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ABSTRACT 
 

Introduction: At altitude the body is exposed to systemic hypobaric hypoxia and adapts in order 

to optimize oxygen delivery to the tissue. Maintaining peripheral vascular function is essential in 

this process, tightly regulated through complex pathways involving local endothelium derived 

factors. Nitric oxide (NO) is the most important player in regulation of endothelial tone via 

endothelium dependent vasodilation. Dietary nitrate (NO3
-) supplementation has been shown to 

increase NO bioavailability and improve vascular functions during normoxia, however the effects 

during hypobaric hypoxia are unknown. Purpose:  To study the endothelial function in 

lowlanders in response to 1) administration of NO3
-supplementation via beetroot juice (BJ) at 

altitude, and 2) short term and 4-week altitude exposure. Methods: Endothelial function was 

measured as flow-mediated dilation (FMD) using ultrasound and Doppler in the brachial artery of 

11 healthy subjects (4 female, 24.7±5.0 years, outdoor management students) sojourning from 

sea level to altitude. In a randomized, double-blinded crossover design FMD measure was 

performed 3 hours after drinking BJ (5.0 mmol NO3
-) and placebo (0.003 mmol NO3

-) 

supplementation at 3700m (after 3 days above 2000m), with a 24-hour wash out period. FMD 

was also measured at low altitude (1370m), after 5 days at altitude (4200m) and upon return to 

1370m after 4 weeks of altitude exposure (2825 -5330m). Results: The supplementation 

intervention was completed by 10 subjects, and the 4-week altitude stay by 8 subjects. FMD was 

6.53±2.32% at low altitude (1370m) (mean±SD). At 3700m with PL supplementation FMD was 

3.84±1.31% (p=0.004) and with BJ supplementation 5.77±1.14% (p=1.00). FMD was lower at 

4200m (FMD 3.04±2.22%), and 1370m post-altitude exposure (FMD 3.91±2.58%), compared to 

baseline FMD at 1370m (mean±SD, p<0.05). Conclusion: Acute dietary nitrate supplementation 

may reverse the reduced endothelial function found in lowlanders at 3700m after 3 days of 

altitude exposure. FMD decreased 5 days into altitude exposure (at 4200m), and after a 4-week 

stay between 2825 -5330m compared to FMD baseline.  

 

Key words: high altitude, FMD, dietary nitrate supplementation, hypobaric hypoxia, 

vascular function, nitric oxide 
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AD: Artery diameter 

AMS: Acute mountain sickness 

BF: Blood flow 

BP: Blood pressure 

BJ: Beetroot juice 

Ca2+: Calcium molecule 

cGMP: Cyclic guanosine monophosphate 

DBP: Diastolic blood pressure 

ECG: Electrocardiography  

eNOS: Endothelial nitric oxide synthase 

FMD: Flow-mediated dilation 

HA: High altitude  

HAPE: High altitude pulmonary edema 

HAPE-S: High altitude pulmonary edema susceptible 
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MAP: Mean arterial pressure 
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Definitions 
	  
Altitude 

Moderate Altitude: 1500-2500m 

High Altitude: 2500-3500m 

Very High Altitude: 3500-5800m 

Extreme Altitude >5800m 

Hypobaric hypoxia 

When reduction in partial pressure of oxygen is due to a reduction in ambient barometric 

pressure with oxygen fraction constant 

Normobaric hypoxia 

When reduction in partial pressure of oxygen is due to reduction in oxygen fraction (e.g. 

% oxygen content) with ambient barometric pressure constant 

Normoxia 

When oxygen availability is near to that of sea level, supplying the physiologically 

adequate amounts of oxygen for normal cell function and activity throughout the body 

Systemic hypoxia  

When blood oxygen levels are reduced because of decreased oxygen intake, rather than a 

disruption of blood flow 

Vascular Function 

The regulation of vascular tone to enhance blood flow and distribution, based on local and 

neural factors, in order to optimize delivery of oxygen and nutrients and removal of waste 

at the tissue
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1 INTRODUCTION  
	  
Throughout the world, high altitude regions (HA) (>2500m) receive millions of visitors for 

recreation, commercial, military purposes and are home to about 140 million permanent dwellers 

[1]. Exposure to the hypoxic environment of HA can result in severe medical complications due 

to reduction in oxygen (O2) availability. When ascending to HA, barometric pressure decreases, 

resulting in corresponding reductions in the partial pressure of oxygen (PO2). As the barometric 

pressure at sea level is 760 millimeters mercury (mmHg), with 21% O2 content, PO2 is 160 

mmHg. The reduction in barometric pressure at HA causes inadequate O2 delivery to the tissues, 

a state known as hypobaric hypoxia (21% O2, decreased PO2, at 3500m barometric pressure is 

505 mmHg, 21% O2, PO2 is 106 mmHg). As physiological processes are dependent on adequate 

O2 delivery, reduced PO2 poses the greatest challenge for the body at HA [2].  

 

The individual physiological responses and overall tolerance to HA is highly variable and it is 

still an enigma why some people are HA prone while others are not [3]. Up to 50% of individuals 

walking to above 4000m (using more than 5 days) develop symptoms of acute mountain sickness 

(AMS) including headache, nausea, insomnia, and anorexia [4, 5]. Although AMS is usually self-

limiting, its incidence is unpredictable, pathogenesis is elusive and it is generally not foreseeable 

using physiological measures [2, 5].  

 

Reduced PO2 at HA induces physiological changes necessary for proper function, a process 

known as acclimatization. Physiologically the body acclimatizes at HA in order to optimize O2 

delivery to tissues, and changes in vascular tone occur due to increased sympathetic drive and 

local endothelium-derived factors [6]. Nitric oxide (NO) is the most important factor for the 

regulation of vascular tone via endothelium dependent vasodilation. In order to optimize O2 

delivery to the tissue, maintenance of vascular system function is vital. Vascular changes related 

to blood flow (BF) and vessel diameter play important roles in physiologic adaptation to the HA 

environment [7].  
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1.1 Vascular function 
	  
The vascular system, consisting of blood vessels throughout the body, is an active organ 

functioning to maintain circulatory homeostasis, and to transport O2 and nutrients to the tissue 

and remove waste products [8, 9]. Biomechanical mediators including cytokines, hormones, 

neurotransmitters, biomechanical forces generated by BF and blood pressure (BP) control the 

functions of this system [8]. It is the ability of the vascular system to respond to these signals that 

regulates vascular tone, which effects BP, BF, and blood distribution. A key component for this 

process is the endothelium [10]. 

 

 

 

 

 

 

 
 

1.1.1 Endothelial function 
	  
The endothelium consists of a monolayer of cells lining all blood vessels, situated between the 

vessel lumen and vascular smooth muscle (Figure 1) [11, 12].  A healthy endothelium regulates 

vascular tone, cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel 

wall inflammation in response to various chemical and physical signals, including shear stress, 

via regulatory signals [13-16]. Although many regulatory signals exist, including endothelial-

derived hyperpolarizing factor, vasodilatory prostaglandins and calcium molecules (Ca2+), the 

most important is nitric oxide (NO) [15, 16].  

 

With a healthy vascular system, blood vessels respond to increases in BF by endothelial 

dependent dilation that is primarily mediated by NO, termed flow-mediated dilation [10]. 

Endothelial dysfunction, with reduced endothelium dependent vasodilation through a depressed 

NO production, has been identified as a hallmark of many cardiovascular diseases including 

	  

Endothelium 

Vascular smooth muscle 

Vessel lumen Blood flow 

Figure 1. Model of the vascular system components including the vascular smooth muscle 
(outmost layer), the endothelial cells making up the endothelium, the vessel lumen and the 
blood flowing within. Adapted from [11]. 
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hypertension, congestive heart failure, diabetes, and atherosclerosis, as well as High Altitude 

Pulmonary Edema (HAPE) [11, 12, 15, 17].  

 

1.1.2 Assessment of vascular function 
 

Although there are currently no measurement methods for vascular function that result in a 

definitive and complete assessment of vascular health [18], endothelium function measurements 

assess a crucial component of the vascular system. Based on dilatory response to shear stress, a 

technique for assessment of vascular function through the function of the endothelium was 

developed in 1992 [19]. It is now known as flow-mediated dilation technique (FMD), is 

considered the ‘gold standard’ for non-invasive investigation endothelial function [14], and is 

predictive of cardiovascular events [14, 16, 20].  

 

FMD method operates through measuring the brachial artery diameter (AD) before and after 5 

minutes cuff occlusion [14]. The increased flow and shear stress that follows cuff occlusion 

results in vasodilation of the artery due to endothelial derived factors [21]. Age and gender 

specific FMD mean values range from 6.7% (women, 20-29 years) to 3.5% (women, 70-79 

years) [22]. Endothelial dysfunction has been defined as FMD ≤ 0% [22]. Although FMD of the 

upper arm is a measure of peripheral conduit artery function, it has also been shown to be highly 

associated with pulmonary endothelial function including pulmonary artery pressure and 

pulmonary vascular resistance [23]. 

  

1.2 Endothelial function at high altitude  
 

When exposed to systemic hypoxia, such as at HA, vascular adjustments depend on both 

activation of the sympathetic nervous system [24] and vasoactive substances from the 

endothelium [6, 25, 26]. In healthy individuals during short exposure to hypoxia (up to 3 hours at 

4800 to 9000m), the balance between sympathetic and local endothelial produced factors 

typically results in net vasodilation in the peripheral vasculature [6, 24-26], whereas longer 

exposure (3 days or more at 3470 to 5330m) results in vasoconstriction [7]. Under hypoxia 

cerebral BF increases are between 0 and 33% [5, 27], while the pulmonary circulation displays 
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marked vasoconstriction (followed by increased vascular resistance) a mechanism from fetal 

development [28-31]. These responses are exaggerated in individuals vulnerable to HA 

complications. Overall, there is no general consensus in the literature on how HA effects the 

endothelial function and vascular tone. Some report vasoconstriction and others dilation due to 

variation in the study design (population, type of hypoxia, time of hypoxia) and measuring 

location (pulmonary, cerebral, peripheral vasculature). This thesis will focus on the peripheral 

vasculature, as a clear interpretation may be vital in understanding the role of the vascular system 

in adaptation to HA and health at HA. 

 

1.2.1 Short exposure to hypoxia  
	  
In general, most studies have used normobaric hypoxia to examine the vascular response to short 

term exposure (up to 3 hours) to hypoxia and a NO-mediated vasodilation is reported by some, 

but not all, literature. Under normobaric hypoxia (PO2=50mmHg) a vasodilation effect has been 

reported as 20-25% increases in peripheral BF (forearm BF baseline of 2.4 at normoxia to 3.0 

mL·100mL-1·min-1) [24, 26], reduced arterial stiffness (6% decrease in augmentation index), 

vasodilation [32] and decreased vascular resistance [33]. By comparing NO pathway blocked and 

normal vessel dilation under normobaric hypoxia, the conclusion drawn was that normobaric 

hypoxia invokes a NO-mediated vasodilatation in the peripheral vessels at simulated altitude 

where PO2= 50mmHg [26]. 

 

Despite these literature reports NO-mediated vasodilation was not apparent while examining 

brachial arterial diameter (AD) or FMD. After 5 minutes of exposure to normobaric hypoxia 

(12.5% O2 simulating 4500 m) no changes in AD and reductions in FMD were found (~6% 

decrease in ratio of FMD to nitroglycerin mediated dilation under hypoxia) in healthy controls 

[34]. To my knowledge this is the only short term exposure to hypoxia study that measured FMD 

in healthy individuals. The authors suggested the reduction in FMD was due to reduced 

bioavailability of NO, as demonstrated in intermittent hypoxia studies on animals (1 minute 5% 

O2 hypoxia, 4 minutes normoxia 12 hr/day and normoxia 12hr/day for 14 days) [35]. There is no 

agreement within the literature on whether there is a NO based vasodilation or reduced NO 

bioavailability with short-term exposure to normobaric hypoxia. 
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1.2.2 Longer exposure to hypoxia  
	  
Upon longer exposure (3 or more days) to a systemic hypoxia, such as HA, sympathetic nervous 

system stimulation is increased, and the peripheral vessels tend to constrict [36]. Increases in BP 

are reported with a 5% increase in mean arterial pressure (MAP) after 3 days at 4559m, and 28% 

after 9 weeks at 5260m 5 [37, 38]. In limbs, systolic BP (SBP) is reported to increase by 14% in 

legs while not in the arms with ascent from sea level to 4100m [36], and BF in the brachial artery 

was 40% lower in healthy individuals at 4370m compared to sea level controls [39].   

 

During ascent, from 1300m to 5300m over 25 days, conduit vessel flow and diameter in the 

brachial, common femoral, superficial femoral, and deep femoral arteries showed a decreased 

volumetric BF (25-45%), with a concurrent decreased vessel diameter (8-11%) when compared 

to sea level [7]. This vasoconstriction was maintained 24 hours after descent to lower altitude 

(1310m), although BF increased upon descent. At HA hypoxic stimulation of the kidneys leads to 

natruiresis and diuresis, and in combination with fluid loss from high respiratory rates, there is a 

potential of BF decrease due to reduction in plasma volume [40].  

 

Although there are several studies that assess BP, BF, and AD, there are no studies that measure 

FMD during a HA expedition in healthy individuals. The closest corresponding study was 

performed on metabolic syndrome patients where after 3 weeks exposure to altitude (1700m) a 

significant reduction in FMD result (3.8% versus 7.4% baseline) and decreased baseline AD 

(4.3mm versus 4.5 mm baseline) were reported [41]. Upon return to lowland, FMD continued to 

be reduced from baseline values after 6 weeks, but recovered after 10 weeks at lowland. 

 

1.2.3 High altitude complication vulnerable individuals 
	  
Individuals susceptible to HA complications may have an exaggerated vasoconstriction response 

to hypoxia [28], making physiological responses easier to observe in individuals prone to HAPE. 

Systemic vasculature in HAPE susceptible (HAPE-S) subjects have been studied during 

normoxia exercise and the conclusion drawn was that these subjects had an augmented flow-

dependent vasoconstriction [42-44]. In 2005, Berger et al. measured forearm BF response to 

substances that induced endothelial dependent and independent vasodilation during normoxia and 
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normobaric hypoxia (12% O2, corresponding to 4500m) in HAPE-S and healthy subjects. The 

authors reported attenuated vascular response to acetylcholine (induces endothelium dependent 

dilation) in HAPE-S subjects during hypoxia, as a result of decreased bioavailability of NO, and 

suggested that susceptibility to HA complications may partially be explained by endothelial 

function [17]. Numerous studies have reported a decrease in both exhaled and plasma NO 

products in HAPE victims compared to healthy subjects at altitude [17, 45-47].  

 

1.3 Nitric oxide and endothelial function 
	  
In order to maintain cardiovascular homeostasis, the endothelium responds to various chemical 

and mechanical signals to adjust vascular tone. NO is the most important of these signals and acts 

to promote endothelium-dependent vasodilation via smooth muscle relaxation, decrease the 

vasoconstriction effect of Ca2+, and reduce sympathetic outflow [12]. The production pathway 

and supply of NO becomes noteworthy at HA, where the vasodilation effects of NO could be 

advantageous in maintaining O2 delivery to the tissues. 

 

1.4 Nitric oxide production 
	  
Humans produce NO in the body through two mechanisms, the L-arginine pathway and the 

nitrate-nitrite-nitric oxide (NO3
-- NO2

-- NO) pathway. NO acts by stimulating the soluble 

gaunyltl cyclase, increasing concentrations of cyclic Guanosine Monophosphate (cGMP); which 

further acts on smooth muscle, causing relaxation and subsequent artery dilation [48]. NO is 

biologically unstable and is converted through oxidation for transport in the blood and tissues 

[49]. In sea level conditions, roughly half of plasma NO is L-arginine derived and half is from 

dietary sources [50]. The most important dietary source of NO3
- is vegetables, accounting for 

approximately 80% [51]. When muscle is exposed to severe hypoxia (both acute ischemia, 1 

hour, and chronic exposure to 1% and 5% O2 for 24 hours) the L-arginine pathway NO 

production is inhibited, whereas the generation of NO from the NO3
-- NO2

-- NO pathway is 

enhanced [48, 52, 53].  
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1.4.1 L-arginine pathway 
 

The most thoroughly described NO producing mechanism is the L-arginine-NO pathway; an O2 

dependent process that requires nitric oxide synthase (NOS) and L-arginine to produce NO and 

citrulline [54]. In relation to vascular function, endothelial NOS (eNOS) is recognized as having 

the important role in regulating blood vessel diameter [12]. NO production via eNOS occurs from 

the vascular endothelium [49]. This pathway increases NO production when stimulated directly 

by Ca2+ or shear stress, which increases intracellular Ca2+ concentrations (Figure 2) [8, 55]. 

 

The L-arginine pathway is altered in a hypoxic state and has a decreased ability to generate NO, 

due to the need for O2 as a substrate [49, 56-58]. In hypoxia there is decreased eNOS mRNA 

transcription and altered eNOS function and hence, eNOS production [13]. This subsequently 

leads to a diminished NO production [59-61]. Demonstrated in animal tissue in vitro a reduction 

in tissue PO2 from 150 to 40mmHg decreased NO production 52% [62], and in trabecular smooth 

muscle and cell culture in vitro a graded relationship has been described, where decreasing PO2 

corresponded to decreasing NO production [63, 64]. When entering an O2 depleted environment, 

such as HA, the need for sufficient O2 delivery to the tissues, along with a decreased ability to 

produce NO for vasodilation through the L-arginine pathway, renders the NO3
-- NO2

-- NO 

Shear stress 

Senses mechanical deformation 

Vasodilation 

Endothelial cell Smooth muscle cell 

éCa2+ 

Figure 2. Schematic of the L-arginine pathway stimulation, by shear stress or increased 
intercellular calcium concentrations, signalling nitric oxide production. Nitric oxide further 
acts on cyclic guanosine monophosphate and results in vasodilation. Where Ca2+: calcium, 
cGMP: cyclic guanosine monophosphate, eNOS: endothelial nitric oxide synthase, GC: 
guanylate cyclase GTP: guanosine triphosphate, NO: nitric oxide, adapted from [12, 16]. 
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pathway increasingly important [13].	  	  

	  

1.4.2 Nitrate-nitrite-nitric oxide pathway 
 

As NO is a biologically unstable molecule NO3
- and nitrite (NO2

-), oxidized NO, are measurable 

compounds found in the blood and tissue [49]. Since the mid-80’s NO3
- and NO2

- have been 

known to be vasodilators and cytoprotectors [50]. Despite the reduced NO production from the 

L-arginine pathway during decreased O2 availability, there is increased generation and 

consumption of NO3
- and NO2

- as demonstrated by measurement in brachial arteries during 

hypoxia and ischemic hearts [65, 66]. Due to increased reduction of NO3
- to NO2

- during 

hypoxia, NO3
-- NO2

-- NO pathway is optimized in a hypoxic state [49, 50].  

 

Both supplementation, such as sodium NO2
- [67], and whole foods, such as root vegetables [51], 

are effective exogenous sources of NO. To describe the circulation of inorganic NO3
- and NO2

- 

from whole foods the entero-salivary pathway can be used [49]. Beginning in the oral cavity, up 

to 25% of NO3
- is reduced to NO2

- in the saliva [49, 68]. The NO3
- and NO2

- absorbed during this 

cycle can be found in the blood stream and tissues and subsequently reduced to NO when needed 

to act as vasodilator via cGMP [49].   

 

1.5 Nitric oxide at high altitude  
	  
NO is highly reactive with other substances including reactive oxygen species (ROS). 

Mitochondrial production of ROS is inversely related to O2 availability, as demonstrated in 

endothelial cells in vitro [69] and microvascular system in vivo [70]; with decreasing PO2, ROS 

production increases. These ROS react with NO to form peroxynitrite and act to reduce NO 

availability [70].  

 

It is the combination of the increased NO breakdown by ROS and the reduction of NO from the 

L-arginine pathway under hypoxia that may decrease NO availability at HA. It should be noted 

that despite a molecular mechanism, the effect of hypoxia exposure on whole body NO substrates 

is unclear [17, 71-73]. It has been demonstrated that individuals with higher circulating NO 
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substrate levels are healthy and have better function at HA (NO2
- 116 versus 103 nmol·L-1 for 

control and HAPE-S subjects respectably) [17, 74]. Increasing NO availability using L-arginine 

infusion, in combination with NOS injection, is reported to improved SaO2 (5.3% 15 to 45 

minutes post infusion) and AMS score, without affecting BP, in healthy subjects (36 hours of 

exposure to 4350m) [75]. Other vasodilators are also shown to be important at HA, where 

pharmalogicals [76], as well as inhaled nitric oxide [77, 78] have been effective in treating HA 

illnesses. 

 

1.6 Nitric oxide supplementation  
 

Following the NO3
-- NO2

-- NO pathway, organic low cost vegetables can provide NO for 

vasodilation. Certain foods have been found to have particularly high concentrations 

(>250mg/100g) of inorganic NO3
- including beetroot and spinach [51]. Beetroot juice (BJ) has 

been shown to be effective in the reduction of BP at sea level (10.4±3.0 mm Hg SBP, 8.1±2.1 

mmHg diastolic BP (DBP) with 22.5 mmol NO3
- intake) [79-82]. Dietary NO3

- has been effective 

in improvement of endothelial function at low altitude, with 0.5 to 4% increases in FMD after 

acute supplementation [83, 84]. BJ specifically has demonstrated a vasoprotective role, protecting 

FMD function during ischemia [82], and improves FMD after the intake of a high fat meal 

(containing 56.6 g fat) [85]. 

 

During normoxic hypoxia BJ has been effective in improvement of SaO2 and exercise tolerance 

[73, 86]. After multiple doses of BJ (5 applications of 1 mmol NO3
- dose per day, for 6 day) or 

control, 15 healthy subjects (males, mean 21 years) were exposed to short term (2 hour) 

normobaric hypoxia (11% O2) [86]. During hypoxia resting SaO2 was approximately 77% 

without BJ and improved 3.5% with BJ, and during exercise SaO2 was 68% with the control juice 

and improved by 2.7% with BJ. A single dose of BJ (9.3 mmol NO3
-) 24 hours prior to 14.5% O2 

normoxic hypoxia is shown to restore exercise tolerance to normoxia levels (477 seconds BJ 

hypoxia, 393 placebo (PL) hypoxia, 471 seconds normoxia) in 10 healthy (2 female, mean 28 

years) subjects [73].  

 

Although vasodilators have demonstrated a positive effect on some HA illnesses and endothelial 
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function at low altitude, the effect of dietary NO3
- supplementation on endothelial function at HA 

has not been studied before.  
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2 PURPOSE 
 

In this study, we investigated the effects of dietary NO3
- supplementation on endothelial function 

during hypobaric hypoxia in lowlanders. To gain a greater understanding of the vascular 

modifications in lowlanders during hypobaric hypoxia, we investigated the significance of the 

endothelium in this process. The specific aims of this study were: 

1) To assess the effect of drinking BJ as a dietary NO3
- supplementation on FMD, an estimate of 

NO-mediated vasodilation, at HA. 

2) To investigate the effect of continued HA exposure on FMD, through measuring FMD pre-

ascent to HA to create an altitude baseline measure, at HA (4200m, after 5 days at HA), and after 

4 weeks at HA.  

 

It was hypothesized that 1) at 3700m of altitude dietary NO3
- supplementation via ingested BJ 

will ensure a HA FMD comparable to the norm in lowland natives at sea level (age 20-29 males: 

5.4%, females 6.7%), and 2) continued exposure to HA (at 4200m, after 5 days at HA) will 

decrease FMD in relation to altitude baseline, as measured before ascent to HA, and FMD will 

continue to be reduced after 4 weeks in HA (2825 -5330m).  
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3 METHOD AND MATHERIALS 
 

This study was performed during the spring of 2013 in Kathmandu and the Rolwaling Valley, 

Nepal. It was ethically approved by Swedish Research Council and Nepal Health Research 

Council and done according to the Helsinki declaration. 

 

3.1 Subjects 
	  
Subjects were students of the Outdoor and Adventure Management program in Åre, Sweden, and 

read and signed the informed consent before participating in the study. A total of 11 healthy male 

and female lowlanders participated in this study, whereof 10 subjects participated in the BJ 

supplementation study due to logistical reasons. With regards to the FMD over time one subject’s 

pre-expedition measure was excluded because of non-compliance to pre-measurement 

restrictions. All 11 subjects were included at altitude. There were 3 subjects that did not complete 

the expedition and, therefore, had insufficient stay at altitude. These 3 subjects were excluded 

from the post-expedition measurement, making a total of 8 subjects part of post-expedition 

measurements. Subject demographics data is displayed in Table 1.  

 
Table 1. Subject demographic data (n=11, male=7, female=4). 

 Age (years) Height (m) Weight (kg) 

Mean±SD 24.7±5.0 1.76±9.78 71.6±9.92 

 

3.2 Study timeline 
	  
FMD was measured 5 times at 3 different altitudes within 39 days of this expedition. This 

timeline, with respect to the altitude the subject resided at and measurement days, is 

demonstrated on Figure 3. Most movement between elevations occurred by walking, except 

transportation from Kathmandu to the beginning of the trek (1525m) by bus (day 3). The group 

was unable to climb over a high pass into Khumbu Valley due to weather constraints and, 

therefore, made a brief return to lower altitude in Kathmandu by bus (stayed days 21-23) and 
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subsequently traveled to and from Khumbu Valley by plane (Figure 3, days 24, 38) where they 

resumed the expedition. 

 

Altitude baseline measure was taken at 1370m (Test 1) on the first day of the study. The BJ 

supplementation aspect of this study took place on days 7 and 8 at 3700m (Test 2), after the 

subjects had spent 3 days walking from 1525m to 3700m and 1 day residing at 3700m before the 

investigation. The altitude testing took place at 4200m (Test 3) on day 10, after 5 days above 

2500m. At this point, the group formed smaller groups, some returning to Kathmandu, some 

subjects continuing on to climb mountains (6119 m) and others continuing to trek between 

altitudes (2825 -5330m). Therefore, each subject’s exposure to altitude varied from day 12 to 38, 

with most sleeping at altitudes between 2900m and 5330m. Post-HA measures were performed 1 

day after return to 1370m (Test 4) on day 39. 

	  
Figure 3. Residing altitude (m) profile example in relation to days of the study and including 
testing days; Test 1: FMD altitude baseline values (1370m), Test 2: Nitrate supplementation 
(3700m) BJ (5.0 mmol NO3

-) or placebo (PL) juice (0.003 mmol NO3
-), Test 3: FMD at 

altitude (4200m), Test 4: FMD 1-day after 4 weeks altitude expedition (1370m). 

	  

3.3 Testing and measurements  
	  
In this study, FMD was performed in the brachial artery using a 12-MHz Doppler probe and 

ultrasound imaging (Vivid I, GE Healthcare, USA) following current guidelines [10, 87]. All tests 

were performed in the same manner following a standardized procedure (Figure 4). Each test 

consisted of FMD technique to estimate NO-mediated vasodilation, as well as recording of heart 

rate (HR), BP, and SaO2 as to be described below. 
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3.3.1 Subject preparation 
	  
As FMD is a sensitive technique to obtain a reliable measure of endothelial function there were 

several subject-specific factors taking into account. These included temperature, fasting state, 

caffeine, tobacco, exercise and pre-measurement rest for acclimatization [87]. Although this was 

a fieldwork study, these factors were optimized through the following methods. A combination of 

wood ovens, propane heaters and down sleeping bags were used to control ambient and subjects 

temperature (BJ/PL test, room temperature 20°±2 C). This is because low ambient temperature 

cools the body, activating sympathetic outflow, resulting in peripheral vasoconstriction and 

reduced BF, with corresponding reductions in FMD [88].  

 

Subject were instructed to restrain from food, caffeine, or tobacco intake 3 hours and exercise 2 

hours prior to measurements, as these factors also affect FMD results [87]. With respect to 

dietary NO3
- supplementation subjects were advised to avoid mouthwash and tooth brushing that 

day in order not to wash out lingual bacteria important for NO3
- reduction [89]. Prior to 

measurement, subjects were questioned about their compliance to study restrictions. 

 

3.3.2 Procedure 
	  
Preparation for FMD of the brachial artery included removal of arm-restrictive clothing, the 

placement of an occlusion cuff distal to the measuring site and electrocardiography (ECG) 

electrodes. ECG electrodes were place on the skin, one on each shoulder and left chest (mid 

clavicular line of the 5th intercostal space) [22]. The measuring site for all FMD measures was 

above the anticubital fossa, with the arm extended [22]. An automatic BP cuff was placed on the 

dominant arm, and the non-dominant arm was prepared for FMD measurement as to reduce the 

effect of the occlusion during the BP measurement on the baseline FMD recorded. Once the 

subject and measurement equipment was prepared (2-3 minutes), the subjects were requested to 

relax in a supine position, avoiding moving and talking, and the 10-minute FMD rest period 

began. 

 

After 5 minutes of supine rest, 3 BP and HR measurements were taken on 1-minute intervals 

using an automatic BP cuff. During the entire vascular occlusion and reactive hyperemia phases 
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of the FMD measurement SaO2 was recorded and HR was monitored on 1-minute intervals, to a 

total of 8 recordings. This was performed manually using a pulse oximeter (OnyxVantage, Nonin 

Medical, Plymouth, USA) that had been placed on a finger of the dominant hand.  

 

 

 

 

 

 

 

 
 

	  

 

 

3.3.3 Flow-mediated dilation procedure 
	  
After 10 minutes total supine resting time the FMD measurement began, while the subject 

continued to lie supine with the non-dominant arm extended. As FMD compares peak dilation to 

resting status, resting status measurement was assessed before occlusion and considered the 

baseline. Before image acquisition, a vessel image with clear upper and lower interfaces between 

the vessel wall and the intima was obtained [90]. The brachial AD image was saved in order to 

obtain a baseline artery status, and baseline blood velocity was recorded using Doppler, as this is 

important in relation to shear stress [87].  

 

Once suitable baseline measures were recorded, a manual sphygmomanometer cuff (SC10, D.E. 

Hokanson Co., Bellevue, USA) was inflated to  > 250mmHg on the forearm. This was to create 

an occlusion distal to the measuring site (Figure 5), as when the cuff is placed distally the result 

best reflects NO-mediated dilation [20, 21]. Time of occlusion has been shown to affect FMD 

result, and for consistency and subject comfort a 250mmHg cuff occlusion for 5 minutes was 

Rest 
5 minutes  

Blood 
Pressure 

Rest 
5 minutes 

Baseline measurement 
AD, BF 

Vascular  
Occlusion 
5 minutes  

Cuff 
release 

Reactive 
Hyperemia  
3 minutes  

	  HR, SaO2 

Subject 
Preparation 
release 

Figure 4. Timeline for measurement procedure; beginning with subject preparations, followed 
by a resting period with blood pressure measurement. After 10 minutes total resting baseline 
measurements of artery diameter (AD) and blood flow (BF) were taken, followed by a 5 
minutes vascular occlusion, cuff was released and reactive hyperemia ensued. During vascular 
occlusion and reactive hyperemia, heart rate (HR) and arterial oxygen saturation (SaO2) were 
recorded every minute. 
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performed as recommended by the literature [87]. The forearm occlusion restricts BF to the hand 

and upon release BF increases, causing shear stress, the stimulus for the resultant dilation [91]. 

 

 

 

 

 

 

 

 

The cuff was released abruptly, BF increased and the reactive hyperemia phase followed. Using 

Doppler, the resultant peak in BF was recorded within 10 seconds of cuff release, and used to 

estimate shear rate. The ultrasound device used in this study did not have duplex mode, therefore, 

total shear rate could not be calculated [87, 91]. In order to follow the vasodilation of the artery 

that was resultant of the increased BF and shear stress, the AD image was recorded for 3 minutes 

on 30-second intervals (30, 60, 90, 120, 150, 180 seconds post-occlusion). The peak AD post 

occlusion typically occurs at 50±11seconds for young individuals [92], and a minimum 2 minutes 

post-occlusion of AD assessment is recommended [87]. The amount of dilation, as shown by 

increase in AD post-occlusion is NO mediated and reflective of NO levels [21].  

 

3.3.4 Beetroot/placebo juice supplementation protocol   
	  
In a blinded randomized-cross over manner, subjects drank a Beet-it juice (J. White Drinks Ltd., 

Suffolk, UK) shot (70mL) containing either BJ (5.0 mmol NO3
-) or PL juice (0.003 mmol NO3

-) 

on two consecutive days. Randomization of supplementation was done by creating two 

containers with paper slips; the slips in one container contained each subject number and the 

other containing an equal number of slips referring to supplement type, half written BJ and half 

PL. A name was drawn from one container and a supplement type from the other. 

 

The subjects drank the supplementation in a pre-determined random order on 30-minute intervals, 

as this was the time needed to complete each measurement procedure. The FMD measurement 

Figure 5. Drawing displaying occlusion cuff, and ultrasound probe position on non-dominant 
arm, adapted from [10]. 
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period commenced 3 hours after supplementation. The 3-hour schedule was chosen based on 

previous literature, in order to assess FMD when the concentration of NO products in the body 

peaks [79, 82]. As FMD is a reflection of NO levels, and the NO pre-cursor NO3
- was the only 

component different between the two supplementations, the greatest differences were apparent at 

this time. There was a 24-hour washout period between doses, as to minimize the affect of the 

previous supplementation on the next. This time-period has been shown to render the plasma NO 

products differences between BJ and PL insignificant [82]. 

 

3.3.5 Dehydration scoring 
	  
At HA, there is a high potential for dehydration as hypoxic stimulation of the kidneys leads to 

natruiresis and diuresis, with additional fluid loss from high respiratory rates [40]. Mild 

dehydration has been demonstrated to reduced endothelial function and FMD result [93]. The 

subjects self-assessed dehydration on specific mornings, upon waking. This was done using a 

urine chart as shown in Appendix I, and a white 60 mL measuring cup. The score recorded from 

a value of 1 very pale yellow to 8, brown yellow. Urine color has been shown as closely 

correlated with urine osmolality, and an acceptable measure in field studies [94].  

 

3.4 Data analysis  
	  
The principle investigator performed all FMD data collections and analysis to decrease observer 

bias. The principle investigator was blinded from the intervention until after the analysis process 

was completed. The analysis of AD (intima to intima) was performed using caliper measurement 

on the ultrasound image (0.1mm resolution) (Figure 6). For each HR cycle 3 repetitions of AD 

analysis were performed, and 3 HR cycles for each time point (for example 30 seconds post cuff 

occlusion). The mean of these 9 AD measurements was calculated to represent the AD of the 

time point.  
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With respect to measurement timing, the peak of the ECG R wave of the cardiac cycle was used 

to reduce error due cyclic changes in AD, as indicated in the literature [95]. Resultant AD was the 

average of 9 measures for every time point (3 measures per cardiac cycle, 3 cycles per time 

point). Both baseline and peak BF (mm·s-1) were estimated from Doppler waveform for velocity. 

As time course of artery dilation varies for individual subjects, each subjects peak AD post 

occlusion was chosen individually rather than the traditional 60 second time point [92]. FMD and 

shear rate were calculated from AD and BF as shown by the equations below [96]. 

FMD %  = (post-occlusion artery diameter (mm)-baseline artery diameter (mm))
baseline artery diameter (mm)

·100  (eq. 1)  

Shear rate s-1  = peak blood flow (mm·s-1)
peak artery diameter (mm)

 (eq. 2) 
 

nFMD (%·s) = FMD (%)
shear rate (s-1)

  (eq. 3)  
 
Mean FMD = FMD (%) 30 to 180 seconds

number of timepoints
 (eq. 4) 

 

Stimulus ratio = peak BF (mm·s-1)
baseline BF (mm·s-1)

 (eq. 5) 
 
The FMD (%) for all time points were calculated by post occlusion AD minus baseline AD, 

divided by baseline AD (eq. 1). All FMD (%) used in the results section were the highest 

calculated FMD (%), computed using peak post occlusion AD. As blood viscosity was not 

measured, shear rate (s-1) was calculated by dividing peak velocity by peak AD (eq. 2). To 

account for mechanical stress, FMD was normalized (nFMD) with a resultant FMD to shear 

Figure 6. A sample image of the brachial artery, as seen during ultrasound imaging process. 
This image includes three measurement calipers (intima to intima) and ECG recording of HR 
cycle. 
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stress ratio (eq. 3). The mean FMD was calculated as the sum of the FMD (%) from 30 seconds 

to 180 seconds post-occlusion divided by the total number of time points (eq. 4) [84].  The flow 

stimulus the artery received during reactive hyperemia is expressed as the ratio of peak BF to 

baseline BF (eq. 5) [82].  

 

An average of the two closest values were used for calculation of BP and HR, while for SaO2 

calculations average of the 8-recorded values was used. MAP was calculated from DBP and SBP 

(eq. 6).  

 

MAP (mmHg)= 2DBP (mmHg) + SBP (mmHg)
3

  (eq. 6)  
 

3.4.1 Statistical analysis 
	  
For statistical analysis IBM SPSS 21 statistics software (SPSS Inc, Chicago, USA) was used, and 

Graph Pad Prism 6 (GraphPad Software Inc., San Diego, USA) for graph figures. Normality was 

tested using the Shapiro-Wilk test. For dietary NO3
- supplementation data Student’s t-test was 

used to compare means of BJ and PL.  

 

In tests 1, 3 and 4 there were some missing data points because not all subjects partook in all 

testing days (as described above) and equipment error, as the SaO2 occasionally did not register 

on the pulse oximeter. This resulted in longitudinal unbalance data, with time as a cofactor, suited 

for Linear Mixed Models analysis [97].  

 

Linear Mixed Models creates a subject-specific mean trajectory over time based on population 

characteristics and subject-specific effects. Using these predicted individual subject curves, this 

model estimates missing values to create an estimated marginal mean.  Therefore, Liner Mixed 

Models with Compound Symmetry using pairwise comparison of estimated marginal means with 

Bonferroni correction was used for comparison of Test 1, 3, and 4.  

 

For all tests significance was set to p< 0.05 and a trend denoted a p<0.1.  
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4 RESULTS 
4.1 Beetroot juice supplementation 
	  
FMD 

BJ supplementation at 3700m significantly increased FMD to 5.77±1.14% in comparison to PL 

supplementation FMD at 3.84±1.31% (p<0.01) (Figure 7A). Similar increases from BJ 

supplementation were found examining nFMD, where nFMD was 0.023±0.009 %·s with BJ and 

a lower value of 0.015±0.004 %·s with PL (p<0.01)(Figure 7B).  Mean FMD was increased by 

1.46±01.81% with BJ supplementation, where BJ mean FMD was 2.91±2.11% and PL was 

1.51±1.78% (p<0.01). Results of the dietary NO3
- supplementation are displayed in Table 2 and 

graphically in Figure 7 (mean±SD, p<0.01). 

 
Blood flow 

The flow stimulus tended (p<0.1) to be 15.8±24.2% larger during BJ supplementation (Table 3).  

No differences were observed comparing BJ and PL with respect to baseline BF, peak BF, or 

shear rate (Table 2). 

 
Artery diameter 

No differences were observed comparing BJ and PL with respect to baseline AD or peak AD 

(Table 3). 

 

Basic physiological measures 

Basic physiological measures (HR, SaO2, SBP, DBP, MAP) displayed no significant differences 

(Table 3). 
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Table 2. Vascular variables during FMD measurement post-supplementation, dietary NO3
- PL and BJ. 

 PL BJ 

Baseline AD  (mm) 3.86±0.56 3.84±0.62 

Peak AD (mm) 4.00±0.57 4.06±0.63 

Baseline BF (mm·s-1) 808.2±169.0 743.4±159.5 

Peak BF (mm·s-1) 1001.0±196.2 1060.6±281.5 

Flow stimulus 1.25±0.18 1.43±0.28 

Shear rate (s-1) 250.7±40.3 268.9±86.8 
Data is presented as mean±standard deviation, PL: placebo, BJ: Beetroot juice, AD: artery diameter, BF: blood flow 

 
 
 
Table 3. Cardiovascular variables during post-supplementation, dietary NO3

- PL and BJ. 

 PL BJ 

Heart rate (bpm) 70±18 68±16 

SaO2 (%) 87.9±4.0 87.3 ± 4.8 

SBP  (mmHg) 115±15 115±13 

DBP (mmHg) 70±14 73 ± 14 

MAP (mmHg) 86±13 86 ± 14 
Data is presented as mean±standard deviation, PL: placebo, BJ: Beetroot juice, SaOa: arterial oxygen saturation SBP: 

systolic blood pressure, DBP: diastolic blood pressure, MAP: mean arterial pressure. 
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A)      B)  

 	  
	  

Figure 7. Effect of beetroot juice supplementation (BJ, shown in grey) in comparison to placebo (PL, 
shown in black), on A) flow-mediated dilation (FMD), B) normalized flow-mediated dilation (nFMD). 
Values presented as mean±standard deviation. * indicates significant difference between the two 
supplementations (p<0.05). 
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4.2 Endothelial function and high altitude exposure 
	  
FMD 

The FMD was 6.53±2.32% at altitude baseline (Test 1, 1370m), and significantly reduced to 

3.04±2.22% at HA (p<0.01, Test 3, 4200m) and was still reduced post expedition with 

3.91±2.58% (p<0.05, Test 4, 1370m) (estimated marginal mean ±SD, Figure 8A). The nFMD 

reflected similar changes, as nFMD of Test 1 (1370m) 0.025±0.007%·s was significantly reduced 

at HA (Test 3, 4200m) to 0.011±0.007%·s  (p<0.01) and displayed a trend of reduction (p<0.1) to 

0.016±0.010%·s post-expedition (Test 4, 1370m) (Figure 8B). The individual variations in FMD 

are presented in Figure 9.  

 

Blood flow 

There was a trend of reduction (p<0.1) in baseline BF from altitude baseline of 773.1±177.6 

mm·s-1 to post-expedition (Test 4, 1370m) of 644.3±192.2 mm·s-1 (Table 4). There were no 

significant differences in peak BF, stimulus ratio, or shear rate (Table 4). 

 

Artery diameter 

There were no significant differences in baseline AD or peak AD at any altitude (Table 4). 

 

Basic physiological measures 

The altitude baseline (Test 1) HR was 12±15% lower than the HA (Test 3) HR, and 14±18% 

higher than the post-expedition (Test 4) HR (p<0.05) (Table 2). HA HR (Test 3) was 

significantly higher than all other test points. SaO2
 at HA (Test 3) was 84.9±2.9%, a 12.4% 

reduction from all other locations, and post-expedition (Test 4).  DBP and MAP were decreased 

in relation to HA (Test 3) value (Table 5). There were no significant differences in SBP.  
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Table 4. Vascular variables from FMD testing procedure. 

 Test 1 (1370m) 

n=10 

Test 3 (4200m) 

n=11 

Test 4 (1370m) 

n=8 

Baseline AD (mm) 3.78±0.56 3.72±0.56 3.67±0.57 

Peak AD (mm) 4.02±0.56 3.83±0.55 3.82±0.57 

Baseline BF (mm·s-1)  770.5±177.6 722.9± 172.0 644.6±192.2 

Peak BF (mm·s-1) 1042.4±205.6 1039.7±199.7 958.4±221.0 

Flow stimulus  1.40±0.3 1.46±0.3 1.52±0.3 

Shear rate  (s-1) 264.3±59.2 273.5±58.1 254.0±61.9 

Data is presented as estimated marginal mean±standard deviation, analysed using linear mixed models, p≤ 0.05, * 
differ from Test 1, AD: artery diameter, BF: blood flow 

 
 
 
Table 5. Cardiovascular variables from FMD testing procedure. 

Data is presented as mean±standard deviation, using linear mixed models, p≤ 0.05, * differ from Test 1, †differ from 
Test 3, SaOa: arterial oxygen saturation, SBP: systolic blood pressure, DBP: diastolic blood pressure, MAP: mean 

arterial pressure 
  

 Test 1 (1370m) 

n=10 

Test 3 (4200m) 

n=11 

Test 4 (1370m) 

n=8 

Heart rate (bpm) 58±11† 65±11* 50±12*† 

SaO2 (%) 97.3±2.9† 84.9±2.9* 97.3±3.2† 

SBP (mmHg) 118±12 118±12 111±13 

DBP (mmHg) 70±11 73±11 66±11† 

MAP (mmHg) 86±11 88±10 81±11† 
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A)      B) 

	  
Figure 8. Measurements based on FMD procedure at three time points, where the time points represent 
altitude baseline at 1370m (n=10), at altitude 4200m (n=11), and post high altitude exposure at 1370m 
(n=8). The measurements include A) flow-mediated dilation (FMD), B) normalized flow-mediated dilation 
(nFMD). Data presented as estimated marginal means±standard deviation.* indicates a significant 
difference from altitude baseline measurement (1370m) (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Individual variation in FMD (%) at different altitudes (from pre-altitude measure at 1370m on 
the left, at altitude 4200m, post-altitude 1370m farthest right), lines represent individual subject data and 
black data marker represents estimated marginal means±standard deviation. 
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4.3 Dehydration score 
	  
Mean dehydration score was not significantly different at any test location, whereas individual 

subject values ranged from 1 to 8.  Dehydration scores were not complete for all testing 

days/locations. At 3700m (day 8), 4200m (day 10) and post-expedition (day 38) values were 

complete (Table 6).  

 
Table 6. Dehydration scores at altitude and post expedition. 

Day  (altitude)  Day 8 (3700m) 

n=10 

Day 10 (4200m) 

n=10 

Day 38 (1370m) 

n=8 

Dehydration score 3.4±2.0 3.8±2.0 3.8±2.2 

Data is presented as estimated marginal mean ±standard deviation using linear mixed models 
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5 DISCUSSION 
 

The principal finding of this investigation was that dietary NO3
- supplementation with BJ 

restored FMD of the brachial artery, to pre-expedition altitude baseline level, by enhanced NO-

mediated dilation while at altitude. The secondary finding was that NO-mediated dilation of the 

brachial artery was reduced during 4 weeks of HA exposure and after returning to moderate 

altitude. 

 

5.1 Improved endothelial function after dietary nitrate supplementation 
	  
The application of NO3

- rich BJ at 3700m increased FMD in comparison to PL supplementation. 

Supporting the hypothesis (1), the BJ FMD was not significantly reduced when compared to age 

matched lowlanders at low altitude (5.88% for population group made up of 7 men, 4 women in 

population group 20-29 years) [22] and similar to the altitude baseline FMD from this study (Test 

1). The positive effect of dietary NO3
- supplementation on FMD is in line with several previous 

studies at sea level [82-85], and to the authors knowledge this is the first study to describe this 

effect at altitude. 

 

After application of 5 mmol NO3
- in this study, the mean FMD increase of 1.46±0.24% can be 

compared to the smaller change, 0.5%, in mean FMD (over 4 minutes versus the 3 minutes in this 

study) found with smaller dose (2.94 mmol NO3
-) at low altitude [84]. The FMD increase of 

1.94±0.99% in this study can be compared to the larger increase, 4%, after application of a larger 

dose (12.45mmol NO3
-) found at low altitude [83]. The distal occlusion FMD in this study 

resulted in a primarily NO-mediated dilation that reflects NO bioavailability [21]. This supports 

the suggested dose dependency of dietary NO3
- supplementation on NO bioavailability at low 

altitude [79].  

 

Most recent studies use 10 mmol NO3
- when using BJ (corresponding to a double dose of BJ used 

in this study) which would cause a greater increase in NO availability and, therefore, FMD 

response [85]. The increased FMD found 3 hours post supplementation supports the 1.5-3 hours 

time needed for increasing plasma NO3
- and NO2

- after application of dietary NO3
- 
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supplementation [79, 82, 85]. Combining the dose dependency and FMD as a reflection of NO 

availability, the proposal that NO3
- is the significant component in the BJ supplementation is 

reinforced. 

 

It should be mentioned that dietary NO3
- supplementation does not seem to always improve FMD 

[98]. However, the effect on endothelial function seems to be more prevalent in individuals 

already experiencing a dysfunction ([85, 99]), as well as for protecting against ischemia induced 

dysfunction [82]. This implies that dietary NO3
- supplementation may be effective for individuals 

showing reduced vascular function during altitude exposure, such as in this study where FMD 

was reduced at 4200m, compared to at 1370m. In addition, despite the improved FMD with 

dietary NO3
-supplementation, an effect was not seen on other measurements. Dietary NO3

- has 

been shown to increase SaO2 (through improved peripheral oxygen efficiency) during 2-hour 

exposure to normobaric hypoxia (simulating 500m) [86]. This study differed in that the dietary 

NO3
- was administered in multiple doses over 6 days, the time in hypoxia was much shorter (2 

hours versus 3 days) and it was normobaric rather than hypobaric hypoxia.  

 

5.1.1 Mechanism of improved endothelial function after dietary nitrate 
supplementation 

5.1.1.1 Endothelial Function 

The increased FMD after dietary NO3
- supplementation is likely be related to NO bioavailability. 

The endothelium responds to increased BF, as experienced post distal cuff occlusion, with NO-

mediated dilation [20, 21]. NO is formed through both the L-arginine and NO3
-- NO2

--NO 

pathway, and at low altitude derivation of NO is roughly half from each pathway [50]. In hypoxic 

conditions production of NO through the L-arginine-pathway, an O2 dependent process [54], is 

likely decreased [49, 56-58]. This decreased L-arginine derived NO renders an imbalance in NO 

homeostasis at HA. Prior to dietary NO3
- rich BJ supplementation, at HA, our subjects likely had 

decreased NO availability.  

 

Although L-arginine production of NO may be impaired, dietary NO3
- can supply NO through 

the NO3
-- NO2

- - NO pathway. Beginning in the mouth, ingested inorganic NO3
- is rapidly 
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absorbed and metabolized to NO2
- by salivary bacteria [49]. Further reduction of ingested NO2

- to 

NO occurs through a variety of mechanisms including eNOS mediated reduction of NO2
- to NO 

[81]. eNOS is a key enzyme in L-arginine pathway for production of NO (Figure 2). Although 

eNOS availability may be reduced at HA [13], eNOS reduction of dietary NO3
- is 6 times more 

effective than from the L-arginine pathway [81]. In addition, deoxyhaemoglobin [49, 100] and 

deoxymyoglobin [101] have both been shown to be important for the reduction of dietary NO3
-. 

At HA haemoglobin saturation decreases [102] (SaO2 (to 84.9%) at 4200m ) increasing the 

availability of deoxyhaemoglobin. This suggests a potential for increased reduction of ingested 

NO3
- to NO2

- at HA, regulated by the decreased haemoglobin oxygenation [100]. The overall 

increased reduction of dietary NO3
- to NO optimizes the NO3

-- NO2
-- NO pathway in hypoxic 

conditions [49, 50]. In this study the intake of NO3
- rich BJ supplementation likely increased 

previously reduced NO bioavailability. 

 

Increased NO availability may affect endothelial function through several pathways. Primarily, 

increased bioavailability of NO can act as a vasodilator via cGMP for endothelium dilation and 

create smooth muscle relaxation (Figure 2) [103]. The increased FMD found after dietary NO3
- 

supplementation supports the increased potential for endothelium dilation and smooth muscle 

relaxation. Increased availability of NO may also affect ROS production. This is important as 

ROS production is increased at HA [104, 105], and ROS further reduce NO supplies by reacting 

to form peroxynitrite [103]. Peroxynitrite is a powerful oxidant that damages molecules, proteins, 

DNA, and the endothelium [106]. This increased oxidative stress not only decreases NO 

availability, but ROS also increase vascular inflammation and leukocyte adhesion [70]. NO3
- has 

been shown to inhibit mitochondria ROS production [107], attenuating ROS levels [70] and may 

in fact protect L-arginine production of NO [108]. The reduction of ROS by dietary NO3
- may 

therefore act to increase FMD, as found after BJ supplementation in this study.  

 

5.1.1.2 Stimulus Differences 

The second potential mechanism for FMD increases after BJ supplementation is an altered FMD 

shear stimulus. However, cuff occlusion was identical for both supplementations (time, intensity, 

location), and there were no statistical differences in baseline BF, peak BF, or shear rate, but 

there was a trend of difference in flow stimulus ratio of BJ and PL. Supporting the greater 
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potential for increased flow (flow stimulus ratio), BJ has been shown to improve vascular 

compliance by increased BF [98, 103]. The larger flow stimulus for FMD during reactive 

hyperemia seen after BJ supplementation can result in larger dilation [10]. Despite the differences 

in flow stimulus with NO3
- supplementation, the changes in nFMD, normalized for mechanical 

stress, reflected FMD changes. As urine color, indicating hydration status, was not analyzed both 

test days, the hydration status of the subjects may have affected the FMD result. 

 

When comparing both BJ and PL vascular measures with all other testing days, it can be noted 

that the baseline AD of both PL and BJ (3.86±0.18, 3.84±0.20 respectively) tended larger than 

altitude baseline (Test 1 3.78±0.17) and significantly larger than at 4200m 3.72±0.17. This BJ/PL 

data does not fit the previously reported trend where AD decreases with increasing altitude, 

beginning as low as 1310m [7]. As AD was not measured before supplement application, whether 

or not this was affected by the supplementation can only be speculated. Both supplementations 

were made from beetroot, one NO3
- depleted, and the red/purple pigment of beetroot is known as 

betalains [103]. Betalains, in combination with carotenoids and ascorbic acid contained in the 

beetroot render this juice (BJ and PL) with a high antioxidant capacity [109]. A 70mL 

concentrated beetroot supplementation, as used in this study, has been shown to increase total 

antioxidant capacity (98 µmol) [109].  These antioxidants act to balance ROS production under 

oxidative stress, such as at HA [103]. This increased antioxidant capacity may have influenced 

vascular homeostasis and acted to increase baseline AD.  

 

5.2 Endothelial function at high altitude 
	   	  
The reduced FMD during altitude exposure found in this study is in line with previous reports of 

altered FMD during both short (hours) [17, 34] and longer (days) [41] exposure to hypoxia. In 

previous findings, subject groups displaying significant endothelial dysfunction were those 

previously determined to be vulnerable to HA including HAPE-S, HA natives with chronic 

mountain sickness [39], and individuals with cardiovascular and genetic risk factors for 

endothelial dysfunction [6, 34, 110]. A novel finding in this study is that longer exposure to HA 

alter FMD in lowlanders healthy at baseline while at altitude. The decrease in FMD is 
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comparable to reports from Frick et al. (2006) where FMD in metabolic syndrome patients was 

reduced from 7.4% to 3.8% after 3 weeks at 1700m [41]. 

 

The subject of this study displayed a baseline altitude FMD was comparable to age-matched 

lowlanders at low altitude [22]. Interestingly Frick et al. (2006) presented similar baseline FMD 

values metabolic syndrome patients, a disease where endothelial dysfunction is prevalent [111]. 

These patients were considered metabolic syndrome based on pre-set obesity, dyslipidemia, 

hyperglycemia, and hypertension criteria, and despite meeting these criteria this subject group did 

not display endothelial dysfunction. Approximately 10% of population 20-29 exhibits endothelial 

dysfunction, based on the dysfunction definition of FMD ≤ 0% [22]. The FMD of the subject 

group did not reach a FMD level considered dysfunction. Whereas, some individuals were on a 

level considered dysfunction, as shown by Figure 9. 

 

5.2.1 Mechanisms for reduced endothelial function during altitude exposure  
	  
The mechanism for reduced endothelial response to the shear stimulus imposed during FMD 

technique could be related to NO bioavailability, and a possible underlying imbalance of 

vasoconstrictors and dilatators [103]. This potential imbalance is due to the alteration in 

endogenous production of NO through the L-arginine pathway and increased NO breakdown due 

to increased oxidative stress [105, 112], which decreases the bioavailability of NO at HA This 

study may corroborate that NO availability is in a graded relationship to O2 availability, as has 

been described in vitro [63, 64]. With increases in altitude, decreases in FMD were found, 

6.53±2.32% at 1370m, 3.84±1.31% at 3700m and 3.04±2.22% at 4200m. Reduced bioavailability 

of NO is further supported by the positive effect of the BJ supplementation, which increases the 

levels of NO products, has on FMD while at HA.   

 

There are several other mechanisms, not addressed in this study, which may have contributed to 

the reduced endothelial dilation. As HA FMD was taken within 5 days of travelling above 

2500m, the erythropoietin (EPO) production by the kidneys that occurs with hypoxia exposure 

peaks within 24-48hours (normalized with 3-weeks at altitude) may still have been increased 

[40]. EPO is a hormone produced by the kidneys that stimulates red blood cell production [113]. 
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High doses (3000 units, a dose common in clinical practice) of infused EPO have been shown to 

impair endothelial dependent vasodilation in humans [114]. Although this rendered blood EPO 

approximately 30 times higher levels than seen after HA exposure (1 day at 3450m) [115], it 

cannot be ruled out that increased EPO levels could contribute to the impaired FMD in this study. 

In addition, hypoxic conditioned up-regulation of the vasoconstrictor endothelin [17, 116] may 

have contributed to the decreased FMD measured. 

  

Another possible mechanism for reduced FMD is a result of possible differences in BF. The 

combination of altitude induced diuresis (decreasing water content) and altitude stimulated 

increased erythropoiesis (increasing red blood cells) may create more viscous blood and, 

therefore, change BF properties [40, 41]. No significant changes in velocity BF were found at in 

this study. This is similar to previous findings for velocity BF, on the contrary volumetric BF 

(mL·min-1) is reported as decreased in the brachial artery at HA, compared to both sea level and 

1310m [7, 39]. The altitude baseline at 1370m, may have already have altered BF, AD, as 

reported previously [7]. The significant differences displayed also in nFMD (%·s) at HA, 

supports that it is not mechanical stress differences that were the reason for the FMD reductions. 

 

5.3 Endothelial function upon descent 
	  
The decreased FMD measured at HA was apparent after descending from HA suggesting a loss 

of endothelial function that was persistent at low altitude. Despite the overall reductions in FMD, 

nFMD only trended as a reduction, indicating potential differences in mechanical stress. Baseline 

BF trended as decreased. Although there are no differences in urine color score post-expedition 

compared to any other testing point, the value of 3.8±0.7 indicates that the subjects were 

moderately dehydrated [94]. Taking into consideration the urine color score with the decreased 

BF, DBP, MAP and FMD, but not nFMD, the subjects were likely dehydrated. 

 

Notably, Dumais et al. (2011) did not find significant changes in velocity BF upon descent. 

Volumetric BF (mL·min-1) was reported as increased, as compared to at 5330m, and suggested a 

relative hemodilution related to reversal of HA fluid shift. The current study was of longer 

duration with more time at altitude and may have created greater cumulative dehydration taking 
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more than 24 hours for recovery, although both studies reached similar altitudes and descended 

(by foot and plane) in a similar manner. 

 

In addition to dehydration, there may have been alteration in endothelial response to shear 

stimulus. The sensitivity to endothelin, a powerful vasoconstrictor that may be unregulated at 

HA, is unknown. As well as possible depletion of antioxidants and NO production capacity of the 

L-arginine pathway after HA exposure. Considering the endothelial dysfunction present upon 

descent from HA found in this study, some clinical implications should be considered. 

Endothelial dysfunction the hallmark of many cardiovascular diseases [11, 12, 15, 17], and this 

study may imply a risk factor for lowland populations traveling at HA. Whether HA creates 

permanent endothelial damage initiating development of cardiovascular disease, or if damages 

recover after rehydration or some months at lowland [41], must therefore be investigated in long-

term studies.  

 

5.4 Endothelial function and health at high altitude 
	  
Populations adapted to HA living have demonstrated a better vascular function compared to 

lowlanders at 5050m, demonstrating a better ability to increase femoral BF after occlusion of the 

leg [117]. A pilot study measuring FMD (n=5) was conducted on local residents of Kathmandu 

(48.4±12.8 years) (Appendix II, Table 1, 2). FMD was measured to be 9.7±3.8 %. Although 

statistically not comparable, these individuals had a greater FMD than the group of much 

younger individuals from this study in Kathmandu (Appendix II, Figure 1). These Nepal locals 

also had a greater FMD when compared to age matched Scandinavian lowlanders, where in 40-49 

year old males FMD peak was 4.3±3.8% [22]. The higher FMD may be due several factors 

including genetic and environmental factors (altering NO bioavailability [72]), diet (intake of 

dietary NO3
- and NO2

-) and EPO and ROS concentrations. 

 

The Nepal locals had a lower baseline BF than the Caucasians in this study. This could be related 

to age differences as a 26% reduction limb BF has been previously reported in older (63 years) as 

compared to younger (28 years) males [118]. The combination of a lower baseline BF and a 

greater increase in flow resulted in a higher flow stimulus ratio in the Nepal locals, and greater 
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stimulus could be the reason for greater FMD [96]. Greater ability to increase femoral BF, after 

leg occlusion, has been reported in HA natives [117], supporting the differences in conduit artery 

function found in this study. Previous literature describes that among HA natives those with 

better vascular function had a higher SaO2 and less symptoms of chronic mountain sickness 

[119].  

 

Hypoxia triggers a set of physiological responses in order to regulate vascular tone [33]. 

Vasoconstriction in the peripheral circulation may be important to maintain arterial pressure and 

flow to the dilated cerebral and coronary vessels, but many HA complications are initiated by an 

exaggerated vascular response [120]. Improper regulation of NO may be responsible for the 

exaggerated vascular response of HA illnesses. NO is indicated to play a role in the HA headache 

(AMS) [5] and pulmonary vasoconstriction (HAPE) [121].  

 

When lowlanders are exposed to HA, the body often responds by constriction in the peripheral 

and pulmonary circulation, reduced peripheral endothelial function, and dilation in the cerebral 

vessels, possibly a defense mechanism for survival in this hypoxic environment. Consuming a 

dietary NO3
- supplementation at HA would increase bioavailability of NO throughout the body, 

along with the vascular potential for dilation. Although this may counteract the constriction in the 

pulmonary and peripheral systems, it may further increase dilation in the dilated cerebral vessels; 

the overall consequences on health at HA are unknown. In addition to the effects on the vascular 

system, NO may act as an important single molecule during adaptation to hypoxia, and NO 

supplementation may activate the physiological responses for acclimatization [71]. Dietary NO3
- 

supplementation will manipulate NO metabolism, increasing NO availability, but whether or not 

this is a helpful at HA must be further addressed. 
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6 STUDY STRENGTHS AND LIMITATIONS 
	  
The randomized crossover design used is key in the overall strength of this study. With this 

design the bias was reduced, as each subject served as his or her own control. This was especially 

important due to the high variability in response to altitude and supplement interventions. On the 

contrary, the main limitation of this study is lack of 12 hours fasting prior to the FMD 

measurements. Furthermore modifications in diet were not taken into account. Change in diet 

including fat, antioxidant, NO3
-, and NO2

- intake may affect FMD [87]. An additional limitation 

in this study was the lack of baseline sea level measurement. The menstrual cycle of the females 

involved (n=4) was not followed, and may have been an additional factor affecting FMD [87]. 

The secondary aim of this study (FMD with relation to altitude exposure) was further limited by 

the missing data from some locations rendering a small sample size. A protocol was design to 

minimize environmental strains affecting FMD (including temperature [88], fluid status [7, 40] 

and physical activity [122]), yet we were dependent on self reports from subjects of adherence to 

this protocol.  

 
  



	   38 

	    



	   39 

7 CONCLUSION 
 

This study shows that acute dietary NO3
- supplementation during hypobaric hypoxia (at 3700m 

after 3 days of altitude exposure) restored FMD from the PL value of 3.84±1.31% to 

5.77±1.14%. Dietary NO3
- supplementation may therefore represent a promising strategy for 

maintaining endothelial function in native lowlanders at altitude. Additionally, FMD was reduced 

5 days into exposure to hypobaric hypoxia (at 4200m), and FMD continued to be reduced after 

descent from a 4-week altitude stay (2825 - 5330m) when compared to FMD altitude baseline. 

Reductions in FMD may have resulted from a combination of decreased endothelial function and 

dehydration causing reduced shear stimulus. These results imply a reduced capacity for 

peripheral BF regulation at HA, that may impact HA health, and the potential clinical 

implications upon descent must be further investigated. We conclude that the impaired 

endothelial function found in native lowlanders whilst at altitude can be improved by the 

ingestion of inorganic NO3
-. 

 

7.1 Perspectives of dietary nitrate supplementation at high altitude 
	  

Medical complications at HA are not only worries of the lowlander traveling, but also are major 

health concerns in HA populations [19]. Dietary NO3
-supplementation with beetroot could 

provide a low-cost treatment and prevention strategy to maintain healthy vascular function at HA, 

and possibly in prevention and treatment of some HA medical complications. The cold 

environment at HA does not make easy growing conditions for many vegetables, but beetroot and 

spinach are both viable in these climates and rich in inorganic NO3
- [123]. Therefore, dietary 

NO3
-supplementation may represent an affordable solution to reduce morbidity for hundreds of 

thousands of HA populations and improve the wellbeing of the HA traveler [124]. Further studies 

should focus on the hemodynamic and metabolic role of dietary NO3
- supplementation at 

different altitudes and of native HA populations and lowlanders.  
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Appendix I  
	  
Urine color chart for dehydration assessment 
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Appendix II 
	  
Local Residents of Kathmandu, FMD measurement at 1370m  
 

Table 1.  Subject characteristics for endothelial function measurements in local residence of 

Kathmandu, male (n=5). 

 Age (years) Height (m) Weight (kg) 

Mean  48.4±12.8 

29-61 

1.54±0.06 

1.47-1.61 

51.1±5.4 

48.5-60.78 Range 
  Data presented as mean±SD 

 

 

Table 2. Cardiovascular parameters of local residence of Kathmandu taken during FMD 

measurement protocol at 1370m. 

 Mean Range 

Baseline AD (mm) 3.79±0.40 3.37-4.33 

Peak AD (mm) 4.14±0.40 3.63-4.65 

baseline BF (mm·s-1) 596.7±150.8 453.2-837.3 

peak BF (mm·s-1) 927.8±181.6 741.7-1098.1 

stimulus ratio 1.60±0.31 1.23-1.94 

shear rate (s-1) 223.6±18.2 201.3-245.1 

nFMD (%·s)  0.042±0.015 0.030-0.070 
Data presented as mean±SD, where AD: artery diameter, BF: blood flow FMD: flow-mediated dilation, nFMD: 

normalized flow-mediated dilation 

  



	  

 
Figure 1. Comparison of lowlanders (LL) (n=10) to Nepalese residence (NP) (n=5) measurements taken 

during FMD measurement procedure at 1370m, where black represents LL and grey represents NP. Data 

presented as mean±standard deviation. 
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Figure 2. Comparison of lowlanders (LL) (n=10) to Nepalese residence (NP) (n=5) measurements taken 

during FMD measurement procedure at 1370m, where black represents LL and grey represents NP. Data 

presented as mean±standard deviation. 
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