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The plethora of recent discoveries in the field of topological electronic insulators has inspired a
search for boson systems with similar properties. There are predictions that ferromagnets on a two-
dimensional honeycomb lattice may host chiral edge magnons. In such systems, we theoretically
study how magnons and phonons couple. We find topological magnon-polarons around the avoided
crossings between phonons and topological magnons. Exploiting this feature along with our finding
of Rayleigh-like edge phonons in armchair ribbons, we demonstrate the existence of chiral edge
modes with a phononic character. We predict that these modes mediate a chirality in the coherent
phonon response and suggest measuring this effect via elastic transducers. These findings reveal a
possible approach towards heat management in future devices.

Introduction.— Topological electronic insulators [1–5]
are characterized by an insulating bulk with conduct-
ing ‘chiral’ edge states. The unidirectional propagation
of these chiral modes is ‘topologically protected’ against
defects at low temperatures when we can disregard in-
elastic scattering from phonons [5]. This has led to the
development of a wide range of essential concepts, includ-
ing Majorana modes [6–9], topological quantum compu-
tation [10, 11], and chiral transport. Inspired by these
findings, there has been an upsurge of efforts towards
finding similar states in other systems [12] with an em-
phasis on bosonic excitations [13–19]. There are predic-
tions of topological magnons [15–17] in honeycomb ferro-
magnets with an engineered Dzyaloshinskii-Moriya inter-
action [20, 21] that induces the necessary band gap. In
contrast to fermionic systems with Fermi energy within
this band gap, the bulk is not necessarily insulating in
bosonic systems [22].

The field of magnonics [23–26] focuses on pure spin
transport mediated by magnons [27]. It is possible to ex-
ploit the low-dissipation and wave-like nature of these ex-
citations in information processing [28, 29]. The coherent
pumping of chiral surface spin wave (Damon-Eshbach)
modes induces cooling via incoherent magnon-phonon
scattering [30]. Besides application oriented properties,
the bosonic nature of magnons, combined with spintronic
manipulation techniques [24, 31], allows for intriguing
physics [32–35]. The coupling [36] between magnons and
phonons fundamentally differs from the electron-phonon
interaction and results in a coherent hybridization of the
modes [37], in addition to the temperature dependent in-
coherent effects [30, 38] discussed above. The direct influ-
ence of the hybridization between magnons and phonons,
known as magnon-polarons [39, 40], has been observed in
spin and energy transport in magnetic systems [41–46].

In this Letter, we address the robustness of the topo-
logical magnons in a honeycomb ferromagnet [15–17]
against their coupling with the lattice vibrations. In
contrast to the case of electron-phonon coupling, where
phonons can be disregarded at low temperatures, the
magnon dispersion may undergo significant changes with

new states emerging in the band gap [45, 46]. We find
that in the honeycomb ferromagnet with spins oriented
orthogonal to the lattice plane, only transverse phonon
modes with out-of-plane displacement couple to spin. To
understand the eigenmodes, we evaluate and analyze the
coupled spin and out-of-plane phonon modes for an in-
finitely large plane as well as for a finite ribbon geometry.
We quantify the effect of the magneto-elastic coupling on
the magnon Hall conductivity and find a non-monotonic
dependence on the coupling strength. Our analysis of the
finite ribbons shows that topological magnons hybridize
with bulk phonons around the avoided crossings in their
coupled dispersion, forming magnon-polarons with topo-
logical chiral properties. Hence, while their edge local-
ization is weakened, the magneto-elastic coupling does
not completely remove the topological magnons. Fur-
thermore, we find that armchair edges support Rayleigh-
like edge phonon modes in sharp contrast to the zigzag
edges. When topological magnons hybridize with these
edge phonons, edge magnon-polarons with almost undi-
minished chirality are formed. We suggest a setup which
utilizes this induced chirality in coherent phonon trans-
port. Such systems enable the observation of the topolog-
ical physics and serve as a prototype for a unidirectional
heat pump. This offers a highly feasible alternative to
producing topological phonon diodes [47–49].
Model.—We consider a ferromagnetic material with lo-

calized spins on a two-dimensional honeycomb lattice,
allow for out-of-plane vibrations of the lattice sites, and
assume there is magneto-elastic coupling. This system
can be modelled by a Hamiltonian of the form H =
Hm + Hph + Hme, where Hm is the magnetic Hamilto-
nian, Hph describes the phonons, and Hme represents the
magneto-elastic coupling.

The Hamiltonian we consider is inspired by the Hal-
dane model [1] given by [15–17]

Hm = −J ∑
⟨i,j⟩

Si ⋅ Sj +D ∑
⟪i,j⟫

νij ẑ ⋅ Si × Sj − B∑
i

Szi . (1)

The first term describes the ferromagnetic exchange cou-
pling between nearest neighbour sites, while the sec-
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ond accounts for the Dzyaloshinskii-Moriya interaction
[20, 21] between next-to-nearest neighbours [50]. The
Haldane sign νij = ±1 depends on the relative orientation
of the next-to-nearest neighbours as shown in Fig. 1(a),
and is the root of non-trivial topological properties. We
let the nearest neighbour distance be d and the next-to-
nearest neighbour distance be a. Refs. [16, 17] discuss
the dispersion relation and Berry curvature of this spin
model in linear spin wave theory.

For the phonon Hamiltonian, we consider only the out-
of-plane degrees of freedom since only these modes couple
to the spin to lowest order in the linear spin wave ex-
pansion. We assume nearest-neighbour interactions with
elastic constant C, let the mass associated with the spins
on the lattice sites be m, and disregard substrate cou-
pling. Introducing Sk = ∑β cos(k ⋅ βββ), where the sum is
over the three next-to-nearest neighbour vectors βββ of Fig.
1(a), we obtain the dispersion relation

ωph
±
(k) =

√
C

m

√
3 ±
√

3 + 2Sk (2)

for the free phonon modes.
Motivated by the continuum limit description [36, 37],

we write down the lattice magneto-elastic coupling to
linear order in the magnon amplitude, obtaining

Hme = κ∑
D

∑
i∈D

∑
αααD

Si ⋅αααD (uzi − uzi+αααD
) (3)

where κ parametrizes the strength of the magnon-phonon
coupling, ∑D denotes the sum over sublattices, ∑i∈D is
the sum over the lattice sites on the D sublattice, and
αααD are the corresponding nearest neighbour vectors. The
out-of-plane deviation for lattice site i is denoted by uzi .
Bulk spectrum.—We introduce the Holstein-Primakoff

representation of spins and use linear spin wave theory
in the spin- and magneto-elastic terms [27]. Within the
rotating wave approximation [51], the resulting Hamilto-
nian describing the phonon and magnon modes of the
system is obtained as H = ∑k ψ†

kMkψk, where ψ†
k =

(a†
k, b

†
k, c

†
k−, c

†
k+). Here, ak and bk are annihilation op-

erators for the sublattice magnon modes on the A and B
sublattices, while ck± are the annihilation operators for
the phonon modes. The matrix Mk takes the form

Mk =
⎛
⎜⎜⎜
⎝

A + hz h− gA− gA+
h+ A − hz gB− gB+
g∗A− g∗B− ωph

k− 0

g∗A+ g∗B+ 0 ωph
k+

⎞
⎟⎟⎟
⎠
, (4)

where A = 3JS + B, hz(k) = 2DS∑β sin(k ⋅ βββ),
h−(k) = −JS∑α exp(−ik ⋅ ααα), and h+ = (h−)∗. The
coupling between the D-sublattice magnons and the
phonon branch ± is captured by gD±, which is pro-
portional to the dimensionless coupling strength κ̃ =

K
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M
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FIG. 1. (a) Lattice geometry showing the nearest neighbour
vectors ααα, next-to-nearest neighbour vectors βββ, and the Hal-
dane sign νij = ±1. (b) The first Brillouin zone in reciprocal
space, including the paths along which we plot the dispersion
relation in figure (c). The parameter values used are D = 0.1J ,

B = 0.4JS,
√
C/m = 1.5JS, and rescaled coupling strength

κ̃ = 0.03 (see main text). The magnon (yellow) and phonon
(purple) character of the modes is indicated with colors. The
modes are significantly affected by the magneto-elastic cou-
pling only close to avoided crossings.

(κd/JS) 4
√
h̵2S2/16m2(C/m). The spectrum obtained by

diagonalizing this matrix is plotted in Fig. 1(c) along the
paths displayed in Fig. 1(b).
Hall conductivity.—The topological nature of the spin

model is manifested in the magnon Hall conductivity that
arises because of the time-reversal symmetry breaking
caused by the Dzyaloshinskii-Moriya interaction.

The spin current operator Jγ may be found from a con-
tinuity equation or magnon group velocity approach [52],
both yielding

Jγ = ∑
k

(a†
k b†k)(

∂Hm(k)
∂kγ

)(ak
bk
) (5)

along the Cartesian direction γ. Here, Hm(k) is the ma-
trix representation of the magnon Hamiltonian. Assum-
ing we apply a weak in-plane magnetic field gradient ∇B,
we are interested in the current j = σ∇B, which is de-
termined by the conductivity tensor σ [52]. The Hall
conductivity can be calculated using the Kubo formula,
giving

σxy = ∑
k

∑
α,β≠α

nB(Ekα)Cαβ(k), (6)
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where Ekα is the energy eigenvalue of band α and
nB(Ekα) is the corresponding Bose factor. The
curvature-tensor Cαβ is given by

Cαβ(k) = i
Jαβy (k)Jβαx (k) − Jαβx (k)Jβαy (k)

(Ekα −Ekβ)2 , (7)

where (α,β) are band-indices, and Jαβγ (k) are the en-
ergy eigenstate matrix elements of the current operator
at quasimomentum k. Disregarding the magneto-elastic
coupling, the band-curvature Cα = ∑β≠αCαβ can be iden-
tified as the Berry curvature.

Expressing the sublattice magnon operators in terms
of the eigenmode operators, one may identify the current
matrix elements Jαβγ and integrate the curvature over
the Brillouin zone to obtain the Hall conductivity. We
are particularly interested in the effect of the magneto-
elastic coupling, and therefore present the dependence of
the Hall conductivity on the dimensionless coupling κ̃ in
Fig 2.

To understand this dependence, we consider the
curvature-tensor Cαβ . When the bands α and β both
have a predominant magnon content, the topological
nature of the underlying magnons gives a finite curva-
ture. This magnon curvature is largest close to the
Dirac points [16, 17]. Close to an avoided crossing,
the magneto-elastic coupling changes the spectrum and
causes transfer of band-curvature between the relevant
bands α and β. The latter can be seen by plotting the
curvature-tensor element Cαβ for the band-pairs with
avoided crossings, as shown in the insets of Fig 2. The
resulting change in Hall conductivity is given by these
curvature-tensor elements weighted with the difference
between the Bose factors of the relevant bands. This fol-
lows from the anti-symmetry property of the curvature-
tensor. The two band-pairs in the insets contribute
oppositely to the Hall conductivity, and the competi-
tion between their curvature transfer explains the non-
monotonic behaviour of the Hall conductivity.

Ribbon geometry and coherent transport.—Due to the
topological nature of the magnon model under consider-
ation and the bulk-boundary correspondence, there are
gapless magnon edge states in a finite sample [5, 15–
17]. Considering an armchair ribbon with finite width,
the one-dimensional projection of the energy spectrum
is plotted in Fig. 3. The corresponding spectrum for
the zigzag edge ribbon is given in the Supplemental Ma-
terial [53], where also Refs. [54–58] appear. Magnon
and phonon modes hybridize in regions with an avoided
crossing. When the upper phonon band lies within the
bandgap of the pure magnon spectrum, there are modes
with a mixed content of chiral magnon edge states and
phonons. Although the spectra look qualitatively simi-
lar, there is a crucial distinction between the two cases.
For the zigzag edge configuration, all the phonon modes
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FIG. 2. Dependence of the Hall conductivity on the magneto-
elastic coupling strength κ̃ for parameter values D = 0.1J ,

B = 0.4JS, and
√
C/m = 1.5JS for different temperatures

T in units of JS. The insets show the quasimomentum de-
pendence of the curvature-tensor at κ̃ = 0.03 for band-pairs
(1,2) and (2,3), where the bands are labelled according to
their energy and band 1 is the lowest band. The dominant
contribution in these band-pairs comes from the regions with
avoided crossings of the respective bands.

are delocalized throughout the sample, while the arm-
chair edges host “Rayleigh-like” edge phonon modes. In
direct analogy with Rayleigh modes on the surface of
a three-dimensional material, the localization length of
these modes is directly proportional to their wavelength,
as shown in the Supplemental Material [53]. These edge
phonon modes are supported by the half-hexagon pro-
trusions of the armchair edge that can pivot around the
bonds parallel to the edges connecting these protrusions,
see Fig. 3. No such parallel bonds exist for the zigzag
edge.

The Hall conductivity is a hallmark of topological elec-
tronic properties and motivates a similar role for the Hall
conductivity mediated by topological magnons. How-
ever, in contrast to electrons, the bosonic nature of the
magnons results in the lack of a general proportionality
between the magnon Hall conductivity and the Chern
number [52]. Furthermore, the observation of a magnon
planar Hall effect [59] in a cubic, non-topological mag-
net suggests that this Hall conductivity may not be re-
garded as a smoking-gun signature for topological prop-
erties. Thus, we suggest a complementary approach to
observe the topological nature of the underlying magnons
by elastically probing the chirality of the magneto-elastic
hybrid modes.

We propose to observe coherent chiral phonon propa-
gation in the experimental setup of Fig. 4(b) by utiliz-
ing the edge modes, as depicted schematically in Fig.
4(a) [60], on the upper armchair edge of the sam-
ple. Taking inspiration from previous related experi-
ments [41, 61], we suggest to inject elastic energy into
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the sample middle at the upper edge using a nano-scale
variant of the interdigital transducer design [62, 63], elab-
orated further in the Supplemental Material [53]. For a
given transducer design, modes are excited with fixed
wavevectors ±kx and a tunable frequency. Similar trans-
ducers can be used to detect the elastic response pL/R
on the left (L) and right (R) edges of the sample. Here,
pL/R is the elastic power detected at the transducers.

Figure 4(a) schematically depicts the dispersion for
the magnetoelastic modes localized on an armchair edge.
Disregarding magnetoelastic coupling, the edge hosts two
counterpropagating Rayleigh-like edge phonons and a
single chiral edge magnon. There is thus no chiral-
ity in the phononic response. Due to magnetoelastic
coupling, the Rayleigh-like phonon with wavevector −kx
hybridizes with the chiral magnon to form a magnon-
polaron while the other phonon remains unchanged. This
breaks the symmetry between the counterpropagating
phononic modes and the result is non-zero chirality χ =
(pR − pL)/(pR + pL). Furthermore, as shown in Fig.
4(a), the hybridization with the magnon mode reverses
the group velocity direction of the participating phonon
mode. In principle, this gives perfectly chiral phonon
transport.

The wavevector location of the avoided crossing can
be tuned via the Zeeman shift in the magnon disper-
sion. Performing a frequency integrated measurement
over an energy range of the same order as the magneto-
elastic coupling, one obtains a peaked chirality when the
magnetic field is such that the wavevector of the avoided
crossing coincides with the wavevector of the transducer,
obtaining a chirality as shown in Fig. 4(b). Performing
a similar transport experiment on the zigzag edge does
not give chiral phonon transport since the delocalized
phonons hybridize with counterpropagating magnons on
both the edges, thereby destroying the overall chirality.
In addition, the size of the avoided crossing is smaller due
to the smaller overlap with the localized chiral magnon.
The armchair edge is therefore crucial for obtaining the
chirality.

Summary.— We have examined the robustness of topo-
logical magnons in a honeycomb ferromagnet against
their interaction with phonons. Their topological prop-
erties, albeit weakened, survive the magneto-elastic cou-
pling. The magnon Hall conductivity of the system is
found to depend on the magneto-elastic coupling strength
in a non-monotonic, temperature-sensitive manner. Ex-
ploiting the Rayleigh-like edge phonons in armchair rib-
bons, we predict the existence of topological magnon-
polarons confined to the boundary. We have suggested
an experimental setup capable of probing the chiral
nature of the topological magnon-polarons by elastic
means, which thus serves as a platform for chiral coherent
phononic transport.
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gap, as well as Rayleigh-like edge phonons. The inset shows
the avoided crossing of a topological magnon edge mode with
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Lebrat, Thomas Uehlinger, Daniel Greif, and Tilman
Esslinger, “Experimental realization of the topological
haldane model with ultracold fermions,” Nature 515, 237
EP – (2014).

[13] Sylvain Lannebère and Mário G. Silveirinha, “Link be-
tween the photonic and electronic topological phases in

artificial graphene,” Phys. Rev. B 97, 165128 (2018).
[14] Yizhou Liu, Yong Xu, Shou-Cheng Zhang, and Wen-

hui Duan, “Model for topological phononics and phonon
diode,” Phys. Rev. B 96, 064106 (2017).

[15] S A Owerre, “A first theoretical realization of honeycomb
topological magnon insulator,” Journal of Physics: Con-
densed Matter 28, 386001 (2016).

[16] S. A. Owerre, “Topological honeycomb magnon hall ef-
fect: A calculation of thermal hall conductivity of mag-
netic spin excitations,” Journal of Applied Physics 120,
043903 (2016), https://doi.org/10.1063/1.4959815.
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