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Hilda Deborah∗, Noël Richard†, Magnús Örn Úlfarsson‡, Jón Atli Benediktsson‡ and Jon Yngve Hardeberg∗
∗Department of Computer Science, Norwegian University of Science and Technology, Norway

†Laboratory XLIM, JRU CNRS 7252, University of Poitiers, France
‡Department of Electrical and Computer Engineering, University of Iceland, Iceland

Abstract—Answering to metrological constraints typically re-
quired in the context of industrial and medical applications, a
spectral difference space is introduced in this work. In this space,
an acquired hyperspectral data is treated as measurements. Then,
modelling the spectral difference space as multivariate Normal
laws, a Gaussian mixture model is used in a classification task
of remote sensing images. An encouraging result is obtained,
comparing the proposed space with a data-driven one. Moreover,
it offers a starting point in developing a directly interpretable
spectral analysis tools.

Index Terms—metrology, image classification, hyperspectral
imaging, Gaussian mixture model

I. INTRODUCTION

Research and development activities and the use of hy-
perspectral imaging are mainly found in the remote sensing
field. This is due to the cost of sensor and the complexity
of its acquisition. Nevertheless, existing applications in, e.g.,
medicine [1], cultural heritage [2], and quality control [3], [4],
show the interest of hyperspectral imaging and processing,
especially since its acquisition provide high spectral accuracy.

In the recent years, the cost of HSI sensor has decreased
quite significantly. There are ready solutions offered in the
range of 10k Euro dedicated for industrial applications, which
could also be suitable for medical and cultural heritage appli-
cations. However, these domains require metrology in order to
manage bias and uncertainty necessary for quality control or
diagnostic purposes. Metrology is the science of measurement.
Several international recommendations express the different
terms and approaches to assess accuracy, trueness, bias, etc.
[5], [6]. These approaches are based on the assessment of
the statistics of measurements relative to an average value,
a theoretical value, etc. In other words, the assessment of
metrological terms are expressed in the space of differences.

Another important point in understanding the need for
metrology is in its ability to provide a generic solution of
measurements. In metrology, measurements are dependent on
the object to measure and not on the approach to measure
it. As an illustration, the use of a measuring tape or a laser-
based approach will not change the average measurement of an
object. It will only change the accuracy of the measurement.
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This constraint of metrology strictly limits the use of a data-
driven approach. By nature, the similarity between two given
spectra x and y is always d(x, y) = t. However, in the context
of data-driven approaches, the value of d(x, y) depends on a
given context and not on the accuracy of the sensor.

In this work, we are addressing the question of statistical
modelling of spectral samples for quality control purposes,
typically needed in industrial applications. Nevertheless, to
compare the results with existing ones, the developed approach
is applied for a classification task in remote sensing. The aim
of this paper is to demonstrate that we can, at least, obtain
similar results to that of a data-driven method, but with an
adapted metrological solution. With this advance, autonomous
and efficient measurement tools based on hyperspectral imag-
ing can be devised in the future.

The article begins by Section II, which expresses the spec-
tral difference space we will use. Histogram of spectral differ-
ences will be defined in this space, to further allow establishing
spectral statistics. By construction, these histograms can be
modelled using Gaussian mixture models (GMM). Its short
presentation for a classification task will be recalled in Section
III, before its use in the experimental study in Section IV.
For ease of reading, mathematical notations frequently used
throughout the article are provided in Table I.

II. VARIABILITY IN THE SPECTRAL DIFFERENCE SPACE

For a set of spectra, there exists no way to directly obtain
the statistical modelling or probability density function from
its acquisition or reflectance spaces. Within the context of
developing metrological processing, in this work, we translate
the statistical modelling task into the domain of spectral

Fig. 1: Illustration of the translation of a statistical modelling
of a one-dimensional probability density function P (xi) into
a distance or difference space relative to a reference point xref.



TABLE I: Frequently used mathematical notations.

S = {s(λ)} Radiance/ reflectance spectrum as a function of λ
λ Wavelength, with the range of λ ⊂ [λmin, λmax]
Sref Reference spectrum used in the context of difference

function
S̄ Normalized spectrum S s.t. its sum is equal to 1
S An arbitrary set of spectra

d(S1, S2) Difference function between arbitrary spectra S1 and S2

DS,Sref Spectral difference distribution of set S relative to Sref
ΓSref Variance-covariance measure relative to Sref

dM (S,S) Mahalanobis distance between a spectrum S and a set S
µS , ΓS Mean and covariance of S, respectively

differences. This translation is illustrated in Fig. 1 for a one-
dimensional case. Given a reference point xref, the probability
density function P (xi) is now observed relative to xref s.t. the
average location is changed from µ to µ− xref. In the higher
dimensional spaces, the probability density function can be
extended simply by means of a difference to the reference
point P (d(xi, xref)). In the following, we will introduce the
building blocks of a difference-based space for hyperspectral
image processing. In a previous study, various difference
functions have been compared and evaluated with metrological
constraints [7], [8], and Kullback-Leibler pseudo-divergence
(KLPD) [9] is currently the most suitable one.

A. Kullback-Leibler pseudo-divergence function

KLPD was specifically developed for metrological process-
ing of hyperspectral data [9], assuming that the wavelengths
are contiguously sampled over a certain range. It measures
differences in terms of shape ∆G and intensity ∆W :

dKLPD(S1, S2) = ∆G(S1, S2) + ∆W (S1, S2)

∆G(S1, S2) = k1 · dKL(S̄1, S̄2) + k2 · dKL(S̄2, S̄1)

∆W (S1, S2) = (k1 − k2) log

(
k1

k2

) (1)

where the spectra are considered as probability density func-
tions and normalized when computing dKL(S̄1, S̄2), and kj is
the normalization factor of each spectrum S̄j :

dKL(S̄1, S̄2) =

∫ λmax

λmin

S̄1(λ) · log
S̄1(λ)

S̄2(λ)
dλ

S̄j =

{
s̄j(λ) =

sj(λ)

k

}
, kj =

∫ λmax

λmin

sj(λ) dλ

(2)

B. Histogram of spectral differences

Given a spectral set S and a reference spectrum Sref,
its distribution can be represented and visualized through
a histogram of spectral differences (HSD), i.e., DS,Sref =
{dKLPD(Sref, Si),∀Si ∈ S}. As an example, the histogram of
pixels belonging to classes Trees and Tiles from Pavia Center
image is shown in Fig. 2. Here, Sref was obtained by smoothing
the marginal minimum spectrum Smin = {min(si(λ)),∀Si ∈
S} using Savitzky-Golay filter (SGF) [10].

Since KLPD is composed of two components, each mea-
suring shape and intensity differences, the one-dimensional
histogram can be reconstructed as a two-dimensional one

Fig. 2: Histogram of spectral differences obtained from the
Trees and Tiles pixels of Pavia Center image.

Fig. 3: Bidimensional histogram of spectral differences
(BHSD) of two classes in Pavia Center, i.e., Trees and Tiles.

DS,Sref = {(∆G(Sref, S),∆W (Sref, S)) ,∀S ∈ S}. Using the
classes from Pavia Center image, the bidimensional histogram
of spectral differences (BHSD) is provided in Fig. 3. Com-
pared to its HSD, it can be observed that the two classes are
significantly better separated. The class Trees is the ellipse
lying closer to the origin, while Tiles is the one further away.

The representation of spectral distribution by means of his-
togram of spectral differences is not limited to two dimensions.
This representation space can have more axes or dimensions by
adding more spectral references. Specifically, the dimension is
increased by two per every additional Sref. In turn, this allows
the construction of an n-dimensional feature space that can be
used for more advanced image analysis and processing tasks.

C. Variance-covariance measure of a spectral difference set

The representation of a spectral set S through its spectral
differences DS,Sref further allows computing the variance-
covariance measure in (3). In this work, it is assumed that
a homogeneous set of spectra would provide a multivariate
normal distribution in the spectral difference domain, as illus-
trated for a one-dimensional case in Fig. 1. However, it has to
be noted that the spectral difference values are always positive.
Consequently, the Γ̃S,Sref will be biased when Sref is chosen
from within the set S . It is for this reason that a smooth Smin

was chosen as the reference for the case in Fig. 3.

ΓSref =

(
αGG,Sref αGW,Sref

αGW,Sref αWW,Sref

)
, where (3)



αGG,Sref =
∑
Si∈S

(
∆G(Si, Sref)

)2

f(Si)

αWW,Sref =
∑
Si∈S

(
∆W (Si, Sref)

)2

f(Si)

αGW,Sref =
∑
Si∈S

(
∆G(Si, Sref) ·∆W (Si, Sref)

)
f(Si)

III. CLASSIFICATION IN SPECTRAL DIFFERENCE SPACE

A. Gaussian mixture model

Given a hyperspectral image with N different classes, each
class Cj (1≤j≤N ) will be a multivariate Gaussian probability
density function in the BHSD space hjSref

:

hjSref
(δi) =

1

(2π)
r
2 |Γj |

1
2

· e−
1
2 (δi−µj)T Γ−1

j (δi−µj) (4)

where δi is an observation, µj the average of Cj distribution,
and Γj its associated variance defining the direction of the
ellipsoid in the BHSD space. Despite hyperspectral images
having typically hundreds of channels, dimensionality of the
problem r is reduced to 1 or 2 when HSD or BHSD represen-
tations are used, respectively. Moreover, considering the mixed
nature of endmembers in remote sensing applications, Cj can
have M Gaussian components. Thus, it can be expressed
as a linear mixture of these components [11], [12]. As an
illustration, samples from class Trees of Pavia Center are
plotted in Fig. 4. The contour lines show the variability within
the class as explained by M = 3 Gaussian components.

B. Mahalanobis distance

Given any arbitrary spectral group Sj and a spectrum
S, a Mahalanobis distance (MD) dM (S,Sj) in the spectral

Fig. 4: BHSD showing the variability within class Trees of
Pavia Center image, as explained by 3 Gaussian components.

difference space is defined as:

dM (S,Sj) =
√
dKLPD(S, µj)T Γ−1

j dKLPD(S, µj) (5)

where the set Sj is modelled through its average µj and
variance covariance Γj . This distance measure will be used
in determining whether a spectrum belongs to a group in the
context of classification. To obtain a certainty, the empirical
rule in statistics will be imposed. This means that a spectrum
is considered as belonging to a group only if dM (S,Sj) ≤ 3.

IV. EXPERIMENTS

A. Setup

The performance of the proposed spectral difference space
(SDiff) will be compared to a data-driven one, i.e., PCA. For
each case, the target image will only be represented in four
dimensions. This means SDiff will use two references and
PCA will use four principal components (PCs). These features,
of a training set, will be passed on to GMM, that will provide
the statistical model of each class Cj , i.e., µj and Γj (1≤j≤N ).
The labelling of each test sample is based on its minimum MD
to the models of each class. It will be labelled as uncategorised
if its minimum MD is above 3 standard unit.

B. Result and discussion

Pavia University image is the first target image. The two
spectral references used to build the feature space are the
marginal minimum Smin = {min(si(λ))} and maximum
Smax = {max(si(λ))},∀Si ∈ S, filtered by SGF to obtain
smooth spectra. The obtained accuracy is provided in Table II,
alongside PCA. Despite PCA outperforming SDiff in majority
of the classes, note the significant difference of performance
for class Bricks. SDiff is able to capture the variability within
this class since the entire spectral bands are considered when
computing spectral differences. For PCA, it is apparent that
information regarding this class are lost when only 4 PCs are
used. Increasing the number of PCs will increase the accuracy
of Bricks, but at the expense of decreasing the performance
in other classes due to the curse of dimensionality problem.

Table II also provides results for Pavia Center image. In this
case, the references used are the marginal minimum of class
Trees STrees = {min(si(λ)),∀Si ∈ STrees} and global marginal

TABLE II: Classification accuracy (average of 5-fold cross val-
idation) of GMM applied on the proposed spectral difference
space (SDiff) and PCA.

Pavia
University

Accuracy (%) Pavia
Center

Accuracy (%)
SDiff PCA SDiff PCA

Asphalt 93.05 97.41 Water 96.64 97.90
Meadows 71.16 63.38 Trees 74.50 92.62

Bricks 74.15 12.22 Asphalt 80.48 62.27
Trees 89.82 96.74 Bricks 76.39 61.94

Metal sheets 94.57 97.10 Bare soil 95.60 97.31
Bare soil 54.25 69.26 Tiles 83.49 93.53
Shadows 96.73 97.04 Shadows 78.54 89.31

Meadows 93.47 97.88

Overall accuracy (%) 76.08 69.97 92.13 95.41



Fig. 5: A subset of Pavia Center. The color image is generated
using CIE CMF 2°Standard Observer and D65 illuminant to
simulate the human visual system.

maximum Smax = {min(si(λ)),∀Si ∈ S}. The same way as
for Pavia University, the two spectra are smoothed using SGF.
In the table, it can be observed that PCA outperforms SDiff
in majority of the classes. Nevertheless, their difference in the
overall accuracy is only around 3%. It is important to note that
SDiff is superior where PCA is challenged, i.e., for Bricks and
Asphalts. This is because SDiff does not lose information the
way PCA does. Rather, it captures the variability of the dataset
from the point of view of several spectral references. Thus, the
performance of SDiff is highly related to the choice of spectral
references which, however, is out of the scope of this paper.

Another interest of the use of SDiff lies in the fact that it
provides results that are directly related to physical measure-
ments, thus easily interpretable. A subset of Pavia Center is
shown in Fig. 5. The color image is generated using CIE CMF
2°Standard Observer and D65 illuminant. This color image
is simulating how a human eye would see the scene under
daylight. In the ground truth image (Fig. 6a), the large bright
blue area is tagged as class Water. However, observing again
the color image, we can see that the area pointed by the red
arrow should not be tagged as Water. The variability within
this Water-tagged area is captured by SDiff in Fig. 6b. It shows
in a continuous manner that the area pointed by the red arrow
has relatively big differences to Water, which has more bluish
colors in this map. This limitation of the ground truth has
an impact on the numbers we see on Table II. Nevertheless,
GMM is able to lessen the impact since it allows explaining
the class Water in two or more Gaussian components.

V. CONCLUSION

This work takes place in the quest for metrological solutions
to the analysis of hyperspectral images. Such solutions are
typically needed for industrial or medical purposes, where the
high spectral sampling of hyperspectral sensors are exploited

(a) Ground truth (b) SDiff map

Fig. 6: Ground truth and spectral difference map of a Pavia
Center subset (Fig. 5). SDiff map is computed relative to a
marginal minimum of class Water, shown in a log colormap.

to improve the accuracy of measurements. To preserve the
metrological aspects of the acquired images, we propose to
analyze spectral image content in a spectral difference space.
The proposed space allows us to tackle the dimensionality
issue by translating the n-dimensional problem to a two-
dimensional one without losing the acquired spectral accuracy.

Compared to PCA, the results are encouraging. When PCA
outperforms the proposed SDiff, the difference in overall
accuracy is relatively small. When PCA is challenged, SDiff
significantly outperforms it. These results are obtained with a
constraint of preserving the metrological content, as opposed
to reducing the data volume. The obtained modelling also
offers a very good starting point to directly explain and
interpret physical variations captured by a set of spectra, a
behavior of spectral analysis tools expected in the industrial
and medical context.
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