
Characterizing morphological (co)variation using structural equation models: body size, 1 

allometric relationships and evolvability in a house sparrow metapopulation. 2 

 3 

Yimen G. Araya-Ajoy1* Peter Sjolte Ranke1, Thomas Kvalnes1, Bernt Rønning1, Håkon Holand1, 4 

Ane Marlene Myhre1, Henrik Pärn1, Henrik Jensen1, Thor Harald Ringsby1, Bernt-Erik Sæther1, 5 

Jonathan Wright1 6 

 7 

1Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of 8 

Science and Technology (NTNU), N-7491 Trondheim, Norway 9 

*Corresponding author: yimencr@gmail.com 10 

 11 

Running title: Morphology variation in a bird metapopulation 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

mailto:yimencr@gmail.com


Abstract 27 

Body size plays a key role in the ecology and evolution of all organisms. Therefore, quantifying the 28 

sources of morphological (co)variation, dependent and independent of body size, is of key 29 

importance when trying to understand and predict responses to selection. We combine structural 30 

equation modeling with quantitative genetics analyses to study morphological (co)variation in a 31 

meta-population of house sparrows (Passer domesticus). As expected, we found evidence of a latent 32 

variable ‘body size’, causing genetic and environmental covariation between morphological traits. 33 

Estimates of conditional evolvability show that allometric relationships constrain the independent 34 

evolution of house sparrow morphology. We also found spatial differences in general body size and 35 

its allometric relationships. On islands where birds are more dispersive and mobile, individuals 36 

were smaller and had proportionally longer wings for their body size. While in islands where 37 

sparrows are more sedentary and nest in dense colonies, individuals were larger and had 38 

proportionally longer tarsi for their body size. We corroborated these results using simulations and 39 

show that our analyses produce unbiased allometric slope estimates. This study highlights that in 40 

the short term allometric relationships may constrain phenotypic evolution, but that in the long term 41 

selection pressures can also shape allometric relationships. 42 
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Introduction 54 

The size of an organism is one of its most important features (Calder 1984; Peters 1986) and has 55 

been extensively studied in both micro- and macro-evolutionary contexts (Maurer et al. 1992; 56 

Kingsolver and Pfennig 2004). Across species, body size predicts characteristics such as 57 

metabolism, fecundity, lifespan, population size and extinction risk (Stearns 1983; Sibly and Brown 58 

2007). Within species body size has also been shown to affect key fitness components, such as 59 

fecundity, survival and mating success (Kingsolver and Pfennig 2004). Body size variation within- 60 

and among-species can therefore determine population and community level processes (Marquet et 61 

al. 1995). Despite its importance in ecological and evolutionary processes, body size is generally 62 

loosely defined. In many studies, body size is used interchangeably with body mass or other 63 

morphological measurement, ignoring the fact that body size is being measured indirectly through a 64 

proxy morphometric measurement (e.g. body mass, tarsus length, snout-vent length). Here, we 65 

argue that studying body size variation as a latent variable affecting the growth of all other 66 

morphological traits will improve our understanding of its evolutionary role in shaping 67 

morphological diversity. 68 

 From a developmental perspective, body size reflects the common growth regulatory 69 

mechanisms affecting all morphological structures of an organism (Gokhale and Shingleton 2015), 70 

whereas from an evolutionary perspective it reflects investment in somatic growth (Perrin and Sibly 71 

1993). Thus, variation in body size can be viewed as variation in investment in somatic growth 72 

affecting all morphological traits through shared growth regulating pathways, resulting in the 73 

allometric patterns of morphological covariation observed in most organisms. This notion emerged 74 

early in evolutionary thinking with Darwin’s consideration of the “correlations of growth”, in which 75 

he noted that slight evolutionary variation in one part of an organism would result in other parts also 76 

being modified accordingly (Darwin 1859). The study of morphological covariation and its 77 

evolutionary implications has continued ever since within the fields of allometry, phenotypic 78 

integration, modularity and evolutionary quantitative genetics (Klingenberg 2008). Common to all 79 



these fields is the idea that genetic and environmental variation influencing investment in growth 80 

during development shape the observed patterns of morphological covariation among individuals, 81 

populations, and species.  82 

 Phenotypes develop in a hierarchical manner and the covariation between morphological 83 

traits partly reflects this hierarchical pattern (Klingenberg 2014). All traits descend from the same 84 

ancestral cell, and developmental switch-points create phenotypic modules composed of traits that 85 

share the same developmental precursor (West-Eberhard 2003). For instance, in birds genetic 86 

variation in the processes regulating early developmental events concerning the muscles and 87 

skeleton will cause positive covariation between all morphological traits. Therefore, bigger birds are 88 

heavier, have larger beaks, wings and legs (Björklund 1994). Later on, processes leading to beak 89 

development start at around day 6 of embryo development, (e.g. Darwin’s finches, Abzhanov et al. 90 

2004). The different parts of the beak thus share a common developmental history with all other 91 

morphological traits, but they also share a more recent developmental precursor with any other 92 

traits specifically associated with the beak. This should lead to an even stronger pattern of 93 

correlation between beak features, caused by the processes regulating beak development. This 94 

developmental view of morphological covariation hinges upon the assumption that variation is 95 

generated from a single origin and passed on to multiple traits (Klingenberg 2008). More generally, 96 

the modular patterns of covariation between morphological traits will also reflect their common 97 

ontogenetic and evolutionary histories (Melo et al. 2016). The independent evolution of phenotypic 98 

traits arising from the same developmental module is constrained, at least in the short term, by 99 

developmental ancestry (Wagner and Stadler 2003). However, the structure of these developmental 100 

modules will also have come into being via evolution through natural selection over a longer time 101 

frame. Therefore, developmental modules will have been selected to couple or decouple variation in 102 

different morphological traits, depending upon the prevailing adaptive landscape. 103 

 Selection for a larger body size will result in selection for an increase in the size of all 104 

morphological traits. Similarly, selection for increased size in one trait can lead to an increase in the 105 



overall size of an organism. For instance, selection for bigger beaks could lead to bigger birds in 106 

general, because bigger birds have bigger beaks (Grant and Grant 2002). Selective pressures can 107 

also affect size-independent variation in morphological traits, altering allometric relationships with 108 

body size. For example, there could be selection for smaller beaks relative to overall body size, if 109 

there is antagonistic selection where smaller beaks increase foraging success, but smaller birds 110 

suffer a competitive disadvantage during agonistic interactions. Statistically partitioning the 111 

(co)variance in morphological traits caused by body size from those independent of body size 112 

would allow us to connect the multivariate study of morphological evolution with the 113 

developmental processes that generate morphological variation (Klingenberg 2014). Furthermore, 114 

disentangling the genetic and environmental sources of size-dependent and size-independent 115 

(co)variation between morphological traits will provide further insights concerning how evolution 116 

shapes the genetic and phenotypic patterns of morphological covariation. 117 

 Allometric relationships between body size and any morphological trait can be described as 118 

a power function (Huxley 1932; Peters 1986) and have been commonly estimated as the linear 119 

relationship between log-transformed measurements of a trait and a surrogate measure of body size. 120 

The accuracy of the allometric slopes estimated using such surrogate measurements will depend 121 

upon the correlation between the proxy measure and body size. If we define body size as investment 122 

in somatic growth through common growth-regulating mechanisms affecting all morphological 123 

traits, each of the surrogate measures of body size will also contain some variation caused by 124 

factors that are not shared with all the other morphological measurements (i.e. size-independent 125 

variation). Jolicoeur (1963) offered a solution to this problem: run a principal component analysis 126 

(PCA) on the covariance matrix of log-transformed measurements and use the resulting first 127 

principal component as the estimate of the common allometric axis (body size). In this framework, 128 

the allometric slopes can be characterized in relationship to the axis of best-fit in the multivariate 129 

space of log-transformed measurements. A similar approach has been suggested using factor 130 

analyses, where body size is explicitly estimated as a latent variable affecting the (co)variation of 131 



morphological traits. Structural equation modeling (SEM) provides a general set of models that 132 

include factor analyses (Grace et al. 2010). SEM can be used to both determine the variation in 133 

morphological traits caused by the effects of body size, and to estimate specific additional 134 

(co)variation in morphological traits unrelated to body size (e.g. beak measures co-varying 135 

independently of body size). An SEM approach to quantifying size-dependent and size-independent 136 

genetic and environmental (co)variation in morphological traits makes it possible to study the 137 

multivariate nature of morphological traits in a framework that is consistent with allometric, 138 

developmental and evolutionary theory. 139 

In this study, we combine quantitative genetic analyzes with SEM to study morphological 140 

(co)variation in a house sparrow (Passer domesticus) metapopulation. We explore (co)variation in 141 

beak depth, beak length, body mass, tarsus length and wing length in over 5000 house sparrows 142 

using data collected from 1994 to 2014 in 11 island populations. We first quantify genetic and 143 

environmental sources of (co)variation in house sparrow morphological measurements. We then use 144 

SEMs to study the covariance between morphological measurements caused by body size and 145 

estimate the allometric slopes generating the observed pattern of covariation. Our expectation was 146 

that common growth regulatory mechanisms shared by all the morphological traits will result in a 147 

pattern of genetic and environmental covariation, which could be characterized statistically as a 148 

latent variable, defined as ‘body size’. We then quantify the amount of size-independent variance in 149 

the different morphological traits, which determines their potential for independent evolution. We 150 

also estimate size-independent covariance between beak features, with the expectation that a more 151 

recent shared developmental history will result in additional genetic and environmental covariation 152 

above and beyond the general allometric covariation caused by body size variation.  153 

We complement our analyses with simulations to assess the suitability of SEM to estimate 154 

allometric slopes from a biological model where body size causes covariation between all the 155 

measured morphological traits, and we compare it with commonly used alternative approaches 156 

(bivariate regression and PCA). We also describe how to derive key evolutionary parameters using 157 



this approach, such as scaled allometric slopes and conditional evolvabilities. Furthermore, house 158 

sparrows are sexually dimorphic and sex-specific patterns of morphological covariation have been 159 

documented in this meta-population (Jensen et al. 2003). Ecological conditions also vary 160 

consistently between the islands in our metapopulation. Previous studies on this metapopulation 161 

have documented differences in several demographic traits related to island characteristics: adult 162 

and juvenile survival (Ringsby et al. 1999; Holand et al. 2016), survival and growth rate (Sæther et 163 

al. 1999), onset of breeding and subsequent recruitment (Ringsby et al. 2002), population growth 164 

rate, demographic variance (Engen et al. 2007), and dispersal (Pärn et al. 2012). We therefore also 165 

assess the sex differences and the effect of differing ecological conditions on the morphology of 166 

these house sparrows to explore the extent to which selection may have shaped the allometric 167 

relationships in different parts of this metapopulation of house sparrows.  168 

  169 

Methods 170 

Study system 171 

This study was carried out on a metapopulation of 11 insular house sparrow populations at 172 

Helgeland in northern Norway (66°N 13°E; see map (Baalsrud et al. 2014)). Each time an adult bird 173 

was caught, we used slide calipers to measure tarsus length, bill depth and bill length to the nearest 174 

0.01 mm, and a wing ruler to measure wing length to the nearest mm. Body mass was measured 175 

using a Pesola spring balance to the nearest 0.1 g. All linear morphological measurements (except 176 

body mass) that were taken by different fieldworkers were adjusted to T.H.R. measurements by 177 

adding mean differences when found significant (P < 0.05) using paired t-tests on a set of ca. 30 178 

individual birds measured independently by the fieldworker and T.H.R (Kvalnes et al. 2018). All 179 

birds in the current study were adult males (n=2866) or females (n=2716) measured between 1994 180 

and 2014. 32% of the individuals were only measured once as adults, 20% were measured twice, 181 

and 48% three or more times in the same or different years (see Harald et al. 2002; Jensen et al. 182 

2008; Parn et al. 2012; Baalsrud et al. 2014 for further details on the fieldwork). We used all the 183 



repeated measures to separate out measurement error and within-individual variation from the 184 

among-individual variation (see below). Population-specific genetic pedigrees were constructed 185 

based upon 14 neutral microsatellite markers (for further details, see Jensen et al. 2004; Billing et 186 

al. 2012). Individuals were genotyped for only 8 (Aldra, Gjerøy, Hestmanøy, Indre Kvarøy, Myken, 187 

Nesøy, Selvær, and Træna) out of the 11 populations, thus the quantitative genetic analyses were 188 

limited to 3940 individuals.  189 

The 11 islands in this metapopulation study can be divided into two distinct groups with 190 

different environmental conditions. One set of inner islands (n = 6; Aldra, Gjerøy, Hestmanøy, 191 

Indre Kvarøy, Lurøy, and Nesøy), are situated closer to the mainland and the sparrow populations 192 

live closely associated with active dairy farms with access to cattle-food and shelter all year round 193 

(17345 measurements from 3530 individuals). The second set of outer islands (n = 5; Lovund, 194 

Myken, Selvær, Sleneset, and Træna), are situated further from the mainland, lack agricultural 195 

farms and sparrows move around feeding in various gardens (7512 measurements from 2065 196 

individuals). On these outer islands the sparrows are exposed to more unpredictable and fluctuating 197 

environmental conditions. Thus, adults on populations on the inner farm islands experience a 198 

seemingly more benign and predictable environment than in populations on the outer non-farm 199 

islands. Throughout the manuscript we refer to these two groups as inner farm islands and outer 200 

non-farm islands. 201 

 202 

Univariate analyses 203 

We first studied the sources of variation in the different morphological measurements (tarsus length, 204 

wing length, beak length, beak depth and body mass). Morphological trait 𝑧 of individual 𝑗 at 205 

instance 𝑘 was modeled as: 206 

 207 

 𝑧𝑗𝑘 = 𝑐 + 𝑠 𝑠𝑒𝑥𝑗 + 𝑡 𝑡𝑦𝑝𝑒𝑗 + 𝑑 𝑎𝑔𝑒𝑗𝑘 +  𝐼𝑗 + 𝑓𝑙 + 𝑚𝑡 + 𝑦𝑚 +  𝑒𝑗𝑘 . (eq. 1) 208 

 209 



Coefficients 𝑠 and 𝑑 relate the morphological measurement to the sex and the age of the individual, 210 

and 𝑡 to the island type (inner-farm islands versus outer-non-farm islands). Individuals differ in 211 

their morphological measurements (𝐼𝑗) due to genetic differences and permanent environmental 212 

effects, as well as environmental effects associated with population differences (fl). Individuals 213 

were measured repeatedly within and across years, therefore within-individual variation could be 214 

associated with reversible plasticity in response to within year seasonal variation (i.e. across 215 

months; mt), yearly variation in environmental conditions (ym) and within year within individual 216 

variation in environmental conditions and or measurement error, ejk. Parameters Ij, fl, mt, ym and ejk 217 

were all assumed to come from normal distributions with means of zero and variances to be 218 

estimated (VI, Vf, Vm, Vy  and Ve). These parameters were estimated using separate mixed-effects 219 

models for each of the morphological measurements, with age and age-squared as fixed covariates 220 

(min age = 1, max age = 10) to model the linear and non-linear effects of age, with sex as a fixed 221 

factor (2 levels) and random intercepts for year of measurement (21 years), month of measurement 222 

(12 months), population (11 populations) and individual identity (5582 individuals). We extended 223 

this model to an animal model by including the genetic pedigree information (Kruuk 2004). This 224 

allowed us to partition the individual level effects, 𝐼𝑗, into the additive genetic effects (breeding 225 

value) 𝑎𝑗 and permanent environmental effects 𝑝𝑒𝑗 for each morphological trait. Both 𝑎𝑗 and 𝑝𝑒𝑗 226 

were assumed to come from normal distributions with variances 𝑉𝑎 and 𝑉𝑝𝑒. Note that this model 227 

was applied to only a subset of the data where the pedigree information was available (3924 228 

individuals from eight islands). 229 

 230 

Multivariate analyses 231 

When studying the covariation between all the morphological traits, we log-transformed the 232 

morphological measurements so that their expected exponential relationship with body size 233 

becomes linear. We first studied the phenotypic covariance and modeled each log-transformed 234 

morphological trait 𝑧𝑖 of individual 𝑗 at measurement 𝑘 as: 235 



 236 

𝑧𝑖𝑗𝑘 = 𝑐𝑖 +  𝑠 𝑠𝑒𝑥𝑗 + 𝐼𝑖𝑗 +  𝑒𝑖𝑗𝑘 ,  (eq. 2) 237 

 238 

 where 𝑐𝑖 is the metapopulation mean for the morphological trait 𝑖, 𝐼𝑖𝑗 is the deviation of 239 

morphological trait 𝑖 of individual 𝑗 from the metapopulation mean 𝑐𝑖, and 𝑒𝑖𝑗𝑘  is the deviation of 240 

measurement 𝑘 from an individual’s mean value 𝐼𝑖𝑗. Parameters 𝐼𝑖𝑗 and 𝑒𝑖𝑗𝑘  were assumed to be a 241 

realization of multinormal distribution with a mean of zero and covariance matrix 𝐏 and 𝐑. These 242 

parameters were estimated using a multivariate mixed-effects model with random intercepts for 243 

individual identity (n=5582 individuals). We chose not to fit the same random and fixed effect 244 

structure for the multivariate and univariate models in order to avoid over-parametrization, because 245 

the main goal of this analysis was to estimate the among-individual covariation matrix (P matrix).  246 

 We extended this multivariate mixed-effects model into an animal model by including the 247 

genetic pedigree information (Kruuk 2004). This model allowed us to partition the individual level 248 

covariance matrix (P matrix) into its additive genetic (𝐆 matrix) and the permanent environmental 249 

(𝐏𝐄 matrix) components. The P matrix describes the (co)variation between the mean values of each 250 

individual for the different morphological traits. The G matrix describes the (co)variation between 251 

morphological traits caused by pleiotropic effect of genes and linkage disequilibrium. The PE 252 

matrix describes the (co)variation between the morphological measurements caused by the effects 253 

early in life of correlated environmental variables and environmental variables with pleiotropic 254 

effects on the different traits. Thus, the PE matrix can be understood as the integrated 255 

developmental plasticity of the different morphological traits in response to the environment. These 256 

estimated covariance matrices were then analyzed using structural equation models (SEMs). Note 257 

that we also estimated the residual covariance matrix (𝐑 matrix), which is caused by correlated 258 

reversible plasticity and/or correlated measurement error, but this covariance matrix was not further 259 

analyzed.  260 

 261 



Structural equation modeling and body size 262 

Allometric theory states that the effects of body size (m) on a phenotypic trait z can be described by 263 

an exponential relationship (Huxley 1932; Peters 1986): 264 

 265 

     𝑧 = 𝑎𝑚𝑏.    (eq. 3) 266 

 267 

The relationship between body size and a phenotypic trait is linear on the logarithmic scale and can 268 

thus be described by equation 4: 269 

 270 

 log(𝑧𝑖𝑗) = log(𝑎𝑖) + 𝑏𝑖 log(𝑚𝑗) + log (𝑒𝑖𝑗) ,                 (eq. 4) 271 

 272 

where 𝑎 and 𝑏 are constants that relate a body size 𝑚 to a phenotypic measurement 𝑧. This equation 273 

captures the proportional change in phenotypic measures as a function of proportional changes in 274 

body size. 𝑏 is commonly referred to as the allometric slope (Peters 1986). The term log (𝑒𝑖𝑗) 275 

reflects the residual effects of factors not related to body size that are unique to the different 276 

morphological measurements. Thus, this model assumes multiplicative errors. Based upon this 277 

equation, we proceeded to examine the P matrix as well as the G and PE matrices using SEM to 278 

test our hypothesized model of morphological covariation. We expected that a latent variable 𝑚, 279 

that we defined as body size, would explain the covariance between all measured morphological 280 

traits (equation 5). This approach estimates the vector of coefficients  𝛾𝑖, that maximize the 281 

likelihood of a covariance matrix, in this case P, G and 𝐏𝐄 matrices. For instance, the structural 282 

equation model for 𝐏 can be described as:  283 

 284 

    𝐏 =  𝛾𝑖𝜂 + 𝜀𝑖                                  (eq. 5) 285 

    𝜂~𝑁(0, 1) 286 

        𝜀𝑖~𝑚𝑣𝑛(0, 𝜃) . 287 



 288 

Thus, our hypothesized model consisted of a latent variable 𝜂 that determines the growth of 289 

morphological trait 𝑧𝑖 proportional to coefficient 𝛾𝑖. We assumed that the latent variable 𝜂 had a 290 

mean of zero and a variance of 1. Deviations of each morphological trait from values predicted by 291 

the latent variable are represented by 𝜀𝑖, which was assumed to be a realization of a multi-normal 292 

distribution with a mean of zero and covariance matrix θ. The 𝛉 matrix thus represents body size-293 

independent variation and covariation between morphological traits. Our hypothesized model was 294 

constructed to allow all the variances in the 𝛉 matrix and one covariance to be estimated. 295 

Specifically, because of their more recent shared developmental history and functional relationship, 296 

we hypothesized a covariance between beak length and beak depth over and above the covariance 297 

caused by their allometric relationships with body size. We further proceeded to study the 298 

differences in the allometric relationships and evolvabilities between the sexes and between 299 

individuals living on different islands with different environmental conditions (i.e. inner farm 300 

versus outer non-farm islands) by fitting multivariate models and SEM models separately for each 301 

sex and island type. 302 

 303 

Estimating evolvability 304 

Evolvabilities measure the potential proportional change of a trait in response to a unit of selection. 305 

This is generally calculated as a mean standardized additive genetic variance, however additive 306 

genetic variance of log-transformed measurements accurately approximates their evolvabilities. 307 

This metric is thus related to both the additive genetic variance of a trait and its mean value, in 308 

comparison to heritabilities that are a direct function not only of the additive genetic variance but 309 

also of other (environmental) sources of phenotypic variation (Hansen et al. 2011). We estimated 310 

evolvabilities from univariate animal models applied to log-transformed morphological 311 

measurements. Conditional evolvabilities were calculated using the variance not explained by body 312 

size for each trait. Structural equation models (SEM) were applied to the G matrix of the log-313 



transformed measurements, and therefore variance not explained by body size could be interpreted 314 

as conditional evolvabilities. We also estimated autonomy, which in this case is the fraction of 315 

additive genetic variance that is unrelated to body size. We further estimated the conditional 316 

evolvabilities for the whole G matrix in order to compare them with estimates from the SEM 317 

approach (i.e. conditional on body size). Conditional evolvabilities on all the other traits were 318 

calculated following Hansen and Houle (2008), using the inverse of the G matrix as it is equal to 319 

the inverse of the diagonal elements of G-1. 320 

 321 

Simulations and the estimation of allometric slopes 322 

We performed a simulation study to assess the robustness of the SEM approach in recovering a 323 

biological developmental model of morphological covariances caused by body size variation (Fig 324 

1A). We compared the performance of the SEM approach against (1) bivariate regressions between 325 

the different log-transformed morphometric measurements and log-transformed body mass, and (2) 326 

principal component analyses (PCA) applied to log-scaled morphological measurements. One 327 

disadvantage of PCA and other latent variable approaches to estimating body size is that these latent 328 

constructs are unitless, and so the coefficients 𝛾𝑖 (eq. 5) cannot be directly interpreted as allometric 329 

slopes (𝑏𝑖 , eq. 3 and 4). We therefore suggest scaling latent variables of body size to body mass 330 

using the allometric relationships estimated in the SEM and PCA. Under the assumption that body 331 

size is a volume measure and scales isometrically with body mass (𝑏𝑏𝑜𝑑𝑦_𝑚𝑎𝑠𝑠 = 1), we can derive 332 

allometric slopes that capture the proportional changes in a morphological trait associated with a 333 

proportional change in body size measured in units of mass (Corrunici 1983). Mass-scaled 334 

allometric slopes (b) can be estimated by dividing coefficient 𝛾𝑖 by the estimated 𝛾 for body mass 335 

(𝑏𝑖 =  𝛾𝑖  𝛾𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠⁄ ). In the main text, we present how the estimation of the allometric slopes is 336 

affected by the magnitude of size-independent variation in body mass. In the Appendix S1, we 337 

present code for the simulations and a complete description of the results from the simulation study. 338 

 339 



General statistical procedures 340 

We fitted the multivariate mixed-effects models detailed above using a Bayesian framework 341 

implemented in R v3.3 (R Core Team 2018) with the package MCMCglmm (Hadfield 2010). We 342 

ran 305,000 iterations per model, from which we discarded the initial 5000 (burn in period). Each 343 

chain was sampled at an interval of 300 iterations, which resulted in low autocorrelation among 344 

thinned samples. Posterior means, 85% and 95% credible intervals were estimated across the 345 

thinned samples for the fixed effects, (co)variances and variance ratios (i.e. repeatabilities and 346 

heritabilities). When the general goal was to compare between the limits of the posterior 347 

distributions of two estimates, we present the 85% credible interval because a lack of overlap is 348 

analogous to a p-value lower than 0.05 in the frequentist sense (Payton et al 2003). Fixed effect 349 

priors were normally distributed and diffuse with a mean of zero and a large variance (100). We 350 

explored the sensitivity of the variance-covariance matrix to prior choice; the results presented here 351 

correspond to an inverse gamma prior with a scale parameter of 1 and shape of 0.001. Mean values 352 

of the posterior distributions were robust to different relatively uninformative priors. The resulting 353 

1000 samples of the posterior-distribution for the covariance matrices 𝐏, 𝐆 or 𝐏𝐄 were then 354 

analyzed using SEMs in order to obtain estimates of the credible intervals in each case. However 355 

the reported point estimates for each parameter (i.e mean) were obtained from analyzing the mean 356 

covariance matrix (𝐏, 𝐆 or 𝐏𝐄). We fitted the SEMs in the R package sem (Fox 2006). Statistical 357 

significance for SEM parameters was assessed by inspecting whether the credible intervals 358 

overlapped zero. 359 

 360 

Results 361 

Sources of morphological variation 362 

We found that male sparrows have deeper and shorter beaks, as well as longer tarsi and wings, as 363 

compared to females; while females were heavier than males (Table 1A). There were also 364 

morphological differences between islands with different ecological characteristics. In the inner 365 



islands where birds live more closely associated to farms, sparrows had deeper and longer beaks, 366 

were heavier and had longer wings (Table 1A). Similarly, we found that older birds had deeper and 367 

longer beaks, were heavier and had longer wings and tarsi (Table 1A).  368 

 There were also differences between the traits in the relative contribution of the different 369 

variance components (Table 1B). The proportion of phenotypic variance caused by additive genetic 370 

variation ranged from 23% for body mass to 43% for wing length. The proportion of variation 371 

associated with permanent environmental effects ranged from 9% for wing length to 60% for tarsus 372 

length. Among measurement variation was highest for body mass 49% and smallest for tarsus 373 

length 4% (Table 1B). There was relatively little among-population variation in all the 374 

morphological measurements (less than 3%). There was also very little variation among years for 375 

all traits (less than 2%).  376 

 377 

Body size and size-independent covariation and evolvabilities 378 

As expected, we found evidence that covariation among the five morphological traits was caused by 379 

a latent variable that we define as ‘body size’ (Fig. 1; Table 2). The existence of this body size 380 

latent variable was confirmed at the phenotypic, genetic and permanent environmental levels (Fig. 381 

1). As hypothesized, we also found that beak length and depth were still positively correlated even 382 

after accounting for the effects of body size, although the estimates at the permanent environmental 383 

level overlapped zero (Fig 1).  384 

 At the phenotypic and genetic levels, body mass was the measured trait that contained the 385 

smallest proportion of size-independent variation (Fig 1A and C). Thus, body mass has the lowest 386 

autonomy in relation to body size (Table 3). At the permanent environmental level, tarsus length 387 

contained the smallest proportion of size-independent variation (Fig 1B). Beak length and wing 388 

length were the traits that had the largest proportion of size-independent variation at the phenotypic 389 

level, and beak length was the trait that had the largest size-independent genetic and permanent 390 

environmental variation (Fig. 1). Therefore, beak length was the trait with highest autonomy in 391 



relation to body size. The trait with the highest unconditional evolvability was body mass (Table 3), 392 

but the decrease in evolvability when conditional on body size was also strongest in this trait (Table 393 

3). Wing length and beak length had the lowest evolvability, but when conditional on body size 394 

these traits did not seem to substantially decrease their potential for evolution (Table 3). The was 395 

not much difference between estimates of evolvability conditional on all the other traits versus the 396 

estimates of evolvability conditional on body size, except for body mass. 397 

 398 

Sex and habitat differences in body size relationships. 399 

Despite mean morphological differences between the sexes in this meta-population of house 400 

sparrows, we found that the allometric relationships were surprisingly similar between males and 401 

females (Table 2A). However, we found that that the proportion of size-independent variation in 402 

body mass was greater for females than for males (Table 2B).  403 

When examining morphological differences among populations in the two habitat types, we 404 

found some interesting differences (Table 2). Sparrows on the inner farm islands had proportionally 405 

longer tarsi for their body size compared to the birds breeding on the outer islands without farms. 406 

We also found that sparrows on the outer non-farm islands had proportionally longer wings for their 407 

body size (Fig. 2; Table 2A). When studying the size-independent variance in the different types of 408 

islands, we found that size-independent variance in wing length was higher for birds on the farm 409 

islands compared with the non-farm islands (Table 2C).  410 

 411 

Evaluation of methodology using simulations 412 

The estimated allometric slopes using the SEM approach were generally unbiased (Fig. 3). In 413 

contrast, the allometric slopes estimated using bivariate regressions were underestimated with a bias 414 

proportional to the amount of size-independent variation in body mass (Fig. 3). PCA estimates of 415 

the allometric slopes also provided biased estimates (Fig. 3), the scale of which depended on the 416 

differences between traits in the degree of size-independent (co)variation. When the size-417 



independent (co)variance is the same for all the morphological traits, the allometric slopes estimates 418 

from the PCA were unbiased (Supplementary material S1). Therefore, SEMs provided the most 419 

accurate and unbiased estimates from the simulated data. However, it is important to note that when 420 

sample sizes are small, for instance less than 20 individuals, SEM may also provide biased 421 

allometric slope estimates (Fig. S3). Furthermore, to perform the analysis at the genetic level, the 422 

required sample sizes are considerably higher in order to properly estimate the additive genetic 423 

covariance matrix. 424 

 425 

Discussion 426 

We studied the patterns of (co)variation in five morphological traits of adult house sparrows in a 427 

metapopulation in northern Norway from 1994 to 2014 using a quantitative genetic analysis 428 

combined with structural equation models. We parametrize a latent variable model to describe the 429 

genetic and environmental relationships between body size and the measured morphological traits. 430 

We compare the allometric relationships between islands with different environmental and 431 

demographic characteristics and also between the sexes. Other studies have used SEM in ecological 432 

studies of morphology, for instance Crespi and Bookstein (1989) used path analysis to study the 433 

relationship between morphology and survival in house sparrows, and Morrissey (2014) described 434 

how to use these types of models within a quantitative genetics framework. The approach used in 435 

this study further shows the potential of using SEM in evolutionary studies of allometry and 436 

morphology in three main ways: 1) morphological covariation (e.g. the G-matrix) can be studied in 437 

a hypothesis testing framework based upon allometry theory; 2) it provides accurate estimates of 438 

allometric relationships under the hypothesis that variation in body size causes covariation between 439 

morphological traits; and 3) size-independent variation and covariation can be directly estimated. 440 

Furthermore, these estimates can be interpreted as conditional evolvabilities, describing the 441 

potential for independent responses to selection of each measured trait. 442 

 443 



Body size and allometric slopes 444 

Using SEMs within a quantitative genetics framework, we found support for a latent variable that 445 

we defined as ‘body size’ underpinning genetic and environmental morphological covariation. This 446 

latent variable captures the shared developmental history that underpins the expression of all the 447 

studied morphological traits. Importantly, the allometric vector captured by body size when 448 

analyzing genetic covariation is aligned with the direction with highest evolvability (Schluter 1996; 449 

Hansen and Houle 2008). Selection on body size will thus result in an integrated response of the 450 

different morphological traits. Furthermore, the allometric vector captured by analyzing the 451 

permanent environmental covariance matrix shows that morphological traits respond plastically to 452 

the developmental environment in an integrated fashion. This coordinated response ensures 453 

functional coherence (Pigliucci 2001a) when adjusting to environmental conditions. The analysis of 454 

the genetic variance-covariance matrix (the G matrix) thus reflects the allometric constraints on 455 

independent trait evolution, but also the correlated adaptive response to previous selective 456 

landscapes. Meanwhile, the analysis concerning the permanent environmental (PE) matrix reflects 457 

how shared developmental mechanisms mediate environmental variation during development. 458 

We studied covariation of the log-transformed morphological measures using a latent 459 

variable model to estimate the allometric relationships with body size (Fig 1). One caveat of using 460 

latent variables to estimate allometric relations is that they are unitless. To overcome this problem, 461 

we scaled the estimated allometric relations with body size to the estimated relation with body mass 462 

(Corruccini 1983). We did this by dividing the estimated relationship between the morphological 463 

measurements and the latent variable by the estimated relation with body mass. This makes the 464 

allometric relationship between the latent variable and body mass equal to one, and thus reflects the 465 

assumption that body mass scales isometrically with body size. Scaling the coefficients in this way 466 

improves the interpretability of the allometric coefficients, because the allometric slopes describe 467 

the proportional increase in a morphological trait associated with an increase in body size measured 468 

in grams. This also facilitates comparisons with allometric slopes estimated via the commonly-used 469 



bivariate regression method, depending upon the proxy measure for body size in each instance. 470 

Using statistical simulations, we show that the SEM approach provides more accurate estimates of 471 

the allometric slopes than bivariate regressions and PCA.  472 

 473 

Simulations and estimation of allometric slopes 474 

Our analyses revealed that in this house sparrow meta-population, body mass is the variable that 475 

contains the least additional size-independent variation of any morphological measurement (Fig 1). 476 

Therefore, body mass provides a good surrogate measure of body size, as we define it. Despite body 477 

mass being the trait that correlated the most with the latent variable body size in our data set, the 478 

simulations and the empirical analyzes show that the allometric slopes estimated with bivariate 479 

regressions using absolute measured body mass as a surrogate of body size tend to be 480 

underestimated (Figs 2 & 3). The bivariate regression approach uses the covariance between body 481 

mass and morphological trait 𝑧 to calculate the allometric slope 𝑏𝑧. The allometric slope is 482 

estimated as:  483 

𝑏𝑧 = 𝐶𝑜𝑣𝑧,𝑏𝑚
𝑉𝑏𝑚

 , 484 

where 𝐶𝑜𝑣𝑧,𝑏𝑚 is the covariance between body mass and morphological trait 𝑧, and 𝑉𝑏𝑚 is the 485 

variance in body mass. Importantly, the variance in body mass (𝑉𝑏𝑚) can be attributed to the 486 

variance associated body size (𝑉𝑠𝑖𝑧𝑒) plus size-independent variance caused by other sources (𝑉𝑟𝑏𝑚), 487 

such as differences in fat storage. Thus, the variance in body mass can be estimated as 𝑉𝑏𝑚 =488 

 𝑉𝑠𝑖𝑧𝑒 +  𝑉𝑟𝑏𝑚. The bias in the allometric slope  𝑏𝑧  will thus increase as a function of 𝑉𝑟𝑏𝑚
𝑉𝑏𝑚

⁄ . It is 489 

possible to correct for the bias using the reliability index 𝐾 (Fuller 1987). The reliability index 𝐾 490 

equals 1-𝑉𝑟𝑏𝑚
𝑉𝑏𝑚

⁄  and the corrected allometric slope can be calculated using the formula 𝑏𝑧
𝐾⁄  . 491 

When we correct the allometric slopes estimated using the bivariate regression on the simulated 492 

data it indeed produces unbiased estimates (Table S6). However, to use the K index to correct the 493 

allometric slopes it is necessary to first determine the size-independent variation in body mass. 494 



Size-independent variation and evolvabilities 495 

The approach we implement here explicitly models the causal (i.e. developmental) effects of 496 

somatic investment in growth on the measured morphological traits (see eq. 4). Hence, any 497 

morphological variation not explained by the latent variable body size can be interpreted as size-498 

independent variation (Fig 1, Table 3). This is of key importance, because size-independent additive 499 

genetic variation determines how selection may shape a single morphological trait without affecting 500 

the overall size of the organism. We studied the covariation of log-transformed morphometric 501 

measurements in our quantitative genetics and SEM analysis, and therefore the estimated size-502 

independent additive genetic variation for each morphological trait can be directly interpreted as a 503 

conditional evolvability (Hansen and Houle 2008). The differences between the raw evolvability 504 

and conditional evolvability are a direct measure of the degree to which allometric relationships 505 

may constraint the independent evolution of each morphological trait. The reduction in conditional 506 

evolvability was largest for body mass, implying that selection on body mass will result in a 507 

substantially correlated response in the other measured traits, thus altering the overall size of the 508 

organism. In contrast, the reduction in the potential for an evolutionary response in beak length and 509 

wing length when controlling for body size was negligible, suggesting that selection acting solely 510 

on these traits could have an effect without dramatically affecting the overall body size.  511 

 512 

Size-independent covariation between beak features. 513 

Within the SEM framework, it is also possible to model the size-independent correlations explicitly. 514 

For instance, we expected covariation between beak length and depth after correcting for body size, 515 

because of the functional and developmental modularity of beak features. We explicitly modelled 516 

this parameter and assessed its statistical significance by inspecting the credible intervals. Beak 517 

length and depth were correlated both at the genetic and permanent environmental levels after 518 

controlling for the covariance caused by the latent variable body size. Although the credible interval 519 

of the permanent environmental correlation overlapped zero slightly (Fig 1), this finding 520 



corroborates the notion that these two beak measurements reflect a functional module that regulates 521 

beak development over and above the more fundamental functional module of body size (Abzhanov 522 

et al. 2004, 2006; Lamichhaney et al. 2015; Lundregan et al. 2018).  523 

The SEM approach used in this study explicitly disentangles the common (co)variance 524 

between all traits created by variation in body size and thus distinguishes it from the unique 525 

(co)variance associated with specific factors affecting each of morphological trait separately. It 526 

makes it possible in this case to estimate the amount of size-independent (co)variation between beak 527 

features. Size-independent (co)variation is generally estimated by inspecting additional principal 528 

components orthogonal to PC1 (William et al. 2005). From a biological perspective, it is therefore 529 

often difficult to make general statements regarding the meaning of PC2 and its interpretation as 530 

‘shape’ specifically associated with the traits that load on PC2. Furthermore, the estimation of body 531 

size using principal components analyses maybe biased depending upon the differences in size-532 

independent variation and covariation between traits, further obscuring the interpretation of PC2 533 

(see Appendix S2). Therefore, if the goal is to test specific patterns of correlation between traits 534 

after correcting for body size, our results suggest that these parameters should be modeled explicitly 535 

using SEM instead.  536 

 537 

Population differences in allometric relations and size-independent variation 538 

It has been shown that the inner farm islands differ from the outer non-farm islands in adult and 539 

juvenile survival (Ringsby et al. 1999; Holand et al. 2016), growth rate (Sæther et al. 1999), onset 540 

of breeding and subsequent recruitment (Ringsby et al. 2002), demographic variance (Engen et al. 541 

2007) and dispersal (Pärn et al. 2012). We also found that individuals in these two types of islands 542 

differed in their morphology. Sparrows in the inner-farm islands are generally larger than birds in 543 

the outer-non-farm islands (Table 1), probably reflecting consistently higher resource abundance, 544 

competition for limited nest sites and possibly greater safety from aerial predators in the farm 545 

islands. Interestingly, we also found that sparrows in the outer non-farm islands, where individuals 546 



are generally more mobile and dispersive, have proportionally longer wings for their body size, as 547 

compared to the more sedentary individuals on the inner farm islands (Table 2). Birds on the inner-548 

farm islands also had proportionally longer tarsi for their body size, as compared with the birds in 549 

outer-non-farm islands. These differences in allometric relationships between these two types of 550 

islands suggest that contrasting environmental conditions may have shaped the allometry of house 551 

sparrows in our system. These differences may be caused by differences in the environmental 552 

and/or genetic underpinnings of the allometric relationships. We found evidence suggesting that it 553 

was the genetic underpinning for the allometric slopes in wing length that differed between inner-554 

farm islands and outer non-farm islands (Table S2), while it was environmental underpinnings 555 

(plasticity patterns) that caused the difference in the allometric slopes between island types in tarsus 556 

length (Table S3). However, we cannot confirm these results as the 85% confidence intervals 557 

overlapped each other considerably. 558 

The stability and evolution of the additive genetic variance-covariance matrix (the G matrix) 559 

has received considerable attention because of its implications for the evolutionary trajectory of 560 

traits (Arnold et al. 2008; Björklund and Gustafsson 2015; Houle et al. 2017; McGlothlin et al. 561 

2018). Although G matrices are highly conserved among some populations, they have also been 562 

demonstrated to diverge in response to both selection and/or experimental treatments (Hine et al. 563 

2009; Björklund et al. 2012). We applied the proposed SEM approach in order to compare the G 564 

matrix of morphological traits across populations, but the same can also be done across species. 565 

This would provide insights into the adaptive changes to the structure of the G matrix resulting 566 

from selection on the allometric relationships and structure of developmental modules. Allometric 567 

constraints on morphological evolution can be understood as the strength of the correlations 568 

between different morphological measures resulting from body size variation (i.e. the allometric 569 

slopes). Therefore, body size and the evolution of morphological shape can be investigated by 570 

focusing on how selection affects the various allometric slopes (Bolstad et al. 2015). For instance, 571 

selection can influence the pleiotropic effect of genes affecting the growth and development of 572 



different morphological traits. This may change the allometric relationships and/or the amount of 573 

size-independent variation in a trait, causing an adaptive change in the G matrix. Therefore, whilst 574 

genetic correlations caused by allometric relationships may constrain morphological evolution in 575 

the short term, they can also be modified in response to selection in the long term (Arnold et al. 576 

2008; Voje et al. 2014).  577 

Evolution can also influence how environmental factors affect the expression of different 578 

morphological traits. Environmental pleiotropy has received relatively little attention, but the 579 

structure of the covariance caused by environmental effects during development can be very 580 

important because it determines how organisms respond to variation in the environment in terms of 581 

adaptive and passive plasticity (West-Eberhard 2003). Importantly, the structure and evolution of 582 

environmental pleiotropy, i.e. the PE matrix, can be studied in the same way as the G matrix (see 583 

discussion above). The shared developmental mechanisms underpinning environmental correlations 584 

(PE matrix) will constrain the independent changes of single morphological traits. However, 585 

organisms can also be selected to change their plastic response in one or more morphological traits 586 

by diverting more or less resources to the development of different morphological traits depending 587 

on environmental conditions (Robinson and Beckerman 2013). This will in turn alter the structure 588 

of the PE matrix in terms of the pattern of morphological correlations caused by environmental 589 

pleiotropy. In other words, integrated plasticity in response to environmental variation during 590 

development can evolve in response to functional pressures (Pigliucci 2001b). While the G matrix 591 

estimated here partly reflects how selection may have shaped the morphology of house sparrows in 592 

response to their selective landscape, the PE matrix may reflect how house sparrow morphology 593 

evolved to respond to more immediate developmental conditions (e.g. nestling food availability). 594 

Importantly, the relatively consistent results from the SEM, as applied to the genetic and 595 

environmental covariation in the present study, indicate that the PE matrix partly aligns with the G 596 

matrix. This suggests that plasticity may aid adaptive phenotypic integration, and that both genetic 597 



and (permanent) environmental factors in this system tend to affect morphometric characters 598 

through similar physiological pathways (Pigliucci 2001a; Lind et al. 2015). 599 

 600 

Conclusions 601 

This study highlights that using SEMs in combination with allometric and quantitative genetic 602 

theory provides substantial additional insight concerning our understanding of morphological 603 

evolution. We estimated conditional evolvabilities and quantified the degree to which allometric 604 

relationships can constrain the evolution of house sparrow morphology in the short term. We found 605 

differences in the allometric relationships between inner farm versus outer non-farm island 606 

populations with different environmental regimes, suggesting that environmental differences have 607 

shaped the genetic or environmental underpinnings of allometric relationships in this system. More 608 

generally, the framework developed in this study can be used to make inferences not only of the 609 

environmental and genetic covariance matrices (PE and G), but can also be applied to phylogenetic 610 

covariance patterns, in order test ecological hypotheses about the evolution of morphological 611 

diversity. 612 
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Tables and figures 767 

Figure 1. Structural equation model (SEM) diagrams for the effect of the latent variable body size 768 

on the morphological measurements and size-independent variances and covariances. SEM models 769 

aim to tease apart the covariance between morphological measurements caused by the allometric 770 

relationship with body size from size-independent sources of (co)variation at A) the phenotypic 771 

level, B) the environmental level, and C) the genetic level. Solid line single-headed arrows 772 

represent the effect of body size on the different morphological measurements (i.e. allometric 773 

slopes) scaled to body mass. Dashed line single-headed arrows represent the proportion of size-774 

independent variation in the trait, and dashed line double-headed arrows represent the size-775 

independent correlation between pairs of traits. Estimates presented are the mean and 95% credible 776 

intervals in parenthesis. 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 



Figure 2. Relationships between the different morphological traits with body mass estimated 787 

separately for the inner-farm islands and the outer-non-farm islands. Each point represents the mean 788 

for each individual over all the observations. Black lines represent the allometric relationships 789 

between the morphological traits and body mass. The gray lines represent the allometric 790 

relationships with body size scaled to units of mass (g), estimated from the SEM based on the 791 

phenotypic covariance matrix (see Table 2). Note that the axes are in the log scale, but for ease of 792 

interpretation the values correspond to the absolute scale. 793 
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 801 

 802 

Fig 3. Results from simulations comparing biases in the estimation of allometric slopes using SEM, 803 

PCA and bivariate regressions. Simulations were based on the covariance patterns found in the 804 

studied sparrow metapopulation. We simulated 1000 data sets for three different scenarios. In 805 

scenario 1, there was 50% size-independent variation in body mass (𝑉𝜀) than in the real data set. In 806 

scenario 2, there was the same amount of size-independent variance in body mass (𝑉𝜀) as in the real 807 

sparrow data set. In scenario 3, there was 50% more size-independent variation in body mass (𝑉𝜀) 808 

than in the real data set. Percentage of bias was calculated as the mean deviation from the simulated 809 

value, divided by the simulated valued and then multiplied by 100. We present how the bias in the 810 

estimated allometric slope changes as a function of varying the size-independent variance in body 811 

mass. Black lines represent the bias in the estimates obtained using the SEM approach, light gray 812 

lines represent the bias for the estimates using bivariate regression and red lines represent the 813 

estimates obtained using PCA. 814 

 815 



Table 1. Model results analyzing the sources of variation in house sparrow morphology. A) Fixed 816 

effect estimates of linear mixed-effects models determining the effects of sex, age, age-squared and 817 

island type (inner farm versus outer non-farm) in the expression of the studied morphological traits. 818 

B) Proportion of variance explained by the different random effects. Variance estimates were 819 

calculated from different univariate animal models that partition individual differences into the 820 

additive genetic variance (Va), unknown permanent environmental effects (Vpe) and effects caused 821 

by environmental differences between populations (Vf). The model also partitioned within-822 

individual variation in the morphological traits due to metapopulation-wide among-year (Vy) and 823 

among month (Vm) variation in environmental conditions, as well as among-measurement variation 824 

(Vr) which can be caused by measurement error or reversible plasticity in response to local 825 

environmental conditions. We present the mean and 95% credible intervals for the fixed effect 826 

estimates and proportion of variance explained by the different random effects. 827 

Level Beak depth  
(mm) 

Beak length 
(mm) 

Body mass 
 (g) 

Tarsus 
length (mm) 

Wing length 
(mm) 

A) Fixed effects       

Intercept 8.16 
(8.07, 8.27) 

13.5 
(13.5, 13.8) 

32.04 
(30.99, 32.09) 

19.4 
(19.3, 19.5) 

78.3 
(77.9, 78.8) 

Sex:males 0.1 
(0.04, 0.15) 

-0.09 
(-0.15, -0.04) 

-0.15 
(-0.21, -0.1) 

0.1 
(0.04, 0.16) 

1.16 
(1.11, 1.21) 

Age 0.17 
(0.12, 0.22) 

0.1 
(0.05, 0.14) 

0.07 
(0.01, 0.12) 

0 
(-0.02, 0.01) 

0.24 
(0.21, 0.28) 

Age-squared -0.02 
(-0.02, -0.01) 

-0.01 
(-0.02, -0.01) 

-0.01 
(-0.01, 0) 

0 
(0, 0) 

-0.02 
(-0.02, -0.01) 

Islands:outer -0.23 
(-0.37, -0.07) 

-0.28 
(-0.47, -0.12) 

-0.14 
(-0.31, 0.04) 

0.01 
(-0.13, 0.15) 

-0.33 
(-0.49, -0.16) 

B) Proportion of explained variance     

Additive genetic 0.29  
(0.21, 0.37) 

0.35  
(0.27, 0.43) 

0.23  
(0.17, 0.29) 

0.34  
(0.26, 0.41) 

0.43  
(0.34, 0.5) 

Permanent 
environment 

0.11  
(0.07, 0.16) 

0.17  
(0.12, 0.23) 

0.18  
(0.13, 0.23) 

0.6  
(0.52, 0.67) 

0.09  
(0.04, 0.13) 

Among-islands 0.01  
(0, 0.03) 

0.02  
(0, 0.07) 

0.02  
(0, 0.09) 

0.01  
(0.00, 0.03) 

0.03  
(0.01, 0.1) 

Among- months 0.2  
(0.09, 0.39) 

0.11  
(0.05, 0.26) 

0.05  
(0.02, 0.11) 

0.02  
(0.01, 0.04) 

0.12  
(0.05, 0.26) 

Among-years 0.04  
(0.02, 0.08) 

0.02  
(0.01, 0.04) 

0.03  
(0.01, 0.07) 

0  
(0, 0.01) 

0.02  
(0.01, 0.04) 

Among-
measurements  

0.35  
(0.26, 0.4) 

0.32  
(0.27, 0.36) 

0.49  
(0.44, 0.53) 

0.04  
(0.04, 0.04) 

0.31  
(0.26, 0.34) 

828 



Table 2. Parameter estimates for the hypothesized SEM (see Fig.1) applied to separate phenotype 829 

covariance matrices for the inner farm (n=3530) versus outer non-farm (n=2065) islands, and for 830 

males (n=2866) versus females (n=2716). We present A) the allometric relationships scaled to body 831 

mass, B) the size-independent correlation between beak depth and beak length, and C) the 832 

proportion of size-independent variance. Estimates are presented as the mean and 85% credible 833 

intervals (in parenthesis) of the SEM in order to compare the estimates between groups. 834 

Relations Farm No-farm Male Female 

A) Allometric relationships    

Beak depth 0.35 (0.31, 0.39) 0.42 (0.33, 0.52) 0.39 (0.33, 0.44) 0.35 (0.3, 0.4) 
Beak length 0.39 (0.33, 0.44) 0.43 (0.32, 0.56) 0.37 (0.28, 0.46) 0.43 (0.37, 0.51) 
Body mass 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1) 
Tarsus length 0.81 (0.73, 0.91) 0.56 (0.45, 0.68) 0.73 (0.62, 0.85) 0.69 (0.6, 0.78) 
Wing length 0.23 (0.2, 0.26) 0.32 (0.27, 0.4) 0.23 (0.18, 0.27) 0.28 (0.24, 0.32) 

B) Size-independent correlation    

 0.12 (0.08, 0.16) 0.13 (0.03, 0.21) 0.08 (0.03, 0.13) 0.12 (0.07, 0.18) 

C) Proportion of size-independent variance   

Beak depth 0.79 (0.75, 0.83) 0.67 (0.55, 0.76) 0.71 (0.66, 0.77) 0.78 (0.72, 0.83) 
Beak length 0.82 (0.79, 0.86) 0.78 (0.7, 0.86) 0.83 (0.79, 0.87) 0.77 (0.72, 0.82) 
Body mass 0.5 (0.43, 0.56) 0.54 (0.41, 0.64) 0.37 (0.29, 0.45) 0.54 (0.46, 0.61) 
Tarsus length 0.55 (0.5, 0.6) 0.65 (0.57, 0.73) 0.59 (0.53, 0.64) 0.62 (0.56, 0.67) 
Wing length 0.8 (0.76, 0.83) 0.6 (0.5, 0.69) 0.79 (0.75, 0.83) 0.72 (0.67, 0.77) 

835 



Table 3. Evolvabilities, autonomy and conditional evolvabilities dependent upon body size and the 836 

whole G matrix for each of the measured morphological traits. Evolvabilities were estimated from 837 

univariate animal models applied to log-transformed morphological measurements. Structural 838 

equation models (SEM) were applied to the covariance matrix of the log-transformed 839 

measurements, thus unexplained variances by body size can be interpreted as conditional 840 

evolvabilities. Conditional evolvabilities were thus calculated using the variance not explained by 841 

body size for each trait. We also present conditional evolvabilities based on the genetic variance in 842 

a log-transformed trait conditional on all the other measured traits. We present the mean and 95% 843 

credible intervals of the evolvabilities as percentages of potential trait change in response to a unit 844 

of selection. 845 

 846 

 Evolvability Autonomy 
from body size 

Cond. evolvability 
on body size 

Cond. evolvability 
on G 

Beak depth 0.05 (0.04, 0.05) 0.64 (0.32, 0.86) 0.03 (0.02, 0.04) 0.03 (0.03, 0.04) 

Beak length 0.07 (0.06, 0.08) 0.91 (0.61, 0.99) 0.07 (0.05, 0.08) 0.06 (0.05, 0.07) 

Body mass 0.12 (0.1, 0.14) 0.40 (0.02, 0.61) 0.04 (0.00, 0.09) 0.10 (0.08, 0.12) 

Tarsus length 0.06 (0.05, 0.07) 0.71 (0.16, 0.86) 0.05 (0.03, 0.06) 0.05 (0.04, 0.06) 

Wing length 0.02 (0.02, 0.03) 0.92 (0.35, 0.98) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 
 847 
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Appendix S1. Additional analyses 

Table S1. Pair-wise correlations between all of the morphological traits at the individual, 

genetic and permanent environmental levels for adult house sparrows on the studied 

Helgeland islands 1993-2014. We present the mean and 95% CIs. 

Relationship Individual Genetic Permanent environ. 
Beak depth <-> beak length 0.32 (0.28, 0.37) 0.34 (0.21, 0.45) 0.4 (0.14, 0.59) 
Beak depth <-> body mass 0.41 (0.37, 0.46) 0.44 (0.32, 0.56) 0.46 (0.23, 0.67) 
Beak depth <-> tarsus length 0.28 (0.24, 0.32) 0.22 (0.07, 0.36) 0.43 (0.3, 0.58) 
Beak depth <-> wing length 0.2 (0.15, 0.24) 0.15 (0.02, 0.26) 0.38 (0.08, 0.64) 
Beak length <-> body mass 0.26 (0.21, 0.31) 0.18 (0.05, 0.32) 0.34 (0.09, 0.58) 
Beak length <-> tarsus length 0.32 (0.29, 0.36) 0.22 (0.09, 0.35) 0.44 (0.32, 0.57) 
Beak length <-> wing length 0.3 (0.26, 0.34) 0.25 (0.12, 0.37) 0.28 (-0.04, 0.54) 
Body mass <-> tarsus length 0.46 (0.43, 0.5) 0.43 (0.31, 0.54) 0.6 (0.49, 0.72) 
Body mass <-> wing length 0.35 (0.3, 0.4) 0.19 (0.08, 0.3) 0.92 (0.78, 0.99) 
Tarsus length <-> wing length 0.32 (0.29, 0.36) 0.12 (-0.02, 0.24) 0.74 (0.6, 0.86) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix S2. Simulation study 1 

We use simulated data to study the robustness of the SEM approach in recovering a biological 2 

model of morphological covariation caused by variation in body size (Fig 1). We simulated data for 3 

5 morphological traits following a biological model, where individual variation in somatic 4 

investment generated variation and co variation between the 5 simulated morphological traits. We 5 

studied the covariation of the log-transformed morphological measurements using three different 6 

techniques. We compared the performance of the SEM approach against bivariate regressions 7 

between log-transformed body mass and the other morphometric log-transformed measurements, 8 

and principal component analyses (PCA) applied to all the morphological log-transformed 9 

measurements. The mean and variance of each trait where based on the observed measurements of 10 

the studied house sparrow meta-population in Northern Norway. 11 

 12 
Figure S1. Histograms for the observed morphological measurements of the studied house sparrow meta-populations. 13 
 14 

The relationship between body size (𝑚) and a morphological trait (𝑧) is described by an exponential 15 

function: 16 

𝑧 = 𝑎𝑚𝑏 + 𝑒     . 17 

The allometric slopes (𝑏) describes the effect of body size on the measured morphological trait, 18 

while 𝑎 is a constant that scales each morphological measurement to body size. Trait specific 19 

factors affecting the expression of each morphological trait are represented as 𝑒. Where 𝑒 is 20 

assumed to come from a multi-normal distribution with means of 0 and a variance-covariance 21 

matrix 𝑉𝑒. This matrix represents the patterns of size-independent (co)variation. The effect of body 22 

size on the different morphological measurements was based on the results obtained analysing the 23 



morphological measurements of the studied population see (Fig 1A). Similarly, the size-24 

independent (co)variances simulated was the same as the observed in the empirical study. 25 

 26 

Table S5. Simulated parameters 27 

Trait Mean Variance a b 𝑉𝜀 

Beak depth 8.21 0.1 0.82 0.37 0.04 

Beak length 13.8 0.35 1.24 0.4 0.17 

Body mass 31.94 5.38 0 1 1.22 

Tarsus length 19.49 0.66 0.51 0.71 0.39 

Wing length 79.99 5.69 3.48 0.26 1.71 
 28 

We worked under the assumption that body size is a volume measure, can be measured in units of 29 

grams, and scales isometrically with body mass. Thus, the allometric slope for body mass was one, 30 

but it is important to note that body mass also has size-independent variation not associated to body 31 

size. Body size in the simulated data had a mean equal to the mean body mass in the studied 32 

population and the variance in body size was equal to the variance in body mass explained by body 33 

size observed in the empirical study (2.85). 34 

 35 
Figure S2. Histograms for the simulated body size variation. 36 

 37 

Effects of sample size. 38 

We first explored the effect of the number of individuals sampled (100, 500, 1000, 5000) in the 39 

estimation of the allometric slopes. The results show that PCA and bivariate regression provided 40 

consistently biased estimates, while the SEM estimates where unbiased (Figure 3). This bias was 41 

independent of sample size. 42 



   43 
Figure S3. Bias in the allometric slopes estimated as a function of sample size. Bivariate regression is depicted by grey 44 
lines, PCA by brown lines and SEM by black lines. Circles represent the mean estimate across simulations and lines 45 
represent the 95% confidence intervals. 46 
 47 

Effects of size-independent variation in body mass. 48 

We proceeded to study how the amount of size-independent variation affected the estimation of the 49 

allometric slopes. We varied the amount of size-independent variation in body size. We simulated 3 50 

scenarios of varying size-independent variation in body mass. The scenarios corresponded to data 51 

sets where the size-independent variation in body mass was: i) half of that estimated in the studied 52 

sparrow meta-population, ii) the same size-independent variance, and iii) 1.5 times higher. Figure 53 

S4 shows that the bias in the bivariate regression and PCA is proportional to the amount of size-54 

independent variation in the surrogate measure of body size (i.e. body mass). 55 



 56 
Figure S4. Bias in the allometric slopes estimated as a function of the amount of size-independent variation in body 57 
mass. Bivariate regression is depicted by grey lines, PCA by brown lines and SEM by black lines. Circles represent the 58 
mean estimate across simulations and lines represent the 95% confidence intervals. 59 

 60 

Table S6. Mean and 95% confidence intervals of the estimated slopes from the simulated data sets 61 
where the size-independent variance and the allometric slopes of all traits were the same as in the 62 
observed data. The estimates were obtained using bivariate regressions, bivariate regression with 63 
correction factor k, PCA and SEM. 64 

 Simulated  Bivariate 
regression 

Bivariate 
regression 
k corrected 

PCA SEM 

Beak depth 0.37  0.26  
(0.23, 0.29) 

0.37  
(0.33, 0.41) 

0.34  
(0.31, 0.37) 

0.37  
(0.33, 0.41) 

Beak length 0.40  0.28  
(0.25, 0.31) 

0.40  
(0.35, 0.45) 

0.38  
(0.34, 0.42) 

0.40  
(0.35, 0.45) 

Tarsus length 0.70  0.49 
 (0.45, 0.53) 

0.70  
(0.64, 0.76) 

0.69  
(0.63, 0.73) 

0.70 
 (0.64, 0.76) 

Wing length 0.25  0.18 
 (0.16, 0.19) 

0.25  
(0.22, 0.28) 

0.21  
(0.19, 0.23) 

0.25  
(0.22, 0.28) 

 65 



Effects of the differences in size-independent variation in the different morphological traits. 66 

We also studied how the differences between the different traits in size-independent variation 67 

affected the estimation of the allometric slopes. We examined the bias in allometric slopes in a 68 

scenario where the size-independent variances are different versus a scenario where the size-69 

independent variances are the same. We simulated two different scenarios one had the same 70 

allometric slopes and size-independent variance as in the studied house sparrow population, 71 

whereas in the other scenario the allometric slopes (b=1) and size-independent variances (Ve=0.5) 72 

were the same for all traits. Figure 5 shows that when the size-independent variance and allometric 73 

slopes are the same in PCA and SEM then both approaches produce unbiased estimates, while 74 

bivariate regressions still underestimate the allometric slopes. 75 

 76 
Figure S5. Bias in the allometric slopes in two scenarios. Scenario 1 has the same allometric slopes and size-77 
independent variance as in the studied house sparrow population, whereas in scenario 2 the allometric slopes and size-78 
independent variance is the same for all traits. Bivariate regressions are depicted by grey lines, PCA by brown lines and 79 
SEM by black lines. Circles represent the mean estimate across simulations and error lines represent the 95% 80 
confidence intervals. 81 
 82 

 83 
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Table S2. Parameter estimates for the hypothesized SEM (see Fig.1) applied to separate 

genetic covariance matrices for the inner farm (n=2793) versus outer non-farm (n=950) 

islands, and to males (n=1867) versus females (n=1876). We present A) the allometric 

relationships scaled to body mass, B) the size-independent correlation between beak depth 

and beak length, and C) the proportion of size-independent variance. Estimates are presented 

as the mean and 85% credible intervals (in parenthesis) of the SEM in order to compare the 

estimates between groups. 

Relations Farm No-farm Male Female 

A) Allometric relationships    

Beak depth 0.33  
(0.24, 0.51) 

0.38  
(0.15, 0.72) 

0.48  
(-0.33, 1.19) 

0.39  
(0.27, 0.57) 

Beak length 0.23  
(0.12, 0.54) 

0.13  
(-0.22, 0.45) 

0.89  
(0.00, 3.75) 

0.29  
(0.15, 0.53) 

Body mass 1  
(1, 1) 

1  
(1, 1) 

1  
(1, 1) 

1  
(1, 1) 

Tarsus length 0.41  
(0.3, 0.67) 

0.37  
(0.13, 0.6) 

0.68  
(0.00, 2.69) 

0.41  
(0.28, 0.59) 

Wing length 0.12  
(0.07, 0.22) 

0.23  
(0.09, 0.41) 

0.17  
(-0.05, 0.67) 

0.21  
(0.14, 0.3) 

B) Size-independent correlation    

 0.2  
(0.06, 0.29) 

0.19  
(-0.15, 0.79) 

0.08  
(-0.21, 0.37) 

0.19  
(0.04, 0.32 

C) Proportion of size-independent variance   

Beak depth 0.76  
(0.62, 0.86) 

0.59  
(0.09, 0.99) 

0.87 
(0.07, 1) 

0.65  
(0.45, 0.8) 

Beak length 0.93  
(0.77, 0.97) 

0.96  
(0.55, 1) 

0.69  
(-0.15, 0.95) 

0.87  
(0.7, 0.95) 

Body mass 0.33  
(0.1, 0.61) 

0.26  
(-10.14, 0.76) 

0.73  
(0.39, 1) 

0.31  
(0.08, 0.53) 

Tarsus length 0.74  
(0.55, 0.84) 

0.75  
(0.3, 1) 

0.79  
(0.36, 0.95) 

0.7  
(0.54, 0.83) 

Wing length 0.93  
(0.85, 0.97) 

0.7  
(0.32, 1) 

0.96  
(0.87, 1) 

0.8  
(0.69, 0.9) 

  



Table S3. Parameter estimates for the hypothesized SEM (see Fig.1) applied to separate 

permanent environment covariance matrices for the inner farm (n=2793) versus outer non-

farm (n=950) islands, and to males (n=1867) versus females (n=1876). We present A) the 

allometric relationships scaled to body mass, B) the size-independent correlation between 

beak depth and beak length, and C) the proportion of size-independent variance. Estimates are 

presented as the mean and 85% credible intervals (in parenthesis) of the SEM in order to 

compare the estimates between groups. 

Relations Farm No-farm Male Female 

A) Allometric relationships    

Beak depth 0.42 (0.31, 0.48) 0.47 (0.01, 1.28) 0.49 (0.28, 0.58) 0.23 (0.08, 0.5) 
Beak length 0.49 (0.32, 0.55) 0.65 (0.22, 1.85) 0.39 (0.11, 0.48) 0.51 (0.3, 0.77) 
Body mass 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1) 
Tarsus length 1.11 (0.97, 1.28) 0.72 (0.27, 2.07) 0.98 (0.77, 1.16) 1.44 (0.81, 2.15) 
Wing length 0.31 (0.26, 0.36) 0.29 (0, 0.58) 0.31 (0.2, 0.37) 0.28 (0.17, 0.39) 

B) Size-independent correlation    

 0.1 (-0.06, 0.11) 0.17 (-0.34, 0.59) 0.12 (-0.1, 0.19) 0.09 (-0.25, 0.17) 

C) Proportion of size-independent variance   

Beak depth 0.61 (0.55, 0.75) 0.71 (-0.87, 1) 0.46 (0.4, 0.72) 0.91 (0.59, 0.99) 
Beak length 0.66 (0.61, 0.85) 0.64 (-2.91, 1) 0.69 (0.66, 0.92) 0.75 (0.5, 0.97) 
Body mass 0.44 (0.34, 0.53) 0.6 (-0.09, 1) 0.27 (0.1, 0.38) 0.71 (0.39, 0.9) 
Tarsus length 0.41 (0.33, 0.48) 0.64 (-1.78, 1) 0.36 (0.23, 0.46) 0.34 (-0.25, 0.67) 
Wing length 0.51 (0.46, 0.61) 0.76 (0.38, 1) 0.49 (0.42, 0.67) 0.76 (0.5, 0.98) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S4. Genetic correlations for the two groups of islands (inner farm versus outer non-

farm) estimated from separate animal models to the non-transformed measurements. We 

present the mean and 95% CIs. 

 Genetic Environmental 

Relations Farm Non-farm Farm Non-farm 
Beak depth – beak length 0.33  

(0.2, 0.45) 
0.28  

(-0.25, 0.59) 
0.37  

(0.14, 0.57) 
0.69  

(0.26, 0.94) 
Beak depth - body mass 0.39  

(0.25, 0.52) 
0.83  

(0.4, 0.99) 
0.5  

(0.27, 0.73) 
0.07  

(-0.7, 0.87) 
Beak depth - tarsus length 0.21  

(0.05, 0.35) 
0.36  

(-0.13, 0.96) 
0.42  

(0.28, 0.59) 
0.38  

(-0.31, 0.9) 
Beak depth - wing length 0.07  

(-0.05, 0.2) 
0.55  

(0.3, 0.76) 
0.43 

 (0.17, 0.69) 
0.36  

(-0.54, 0.92) 
Beak length - body mass 0.14  

(0, 0.29) 
0.17  

(-0.46, 0.69) 
0.35  

(0.12, 0.59) 
0.47  

(-0.36, 0.93) 
Beak length - tarsus length 0.24  

(0.09, 0.38) 
-0.51  

(-0.95, 0.25) 
0.42  

(0.29, 0.55) 
0.71  

(0.23, 0.99) 
Beak length - wing length 0.21  

(0.09, 0.33) 
0.26  

(-0.03, 0.55) 
0.31  

(0.06, 0.57) 
0.56  

(-0.33, 0.97) 
Body mass - tarsus length 0.42  

(0.28, 0.55) 
0.54  

(-0.12, 0.96) 
0.59  

(0.47, 0.7) 
0.54  

(-0.07, 0.98) 
Body mass - wing length 0.11  

(-0.01, 0.23) 
0.47  

(0.21, 0.7) 
0.94  

(0.8, 1) 
0.63  

(-0.53, 0.99) 
Tarsus length - wing length 0.11  

(-0.02, 0.25) 
0.31  

(-0.28, 0.74) 
0.71  

(0.58, 0.84) 
0.6  

(-0.53, 0.99) 
 

 

 

 

 

 

 

 

 

 

 


