
estimators.

is employed to get close-to-optimal performance w.r.t. noise in
addition to the proven stability.

In general, the suggested observer converges, and it performs
almost identically to the optimal LKF using the true state as the
linearization point. After the EKF has converged, the stationary
performance is similar to the suggested observer and the optimal
LKF, but the transient period of the EKF is longer and has
larger deviations from the true state. The root-mean-squared
error (RMSE) after convergence for each estimation scheme
can be seen in Table V. It is apparent that the RMSE of the
suggested observer is almost identical to the optimal filter. It is
also worth noting that the chosen time of convergence is around
three times longer for the EKF. As mentioned above, the EKF
takes significantly longer time to converge, which can also be
seen in the plots.

It is apparent that the RMSE in yaw angle is larger than those
for roll and pitch angle, for all estimators except the linearization
point. This can be explained by considering that the attitude is
estimated only based on the acoustic signals for the linearization
point, whereas the LKF in Σ4 also relates the accelerometer
measurement to the attitude, making it possible to estimate
roll and pitch much more accurately. This is done on purpose,
as mentioned in Section I, to decouple the attitude estimate
from the accelerometer measurement making accelerometer bias
estimation more efficient. For increasing the accuracy of the
yaw angle estimate, other measurements could be added, such
as a magnetometer. However, as mentioned in Section I, the
magnetometer suffers from certain drawbacks that can result in
a time-varying measurement bias.

VI. DISCUSSION

It is important to notice that the term “optimal performance”
discussed in this article is with respect to the given scenario;
noise magnitudes, sender placement, receiver placement, ex-
pected volume of movement, expected dynamic behavior, and
many other factors affect the optimal performance of the ob-
server. Larger distances between senders and receivers might
increase measurement noise, and thus decrease accuracy for
the suggested observer. Furthermore, the placement of senders
and receivers affects the geometric properties of the system,
more specifically the conditioning of some matrices used for
algebraic transformations inΣ1 andΣ2. For optimal positioning,
the vector from the senders to the base receiver should be as

noncollinear as possible. For optimal attitude estimation, the
vector between the base receiver and the senders should be
as noncoplanar as possible, and the vectors between receivers
should be as noncollinear as possible. This can be considered
when placing senders and receivers. An undesirable scenario
might occur either if the senders are placed very colinearly or
if the vehicle has a much larger distance to the senders than the
senders have between each other, neither of which are planned
to be scenarios in which the system is applied.

As mentioned in Section V, the tuning for the KFs was
decided by estimating the noise in the measured signals, and by
considering the expected rate of change in the system. However,
for the NLO in Σ2, the tuning parameters are less intuitive, and
a trial-and-error approach was taken. Consequently, better per-
formance for Σ2 might have been achieved by a different tuning
of the NLO, but the chosen tuning seemed to give sufficient
accuracy.

As described in Appendix A-C, the acceleration in Σ3 is
modeled as white noise. This is less accurate for vehicles with
accelerating vehicles, and the validity of this assumption should
be investigated further, even though this is not common for
underwater vehicles.

The performance of the EKF could also possibly have been
improved by choosing different less realistic tuning parameters,
as the inaccurate initial linearization point makes performance
unpredictable. This can be seen as a drawback of the EKF, and
a different less intuitive and realistic tuning might give better
performance for the exact given scenario in the experiment, but
will cause unpredictable behavior for other scenarios.

The measurements from the IMU could have been filtered
before entering the estimator to decrease noise, for example, by
a low-pass filter. However, this would cause an undesirable phase
offset, which would need to be handled w.r.t. the other measure-
ments. Furthermore, the unfiltered IMU measurements seemed
to give sufficient performance, as long as the measurement noise
was properly taken care of in the tuning of each KF.

The measurement model for the acceleration does not take
the Coriolis effect into account, as this is considered negligible
for the given expected velocity and angular rate for the vehicle.
However, this term could be added for underwater vehicles that
are expected to either have large velocities or turn quickly while
having a linear velocity.

As described in [1], it is possible to take the acceleration
measurement (assuming no accelerometer bias) into account in
Σ2 also. As the accelerometer measurement bias is assumed to
be zero in [1], the roll and pitch angle estimates from using
the accelerometer measurements have a bias. However, as this
estimate is only used as a linearization point, a bias in the
roll and pitch angles is tolerable, as long as it is small (if the
accelerometer bias is small). Furthermore, if the accuracy of
the attitude estimate using only acoustics is much lower than
using a biased accelerometer measurement, the biased, more
accurate estimate may be preferable.

As mentioned in Section IV-A, the reference values used as
ground truth are generated by using an EKF taking the Qualisys
position and heading measurements at 50 Hz and the accelerom-
eter measurements at 100 Hz as input. As long as the system is
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modeled correctly and initialized very close to the actual values,
these can be assumed to be very accurate state estimates, as all
measurements are very accurate, and have a high measurement
frequency. Furthermore, the estimates from the EKF seem to be
changing within the accuracy stated by the covariance matrix in
the KF, and seem to have behavior that corresponds to a system
where the most important parts are modeled.

In the stability proof, building on the stability criteria stated in
[31], it is assumed that all noise in the system is zero. However, in
[31], it is also stated that “for the general case, when w 	= 0 and
e 	= 0, one can show that boundedw and e give bounded estima-
tion errors.” (w is process disturbance and e is the measurement
error). In general, the estimates might be suboptimal because
the linearization point is correlated with the measurements, as
it is also generated from filtering the measurements. Due to the
complexity of the system, it is hard to analyze the effect of
noise theoretically. Therefore, the sensitivity of the noise for
each sensor, along with an analysis regarding how an increas-
ingly inaccurate linearization point affects the system, could be
investigated in a detail through Monte Carlo approach. This is
considered the further work, although Monte Carlo simulations
have been done for Σ1 in [29] and Σ2 in [1].

VII. CONCLUSION

An observer estimating position, velocity, wave speed, ac-
celerometer bias, attitude and rate sensor bias using IMU, depth,
pseudorange, and pseudorange difference measurements has
been suggested. The observer is based on the XKF principle,
in which estimators with proven stability provide a lineariza-
tion point for an LKF, to achieve an observer for a nonlinear
system that has both proven stability and close-to-optimal noise
properties w.r.t. zero-mean bounded noise. In contrast to the
EKF, which does not have proven stability for the given system,
the suggested observer is proven to be LES with singularities
θ = π/2 + kπ, k ∈ Z, which are not likely to occur for most of
the conventional underwater vehicles.

Experimental validation is provided, and the observer is com-
pared to an EKF and an optimal nonimplementable filter using
the ground truth state as linearization point. The suggested
observer converges and stays close to the ground truth values
throughout the experiment after convergence. Furthermore, the
EKF takes significantly longer to converge, and the proposed ob-
server performs very similarly to the optimal nonimplementable
filter both during and after the transient period.

APPENDIX A
OBSERVER DETAILS

We define Ii as an i × i identity matrix, 0i as an i × imatrix
of zeros, and 0i× j as an i × j matrix of zeros.

A. Subsystem Σ1: Estimate pn
br, vn

br, β

Σ1 is based on the observer proposed in [29]. The observer in
[29] is also based on the XKF principle and contains three stages.
However, both simulation and experiments suggest that only two
of these stages are necessary to get close-to-optimal performance

for the observer suggested in this article. This will also decrease
the computational complexity of Σ1. Consequently, only the
first two stages of the observer suggested in [29] are run: In
step one, an algebraic transformation is performed to transform
the pseudorange and depth measurements into measurements
for pn

br and β, and in step two, these measurements are used as
measurements in a linear KF. The algebraic transformation is
possible if Assumption 2 is fulfilled, along with two additional
assumptions stated in [29]. If scenarios occur in which the
accuracy of Σ1 becomes too low, for example, from increased
measurement noise or different sender geometry, the third stage
can be included. Due to computational considerations, Σ1 is
run with the same frequency as the pseudorange measurement
frequency, and not the depth measurements, which tend to have
a much higher frequency.

The KF is based on the system model

ṗn
br = vn

br

β̇ = εβ

v̇n
br = εa

or written in the matrix form

χ̇p =

⎡

⎢
⎣

03 0 I3

03 0 03

03 0 03

⎤

⎥
⎦χp +

⎡

⎢
⎣

0 03

1 03

0 I3

⎤

⎥
⎦

[
εβ

εa

]

(13)

with measurement

yp =
[
I4 04x3

]
χp + εyp

(14)

where vn is the velocities in the NED frame and χp =
[pnT

br , β,v
nT
br ]T is the full-state vector. εβ and εa are the process

noises with variance σ2
β and covariance matrix Qa, respectively.

The covariance matrix of εyp
is approximated by the first-order

linearization and employing finite differences using the central
differences approach and the values of σ2

y,i and σ2
z .

B. Subsystem Σ2: Attitude XKF

Subsystem Σ2 is based on the observer suggested in [2]. The
observer estimates attitude and rate sensor bias using acoustic
and rate sensor measurements, which is designed using the XKF
principle, and consists of three stages when a position estimate is
available. The first stage estimates the vectors between receivers
by first employing an algebraic transformation, then using this
as input to a linear KF. The tuning parameters of this stage
are denoted by Σ2,1 in Table IV. The second stage is an NLO
suggested in [46] that is proven to be GES under Assumption 1
along with some additional criteria: a known upper bound for the
rate sensor bias, a design property regarding the matrices used
in the estimator is fulfilled, and one of the tuning parameters is
above a lower bound, all of which can be ensured when choosing
tuning parameters for the NLO. The tuning parameters for this
stage are denoted by Σ2,2 in Table IV. The third stage is an LKF
using the output from the NLO in stage two as a linearization
point, taking the full nonlinear system into account. The tuning
parameters for the third stage are denoted by Σ2,3 in Table IV.
For more details, see [1] and [2].
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C. Subsystem Σ3: Estimate ba

As the XKF principle is based on an auxiliary estimator
providing a linearization point, an auxiliary estimator for ba

is also needed. Proven stability is necessary for proving the
stability of the full-state LKF in Σ4. It is important to note
that simulations and experiments performed using the XKF
principle [2], [29], [32] suggest that the linearization point can
be inaccurate and still give close-to-optimal noise performance
for the LKF. Therefore, the assumptions made in Σ3 need not
be true always, but accurate enough to get a somewhat accurate
estimate of ba.

An NLO estimating position, velocity, and accelerometer bias
is suggested in [35]. This NLO is GES under certain criteria for
the chosen gains. However, this NLO assumes that the attitude
is known, and potential (time-varying) uncertainties in attitude
are not taken into account. Consequently, it is hard to find an
optimal choice of gain matrices for general scenarios.

The chosen approach for estimating ba to use as a lineariza-
tion point is to use a linear KF. By looking at (1), it is possible to
find a measurement for ba through some simplifications. If the
acceleration is modeled as Gaussian white noise, it is possible
to model the acceleration measurement as

abimu = −Rb
ng

n + ba + εa. (15)

Furthermore, if the attitude and gravity vector are known, by
using the attitude from Σ2, Θ̂, as a time-varying external input,
a measurement for ba can be found as

ba = abimu +Rb
n(Θ̂)gn − εA.

The system model is shown in Section III-C. As mentioned
above, the attitude is not known, but estimated, and it is beneficial
to include this uncertainty in Ryb, as this will lead to more
accurate estimates for ba. The chosen way to include attitude
uncertainty is by looking at yb as a function of acceleration
measurement noise, but also attitude noise. By modeling ba

as a function of both abimu and the attitude, it is possible to
use the finite difference approach to approximate Ryb if the
covariances of abimu and Θ̂ are known or approximated. This fits
well with the KF framework, in which an approximation for the
uncertainty of Θ̂ is found directly in the covariance matrix of the
attitude estimate in the LKF in Σ2, and Qa can be approximated
by looking at the accelerometer measurements. A common
problem with the LKF is that it is sometimes overconfident,
thus underapproximating the covariance matrix. Consequently,
the attitude covariance used for calculating Ryb is chosen to be
four times the covariance in Σ2.

D. Subsystem Σ4: Full-State Double LKF

Σ4 takes the full nonlinear system into account. The reason for
a double LKF is that simulations and experiments have shown
that the LKF taking the less accurate output from Σ1, Σ2, and
Σ3 as a linearization point is more accurate, but there are still
some small deviations. Consequently, as the accuracy of the
LKF will be higher if the linearization point is more accurate,
the output from this LKF can be used as a linearization point

in a second LKF, whereas not sacrificing stability properties as
this subsystem also follows the XKF stability criteria.

The system model can be seen in Section III-D. Note that
the last entry in the measurement model is based on the ac-
celerometer measurement, and the same approach as described
in Appendix A-C has been chosen, in which the acceleration is
assumed to be zero, and this uncertainty results in an increased
chosen covariance for the measurement noise, εα, Rα.

As can be seen in Fig. 2, it is pn
br and not pn that is

estimated in Σ1 and used as input to create a linearization
point for Σ4. As attitude information is available, along with
a known rbbase, it is possible to find p̄n using the formula
p̄n = p̄n

br −Rn
b (Θ̄)rbbase. v̄n

br is used directly as linearization
point for vn, which is not fully accurate, depending on the mag-
nitude of rbbase and the magnitude of the rotation of the vehicle.
However, as the linearization point need not be fully accurate, it
is considered sufficiently accurate for the given scenario. More
sophisticated approaches could be applied, for example, com-
pensating by taking the rate sensor measurement into account if
necessary.

APPENDIX B
PROOF OF LEMMA 1

The proof is similar to the proof in [31]. By defining (time
dependence has been omitted for simplicity)

H(ž) := Ȟ (16)

we can write the KF estimate dynamic equation as

˙̂x = Fx̂+K(y − ŷ) = Fx̂+K(Hx− Ȟx̂) (17)

and the error dynamics as

˙̃x = Fx− (Fx̂+K(Hx− Ȟx̂)) = Fx̃+KȞx̂−KHx.
(18)

By adding and subtracting KȞx, we get

˙̃x = Fx̃+KȞx̂−KHx+KȞx−KȞx

= (F−KȞ)x̃+K(Ȟ−H)x = (F−KȞ)x̃+ d(t)
(19)

where

d(t) = K(Ȟ−H)x.

Since it is assumed that the pair (F, Ȟ) is UCO, it follows from
standard KF theory that the origin of the nominal error dynamics
(19) with d = 0 is GES. It is assumed that ||d(t)|| ≤ kd||z̃(t)||2
for some kd > 0. Since kd is bounded and does not depend on
x̃, it follows from [47, Th. 2.1 and Proposition 2.3] that the
equilibrium point (z̃, x̃) = (0, 0) of the error dynamics of the
cascade is also GES.

APPENDIX C
PROOF OF LEMMA 5

The approach for showing UCO and UCC is using the alge-
braic transformations to simplify the measurement equations.
As described in [29], it is possible to transform [ρ1 · · · ρN , z]T
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into [pnT , β]T . Furthermore, it is shown in [2] how to transform,
with a known position and β, [δ1,1 · · · δN,M ]T into two or more
vectors in the NED frame. Two or more nonparallel vectors
known in the body frame and measured in the NED frame can
be used to fully determine attitude [17]. Consequently, if As-
sumptions 1 and 2 are fulfilled, the Jacobian of [δ1,1 · · · δN,M ]T

w.r.t. Θ will have full rank, and [δ1,1 · · · δN,M ]T is simplified
as a 3-D vector function fs in which the Jacobian w.r.t. Θ will
have full rank. The simplified measurement model can now be
written as

h(χ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pn

β

fs(p
n, β,Θ)

−Rb
n(Θ)gn + ba

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (20)

For an LKF to be applied, the model is linearized around the
exogenous linearization point χ̄

χ̇ = f(χ) = f(χ̄) + F(t)(χ− χ̄) +G(t)εχ + γχ(t) (21)

h(χ) = h(χ̄) +H(t)(χ− χ̄) + εh + γh(t) (22)

where γχ(t) and γh(t) are the linearization errors. To show
UCO and UCC, it is not necessary to know F(t), G(t), and
H(t) fully. However, the structure of the matrices is impor-
tant, and some parts of the matrices are needed explicitly.
For simplicity, the state is rearranged, such that χ = [pnT , β,
bT
a ,Θ

T ,vnT ,bT
ω ]

T , and we define the process noise vector as
εχ = [εβ , ε

T
ba
, εTω , ε

T
a , ε

T
bω
]T . It is possible to write

F(t) =
df(χ)

dχ

∣
∣
∣
∣
χ=χ̄

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03 03x1 03 03 I3 03

01x3 0 01x3 01x3 01x3 01x3

03 03x1 03 03 03 03

03 03x1 03 A1 03 −T

03 03x1 −R A2 03 03

03 03x1 03 03 03 03

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)

G(t) =
df(χ)

dεχ

∣
∣
∣
∣
χ=χ̄

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03x1 03 03 03 03

1 01x3 01x3 01x3 01x3

03x1 I3 03 03 03

03x1 03 −T 03 03

03x1 03 03 −R 03

03x1 03 03 03 I3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)

H(t) =
dh(χ)

dχ

∣
∣
∣
∣
χ=χ̄

=

⎡

⎢
⎢
⎢
⎢
⎣

I3 03x1 03 03 03 03

01x3 1 01x3 01x3 01x3 01x3

A3 a1 03 M 03 03

03 03x1 I3 A4 03 03

⎤

⎥
⎥
⎥
⎥
⎦

(25)

where T is given in (10) and R is defined in Section II-B
(variable dependence have been removed for simplicity),A1,...,4

are unknown 3× 3matrices, a1 is an unknown 3× 1 vector, and
M is a 3× 3 matrix with full rank.

It is stated in [48] that the pair (F(t),H(t)) is UCO if the
observability codistribution is given by

dO =

⎡

⎢
⎢
⎣

M0(t, χ̂)

...

Mn−1(t, χ̂)

⎤

⎥
⎥
⎦ (26)

has full rank for all t, where

M0(t, χ̂) = H(t)

Mm(t, χ̂) =Mm−1(t, χ̂)F(t) +
d

dt
Mm−1(t, χ̂)

for m = 0, . . . , n− 1, where n is the state-space dimension. If
the observability codistribution for m = 0, 1 has full rank, the
full observability codistribution will also have full rank. It can
be found from [49] that for the matrix

dO =

[
M0(t, χ̂)

M1(t, χ̂)

]

=

[
O1 010x6

O2 O3

]

rank(dO) ≥ rank(O1) + rank(O3).
O1 is defined as the part of H left of the dividing line in (25).

By using the top four rows to removeA3 and a1, it can be shown
that O1 has full rank, i.e., rank(O1) = 10. O3 is given by

O3 =

⎡

⎢
⎢
⎢
⎢
⎣

I3 03

01x3 01x3

A3 −MT

03 −A4T

⎤

⎥
⎥
⎥
⎥
⎦
. (27)

Left or right multiplication by a nonsingular matrix leaves
rank unchanged [50]. We define

Π = {π/2 + kπ : k ∈ Z} . (28)

As T(χ̄) is created from inverting T−1(χ̄), T(χ̄) will be
nonsingular and have full rank for θ /∈ Π, thus rank(MT) =
rank(M) = 3 for θ /∈ Π. Consequently, by using the top
three rows to remove A3, it can be shown that rank(O3) =
6. If rank(O1) = 10 and rank(O3) = 6 for θ /∈ Π, then
rank(dO) = 16 for θ /∈ Π, proving that the system is UCO for
θ /∈ Π.

It is stated in [48] that the pair (F(t),G(t)) is UCC if the
controllability codistribution given by

dC =
[
M0(t, χ̂) · · · Mn−1(t, χ̂)

]
(29)
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has full rank for all t, where

M0(t, χ̂) = G(t)

Mm(t, χ̂) = F(t)Mm−1(t, χ̂) +
d

dt
Mm−1(t, χ̂)

form = 0, . . . , n− 1, wheren is the state-space dimension. The
same approach as for UCO can be applied, in which we look at

dC =
[
M0(t, χ̂) M1(t, χ̂)

]
=

[
03x13 C3
C1 C2

]

(30)

and rank(dC) ≥ rank(C1) + rank(C3).
C1 is defined as the part ofG under the dividing line in (24). As

R is always invertible, it has full rank. It is clear from (24) that if
R andT have full rank, rank(C1) = 13 for θ /∈ Π. Furthermore,
C3 is given by

C3 =
[
03x1 03 03 −R 03

]
.

As R has full rank, rank(C3) = 3. If rank(C1) = 13 for θ /∈ Π
and rank(C3) = 3, then rank(dC) = 16 for θ /∈ Π, proving the
system is UCC for θ /∈ Π.
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