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Abstract—In this paper, we investigate the practical im-
plications of employing virtual multiple-input-multiple output
(MIMO) systems for prototyping future-generation wireless sen-
sor networks, especially in the light of recently proposed dis-
tributed detection based decision fusion rules. In order to do that,
an indoor-to-outdoor measurement campaign has been conducted
recently for investigating the propagation characteristics of an 8
⇥ 8 virtual multiple-input-multiple-output (MIMO) system. The
campaign is conducted with transmit antennas representing the
sensors deployed in different indoor environments and receive
antennas mounted on an outside tower representing the decision
fusion center. Channel measurements are reported when a 20
MHz wide signal is transmitted at 2.53 GHz. Measurements
are collected for different spatial combinations of the transmit
antennas. After analyzing the collected data, performance of
different decision fusion rules are compared and tested over the
measured channel. The results show that the fusion rules perform
differently over different sets of measured channels. The results
obtained here are important for maximizing performance and
enabling air-interface design of next-generation wireless sensor
networks.

Index Terms—Wireless sensor networks, MIMO channel mea-
surement, Large and small scale channel characterization, Deci-
sion fusion performance.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have emerged over the
last few years as the backbone of a plethora of applications
ranging from delivering information in rural areas, harsh
industrial environments (like down-hole oil and gas indus-
try, mining of radio-active materials etc.) and other com-
plex scenarios (like under-ice communication in the Arctic,
monitoring activities in a volcano etc.), security surveillance,
emergency monitoring to body area network for advanced
health care. Research to date has been followed in three main
dimensions : sensing (e.g., sensor sampling), processing (e.g.,
data aggregation) and communication (e.g., routing and data
dissemination). A remarkable characteristics of different kinds
of WSN is collection and effective transportation of large
amount of information to the fusion center (FC) for performing
data fusion to arrive at a decision on an observation, estimation
of a situation or detection of a particular phenomenon.

A. Motivation

Use of multi-antenna technology at the FC has recently
been proposed [1], [2] to cope with intrinsic interference and

I. Dey and N. Marchetti are with CONNECT, Trinity College Dublin,
Ireland (E-mail: deyi@tcd.ie; marchetn@tcd.ie).

P. Salvo Rossi is with Norwegian University of Science and Technology,
Trondheim, Norway (E-mail: salvorossi@ieee.org).

M. Majid Butt is with Nokia Bell Labs, France (E-mail: ma-
jid.butt@ieee.org).

deep fading over the multiple access channel (MAC) used
for communication between the sensors and the FC. Thus
multiple sensors communicating with the multi-antenna FC
over a MAC result in a ‘virtual’ multiple-input-multiple-output
(MIMO) channel between the sensors and the FC. Several
decision fusion (DF) rules have been proposed in [3], [4] and
compared and evaluated based on the assumption that fading
statistics follow Gaussian or Rayleigh distribution. Only the
works in [2], [5] takes into account pathloss and shadowing
in the considered channel model.

The performance of channel-aware fusion rules and the
overall sensor network is heavily dependent on the propagation
statistics of the channel between the sensors and the FC. For
example, the fusion rule statistics in many cases are propor-
tional to channel coefficients (comprising of both large and
small scale statistics) and are dependent on the instantaneous
channel state information (CSI) [6], [7]. In terms of the entire
network performance, properties like latency, energy efficiency
etc., are all adversely affected by using inadequate fading dis-
tributions in the system design [8]. Furthermore, the network
may encounter diverse channel conditions between each local
center and the FC depending on the spatial distribution of the
sensors, the environment in which the sensors are deployed,
and the environment around the receive antennas.

Despite the significance of the propagation statistics, only
a few channel measurement campaigns have been performed
for WSNs over the years. The few that are conducted are gen-
erally environment or application specific. Small scale fading
characteristics in inter-sensor channels are studied in depth for
indoor [9], industrial [10], multi-chamber metal environments
[11] or oil reservoirs [12]. In each case, the communication
devices are all located in the same environment, especially
indoor. To the best of our knowledge, there is no in-depth
experimental investigation of the channel statistics (both small
scale and large scale statistics) of the propagation channel
between multiple sensors and FC equipped with single or
multiple antennas. Neither similar studies have been conducted
when the transmit sensors and receive sink nodes are located
in different environments i.e. indoor and outdoor respectively
or vice-versa.

B. Related Works

Distributed detection using DF has been extensively investi-
gated for WSNs [13]–[15]. Suboptimal rules have been applied
to both parallel access channel (PAC) [16] and MAC [17] sce-
narios. In case of a PAC architecture, the sensors are assigned
orthogonal parallel channels for transmission. In case of MAC,
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the advantage of using multiple antennas is exploited in [1].
Several DF rules like, Maximal Ration Combining (MRC),
Chair-Varshney Maximum Likelihood (CV-ML), Equal Gain
Combining (EGC), MaxLog and Chair-Varshney Minimum
Mean Squared Error (CV-MMSE) rules have been have been
analyzed both for the PAC [18], [19] and MAC [20], [21]
scenarios.

For both PAC and MAC, MRC and CV-ML, fusion rules
approach optimum performance only at very low and very high
link signal-to-noise ratios (SNRs) respectively, with EGC as
the robust choice over the entire SNR range [22] and MaxLog
as the champion over all the mentioned rules [23]. Though
employing multiple antennas at decision fusion center (DFC)
is profitable for all rules, all of them exhibit a saturation
point for the probability of correct detection depending on
the channel SNR [1].

Due to the wonderland of performance improvement
promised by MIMO systems, a lot of measurement campaigns
have been conducted to characterize the propagation channel.
In recent years, the major focus has been angular spreads
[24], [25] indoor-to-indoor [26], outdoor-to-outdoor [27] and
outdoor-to-indoor [28] environments. This emphasis is due to
the fact that the number of antenna elements in each link is
limited and the dispersion in elevation is much smaller than
the dispersion in azimuth.

The most detailed and generalized measurement-based
MIMO channel model to date is the WINNER II channel
model [29]. It is based on geometry-based stochastic channel
modelling approach, independent of the antenna configurations
and element patterns. It covers a plethora of communication
environment including outdoor-to-indoor, indoor-to-outdoor
and indoor-only scenario. The model is scalable from SISO
or MIMO links to a multi-link MIMO scenario. However,
the WINNER II model is not scalable to virtual MIMO
scenario which exploits array processing in order to improve
performance through diversity gain from multiple antennas.

Virtual MIMO systems have been introduced [30] to im-
prove data-rate in a wide-area MIMO system by allowing
multiple users to cooperate. Propagation modeling efforts in
virtual MIMO includes inter-base-station cooperation mea-
surements of capacity in [31], comparison of MIMO and
single-input-single-output (SISO) links in [32], outdoor-to-
indoor cellular scenario in [33] and antenna selection for multi-
user (MU)-MIMO based distributed antenna systems in [34].
However, propagation modeling in [34] is executed for WLAN
application based on ray-tracing and therefore, is application-
specific and location-specific.

C. Contribution

In this paper, we present results on a first-of-a-kind indoor-
to-outdoor measurement campaign intended for capturing
propagation characteristics in a virtual MIMO WSN and com-
paring performances of different DF rules over the measured
virtual MIMO channels. In this study, we focus on pathloss,
large scale shadowing and small scale fading characteristics for
each measurement location and scenario. The results obtained
here can be directly incorporated in realistic next-generation

WSN air-interface design. The main contributions of this paper
are summarized as below :

• We conduct a detailed measurement campaign to charac-
terize the propagation channel between multiple sensors
and DFC equipped with multiple antennas. We present
results for a fully loaded case, where the number of
sensors is equal to the number of receive antennas. But
from the recorded data, we can easily characterize the
propagation channel for the cases where the number
of sensors is less than the number of receive antennas
(underloaded) and where the number of sensors is more
than the number of receive antennas (overloaded). The
results obtained can also be extended to the case where
the DFC is equipped with a single antenna.

• We present here a first-of-a-kind measurement campaign
where the transmitter nodes are deployed in an indoor
environment and the receive antennas are located out-
door. Half-omnidirectional single antennas are used to
represent transmit sensor nodes and receive antennas are
co-located on a tower representing the DFC. Both static
and dynamic conditions have been taken into account and
two different indoor scenarios are considered, one office-
like room and one instrumentation room. Due to channel
reciprocity, the same channel statistics can be employed
to characterize the propagation channel between outdoor
sensors and indoor DFC.

• Both large and small scale statistics are derived from
the data collected over each measurement route, location
and spatial distribution of the transmit nodes. The large
scale shadowing variability is found to be unchanged
for all measurement sets and shown to follow lognormal
distribution. The fading statistics are found to be well
described by either Ricean distribution, two-wave with
diffused power (TWDP) distribution or double Rayleigh
distribution depending on the measurement scenario and
environment.

• The large and small scale channel characteristics ex-
tracted from the campaign are incorporated in the per-
formance analysis of two sets of fusion rules, Decode-
and-fuse and Decode-then-fuse. The first group includes
MRC, EGC and MaxLog rules. The second group in-
cludes CV-ML and CV-MMSE. In this context, our work
is the first attempt to compare and test the applicability of
the fusion rules in realistic environment. Performance of
other fusion rules (optimum and sub-optimum) that do not
fall in the above-mentioned groups can also be analyzed,
compared and tested using the procedure presented in this
paper.

• The results demonstrate different performance behaviors
of the decision fusion rules on the measured data. We
show that MRC and EGC perform close to each other
in realistic scenario. CV-MMSE outperforms all other
rules confirming the observations in [1]. MaxLog per-
forms worse than the other two Decode-and-fuse rules
considered here.

The paper is organized as follows: Section II details the
measurement set-up, scenario and the process by which in-
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formation is extracted from the collected data. Section III
provides results from analyzing the collected measurements.
Section IV compares performances of different DF rules in
realistic environment using the channel statistics derived from
the measurement, while Section V concludes the paper.

Notations: Lower-case (resp. upper-case) bold letters denote
vectors (resp. matrices), with ak (resp. an,m) representing
the kth element (resp. (n,m)th element) of a (resp. A);
(·)t denotes transpose, E{·}, \(·), (·)†, and || · || represents
expectation, phase, conjugate transpose and Frobenius norm
operators, respectively; ; ; ln represents the natural logarithmic
function; IN denotes the N⇥N identity matrix; 0N (resp. 1N )
denotes the null (resp. ones) vector of length N .

II. MEASUREMENT CAMPAIGN

This section is dedicated for providing detailed description
of the set of equipments used for collecting measurement
(Subsection II-A); the environment, set-up and the scenarios
in which the measurements are accumulated (Subsection II-B)
and; the process of analyzing the measurements and extracting
the statistical information on the propagation environment
from them (Subsection II-C).

A. Measurement Equipment

This subsection articulates the details of the ensemble of
equipments used to conduct a measurement campaign at Fa-
cility of Over-the-Air Research and Testing (FORTE) facility
of Fraunhofer IIS in Ilmenau, Germany. In this campaign,
the time-varying channel impulse responses (CIRs) of 8 ⇥ 8
distributed multiple-input-multiple-output (MIMO) channels
are measured at 2.53 GHz with 20 MHz bandwidth and sub-
carrier spacing of around 0.15 MHz. Measurement was done
in the 2.5 GHz band owing to its popularity as the operating
frequency in WSNs and implementation flexibility due to
the abundance of commercially available sensor and actuator
devices in that band. The 8⇥ 8 case models the fully-loaded
(number of sensors, S = number of receive antennas at the
decision fusion center (DFC), N ) communication scenarios in
wireless sensor networks (WSNs).

For each measurement set, the 8 half-omnidirectional (di-
rectional with half power beamwidth of 180 degrees) transmit
antennas emulating sensors are deployed simultaneously. They
are fixed at different heights, namely a) near the ceiling, b)
near the ground and c) at the heights of 1m, 1.5m and 2m.
They are distributed at different locations namely, a) on all 4
walls, b) on only 3 walls, c) only on 1 wall at a time etc. The
antennas are positioned in two rooms of the FORTE building.

The antennas on the receive side are mounted at a height of
around 48m on a tower. Four different dual-polarized antennas
are used for reception where both the polarization in each case
are activated to have functionally effective 8 antennas on the
receive side. The receive antennas set-up on the tower are
arranged in two columns, two antennas on each row and they
receive signals with ±45o polarizations.

An overview of the measurement set-up is provided through
the block diagram in Fig. 1. The transmit and receive antennas
are connected to a MEDAV RUSK-HyEff MIMO Channel
Sounder via optical fibers, control cables, and transmit and
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Fig. 1. Block diagram of measurement set-up.

receive switches. The channel measurements are conducted
and recorded using this channel sounder. On the transmit
side, the length of the test signal is adjusted according to the
observation time of the wireless propagation channel between
the transmitter and the receiver. Using arbitrary waveform
generated by a Rhode & Swartz RSSMU200 signal generator,
the test signal is distributed to the transmit antennas via up-
converter, power amplifier and multiplexer. The test signal is
transmitted from each of the 8 transmit antennas with different
time offsets to ensure orthogonality. Let the 8 sequences be
denoted by p1[m], p2[m], . . . , p8[m], where m is the length of
the multi-tone signal.

A maximum transmit power of 44 dBm is fired at the
output of the power amplifier. For sufficient signal-to-noise
ratio (SNR) calibration, the transmit and receive sounders are
connected directly to each other with a cable that includes 100
dB of attenuation. The measured SNR is obtained as 40.7 dB
which can be shown to be sufficient enough to yield nominal
measurement error following the methods in [35]. This will
ensure that the measurement error will have no effect on the
study of channel measurements.

The received radio frequency (RF) signal is down-converted
to Intermediate Frequency (IF) to 90 MHz and subsequently
processed and stored for offline analysis. The receiver contin-
uously performs correlations of the received signal with copies
of p1[m], p2[m], . . . , p8[m]. As a result, a new 8 ⇥ 8 MIMO
channel response is captured every 6.4 µs. Phase synchro-
nization is achieved through Rubidium frequency reference.
Clock-signal synchronization is accomplished by connecting
the two 10 MHz clocks of transmit and receive sounders using
an optical fiber. It is worth-mentioning here that a 200 ns delay
is still incurred due to the reception cable from the switch and
antennas to the sounder.

B. Measurement Environment

Two different rooms in the FORTE building are selected,
of which, one is located on the 2nd floor (Conference Room,
C) and the other is located on the 1st floor (Instrumentation
Room, I) of the building. The room C is 8.45m long, 4.52m
wide and 2.75m high, while the room I is 5.7m long, 3.5m
wide and 3m high. These rooms are chosen such that a
wide variety of indoor communication environments can be
measured and characterized. Some of the interesting scenarios
include room with keyhole effect (no windows) and with no
direct line-of-sight (LOS) communications, conference room
(with both direct LOS and non-LOS (NLOS) communication
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path) and room cluttered with several noisy electrical meter-
ing equipment, etc. (potential scenarios for future industrial
automation).

From the room upstairs (C) each measurement set is re-
peated for a) a stationary scenario and b) a dynamic scenario
with people moving on a defined track through the scenario.
For the static scenario, each measurement set is recorded for
1000 snapshots, each snapshot being 6.4 µs long. In case
of dynamic scenario, measurement is recorded for the time
duration as long as it takes for one person to walk through the
entire room (around 19-20 secs). For the room downstairs (I
with no windows), each measurement set is conducted only for
the stationary scenario due to the improbability of any dynamic
scenario in a factory/instrumentation environment. In this case,
each measurement set is recorded for 5000 snapshots.

The first set of measurements are collected in the rooms
(C & I) for the cases where all the transmit antennas are
deployed at the same height on all 4 walls at one time (refer
to Fig. 2(a) for C1, C2, C3, C4 and Fig. 2(e) for I1, I2, I3,
I4) with C1 & I1: all antennas near the ground, C2 & I2:
all antennas at a height of 1m from the ground, C3 & I3:
all antennas at a height of 2m from ground and C4 & I4:
all antennas near the ceiling. The second set of measurements
are also recorded in both the rooms where all the transmit
antennas are positioned at different heights on one wall at one
time (refer to Fig. 2(b) for C5, C6, C7, C8 and Fig. 2(f) for I5,
I6, I7, I8) with C5 & I5: all antennas on Wall 1, C6 & I6:
all antennas on Wall 2, C7 & I7: all antennas on Wall 3 and
C8 & I8: all antennas on Wall 4.

The third set of measurements refer to the scenarios where
all the antennas are distributed at different heights on all 4
walls following 4 sets of combinations (refer to Fig. 2(c) for
C9, C10, C11, C12 and Fig. 2(g) for I9, I10, I11, I12). The
last set of measurements are accumulated in the rooms with
antennas at different heights only on 3 walls (refer to Fig. 2(d)
for C13, C14, C15 and Fig. 2(h) for I13, I14, I115). Only
Wall 3 is avoided in both the rooms as it is completely out-
of-sight of the communication path in both cases between the
transmit and receive antennas.

C. Data Analysis

The impulse response of the channel between transmit
antenna s and the receive set of antennas is represented by the
matrix hs 2 CN⇥L where N is the number of receive antennas
and L is the number of discrete channel taps (L = 1000 for
each static and L = 5000 for each dynamic scenario). The
element in row n and column l of hs is denoted by hs(n, l).

If the average received power from transmit antenna s at
location i is calculated as PR,s(i) = 1

N

P
n

P
l |hs(n, l)|2,

then average attenuation is given by,

As(i) = PR,s(i)/(↵PT ) (1)

where PT is the system transmit power and ↵ includes cable
and other system losses determined during system calibration.

Path-loss exponent (⌫) is determined from the best fit line
of a log-log plot of distance versus As(i). The shadowing
distribution can be obtained by plotting the pdf of the values
of deviation of each As(i) value from the best fit line in

the log-log plot. For each measurement location, there are 8
attenuation values, A(i) = [A1(i), A2(i), . . . , A8(i)], since 8
separate antennas acting as S = 8 different sensors are used.

To characterize the small scale fading statistics, first of all
the power delay profile (pdp) of the channel is extracted. It is
done by averaging the power s along the n-axis to yield an
L-element vector for each transmit antenna. The mean excess
delay is the first moment of each pdp given by,

⌧ s =

P
l ⌧s(l)

�
1
N

P
n |hs(n, l)|2

�
P

l

�
1
N

P
n |hs(n, l)|2

� (2)

The root-mean-squared (rms) delay spread is the square root
of the second central moment of each pdp calculated as,

rs =
q
⌧
2
s � (⌧ s)2 (3)

where ⌧
2
s =

P
l ⌧

2
s (l)

�
1
N

P
n |hs(n,l)|2

�
P

l

�
1
N

P
n |hs(n,l)|2

� . The corresponding

channel coherence bandwidth for each transmit antenna is
calculated according to 1/(5rs) [38].

The small scale fading statistics can be determined by using
the frequency domain response extracted from the sounder. Let
Hs(n, f) denote the output frequency response where f is
the discrete frequency index. The channel frequency response
matrix is denoted by Hs 2 CN⇥L where Hs(n, f) is the
element on the nth row and f th column of Hs.

If Bcoh,s denotes the discrete coherence bandwidth of the
channel between the sth transmit antenna and the receiver
and Bsig is the discrete bandwidth of the measurement sig-
nal, the number of frequency response values experiencing
independent small scale fading can be calculated as, Rs =
bBsig/Bcoh,sc. As N fading values are obtained at each of
the frequency points, the 1 ⇥ NRs fading vector for the sth
transmit antenna can be computed as,

vec(⌅s) =
⇥
|Hs(0, 0)|, . . . , |Hs(N � 1, 0)|,

|Hs(0, Bcoh,s)|, . . . , |Hs(N � 1, RsBcoh,s)|
⇤

(4)

Chi-squared goodness-of-fit test is applied to each of the
fading vectors, vec(⌅s), for each sensor for small scale fading
analysis against three different fading distributions, namely,
the Rician, double-Rayleigh and two-wave with diffused power
(TWDP) distributions. A significance level of 10% [36] is
applied to each measurement set for verification of goodness of
fit. First of all, double-Rayleigh distribution is applied to every
measurement set. The data sets that do not fit double-Rayleigh
are checked against Rician and TWDP distributions. For both
cases K-factor is compiled using the method of moments [37].
Only those measurements that agree with Rician and TWDP
distributions are included in the K-factor plots presented in
Subsection III-B.

Antenna correlation is calculated by determining the corre-
lation coefficients between each pair of fading vectors to yield
an 8⇥ 8 correlation coefficient matrix for each measurement
set-up,

⌥⇠ =

2

6664

⇠1,1 ⇠1,2 · · · ⇠1,8

⇠2,1 ⇠2,2 · · · ⇠2,8
...

...
. . .

...
⇠8,1 ⇠8,2 · · · ⇠8,8

3

7775
(5)
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Fig. 2. Measurement Set-ups : Conference Room and Instrumentation Room with 8 transmit antennas denoted by A1,A2, . . . ,A8.
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where ⇠e,f is the correlation coefficient between vec(⌅e) and
vec(⌅f) and ⇠e,e is the auto-correlation coefficient of vec(⌅e).

Amount of Fading (AF) is a unified measure for the severity
of fading that directly utilizes the moments of the fading
distribution itself and is given by, AF = Var(↵2)

(E{↵2})2 , where
↵ is the instantaneous fading amplitude of a complex fading
channel. To quantify AF for each measurement set, here we
use As = Var((vec(⌅s))

2)/{E{(vec(⌅s))
2
}}

2. AF is an
efficient measure of the intensity of fading experienced as
it can be calculated directly from the fading vectors of the
transmit antennas. It is to be noted here that we have calculated
only the temporal AF for each measurement set.

We also use the phase information obtained from the
complex CIR to calculate steering vector for each transmit
antenna. We will use the steering vectors in Section IV to
formulate fading vectors for the propagation channel. If the sth
transmit antenna is seen as a point-like source by the receive
set of antennas, then the steering vector from the sth antenna
U(�s) can be computed from,

u(�s) = [1 ej⇡ cos(�s) e
j⇡2 cos(�s) . . . e

j⇡(N�1) cos(�s)] (6)

where �s = 1
N

P
n

P
l \hs(n, l). Therefore for each mea-

surement set, there will be 8 such steering vectors given
by, U(�) = [u(�1),u(�2), . . . ,u(�8)], since each transmit
antenna generates a separate steering vector.

D. Note on Wifi Interference

Due to widespread Wifi access points located in the building
using the frequency bands closer to our measurement bands
of 2.45 GHz and 2.5 GHz, some distortions appeared in the
recorded CIRs due to random fluctuations of the inherent Au-
tomatic Gain Control (AGC) and the channel estimates within
the measurement equipment. The AGC tries to cope with the
interference power but is limited to 3dB increase/decrease per
snapshot. When the AGC reaches its highest value, distortion
is gone. So the execution of the distorted data is mandatory
to gain clear and realistic channel characterization. In this
campaign, the exclusion of the distorted data is done based on
the shape of the CIR. Each snapshot is carefully investigated
using sampled channel frequency response and AGC value
plots. Comparing both the plots, the distortion is removed to
extract clean data.

III. MEASURED MIMO CHANNELS

Here we present the results from our analyses of the
collected measurements. Subsection III-A presents the details
on the derived large scale statistics while Subsection III-B
provides the small scale characterization.

A. Large-Scale Statistics

The log-log attenuation plots and the corresponding shad-
owing distributions for three different measurement scenarios,
static environment - Conference (SC), dynamic environment
- Conference (DC) and static environment - Instrumentation
(SI) rooms are presented in Fig. 3, Fig. 4 and Fig. 5
respectively. Table I provides the pathloss exponents (⌘P ) and
mean and standard deviation (µP , �P ) of the shadowing dis-
tributions. The pathloss and shadowing values are calculated

TABLE I
LARGE SCALE PARAMETERS

Scenario ⌘P µP (dB) �P (dB)

SC 2.72 1.22 2.4
SI 3.96 1.48 1.89
DC 2.56 1.77 3.6
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Fig. 3. Log average attenuation versus log distance for Conference - Static
environment.
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Fig. 4. Log average attenuation versus log distance for Conference - Dynamic
environment.

for each measurement set. Average values of ⌘P , µP and �P

are grouped by the type of the measurement location and
scenario. The shadowing distributions for all the environments
are presented in Fig. 6.

A very small variation in shadowing is observed between
different environments. Higher shadowing is experienced in
the C room than the I room. The reason can be attributed
to the fact that in spite of the windowless I room being
cluttered with several equipments, most of these equipments
are metallic. Hence, a considerable amount of signal power is
received even over obstructed propagation links. The opposite
trend is observed for the pathloss exponents. Higher ⌘P is
experienced over the link between I room and the receive set
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Fig. 5. Log average attenuation versus log distance for Instrumentation -
Static environment.

of antennas on the tower. The C room is on the second floor of
the building and therefore, the actual distance between the C

room and the receive antenna set is less than between I room
and the receiver.

All the measurement environments experience shadowing
with approximately lognormal distribution. The incomplete
Gamma function is used for verification of goodness of fit
between lognormal and extracted shadowing distributions,
where Q is the probability that a value of chi-square as poor
as the shadowing value occur by chance given by,

Q

✓
N � 2

2
,
�
2
1

2

◆
=

1

�
�
N�2
2

�
Z 1

�2
1
2

e
�⌫P ⌫P

�
N�2

2

�
�1d⌫P

(7)

with N as the number of shadowing values experienced, ⌫P is
the lognormally distributed shadowing variable and �1 is the
Chi-squared merit function [36]. If the Q-value is larger than
0.1, the distribution fitting is fine under any condition. When it
is smaller than 0.1 but larger than 0.001, the distribution fitting
is fine if the measurement errors are non-normal or have been
moderately underestimated. If Q-value is less than 0.001, the
model and/or the estimation procedure is questionable. In this
case, all the recorded Q-values fall between 0.25 and 0.85
which confirm the accuracy of the distribution fitting.

B. Small-Scale Fading Statistics

First of all, Chi-square goodness-of-fit is used to determine
the suitable distribution that can accurately characterize the
small scale fading statistics in each measurement set. There
are in total 42 sets of measurements recorded, with 15 for
SC, 15 for DC and 12 for SI scenarios. Out of the 15 sets
recorded over SC, small scale statistics fit Ricean distribution
in all cases. Out of the 15 sets recorded over DC, small scale
statistics fit two-wave with diffused power (TWDP) distribu-
tion in 12 cases, and out of the 12 sets recorded over SI, small
scale statistics fit double Rayleigh distribution in 9 cases. The
proportion of the measurements that fits the double-Rayleigh
distribution is (9/42) = 21.4%. Proportions of measurements
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Fig. 6. Shadowing Distributions for all environments.
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Fig. 7. CDF of K-factor for all environments.
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Fig. 8. CDF of � for the dynamic environment in the conference room.

following TWDP distribution is (12/42) = 28.6% of all
recordings. The rest (21/42) = 50% of the measurements
fits the Ricean distribution.

The K-factors for the measurements that fit the Ricean and
TWDP distributions are included in Fig. 7 and � values from
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TABLE II
SMALL SCALE PARAMETERS

Scenario K � ⇠e,f A
SC 2.5424 0 0.6511 7.64
SI 1.1217 0 0.5877 3.8158
DC 8.5287 0.6004 0.41 4.5227
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Fig. 9. CDF of Antenna Correlation Coefficient for all environments.
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Fig. 10. CDF of Amount of Fading (AF) for all environments.

the fitted TWDP distributions are included in Fig. 8. Linear
�-factor was introduced as a parameter of TWDP distribution.
TWDP characterizes fading due to the interference of two
strong radio signals and numerous smaller diffuse signals.
Physically, � (= 0 to 1) is the shape factor of the TWDP
distribution quantifying the disparity between the two strong
radio signal components and can be calculated as � = 2V1V2

V 2
1 +V 2

2
,

where V1 and V2 are the instantaneous amplitudes of the
specular components. Table II provides the average values of
K, �, ⇠e,f and AF (A) for the measurement scenarios of SC,
DC and SI. Antenna correlation coefficient and AF values for
all the recorded measurement scenarios are plotted in Fig. 9
and Fig. 10 respectively.

Double-Rayleigh fading (K = 0) is experienced in the I

room. The I room does not have any windows. The only un-

TABLE III
GENERALIZED RANGE OF VALUES SMALL SCALE PARAMETERS

Scenario K �

SC 0.5 to 4 -
SI 0 -
DC 6 to 20 0.1 to 0.9

obstructed propagation link between the transmit antennas in
the I room and the receive antennas is through the single door
of the room and subsequently through the glass doors of the
building. This creates a waveguide like propagation channel. It
results in a rich scattering environments without the existence
of any direct LOS propagation link, traditionally referred to
as ’keyhole’ and ’pinhole’ effect. Diffraction around edges of
several metallic chambers and equipments also contribute to
the keyhole effect. Hence, the measurement set encountered
in such a scenario fits double Rayleigh.

The TWDP fading (K = 6 to 20 and � = 0.1 to 0.9) is
experienced in the C room when measurement is collected
in a dynamic scenario. Several direct LOS paths occur over
the communication links between the C room and the receive
antennas through several glass windows and doors. In addition,
moving human body in the dynamic scenario results in a
second set of multipath components. The TWDP distribution
fading model comprises of two specular multipath components
in the presence of diffusely propagating waves [39]. In the DC

scenario, in most cases, two sets of specular multipath compo-
nents arrive at the receiver, one owing the LOS communication
and the other owing to the reflection from the moving body.
Hence, such measurement scenario can be characterized by
the TWDP distribution, a worse than Rayleigh fading case.

The rest of the measurement sets are well approximated
with Ricean distribution (K = 0.5 to 4). This is due to the
fact that for any pair of antennas, there exists a LOS path.
However, multiple LOS paths can be exhibited by multiple
transmit antennas owing to their different spatial locations.
As a result, a bunch of direct LOS paths arrive at the receive
antennas from the transmit antennas of the C and I rooms. It is
also noteworthy here that both rooms suffer from similar AFs
due to the large separation between the transmit and receive
antennas, and close proximity of most of the scattering objects
to the transmit antennas.

From CDF plots of antenna correlation coefficients in Fig. 9,
it is evident that the lowest correlation is encountered in the
static environment of room I. This is in agreement with
the observation made from the small scale fading (double-
Rayleigh distribution) characteristics encountered in this par-
ticular scenario. Rich scattering and diffraction around the
transmit antennas lead to low correlation between signals from
the distributed nodes resulting in keyhole effect.

After extensive data fitting, it is possible to recommend
small-scale fading parameters that are suitable for different
indoor-to-outdoor communication scenarios in virtual MIMO
based WSNs. The different ranges of values for K parameter
of Ricean distributed channels; and K and � parameters of
TWDP distributed channels between sensors and DFC have
been compiled in Table III.
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IV. FUSION PERFORMANCE ANALYSIS

This section provides a comparison of performances of dif-
ferent decision fusion rules over a set of measured distributed
MIMO channels in a WSN with sensors that offer identical
local decisions.

A. System Model and Performance Measures

Let us consider a WSN with S sensors communicating
with a DFC equipped with N receive antennas. In such a
network, a binary local decision taken by the sth sensor,
ds, on an observed phenomenon is mapped to a symbol
xs 2 X = {0, 1} representing an On-and-Off Shift Keying
(OOK) modulation. Irrespective of the scenario and target, we
assume that ds = Hi maps into xs = i, i 2 {0, 1}, where
Hi

4
= {H0,H1} is the set of binary hypotheses with H0/H1

representing the absence or presence of a specific target. The
communication links are assumed to be a flat-fading multi-
access distributed (or virtual) MIMO channel with perfect
synchronization at the receive end. Let us also denote the
composite channel coefficient between the sth sensor and the
nth receive antenna at the DFC by

p
bs,shn,s. After matched

filtering and sampling at the DFC, the received signal can be
represented as,

y = H

p

Bx+w (8)

where y 2 CN , x 2 X
S and w ⇠ NC

�
0N ,�

2
wIN

�
are

the received signal, transmitted signal and the AWGN vectors
respectively and NC (�,⌃) denote circular symmetric complex
normal distribution with mean vector � and covariance matrix
⌃ respectively. The matrices H 2 CN⇥S and B 2 CS⇥S

represent the independent small scale fading and large scale
attenuation with shadowing respectively. The sth diagonal ele-
ment of the attenuation matrix B

4
= diag

�⇥
�1,�2, . . . ,�S

⇤T �

accounts for pathloss and shadowing experienced by the sth
sensor.

The fading vector of the sth sensor can be given by,

h
Rice
s = su(�s) +

p
1� 2

s h̆s (9)

which forms the sth column of H and u(·) denotes the steering
vector with h̆s ⇠ NC

�
0N , IN

�
typifying the NLOS (scattered)

component and s
4
=

q
Ks

1+Ks
. Here Ks is the Rician K-

factor between sth sensor and DFC. If the fading vector hs is
assumed to be TWDP distributed, then we can express,

h
TWDP
s =

u(�s)

2⇡

Z 2⇡

0
̆s d↵+

1

2⇡
h̆s

Z 2⇡

0

p
1� ̆2

s d↵

(10)

where ̆s =
q

Ks[1+�s cos↵]
1+Ks[1+�s cos↵] where �s is the shape factor

of the TWDP distributed propagation channel between the sth
sensor and DFC, with the definitions of Ks and h̆s remain
unchanged. If hs is assumed to be double-Rayleigh distributed,
Ks will be equal to 0 and therefore can be expressed as,

h
DR
s =

2Y

j=1

h̆sj . (11)

It is worth-mentioning that in this situation, no LOS compo-
nent exist directly between indoor and outdoor antennas.

We also consider the sensors being uniformly deployed
within a range of minimum distance of dmin = 400 m and
maximum distance of dmax = 1000 m from the DFC. The
large scale attenuation is characterized using �s = ⌫s

�
dmin
ds

�⌘P

where ⌘P is the pathloss exponent and ⌫s is a log-normal
variable such that 10 log10(⌫s) ⇠ N (µP ,�

2
P ) with N (�̂, ⌃̂)

representing normal distribution with mean vector �̂ and
covariance matrix ⌃̂ respectively, ds is the distance of the sth
sensor from the DFC, µP and �P are the mean and standard
deviations in dBm respectively. In the next subsection, we will
use the values of Ks, �s, �s, ⌘P , µP and �P recorded from
the distributed MIMO measurement campaign to compare
performance of different fusion rules proposed in [1].

The performance of WSN can be evaluated in terms of
the conditional probability mass function (pmf) P (x|Hi). As-
suming conditionally independent and identically distributed
(iid) decisions, we denote the probability of detection PD,s =
P1,s (or PD = P1) and false alarm PF,s = P0,s (or PF = P0)
at the sth sensor. We also assume that PD,s � PF,s which
refers to the fact that each sensor decision leads to receiver
operating characteristics (ROC) above a particular decision
threshold.

If ⇤ represents the fusion statistics and � is the threshold
with which the fusion statistics is compared to, then system
probabilities of false alarm and correct detection can be
defined as,

PF0

4
= P (⇤ > �|H0) for False Alarm (12)

PD0

4
= P (⇤ > �|H1) for Correct Detection. (13)

where P (·) and p(·) are used to denote probability and
probability density functions (PDF); in particular P (A|B) and
p(a|b) represent the probability of event A conditioned on
event B and the pdf of random variable a conditioned on ran-
dom variable b, respectively. We analyze fusion performance
of the WSN in three different scenarios, a) both LOS and
NLOS communication links exist between sensors and DFC
(modeled by multipath Rician fading distribution), b) more
than one dominant multipath component exist due to moving
objects between sensors and DFC (fading characterized by
TWDP distribution) and c) communication link between sen-
sors and DFC suffering from keyhole effect (small scale chan-
nel variations modeled using double-Rayleigh distribution).

B. Fusion Rules

For comparison of fusion performance of a WSN, we
consider two types of decision fusion rules. The first set of
rules aims at concluding on the presence or absence of the
target directly from the received signal without processing the
transmit signal. For this kind of decision fusion, the optimum
test statistics is given by [1],

⇤opt = ln

"P
x2XS exp

�
�

||y�H
p
Bx||2

�2
w

�QS
s=1 P (xs|H1)

P
x2XS exp

�
�

||y�H
p
Bx||2

�2
w

�QS
s=1 P (xs|H0)

#

(14)
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assuming conditional independence of y from Hi and among
the transmit signal vectors xs. The second set of fusion rules
firstly estimates the transmit signal from the received signal
and then arrives at a global decision based on estimated
transmit signal vector x̂ using Chair-Varshney (CV) rule. For
noiseless channels, the CV test statistics is given by,

⇤CV =
SX

s=1


ûs ln

✓
PD,s

PF,s

◆
+ (1� ûs) ln

✓
1� PD,s

1� PF,s

◆�

(15)

where ûs
4
= x̂s+1

2 .
In the first group of fusion rules, we consider decision fusion

under three different sub-optimum fusion rules, Maximal Ratio
Combining (MRC), Equal Gain Combining (EGC) and Max-
Log rules, the test statistics for each of which are given by,

⇤MRC / R
�
1
t
S(H

p

B)†y
�

(16)

⇤EGC = R
��

e
j·\(H

p
B 1S)

�†
y
�

(17)

⇤Max-Log = min
x2XS


||y �H

p
Bx||

2

�2
w

�

SX

s=1

P (xs|H0)

�

� min
x2XS


||y �H

p
Bx||

2

�2
w

�

SX

s=1

P (xs|H1)

�
(18)

all assuming identical sensor performances. In the second
group, we consider two different decoders to estimate x̂. With
Maximum Likelihood (ML) detection, x̂ is obtained as,

x̂ML = arg min
x2XS

||y �H

p

Bx||
2 (19)

while with Minimum Mean-Squared Error (MMSE) detection,
x̂ is obtained as,

x̂MMSE = sign
⇥
x+C(H

p

B)†
�
(H

p

B)C(H
p

B)†

+ �
2
wIN

��1
(y �H

p

Bx)
⇤

(20)

where x = E{x} and C
4
= {(x�x)(x�x)†} are the mean and

covariance matrix of the transmit signal vector respectively.
Once x̂ is obtained, we plug it in the CV-rule in (15) to obtain
the test statistics for CV-ML and CV-MMSE rules .

C. Performance Comparison

In this subsection, the fusion performance of a WSN is
investigated over realistic distributed MIMO mobile radio
channels based on the collected measurements. Owing to
majority in observation, for performance analysis of DF rules
over SC, DC and SI scenarios, we use Ricean, TWDP and
double Rayleigh distributions to generate the channel fading
vectors according to (9), (10) and (11) respectively.

1) Receiver Operating Characteristics (ROC): The figures
in this section represent the Receiver Operating Characteristics
(ROC) (i.e., PD0 v/s PF0 ) for the fusion rules presented in
Section IV-B with S = 8 sensors and N = 8 antennas
at the DFC under the channel SNR of 20 dB. We choose
the channel SNR to be 20 dB, since from the measurement
campaigns conducted in three different kinds of environments
(SC, SI and DC), the average attenuation calculated at any
measurement location i, A(i) is found to be around 20 dB. The
measured SNR over direct connection between the transmit
and receive sounders is 40 dB. Therefore, the average resultant
channel SNR should be around (40� 20) = 20 dB.

• Impact of large scale channel parameters: For all the
curves in Fig. 11 and Fig. 12, we consider the indepen-
dent small scale fading vectors to be Rayleigh distributed
i.e., hn,s ⇠ NC(0, 1). We only change the large scale
parameters to represent different scenarios. For the no
shadowing condition (‘Th’), we choose (⌘P , µP , �P ) =
(1, 0 dB, 0 dB). For other conditions we refer to Table I,
i.e., for SC, (⌘P , µP , �P ) = (2.72, 1.22 dB, 2.4 dB), for
SI, (⌘P , µP , �P ) = (3.96, 1.48 dB, 1.89 dB) and for
DC, (⌘P , µP , �P ) = (2.56, 1.77 dB, 3.6 dB).

For the first group of rules, MRC and MaxLog (refer to
Fig. 11), it is evident that for low shadowing and pathloss
(Th and SC) MaxLog looks an attractive solution. While,
as we enter scenarios suffering from deep shadowing
(SI and DC), MRC outperforms MaxLog. The reason
can be attributed to the fact that the MaxLog rule is
dependent on the noise spectral density �

2
w. Hence, the

increase in pathloss and shadowing intensity results in
poorer performance of MaxLog statistics owing to less
signal strength. The MRC rule statistics are independent
of �2

w and depend only on the channel characteristics.
For the second group of rules, CV-ML and CV-MMSE

(refer to Fig. 12), CV-MMSE always outperforms CV-
ML while CV-ML performs equivalently under all prop-
agation conditions. The reason for this odd behavior of
CV-ML is due to the fact that the CV-ML statistics is only
dependent on the channel SNR which is kept constant for
all the curves. For CV-MMSE, the performance over SC
is better than that over DC and SI. The SC experiences
the lowest pathloss since the C room is in the upper level
with strong LOS communication paths. People moving
in the room in the DC scenario contributes to penetration
losses resulting in higher pathloss than the SC scenario.

• Impact of small scale channel parameters : For the curves
in Fig. 13, Fig. 14 and Fig. 15, we consider independent
small scale fading vectors to be Rayleigh distributed for
the ‘Th’ case with large scale parameters of (⌘P , µP ,
�P ) = (1, 0 dB, 0 dB). In Fig. 13, we compare the ‘Th’
set of results with fusion performance over 8⇥ 8 MIMO
channel with Rician distributed fading vector and large
scale parameters equivalent to SC scenario i.e., (⌘P , µP ,
�P ) = (2.72, 1.22 dB, 2.4 dB). The fading vectors are
generated according to h

Rice
s with Ks randomly generated

as [Ks,min,Ks,max] = [0.5, 4]. For Fig. 14, we generate
the fading vector according to h

TWDP
s with Ks ran-
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Fig. 11. Comparative ROC for the first group of fusion rules for different
measured large scale parameters (varying ⌘P , µP and �P ) with S = 8,
N = 8 and Rayleigh distributed fading vector. Results for no shadowing
condition, denoted by ‘Th’ are also plotted for comparison.
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Fig. 12. Comparative ROC for the second group of fusion rules for different
measured large scale parameters (varying ⌘P , µP and �P ) with S = 8,
N = 8 and Rayleigh distributed fading vector. Results for no shadowing
condition, denoted by ‘Th’ are also plotted for comparison.

domly generated as [Ks,min,Ks,max] = [6, 20] and �s as
[�s,min,�s,max] = [0.1, 0.9] with large scale parameters
equivalent to DC scenario i.e., (⌘P , µP , �P ) = (2.56, 1.77
dB, 3.6 dB). For Fig. 15, the fading vectors are generated
according to h

DR
s i.e., double-Rayleigh distributed with

large scale parameters equivalent to SI scenario i.e.,
(⌘P , µP , �P ) = (1.96, 1.48 dB, 1.89 dB). These set of
parameters are selected according the values tabulated in
Table III and Table I.

Under the ‘Th’ case, EGC performs better than MRC.
In realistic scenarios, both fusion rules perform very close
to each other. The CV-ML rule performs equivalently
under all conditions due to the dependence of the CV-
ML statistics on the channel SNR which is kept fixed for
all curves. The MaxLog rule performs a bit better than
CV-ML over Rician, TWDP and double-Rayleigh fading
channels. MRC, EGC and CV-MMSE also perform very
close to each other as long as there exists at least a group
of strong LOS components between the transmitter and
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Fig. 13. Comparative ROC for all fusion rules for the SC environment with
S = 8, N = 8 in Rician fading condition. Results for Rayleigh fading-only
condition (‘Th’) are plotted for comparison.
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Fig. 14. Comparative ROC for all fusion rules for the DC environment with
S = 8, N = 8 in TWDP fading condition. Results for Rayleigh fading-only
condition (‘Th’) are plotted for comparison.

the receiver (Rician and TWDP fading cases). In case of
DR, there exists no direct LOS component and in such a
scenario, CV-MMSE really benefits over MRC/EGC from
exploiting the local sensor performance information in the
decoding stage.

Some analogies between performances under mea-
sured environment and simulated (as in [1]) can also
be concluded from the results presented in Fig. 11 -
Fig. 15. In both cases ROC performance demonstrates
that CV-MMSE performs better than CV-ML rule, CV-
MMSE performs close to MRC/EGC rules, while CV-ML
exhibits the worst performance.

2) PD0 v/s N : In Fig. 16 and Fig. 17, we show system
probabilities of detection, PD0 with two groups of fusion rules
as an interpolated function of the number of receive antennas
N under PF0  0.01.

• Impact of measurement environment: For this set of
figures, we consider large and small scale channel pa-
rameters from Table I and Table II for each kind of
environment. We keep the channel SNR fixed at 20 dB.
The saturation effect seen in [1] for all fusion rules
under Rayleigh distributed fading-only condition is only
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Fig. 15. Comparative ROC for all fusion rules for the SI environment
with S = 8, N = 8 in double-Rayleigh (DR) fading condition. Results
for Rayleigh fading-only condition (‘Th’) are plotted for comparison.
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Fig. 16. PD0 v/s N for the first group of fusion rules with S = 8 for
different measurement environments reflecting the impact of both large scale
and small scale channel parameters.

exhibited by MRC and CV-MMSE rules for the SC con-
dition. For the CV-ML and MaxLog rules, PD0 increases
proportionately with the increase in N for all scenarios.
CV-MMSE and MRC rules exploit diversity gain both in
SI and DC scenarios and do not reach saturation for the
values of N and the channel SNR considered. However,
the increase in PD0 is slower as N increases from 3 to
8 than as N increases from 1 to 3 (refer to Fig. 16 and
Fig. 17).

V. CONCLUSION

The main goal of this paper is to investigate and study
the practical implications of employing distributed MIMO
based WSN, especially in the light of the recently proposed
decision fusion algorithms for DFC equipped with multiple
integrated antennas. This is accomplished through a measure-
ment campaign comprising MIMO channel transmit-receive
sounder, outdoor receive antennas mounted on a tower and unit
antenna transmitters distributed in different kinds of indoor en-
vironments. The communication scenario is indoor-to-outdoor
and fully-loaded (with equal number of transmit and receive
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Fig. 17. PD0 v/s N for the second group of fusion rules with S = 8 for
different measurement environments reflecting the impact of both large scale
and small scale channel parameters.

antennas). The single antenna transmitters represent sensors
while the receive set of antennas represent the DFC. The
indoor environments can be static (no movement) or dynamic
(movement of the people). Two different rooms are chosen that
account for a wide variety of communication environments.

Both large and small scale channel statistics are captured for
each measurement scenario and average values of pathloss and
shadowing variations are calculated for all cases. For the small
scale channel characteristics, 21.4% of the measurements fits
the double Rayleigh, 28.6% follows the TWDP and remaining
50% fits the Ricean distributions.

The large and small scale channel parameters encountered
in the measured scenarios are directly incorporated in the
performance analysis of two groups of fusion rules, Decode-
and-fuse (MRC, EGC, MaxLog) and Decode-then-fuse (CV-
ML and CV-MMSE) proposed in [1] for distributed MIMO
MAC case. Over all scenarios, CV-ML performs worst while
CV-MMSE is the most attractive choice. MRC and EGC
perform very closely, while MaxLog performs worse than
MRC/EGC. Nonetheless, all the fusion rules benefit from
using multiple receive antennas and exploit diversity gain.
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