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Nonlinear Adaptive Filtering with Kernel
Set-Membership Approach

Kewei Chen∗, Stefan Werner†, Anthony Kuh‡ and Yih-Fang Huang∗

Abstract—This paper develops nonlinear kernel adaptive fil-
tering algorithms based on the set-membership filtering (SMF)
framework. The set-membership-based filtering approach is
distinct from the conventional adaptive filtering approaches in
that it aims for the filtering error being bounded in magni-
tude, as opposed to seeking to minimize the time average or
ensemble average of the squared errors. The proposed kernel
SMF algorithms feature selective updates of their parameter
estimates by making discerning use of the input data, and
selective increase of the dimension in the kernel expansion. These
result in less computational cost and faster tracking without
compromising the mean-squared error performance. We show,
through convergence analysis, that the sequences of parameter
estimates of our proposed algorithms are convergent, and the
filtering error is asymptotically upper bounded in magnitude.
Simulations are performed which show clearly the advantages
of the proposed algorithms in terms of lower computational
complexity, reduced dictionary size, and steady-state mean-
squared errors comparable to existing algorithms.

Index Terms—Adaptive filters, set-membership filtering, kernel
methods, nonlinear systems.

I. INTRODUCTION

Adaptive filtering algorithms that adjust filter parameters ac-
cording to the changes in signal characteristics are widely used
in dynamical systems and signal processing applications. Tra-
ditional methodologies such as recursive least-squares (RLS)
and least-mean squares (LMS), as well as their numerous
variations, have been studied extensively over the past many
decades; see, e.g., [1]–[3]. The RLS and LMS algorithms have
been derived to minimize, respectively, the time average and
the ensemble average of the squared filtering errors. To date,
applications of those conventional adaptive filtering techniques
still focus mostly on linear-in-parameter filters, even though
nonlinear dynamical systems and signal processing problems
arise in many practical situations, e.g., nonlinear communica-
tion systems [4] and nonlinear time series prediction [5].

Kernel methods based on reproducing kernel Hilbert space
(RKHS) [6], [7] have gained much popularity in extending
linear algorithms to nonlinear ones, due to the mathematical
simplicity of RKHS. A Mercer kernel applied to a pair of input
vectors can evaluate their inner product in the corresponding

K. Chen and Y.-F. Huang are with the Department of Electrical En-
gineering, University of Notre Dame, IN 46556, USA (e-mail: {kchen6,
huang}@nd.edu). S. Werner is with the Department of Electronic Systems,
NTNU-Norwegian University of Science and Technology, Trondheim 7491,
Norway (e-mail: stefan.werner@ntnu.no). A. Kuh is with the Department of
Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96882,
USA (e-mail: kuh@hawaii.edu). The work of S. Werner was supported, in
part, by the Research Council of Norway and Academy of Finland under
Grant 296849.

high-dimensional RKHS without the explicit knowledge of the
mapping from the original space to the RKHS. Those kernel
methods have been employed to derive kernel RLS (KRLS)
algorithm, see, e.g., [8]; kernel LMS (KLMS) algorithm [9],
[10] and kernel normalized LMS (KNLMS) algorithm [11]. In
machine learning, kernel methods have played an important
role in extending many algorithms, including the celebrated
support-vector machines [12] and kernel principal component
analysis [13]. While those algorithms are often developed
in batch/offline mode, there has also been a considerable
research on the design of kernel algorithms that work with
streaming data [8]–[11], [14]–[18]. Particularly, in the frame-
work of projections onto convex sets, a comprehensive review
of various kernel adaptive learning algorithms for online
system identification and modeling is provided in [19]. In
another direction, techniques such as Nyström method [20]
and random Fourier features approach [21] have been applied
to approximate kernel functions with the purpose of speeding
up kernel adaptive filtering algorithms; see, e.g., [22], [23].

This paper presents two nonlinear adaptive filtering algo-
rithms, namely, K-BEACON and K-SM-NLMS, derived from
the principles of set-membership filtering (SMF). The SMF
is an adaptive filtering paradigm that features data-dependent
selective update of the filter parameters [24], [25]. This feature,
which is derived from the key objective that the filtering
error is bounded in magnitude, is distinct from conventional
algorithms such as RLS and LMS that update those parameters
continuously, regardless of the benefits of such updates. In
SMF, if the filtering error is less than the presumed magnitude
bound, no update of the filter parameters is needed. Checking
on whether or not the filtering error exceeds the presumed
magnitude bound is sometimes termed innovation check in
the SMF literature, see, e.g., [26]. The innovation check
enables the SMF algorithms to update filter parameters only
when there is sufficient innovation, which is measured by the
filtering error. In this way, the updates of filter parameters
in SMF are event-triggered, as opposed to time-triggered like
those in RLS and LMS. It is important to note that while
using only a fraction of the data to update the parameter
estimates, the SMF algorithms perform comparably to their
counterparts of traditional algorithms, namely, RLS and LMS,
as measured by the steady-state mean-squared errors (MSE)
as well as speed of convergence. The SMF’s selective update
feature offers opportunities for further exploration, see, e.g.,
[27]–[29].

To date, however, most of the SMF algorithms have been
developed using linear models, see, e.g., [24], [25], [27]–[32].
Kernel set-membership NLMS algorithms have been proposed
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in [33], [34]. One of the challenges of those algorithms is
to control kernel expansion, i.e., the increase of dictionary
dimension. In [33], the approximate linear dependence (ALD)
criterion was used for dictionary sparsification, which has a
quadratic time complexity. In [34], no explicit sparsification
rule was embedded except for the innovation check, which
would likely yield excessively large dictionary. More detailed
discussions on dictionary sparsification are given in Section
II, as well as in Section V with simulation comparison.
Another kernel SM algorithm was proposed in [35], which
was derived as a nonlinear extension of [25]. Our work here
focuses on employing kernel methods for two particular SMF
algorithms, namely, BEACON [31] and SM-NLMS [30] to
derive, respectively, the K-BEACON algorithm and the K-
SM-NLMS algorithm. The main features of the proposed
algorithms are:

• Data-dependent selective update of filter parameter esti-
mates without compromising the performance in steady-
state MSE, compared to other kernel algorithms.

• Less computation, better tracking performance, and
sparser kernel expansion, thus smaller model order.

• Convergent parameter estimates sequence and asymptot-
ically upper bounded error magnitude.

• Flexible trade-off between the computational complexity
and the bound on the asymptotic filtering error.

The rest of this paper is organized as follows: Section
II provides some fundamentals on kernel adaptive filtering.
Section III presents the derivations of the K-BEACON al-
gorithm and the K-SM-NLMS algorithm, which feature an
innovation check as do all SMF algorithms. In the proposed
algorithms, when the innovation check warrants an update of
filter parameters, a coherence-based sparsification rule follows
to control the model dimension (termed coherence check).
The innovation check and coherence check together result in
less computation complexity and smaller model dimensions,
comparing to other existing algorithms. Section IV presents
convergence analysis of our proposed algorithms that shows
that the sequence of parameter estimates is convergent and the
filtering error is asymptotically upper bounded in magnitude.
The simulation results presented in Section V show that
the proposed algorithms yield sparser kernel expansion (thus
smaller, in some cases significantly smaller, dictionary dimen-
sion), lower computational cost, and comparable steady-state
MSE. More interestingly, the proposed K-BEACON algorithm
exhibits better tracking performance than the KRLS algorithm
when the system model is time-varying. Conclusions are given
in Section VI.

Notation: The set of real numbers is denoted by R. Scalars,
vectors and matrices are denoted by lowercase letters, lower-
case boldface letters and uppercase boldface letters, respec-
tively. The transpose operator is denoted by (.)T. The notation
A � B means B −A is a positive semidefinite matrix. The
norm in an Euclidean space is denoted by ||.||2 while that of an
RKHS is denoted by ||.||H. The notation A ⊆ B and A ⊂ B
means A is a subset and strict subset of B respectively. The
intersection of two sets A and B is denoted by A ∩ B.
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Fig. 1: System identification with kernel adaptive filtering. The step
xi → ui represents kernel expansion of xi.

II. KERNEL ADAPTIVE FILTERING

Let xi and xj be two points in a space X that is a
compact subspace of the L-dimensional Euclidean space RL.
A reproducing kernel, κ(xi,xj), that maps from X ×X to R
is given by [6]

κ(xi,xj) = 〈κ(.,xi), κ(.,xj)〉H,

where H is the induced reproducing kernel Hilbert space
(RKHS) and 〈., .〉H is the corresponding inner product. Here,
κ(.,xi) is a function in H called representer of evaluation at
xi. Popular kernel choices include Gaussian kernel

κ(xi,xj) = exp
(
−||xi − xj ||22

2ξ2

)
,

and Laplacian kernel

κ(xi,xj) = exp
(
−||xi − xj ||2

ξ

)
,

where ξ is the kernel bandwidth.
The problem considered here is the following: Given a set

of data pairs {(xi, yi)}ni=1, use the kernel method to find a
function h(·) of H to minimize the sum of n squared errors.
Specifically

min
h∈H

n∑
i=1

(yi − h(xi))
2
, (1)

where yi is the system output and h(xi) is the estimated
output. The representer theorem [36], [37] shows that the
function h(·) of (1) can be expressed as a kernel expansion in
terms of the available data, i.e.,

h(·) =

n∑
i=1

wiκ(·,xi). (2)

Then (1) can be rewritten as minw ||y − Kw||22, where
y = [y1 · · · yn]T, w = [w1 · · · wn]T, and K is the Gram
matrix with [Kij ] = κ(xi,xj). The weights w can be found
by solving Kw = y.

This formulation, however, is not applicable to problems
of online adaptive filtering as depicted in Fig. 1, where
data become available sequentially. For the online case, at
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time instant i, the estimation of yi (denoted by ŷi), given
{(xj , yj)}i−1

j=1

⋃
{xi} can be expressed as

ŷi = hi(xi) =

i∑
j=1

wiκ(xi,xj). (3)

According to (3), the model order of the problem grows
every time when a new data point arrives. This presents
a challenge for real-time implementation of online kernel
algorithms. Therefore, there is a need to control the model
order such that it would not keep increasing as the number of
data points increases. Specifically, in the following form

hi(xi) =

m(i)∑
j=1

wjκ(xi,xαj ), (4)

where Ji = {αj}m(i)
j=1 is a subset of {j}ij=1, the dimension

m(i) of the dictionary Di = {κ(·,xαj )}
m(i)
j=1 should stop

increasing at some point in time.
Engel et al. proposed a kernel recursive least-squares

(KRLS) algorithm [8] that adopted an approximate linear
dependence (ALD) criterion as a sparsification rule to control
the model dimension and used RLS algorithm to update the
weights. At iteration i, the ALD-based sparsification rule
suggests inserting κ(·,xi) into the dictionary only if it is not
approximately linearly dependent on the existing dictionary,
i.e.,

min
a

∥∥∥∥∥∥
m(i−1)∑
j=1

ajκ(.,xαj )− κ(.,xi)

∥∥∥∥∥∥
2

H

≥ ν, (5)

where a = [a1 a2 · · · am(i−1)] and ν is a pre-specified
threshold. The major criticism on this approach is that it
involves costly computations. To reduce the computational
complexity at each iteration, Richard et al. [11] proposed
the coherence-based sparsification rule to control the model
dimension. Specifically, at time instant i, the coherence-based
sparsification rule requires inserting κ(·,xi) into the dictionary
only if the coherence is not greater than a pre-specified
threshold µ, i.e.,

max
αj∈Ji−1

|κ(xi,xαj )| ≤ µ. (6)

It was shown that the model dimension under the coherence-
based sparsification rule remains finite as i goes to infinity.
Along this direction, there has been considerable research on
constructing and refining the dictionary in an adaptive fashion;
see, e.g., [38]–[43]. In this paper, we adopt the coherence-
based sparsification rule for dictionary construction, and focus
on the derivations and analysis of kernel SMF algorithms.

III. KERNEL SMF ALGORITHMS

In this section, we employ the kernel method with the SMF
principles to derive two kernel SMF algorithms. Consider the
following nonlinear model that characterizes the input-output
relationship

yi = f(xi) + vi, (7)

where yi ∈ R and xi ∈ RL×1 represent, respectively, the
output signal and input signal vector at time instant i. Also,
vi ∈ R denotes the model uncertainty (noise). Similarly to the
linear SMF algorithms, see, e.g., [25], [31], our goal here is
to find a set of filter parameters such that, at any time instant
i, the filter output error is upper bounded in magnitude, i.e.,

Ci =
{
w ∈ Rm(i) : (yi −wTui)

2 ≤ γ2
}
. (8)

In (8), ui is the vector consisting of kernel evaluations
between xi and each element in the current dictionary Di =

{κ(·,xαj )}
m(i)
j=1 . Specifically,

ui =
[
κ(xi,xα1) · · · κ(xi,xαm(i)

)
]T
. (9)

Also, Ci is called the constraint set and it is a degenerate
ellipsoid in the parameter space; while γ > 0 is a prescribed
error bound.

Given a sequence of data pairs {(xi, yi)}ni=1, if γ is properly
chosen so that there exists a set of parameter estimates that
satisfy (8) for all i, then that set is the intersection of all the
constraint sets, namely,

Ωn = ∩ni=1Ci = Ωn−1 ∩ Cn. (10)

The set Ωn in the above equation is termed the exact mem-
bership set. Clearly, every point in the exact membership set
is a legitimate parameter estimate, for it is consistent with the
presumed model and the received data. We note that {Ωi}ni=1

is a sequence of monotone non-increasing sets, i.e., Ωi ⊆ Ωi−j
for any 1 ≤ j ≤ i. Intuitively, if the data pairs {(xi, yi)}ni=1

are rich enough, Ωi will be small when i grows large, making
it likely that Ωi−1 ⊂ Ci, thus Ωi = Ωi−1, as such, no update on
the parameter estimates is needed at iteration i. Checking on
whether or not an update is needed constitutes the basis of the
so-called innovation check. This leads to the important feature
of data-dependent selective update for all SMF algorithms.

A. K-BEACON

Conceptually, one would prefer to obtain a simple analytical
expression of the exact membership set Ωi for all i. In
practice, however, it is usually more convenient to find some
analytically tractable outer bounding set for Ωi. Since the
constraint set, Ci, is a degenerate ellipsoid, a good candidate
for the outer bounding set is an ellipsoid. In this section,
we propose a kernel ellipsoidal-bounding SMF algorithm,
namely, Kernel Bounding Ellipsoidal Adaptive CONstrained
(K-BEACON) algorithm, which is an extension of the (linear)
BEACON algorithm [31]. In the BEACON algorithm, at each
time instant i, an ellipsoid Ei is derived to outer bound (in
some optimum sense) Ωi, and the center of the ellipsoid is used
as the parameter estimate at that time instant. The recursive
formulas of the bounding ellipsoid are derived as follows.

Let Ei−1 be an optimum bounding ellipsoid, at time instant
i−1, which outer bounds the exact membership set Ωi−1, i.e.,
Ei−1 ⊃ Ωi−1. This bounding ellipsoid is formulated as

Ei−1 ={
w ∈ Rm(i−1) : (w −wi−1)TP−1

i−1(w −wi−1) ≤ σ2
i−1

}
,

(11)
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where wi−1 is the center of the ellipsoid. The positive definite
matrix Pi−1 together with σi−1 characterize the size (i.e., the
lengths of the semi-axes) of the ellipsoid.

When the new data pair (xi, yi) becomes available at time
instant i, the algorithm will decide:

1) whether or not the new data pair (xi, yi) contains suffi-
cient innovation to warrant an update for the parameter
estimates, i.e., innovation check; and

2) whether or not κ(·,xi) should be inserted into the
existing dictionary. This is determined by the coherence-
based sparsification rule as shown in (6), namely, coher-
ence check.

In our proposed K-BEACON algorithm, the innovation
check is conducted first, for there is no need to include it in the
dictionary if the new data does not provide innovation. If the
new data pair (xi, yi) is determined to be innovative enough,
the parameter estimates will be updated. However, before
calculating the updated parameter estimates, the proposed al-
gorithm performs the coherence check to see if the dictionary’s
dimension needs to be increased, leading to two cases in the
updating of the parameter estimates: (a) the dictionary remains
the same; and (b) the dictionary dimension increases.

In both cases, updating the parameter estimates amounts to
updating the optimal bounding ellipsoids. The process can be
summarized as follows: Given Ei−1, and the constraint set Ci,
the objective is to find an optimal ellipsoid Ei that tightly outer
bounds the intersection of Ei−1 and Ci, i.e.,

Ei ⊃ Ei−1 ∩ Ci. (12)

The optimality of the bounding ellipsoid is defined here as
a tight bounding ellipsoid with minimum σ2

i (see, (11) with
subscript i). The resulting recursive formulas are summarized
in the following theorem.

Theorem 1: Let Ei−1 be the optimum bounding ellipsoid
at iteration i− 1, as formulated in (11). At time instant i, the
following recursive expressions for wi, Pi, and σ2

i defining an
ellipsoid Ei that tightly outer bounds the intersection Ei−1∩Ci
are obtained through a linear combination of (11) and (8),
specifically, Ei = Ei−1 + λiCi, with 0 ≤ λi <∞:

wi = wi−1 + λiPiuiei (13a)

P−1
i = P−1

i−1 + λiuiu
T
i (13b)

ei = yi −wT
i−1ui (13c)

σ2
i = σ2

i−1 + λiγ
2 − λie

2
i

1 + λiGi
(13d)

Gi = uT
iPi−1ui. (13e)

The optimum bounding ellipsoid is obtained by minimizing
σ2
i with respect to λi, yielding the optimum λ∗i as follows:

λ∗i =

{
1
Gi

(
|ei|
γ − 1

)
, if |ei| > γ

0, otherwise.
(14)

Proof: See Appendix A.
Notice that, in the innovation check at any iteration i,

if |ei| ≤ γ, then the optimal λ∗i = 0, which results in
wi = wi−1,Pi = Pi−1 and σ2

i = σ2
i−1. Thus no update

is needed and no coherence check ensues, either. In essence,
the data-dependent selective update feature of SMF algorithms
reduces computation cost by skipping the parameters update at
such iterations. Graphically, the data-dependent selective up-
date feature is demonstrated in Fig. 2 using a two-dimensional
example. Note that if the previous parameter estimate belongs
to the new constraint set Ci, i.e., wi−1 ∈ Ci, then Ci is
discarded and no update on the parameter estimates is needed.

Recall that the algorithm implements the coherence criterion
to check if κ(·,xi) should be inserted into the dictionary
only when the innovation check passes, which necessitates an
update for the parameter estimates. Depending on whether or
not the dimension of the dictionary increases, the algorithm
should have two cases for the weights update, which are
discussed separately below.

1) Case 1: Dimension Remains The Same: When the
coherence-based sparsification rule does not suggest inserting
κ(·,xi) into the existing dictionary, the dimension of the
dictionary remains the same. The kernelized input vector in
the constraint set Ci is expressed as

ui =
[
κ(xi,xα1

) · · · κ(xi,xαm(i)
)
]T
, (15)

where m(i) = m(i − 1). By employing the matrix inversion
lemma, the computation of Pi in (13b) can be simplified as

Pi = Pi−1 −
λ∗iPi−1uiu

T
iPi−1

1 + λ∗iGi
. (16)

Accordingly, wi in (13a) is given by

wi = wi−1 +
λ∗i eiPi−1ui
1 + λ∗iGi

. (17)

2) Case 2: Dimension Increases: When the coherence-
based sparsification rule suggests inserting κ(·,xi) into the
existing dictionary, then the kernelized input vector in the
constraint set Ci is given by

ui =
[
κ(xi,xα1

) · · · κ(xi,xαm(i−1)
) κ(xi,xαm(i)

)
]T

=
[
ũT
i uai

]T
,

(18)

where ũi =
[
κ(xi,xα1

) · · · κ(xi,xαm(i−1)
)
]T

, uai =
κ(xi,xαm(i)

), m(i) = m(i − 1) + 1, and αm(i) = i. Before
applying the recursive update formulas, the dimensions of
wi−1 and Pi−1 should be increased by one to match the
dimension of ui. Specifically, we use

w̃i−1 =
[
wT
i−1 0

]T
, (19)

and

P̃i−1 =

[
Pi−1 0m(i−1)×1

0T
m(i−1)×1 1

]
, (20)

where 0m(i−1)×1 is the zero vector with dimension m(i −
1)×1. In essence, the above equations are implemented to add
a new semi-axis to the previous optimal bounding ellipsoid,
resulting in an ellipsoid in the higher dimension. The recursive
updating formulas can now be applied to find an ellipsoid Ei
that tightly outer bounds the intersection between the enlarged
Ei−1 and Ci with minimum σ2

i . The expressions for wi, Pi
and σ2

i of Ei are given by (13) after replacing wi−1 and Pi−1

with w̃i−1 and P̃i−1 respectively.
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Algorithm 1 K-BEACON algorithm

1: Initialization
Initialize w0, P0, γ, µ
Insert κ(·,x1) into the dictionary, set m(1) = 1
Denote the dictionary as D1 = {κ(·,xα1)}

2: For i > 1, repeat
Given (xi, yi)

Compute ũi =
[
κ(xi,xα1

) · · ·κ(xi,xαm(i−1)
)
]T

Compute ei = yi −wT
i−1ũi

if |ei| > γ . Innovation check
if maxj=1,··· ,m(i−1) |κ(xi,xαj )| > µ . Case 1

m(i) = m(i− 1)
ui = ũi
Update Pi using (16)
Update wi using (17)

else . Case 2
m(i) = m(i− 1) + 1
Insert κ(·,xi) into the dictionary
Denote κ(·,xi) as κ(·,xαm(i)

)
Update Pi using (22)
Update wi using (23)

end
end

The computation of the matrix Pi in (13b) is now obtained
by substituting (18) and (20) to (13b):

P−1
i =

[
P−1
i−1 0m(i−1)×1

0T
m(i−1)×1 1

]
+λ∗i

[
ũiũ

T
i uaiũi

uaiũ
T
i u2

ai

]
.

(21)
Applying the matrix inversion lemma to (21) gives

Pi =

[
P11 p1

pT
1 r

]
, (22)

where

P11 = Pi−1 −
λ∗iPi−1ũiũ

T
iPi−1

1 + λ∗i (u
2
ai + ũT

iPi−1ũi)

p1 = − λ∗i uaiPi−1ũi
1 + λ∗i (u

2
ai + ũT

iPi−1ũi)

r =
1 + λ∗i ũ

T
iPi−1ũi

1 + λ∗i (u
2
ai + ũT

iPi−1ũi)
.

Accordingly, the parameter estimate wi in (13a) is given by

wi =

[
wi−1

0

]
+

[ λ∗
i eiPi−1ũi

1+λ∗
i (u2

ai+ũT
iPi−1ũi)

λ∗
i eiuai

1+λ∗
i (u2

ai+ũT
iPi−1ũi)

]
. (23)

The pseudocode that summarizes the K-BEACON algorithm
is shown in the table labeled as Algorithm 1.

B. K-SM-NLMS

An alternative approach to analytically track the exact
membership set Ωi is to use a bounding spheroid Si that
outer bounds Ωi and use the center of the spheroid as the
parameter estimate at time instant i. The recursive formulas
of the bounding spheroid are derived as follows.

Let Si−1 be an optimum spheroid that, at time instant i−1,
outer bounds the exact membership set Ωi−1, i.e., Si−1 ⊃
Ωi−1. This bounding spheroid can be formulated as

Si−1 = {w ∈ Rm(i−1) : ||w −wi−1||22 ≤ σ2
i−1}, (24)

where wi−1 is the center of the spheroid. Then, given Si−1

and the constraint set Ci obtained at time i, we shall find an
optimal spheroid Si that tightly outer bounds Si−1 ∩ Ci, i.e.,

Si ⊃ Si−1 ∩ Ci. (25)

The resulting recursive formulas are summarized in the fol-
lowing theorem.

Theorem 2: Let spheroid Si−1 be an optimum bounding
spheroid at iteration i−1, which is characterized by wi−1 and
σ2
i−1 as shown in (24). Given the constraint set Ci obtained at

time instant i, the recursive expressions for wi and σ2
i defining

the optimum bounding spheroid Si that tightly outer bounds
Si−1 ∩ Ci are given by

wi = wi−1 + λ∗i
eiui
uT
i ui

(26a)

ei = yi −wT
i−1ui (26b)

σ2
i = σ2

i−1 − λ∗2i
e2
i

uT
i ui

, (26c)

where λ∗i is given by

λ∗i =

{
1− γ

|ei| , if |ei| > γ

0, otherwise.
(27)

Proof: Following similar derivations shown in [30], we
see that, given a spheroid Si−1, the center wi of the new
optimum spheroid Si that outer bounds the intersection of Si−1

and Ci with the smallest radius is found by projecting wi−1

perpendicularly to the nearest hyper-plane specified by Ci.
Note that if |ei| ≤ γ for any i, then λ∗i = 0, which results

in wi = wi−1 and σ2
i = σ2

i−1 according to (26). In other
words, if |ei| ≤ γ holds, there is no update on the parameter
estimate and the computation of (26) is not required. The data-
dependent selective update feature is illustrated in Fig. 3 using
a two-dimensional example.

Similarly to the K-BEACON algorithm, we implement the
coherence criterion to check if κ(·,xi) should be inserted into
the dictionary only when the new data pair warrants an update
for the parameter estimates. Again, depending on whether or
not the dimension of the dictionary increases, there are two
cases for the parameter update.

1) Case 1: Dimension Remains The Same: When the
coherence-based sparsification rule does not suggest inserting
κ(·,xi) into the existing dictionary, the dimension remains the
same, i.e.,

ui =
[
κ(xi,xα1) · · · κ(xi,xαm(i)

)
]T
,

where m(i) = m(i− 1). The parameter estimates are updated
according to (26a).
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(a) (b)

Fig. 2: Data-dependent selective update of K-BEACON. (a) The constraint set C2 is innovative and yields an update; (b) The constraint set
C2 is not innovative and does not yield an update.

(a) (b)

Fig. 3: Data-dependent selective update of K-SM-NLMS. (a) The constraint set C2 is innovative and yields an update; (b) The constraint set
C2 is not innovative and does not yield an update.

2) Case 2: Dimension Increases: When the coherence-
based sparsification rule suggests inserting κ(·,xi) into the ex-
isting dictionary, then the kernelized input vector is expressed
as

ui =
[
κ(xi,xα1) · · · κ(xi,xαm(i−1)

) κ(xi,xαm(i)
)
]T

=
[
ũT
i uai

]T
,

(28)

where m(i) = m(i − 1) + 1 and αm(i) = i. The dimension
of the weight wi−1 should also increase by one to match the
dimension of ui, i.e.,

w̃i−1 =
[
wT
i−1 0

]T
. (29)

In this case, the expression of wi of Si is given by (26) after
replacing wi−1 with w̃i−1, i.e.,

wi =

[
wi−1

0

]
+

λ∗i ei
ũT
i ũi + u2

ai

[
ũi
uai

]
. (30)

The pseudocode that summarizes the K-SM-NLMS algorithm
is shown in the table labeled as Algorithm 2.

C. Further Interpretations of K-BEACON and K-SM-NLMS

Examining the recursive formulas derived in the previous
sections, one can see that the K-BEACON algorithm can
be viewed as a KRLS [8] algorithm with a data-dependent
forgetting factor, while the K-SM-NLMS algorithm can be
viewed as a KNLMS [11] algorithm with a data-dependent
step size. This can also be shown by solving bounded error
constrained optimization problems as follows.

Similarly to the linear BEACON algorithm [31], when the
dictionary dimension does not increase at iteration i, the
recursive formula of wi of K-BEACON can be derived from
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Algorithm 2 K-SM-NLMS algorithm

1: Initialization
Initialize w0, γ, µ
Insert κ(·,x1) into the dictionary, set m(1) = 1
Denote the dictionary as D1 = {κ(·,xα1)}

2: For i > 1, repeat
Given (xi, yi)

Compute ũi =
[
κ(xi,xα1

) · · ·κ(xi,xαm(i−1)
)
]T

Compute ei = yi −wT
i−1ũi

if |ei| > γ . Innovation check
if maxj=1,··· ,m(i−1) |κ(xi,xαj )| > µ . Case 1

m(i) = m(i− 1)
ui = ũi
Update wi using (26a)

else . Case 2
m(i) = m(i− 1) + 1
Insert κ(·,xi) into the dictionary
Denote κ(·,xi) as κ(·,xαm(i)

)
Update wi using (30)

end
end

solving the following constrained optimization problem:

min
wi

(wi −wi−1)
T
P−1
i−1 (wi −wi−1)− σ2

i−1

s.t. (yi −wT
i ui)

2 ≤ γ2.
(31)

When the dictionary dimension increases by one at iteration
i, the recursive formula of wi of K-BEACON can be derived
from solving (31) after replacing wi−1 and Pi−1 with w̃i−1

and P̃i−1 as shown in (19) and (20) respectively. The objective
function in (31) can be re-written as

(wi −wi−1)
T
P−1
i−1 (wi −wi−1)− σ2

i−1

=

(
wi −

[
w0

0(m(i)−1)×1

])T

[
P0 01×(m(i)−1)

0(m(i)−1)×1 I(m(i)−1)×(m(i)−1)

]−1

(
wi −

[
w0

0(m(i)−1)×1

])
− σ2

0

+

i−1∑
j=1

λ∗j

((
yj −wT

i

[
uj

0(m(i)−m(j))×1

])2

− γ2

)
.

(32)

The first term in (32) represents the confidence in the initial
guess and the last term is the weighted sum of the filtering
errors with all the previous data points. It is clear from (32)
that the objective of K-BEACON is to find the estimate wi to
minimize the weighted sum of all previous estimation errors,
with λ∗j as the weighting factor for each previous time instant
1 ≤ j ≤ i − 1. Thus, if many of the λ∗j ’s are zero (due
to selective update), the filtering errors of the corresponding
time instants are not included in the weighted sum. This can
be interpreted as K-BEACON algorithm offering an optimal
way (λ∗j is optimized at each iteration j) to forget previous
data. This is in contrast to RLS for which the forgetting factor

is set a priori as a constant, independent of the received data.
As will be seen later in Section V, K-BEACON exhibits better
tracking properties than KRLS.

As for the recursive formulas of wi in K-SM-NLMS, it
can be derived from the following constrained optimization
problem [30], [34] when dictionary dimension at iteration i
does not increase:

min
wi

||wi −wi−1||2

s.t. (yi −wT
i ui)

2 ≤ γ2,
(33)

where the objective function is based on the minimal dis-
turbance principle [44] with the constraint that the filtering
error is bounded. When the dictionary dimension at iteration i
increases by one, wi−1 in (33) should be replaced with w̃i−1.

One can see from (31) and (33) that if the previous
parameter estimate lies in the new constraint set Ci, i.e.,
(yi − wT

i−1ui)
2 ≤ γ2, then the minimum of the objective

function for both algorithms is obtained by not updating
the parameter estimates, i.e., wi = wi−1. Otherwise, the
parameter estimates will be updated to satisfy the constraint,
i.e., the a posteriori error is upper bounded by γ in magnitude
in both K-BEACON algorithm and K-SM-NLMS algorithm.

Observation: The a posteriori error defined as δi =
yi −wT

i ui in both K-BEACON algorithm and K-SM-NLMS
algorithm is always less than or equal to the error bound γ in
magnitude. Specifically,

|δi| =

{
γ, if |ei| > γ

|ei|, if |ei| ≤ γ.
(34)

Proof: We prove the results of K-BEACON algorithm.
The proof of K-SM-NLMS follows similarly.

In the case when |ei| > γ and dimension remains the same
at iteration i, from the recursive update equation (17), we have

wT
i ui = wT

i−1ui +
λ∗iu

T
iPi−1uiei

1 + λ∗iGi

= wT
i−1ui +

λ∗iGi
1 + λ∗iGi

ei.

In the case when |ei| > γ and dimension increases by one at
iteration i, from the recursive update equation (23), we have

wT
i ui = wT

i−1ũi +
λ∗i ũ

T
iPi−1ũiei + λ∗i u

2
aiei

1 + λ∗i (u
2
ai + ũT

iPi−1ũi)

= wT
i−1ũi +

λ∗iGi
1 + λ∗iGi

ei.

Hence,

δi = yi −wT
i ui = ei −

λ∗iGi
1 + λ∗iGi

ei =
ei
|ei|

γ,

where the last equality comes from the optimal assignment
of λ∗i given by (14). In the case when |ei| ≤ γ, there is no
update, i.e., wi = wi−1, and δi = ei.
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IV. CONVERGENCE ANALYSIS

In this section, convergence properties of the proposed
algorithms are examined. We show that for both K-BEACON
algorithm and K-SM-NLMS algorithm, if there exists at least
one ŵ that satisfies the constraint set for all i with a given
γ, the sequence of parameter estimates is convergent, and the
magnitude of filtering error is asymptotically upper bounded
by γ.

Theorem 3: Consider a sequence of data pairs {(xi, yi)}∞i=1

generated by the nonlinear model (7). Denote by m, {ui}∞i=1

{wi}∞i=1 and {ei}∞i=1, respectively, the final dictionary di-
mension, the sequence of kernelized inputs, the sequence
of parameter estimates and the sequence of filtering errors
generated by either the K-BEACON algorithm or the K-SM-
NLMS algorithm. Define

ūi =

[
ui

0(m−m(i))×1

]
,

w̄i =

[
wi

0(m−m(i))×1

]
,

and

Ω∞ = ∩∞i=1{w ∈ Rm :
(
yi −wTūi

)2 ≤ γ2}.

If Ω∞ is non-empty with a prescribed error bound γ > 0, then
limi→∞ w̄i = w̄∞. Further, if ||ūi||22 ≤ umax holds for all i,
then lim supi→∞ |ei| ≤ γ.

Proof: See Appendix B.
Note that, for both algorithms, the innovation check is per-

formed by comparing the filtering error to γ to determine if the
algorithm should update the parameter estimate. The choice of
γ thus offers a flexible trade-off between the asymptotic upper
bound of the filtering error magnitude and update frequency.
In general, a larger γ requires less frequent update and smaller
dimension of the dictionary, hence less computation cost.

The size of the exact membership set is also studied here
under different choices of γ. This analysis extends that of
set-membership-based system identification of linear models
presented in [45]. Formally, we need the following definitions
to establish the convergence of the exact membership set.

Definition 1: (Tightness of the error bound γ). Under the
setting stated in Theorem 3, if there exists a target parameter
ŵ ∈ Ω∞, the error bound γ is said to be tight for ŵ if the
filtering errors with filter parameter ŵ are upper bounded by
γ in magnitude, and the filtering errors achieve −γ and γ with
non-zero probability, i.e.,

−γ ≤ yi − ŵTūi ≤ γ,

Prob
{
−γ ≤ yi − ŵTūi ≤ −γ + ε

}
≥ p,

and
Prob

{
γ − ε ≤ yi − ŵTūi ≤ γ

}
≥ p

hold for any ε > 0 and some p ∈ (0, 1] and for all i.
Definition 2: (Persistent excitation). The kernelized input

vector ūi is said to be persistently exciting if there exist 0 <
qα < qβ <∞, and l > 0 such that

q2
αI �

1

l

i0+l∑
i=i0+1

ūiū
T
i � q2

βI

for all i0.
Definition 3: (Diameter of membership set). The diameter

of the membership set is defined to be the longest distance
between any two points in the exact membership set, i.e.,

L(Ωi) = sup
w̄i,w̄j∈Ωi

||w̄i − w̄j ||2.

Theorem 4: With the same formulation as in Theorem 3, if γ
is a tight bound for a target parameter ŵ, and ūi is persistently
exciting (as defined in Definitions 1 and 2, respectively), then
the diameter sequence of the exact membership set converges
to zero with probability one (w.p.1), i.e.,

Prob
{

lim
i→∞

L(Ωi) = 0
}

= 1. (35)

Otherwise, if the error bound is set to be γ =
√
γ′2 + b2,

where γ′ is the tight bound and the over-estimated part b is
an arbitrary positive real number, then

Prob
{

lim
i→∞

L(Ωi) ≤
2b

qα

}
= 1. (36)

Proof: See Appendix C.
The above theorem states that the sequence of the exact
membership sets converges to a point with probability one
under persistent excitation and tight error bound assumptions.
When the error bound is over-estimated, then the sequence
of the diameters of the exact membership sets converges to
a value whose upper bound increases linearly with the over-
estimated part with probability one.

V. SIMULATIONS

This section presents three simulation examples to demon-
strate the benefits of the two proposed kernel SMF algo-
rithms, and to compare their performance with that of KRLS
algorithm [8], that of KNLMS algorithm [11] and that of
NLR-SM-NLMS algorithm [34]. The first example shows our
proposed K-BEACON algorithm and K-SM-NLMS algorithm
compare favorably to KRLS algorithm and KNLMS algorithm,
respectively, in terms of computational costs while achieving
comparable steady state prediction error. It also shows that the
error bounds of our proposed algorithms offer flexible trade-
off between steady state prediction error and computational
costs. The second example demonstrates the K-BEACON al-
gorithm’s advantage in terms of tracking time varying systems,
compared with the KRLS algorithm. The third example shows
the advantage of embedding the coherence criterion in the
K-SM-NLMS algorithm. Comparing to the NLR-SM-NLMS
algorithm, which did not include coherence check in con-
structing its dictionary, our proposed K-SM-NLMS algorithm
achieves more efficient dictionary sparsification.

A. Example 1

Consider the discrete-time nonlinear dynamical system stud-
ied in [11]: 

si = 1.1 · exp(−|si−1|) + xi,

di = s2
i ,

yi = di + vi,
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where xi is the system input, di is the desired system
output, and yi is the observed output. The additive noise
vi, i = 1, 2, · · · , is a sequence of independent and identi-
cally distributed (i.i.d.) random variables distributed according
to N (0, 1). For each i, the input xi is sampled from an
i.i.d. Gaussian random sequence with marginal distribution
N (0, 0.252). The initial condition is set as s0 = 0.5. In this
example, SNR = −4.0 dB, which is defined as the ratio of the
power of desired output di to that of additive noise vi. The
objective here is to construct an estimated model of the form
d̂i = hi(xi). A Laplacian kernel κ(xi, xj) = exp(− ||xi−xj ||20.35 )
is used in this example. The threshold µ in the coherence cri-
terion is set to be 0.3. The experimental setting and parameters
of the KNLMS algorithm and the KRLS algorithm are set in
this paper to be the same as those in [11]. The details on
how the parameters are set, such as kernel bandwidth, the
step size η and the regularization parameter ε of the KNLMS
algorithm, can be also found in [11]. The same step size η in
the KNLMS algorithm is also used to upper bound the step size
λ∗ of the K-SM-NLMS algorithm and the same regularization
parameter ε in the KNLMS algorithm is also used in the
K-SM-NLMS and K-BEACON algorithms. In order to find
the error bound γ (ranging from 0 to 3 with increment of
0.01) for K-BEACON algorithm and K-SM-NLMS algorithm,
preliminary experiments were conducted following the same
approaches used in [11]: Based on 10 independent runs of
3000-sample sequences, and the error bounds were selected
to minimize the mean-square prediction error over the last
500 samples.

Fig. 4 shows the learning curves averaged over 200 inde-
pendent runs with γ = 0.91 in the K-BEACON algorithm
and γ = 0.88 in the K-SM-NLMS algorithm. To reduce the
fluctuation of the learning curves, the MSE is computed with
a moving average window that averages over 20 previous
consecutive iterations in each run. Table I summarizes the
simulation setup and performance of each algorithm obtained
from averaging 200 independent 10,000-iteration runs. The
normalized mean-square prediction error (NMSE) over the last
5,000 iterations was computed as

NMSE = E

[∑10000
i=5001(di − hi−1(xi))

2∑10000
i=5001 d

2
i

]
.

Update frequency of K-SM-NLMS algorithm and K-
BEACON algorithm is presented as a percentage of iterations
(averaged over 200 independent runs). The dictionary dimen-
sion of each algorithm is also averaged over 200 runs. In
this particular example, K-BEACON with γ = 0.91 yields
a dimension smaller than that of KRLS and a significantly
less frequent parameter updates while achieving a comparable
steady-state MSE. Similar observation can be made for the
comparison of K-SM-NLMS and KNLMS. The performance
of K-BEACON and K-SM-NLMS algorithm is shown with
different choices of the error bound γ. A larger γ yields larger
MSE but results in less frequent update and smaller dimension
of the dictionary, indicating a trade-off between the steady-
state error and update frequency.
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Fig. 4: Learning curves averaged over 200 independent runs of
Example 1.

Table II shows the computation cost of each algorithm,
measured by the number of real multiplications and the
number of real additions per iteration for each algorithm,
where m denotes the dictionary dimension at that iteration.
The computation cost of KRLS algorithm is O(m2), while
that of K-BEACON algorithm is only a fraction of O(m2),
due to its selective update feature which makes the algorithm
skip updates whenever the data pairs are judged to be not
innovative. Similarly, the computational cost of KNLMS is
O(m), while that of K-SM-NLMS is only a fraction of that,
and the fraction is directly related to the percentage of updates.

B. Example 2

Consider the following time-varying nonlinear system
di = 0.1 · sin(di−1π) + 0.4 · cos(di−2π), i < 5, 000,

di = 0.9 · sin(di−1π) + 0.15 · cos(di−2π), i ≥ 5, 000,

yi = di + vi,

where di is the desired system output and the initial condition
is set to be d0 = d1 = 0.5. At each iteration, the system output
is corrupted by an additive noise vi. {vi} is a sequence of i.i.d.
random variables uniformly distributed in U(−1, 1). The SNR
in this case is −0.8 dB. The algorithms are implemented to
construct an approximate model of the form d̂i = hi(xi) with
xi = [yi−1 yi−2]T.

Table III summarizes the simulation setup and performance
of each algorithm. The NMSE is computed by averaging over
the last 2,000 iterations of each period, before and after system
change, and averaging over 200 independent runs. Update
frequency of K-BEACON algorithm in Table III is calculated
as a percentage of iterations (averaged over 200 independent
runs) in each period.

Fig. 5 shows the learning curves averaged over 200 indepen-
dent runs. It is well known that, for RLS algorithms, a larger
forgetting factor yields a smaller steady-state error but worse



10

TABLE I: Simulation setup and performance of Example 1.

Algorithm Parameter Dimension NMSE Update frequency
KNLMS [11] µ = 0.3, ε = 0.0009, η = 0.01 4.16 0.200 100%

KRLS [8] ν = 0.7 6.85 0.172 100%
K-SM-NLMS µ = 0.3, γ = 0.88 4.02 0.201 39.8%

µ = 0.3, γ = 1.88 3.61 0.214 7.4%
K-BEACON µ = 0.3, γ = 0.91 4.02 0.183 38.1%

µ = 0.3, γ = 1.91 3.60 0.207 7.0%

TABLE II: Computation cost per iteration.

Algorithm × +

KNLMS [11] 3m+O(1) 3m+O(1)
KRLS [8] 4m2 + 4m+O(1) 4m2 + 4m+O(1)

K-SM-NLMS No Update m+O(1) m+O(1)
K-SM-NLMS Update 3m+O(1) 3m+O(1)

K-BEACON No Update m+O(1) m+O(1)
K-BEACON Update 3m2 + 3m+O(1) 2m2 + 3m+O(1)

tracking performance. Comparing to the KRLS algorithm with
different forgetting factors, β, K-BEACON algorithm shows
comparable MSE and good tracking performance. In fact, K-
BEACON has better tracking performance than KRLS for the
forgetting factors chosen, while achieving comparable NMSE
performance. Although KRLS with forgetting factor β = 1
performs slightly better in terms of NMSE before system
change, its tracking performance after system change is much
worse than K-BEACON algorithm’s. In addition, compared
with KRLS with forgetting factor β = 0.999, K-BEACON
algorithm yields smaller MSE both before and after system
change as well as faster tracking performance.

The better tracking performance of the K-BEACON algo-
rithm can be explained by understanding that the optimal com-
bining parameter, λ∗i , serves as a data-dependent forgetting
factor, see, e.g., (14) and (32). From (32), we can see easily
that the influence of past data is much reduced because the
optimal λ∗i = 0 for a large number of previous iterations. This
enables the K-BEACON algorithm to track (adapt to) system
changes quickly without compromising the MSE performance.
In comparison, the forgetting factor in KRLS needs to be set
a priori, independent of the data received.

C. Example 3

In this example, we compare the performance of our pro-
posed K-SM-NLMS algorithm with that of the NLR-SM-
KNLMS algorithm proposed in [34] and that of the KNLMS
algorithm proposed in [11]. Note that in the NLR-SM-KNLMS
algorithm, only innovation check is used to construct its
dictionary and the maximum dictionary length is fixed by a
pre-specified number. At each iteration after the dictionary
length achieves the maximum number, if the data point is
innovative, this data point is added to replace the oldest
element in the dictionary, regardless of its relation with those
elements that already exist in the dictionary. In our proposed
K-SM-NLMS algorithm, adding the coherence criterion results
in more efficient dictionary with smaller dimensions.
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Fig. 5: Learning curves averaged over 200 independent runs of
Example 2.

Consider the nonlinear problem studied in [34]

{
di = di−1

1+d2i−1
+ x3

i−1,

yi = di + vi,

where the input xi is sampled from an i.i.d. Gaussian ran-
dom sequence with a marginal distribution N (0, 0.152). The
output signal yi is corrupted by a zero-mean white Gaussian
noise with variance σ2

v = 10−4. Following the same settings
presented in [34], a Gaussian kernel with bandwidth 0.025
is employed for both algorithms and the maximum dictionary
length for the NLR-SM-KNLMS algorithm is set at 16. Setting
γ =

√
10σv as used in [34] yields the learning curves (aver-

aged over 200 independent runs) shown in Fig. 6. The step size
η and the regularization parameter ε of the KNLMS algorithm
were determined by grid search. Based on 10 independent runs
of 1000-sample sequences, they were selected to minimize the
mean-square prediction error over the last 200 samples. Table
IV summarizes the setup and performance of each algorithm.
The NMSE is computed by averaging over the last 1,000
iterations. This example clearly demonstrates that the K-SM-
NLMS algorithm compares favorably to both KNLMS and
NLR-SM-KNLMS algorithms, for it yields smaller dictionary
dimension and less update frequency while achieving smaller
NMSE.



11

TABLE III: Simulation setup and performance of Example 2.

Algorithm Parameter Dimension NMSE1 Update frequency1 NMSE2 Update frequency2
KRLS [8] ν = 0.5, β = 1 30.1 0.099 100% 0.093 100%

ν = 0.5, β = 0.999 30.1 0.120 100% 0.030 100%
K-BEACON µ = 0.5, γ = 0.96 24.7 0.116 7.3% 0.028 7.7%

MSE1 and Update frequency1 (MSE2 and Update frequency2) are evaluated in the period before (after) system change.

TABLE IV: Simulation setup and performance of Example 3.

Algorithm Parameter Dimension NMSE Update frequency
KNLMS [11] µ = 0.1, ε = 0.2, η = 0.35 15.2 0.369 100%

NLR-SM-KNLMS [34] dimension limit = 16, γ = 0.0316 16.0 0.462 51.1%
K-SM-NLMS µ = 0.1, γ = 0.0316 14.7 0.351 45.0%
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Fig. 6: Learning curves averaged over 200 independent runs of
Example 3.

VI. CONCLUSION

This paper has presented two nonlinear adaptive filter-
ing algorithms derived from the SMF principles and kernel
method. In addition to the coherence-based sparsification rule
that controls the size of kernel expansion, the data-dependent
selective update property embedded in the SMF framework
results in a sparser model and, more importantly, much less
frequent updates of the parameter estimates. The selective
update property makes the proposed kernel SMF algorithms
more effective in terms of less computation cost and faster
tracking performance. In the convergence analysis, it is shown
that the sequences of parameter estimates of our proposed
algorithms are convergent, and the filtering errors are asymp-
totically upper bounded in magnitude. The error bound of
our proposed algorithm offers a flexible trade-off between the
steady-state performance and computational costs, which is
directly related to the parameter update frequency. Simulation
results showed that our proposed kernel algorithms achieve
comparable steady-state MSE to that of KRLS and KNLMS
algorithms with only a small fraction of parameter updates.
Further, the proposed algorithms exhibit good tracking perfor-
mance due to its selective update feature.

APPENDIX A
PROOF OF THEOREM 1

Linear combination of (11) and (8) yields the bounding
ellipsoid at time instant i, i.e.,

Ei = {w : (w −wi)
TP−1

i (w −wi) ≤ σ2
i }

= {w : (w −wi−1)TP−1
i−1(w −wi−1)

+ λi(yi −wTui)
2 ≤ σ2

i−1 + λiγ
2}.

(37)

The following relations are directly obtained via identification-
by-terms of the expanded expressions in (37)

P−1
i = P−1

i−1 + λiuiu
T
i (38)

wi = Pi(P
−1
i−1wi−1 + λiyiui) (39)

σ2
i = σ2

i−1 + λiγ
2
i − λiy2

i

−wT
i−1P

−1
i−1wi−1 + wT

iP
−1
i wi. (40)

Pre-multiplying (38) with Pi and rearranging the terms yield
the relation PiP

−1
i−1 = I−λiPiuiuT

i , which, after substitution
in (39) together with (13c), gives (13a).

By employing the matrix inversion lemma, the computation
of Pi can be expressed as

Pi = Pi−1 −
λiPi−1uiu

T
iPi−1

1 + λiGi
, (41)

which combined with (13a) yields:

wi = wi−1 +
λiPi−1uiei
1 + λiGi

. (42)

Equation (13d) can be established by substituting (38) and (42)
into (40).

We now prove (14). Since σ2
i−1 and γ are fixed, minimizing

σ2
i is equivalent to minimizing the following

Ji = λi −
ciλi

1 + λiGi
,

where ci =
e2i
γ2 . The first derivative of Ji over λi is

dJi
dλi

=
(1 + λiGi)

2 − ci
(1 + λiGi)2

.

The second derivative is given by

d2Ji
dλ2

i

=
2ciGi(1 + λiGi)

(1 + λiGi)4
.

Since Pi−1 is positive definite, Gi = uT
iPi−1ui > 0 and the

second derivative is positive. Recall that λi is non-negative, if
ci > 1, then the first derivative achieves zero at λ∗i = 1

Gi
( |ei|γ −

1); if ci ≤ 1, Ji is minimized at λ∗i = 0.
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APPENDIX B
PROOF OF THEOREM 3

We first show that the sequence {σ2
i }∞i=1 is convergent if

Ω∞ is non-empty. Note that this sequence is non-increasing.
It suffices to prove that it is lower bounded. Since Ω∞ is non-
empty, there exists a large σ2

0 such that the initial E0 and S0

include Ω∞, i.e., Ω∞ ⊆ E0 and Ω∞ ⊆ S0. Since Ω∞ ⊆ Ci for
all i, Ei = Ei−1 ∩ Ci and Si = Si−1 ∩ Ci, then Ω∞ ⊆ E∞ and
Ω∞ ⊆ S∞, which implies that σ2

i ≥ 0 for all i. Note that the
difference σ2

i − σ2
i−1 does not depend on the initial value σ2

0

for all i > 1, which implies that {σ2
i }∞i=1 is convergent with

any arbitrary σ2
0 .

Now we use the result that {σ2
i }∞i=1 is a Cauchy sequence to

prove that {w̄i}∞i=1 is also a Cauchy sequence. We prove the
results of K-BEACON algorithm. The proof of K-SM-NLMS
follows similarly.

Consider the subsequence where every iteration in the
subsequence is an updating iteration. For every positive real
number ε, there is a positive integer N such that for all
m,n > N , |σ2

m − σ2
n| < ε. Without loss of generality, let

m > n in the sequel, we have

|σ2
m − σ2

n| =
m∑

i=n+1

(
σ2
i−1 − σ2

i

)
=

m∑
i=n+1

(
λ∗i e

2
i

1 + λ∗iGi
− λ∗i γ2

)

=

m∑
i=n+1

(|ei| − γ)2

Gi
,

(43)

where the last equality comes from assigning the optimal λ∗i
given by (14). Define

P̄i =

[
Pi 0m(i)×(m−m(i))

0(m−m(i))×m(i) 0(m−m(i))×(m−m(i))

]
.

According to (17), it can be verified that

w̄i = w̄i−1 +
λ∗i eiP̄i−1ūi
1 + λ∗iGi

.

Therefore,

||w̄m − w̄n||22 ≤
m∑

i=n+1

||w̄i − w̄i−1||22

=

m∑
i=n+1

λ∗2i e
2
i ū

T
i P̄i−1P̄i−1ūi

(1 + λ∗iGi)
2

≤
m∑

i=n+1

λ∗2i e
2
i ū

T
i P̄i−1ūi

(1 + λ∗iGi)
2

=

m∑
i=n+1

(|ei| − γ)2

Gi
< ε,

(44)

where the last equality comes from assigning the optimal λ∗i
given by (14) and the fact that Gi = ūT

i P̄i−1ūi.
Now we prove that lim supi→∞ |ei| ≤ γ if ||ūi||22 ≤ umax

holds for all i. Suppose lim supi→∞ |ei| ≤ γ is false, then
there exists a positive real number ε such that

lim sup
i→∞

|ei| = γ + ε,

which implies there are infinitely many i such that (|ei|−γ) >
ε/c, for some c > 1. Consider the {σ2

i }∞i=1 sequence,

σ2
i = σ2

i−1 −
(|ei| − γ)2

Gi
< σ2

i−1 −
ε2

c2umax
,

which implies that σ2
N < 0 for some N large enough,

regardless of what initial value σ2
0 is chosen. This contradicts

the fact that there exists a large initial value σ2
0 such that

σ2
i ≥ 0 for all i.

APPENDIX C
PROOF OF THEOREM 4

According to Definition 1, ŵ is a point in the exact
membership set. Denote by w̌ another arbitrary fixed point
such that w̌ 6= ŵ. Define

zk = max

(
1

l

l∑
i=1

(yi − w̌Tūi)
2,

1

l

2l∑
i=l+1

(yi − w̌Tūi)
2, · · · ,

1

l

kl∑
i=(k−1)l+1

(yi − w̌Tūi)
2

 .

(45)

We first show that the membership set excludes w̌ in prob-
ability, i.e., we show that Prob{zk > γ2} → 1 as k → ∞.
Suppose

Prob

1

l

j+l∑
i=j+1

(yi − w̌Tūi)
2 ≤ γ2

 ≤ 1− p (46)

holds for some p ∈ (0, 1], then we have

Prob
{
zk > γ2

}
= 1− Prob

{
zk ≤ γ2

}
= 1−

k−1∏
t=0

Prob

1

l

j+l∑
i=j+1

(yi − w̌Tūi)
2 ≤ γ2


= 1− (1− p)k → 1 as k →∞

In the sequel, it suffices to prove (46). Denote by ∆i the filter-
ing error at iteration i with parameter ŵ, i.e., ∆i = yi−ŵTūi,
then

1

l

j+l∑
i=j+1

(yi − w̌Tūi)
2

=
1

l

j+l∑
i=j+1

(yi − ŵTūi + ŵTūi − w̌Tūi)
2

=
1

l

j+l∑
i=j+1

(∆i + w̃Tūi)
2

=

j+l∑
i=j+1

(
1

l
(w̃Tūi)

2 +
1

l
∆2
i +

2

l
w̃Tūi∆i

)
,

(47)

where w̃ = ŵ− w̌ 6= 0. Since ūi is persistently exciting, see
Definition 2, then

1

l

j+l∑
i=j+1

(w̃Tūi)
2 ≥ q2

α||w̃||22 > 0. (48)
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Recall that in Definition 1, ∆i achieves the error bound γ and
−γ with non-zero probability, and there is non-zero probability
that sgn(∆i) = sgn(w̃Tūi), hence

Prob

1

l

j+l∑
i=j+1

(w̃Tūi)
2 ≥ γ2 − 1

l

j+l∑
i=j+1

∆2
i

and
j+l∑
i=j+1

w̃Tūi∆i > 0

 ≥ p > 0,

(49)

from some p ∈ (0, 1]. Then we have

Prob

1

l

j+l∑
i=j+1

(w̃Tūi)
2 >

γ2 −
j+l∑
i=j+1

(
1

l
∆2
i +

2

l
w̃Tūi∆i

) ≥ p > 0.

(50)

Rearranging the terms in (50) and combining (47) yields

Prob

1

l

j+l∑
i=j+1

(yi − w̌Tūi)
2 > γ2

 ≥ p,
which completes the proof of (46).

Now, the membership set excludes any w̌ 6= ŵ in probabil-
ity implies that L(Ωi) converges to zero in probability. There-
fore, there is at least one subsequence of L(Ωi) converges to
zero w.p.1. Further, since the sequence L(Ωi) itself is non-
increasing, it implies that L(Ωi) converges to zero w.p.1.

In the case where γ =
√
γ′2 + b2 is the pre-specified error

bound, where γ′ is a tight bound for ŵ. Denote by w̌ another
fixed point such that ||w̌− ŵ||2 > b

qα
. Define zk as shown in

(45). To show that the exact membership set excludes w̌ in
probability, it can be shown that Prob{zk > γ′2 + b2} → 1 as
k →∞. Therefore, the diameter sequence of the membership
set with γ =

√
γ′2 + b2 converges to a value not greater than

2b
qα

w.p.1.
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