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Abstract— Nonlinear model predictive control (NMPC) is one
of the few methods that can handle multivariate nonlinear con-
trol problems while accounting for process constraints. Many
dynamic models are however affected by significant stochastic
uncertainties that can lead to closed-loop performance problems
and infeasibility issues. In this paper we propose a novel
stochastic NMPC (SNMPC) algorithm to optimize a probabilis-
tic objective while adhering chance constraints for feasibility in
which only noisy measurements are observed at each sampling
time. The system predictions are assumed to be both affected by
parametric and additive stochastic uncertainties. In particular,
we use polynomial chaos expansions (PCE) to expand the
random variables of the uncertainties. These are updated using
a PCE nonlinear state estimator and exploited in the SNMPC
formulation. The SNMPC scheme was verified on a complex
polymerization semi-batch reactor case study.

I. INTRODUCTION

Batch processes play a vital role for the manufacture
of high value products in many sectors of the chemical
industry, such as pharmaceuticals, polymers, biotechnology,
and food. The main reason for the continued use of batch
processes is their inherent flexibility to produce multiple
products and deal with variations in feedstock, product spec-
ifications, and market demand. The control of batch reactors
is often challenging due to their frequently highly nonlinear
behaviour and operation at states that are not steady states.
Therefore, there is an increased acceptance in industry for the
application of nonlinear model predictive control (NMPC) to
address these challenges [1].

Model predictive control (MPC) is an advanced control
method that has been employed to a significant extent in
industry due to its ability to deal with multivariate plants and
process constraints. MPC solves an optimal control problem
(OCP) based on an explicit dynamic model at each sampling
time to determine a finite sequence of control actions [2].
Due to various uncertainties however the dynamic system
behaviour may be significantly different from the predicted
behaviour of the dynamic model. This may lead to con-
straint violations and a worse control performance. If we
assume the uncertainties to lie in a bounded set, robust MPC
(RMPC) methods are available to deal with this problem
[3]. For robust NMPC, min-max NMPC [4] and tube-based
NMPC [5] have been proposed among others. While these
approaches can give stability and performance guarantees in
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the worst-case, the probability of occurrence of the worst-
case realization may be very small and hence lead to a too
conservative solution [6].

Alternatively stochastic MPC (SMPC) may be employed,
for which the uncertainties are given by known probability
density functions (pdf). Constraints and objective in this
context are addressed in a probabilistic sense, allowing for
a pre-defined level of constraint violations in probability
and thereby alleviating the previously mentioned problem
by trading-off risk with closed-loop performance [6]. SMPC
has been largely focused on linear systems [7], such as
tube-based SMPC [8], scenario-based SMPC [9] and SMPC
using affine-parametrizations [10], while stochastic NMPC
(SNMPC) has received relatively little attention.

The main difficulty of SNMPC is propagating continuous
stochastic uncertainties through nonlinear equations with-
out being prohibitively computationally expensive. Several
methods have been proposed for approximating this case,
some of which have been successfully applied to formulate
SNMPC approaches: Unscented transformations [11], Poly-
nomial chaos expansions (PCE) [12], Quasi Monte Carlo
(MC) [13], Markov Chain MC [14], Gaussian processes [15],
Gaussian mixtures (GM) [16], Fokker-Planck [17], lineariza-
tion [18], and particle filters [19]. The control of systems
with discrete stochastic uncertainties has been addressed in
[20]. Most SNMPC work is based on full state feedback,
but there are several algorithms that have been proposed for
output feedback. The unscented transformation work in [11]
assumes feedback from the Unscented Kalman filter, in [21]
a probabilistic high-gain observer is proposed to be jointly
used with a continuous-time SNMPC formulation and lastly
[19] use the particle filter equations for both state estimation
and uncertainty propagation.

PCE has received a lot of attention for SNMPC, which
can be seen as a sampling-based MPC algorithm to approx-
imate both probabilistic constraints and objectives. In [12]
PCEs are used to approximate objectives and constraints
in expectation. The work by [22] extends the approach to
include chance constraints by using Chebyshev’s inequality,
while in [23] the chance constraints are instead approximated
using MC sampling. This leads to computationally more ex-
pensive, but less conservative approximations of the chance
constraints. PCE are only able to represent time-invariant un-
certainties, which causes problems with commonly assumed
time-varying uncertainties. This issue has been addressed in
[24] for additive noise and in [25] for non-additive noise by
using conditional probability rules to essentially deal with
time-varying and time-invariant uncertainties separately.



Apart from SNMPC, PCEs have also been extensively
used for nonlinear filtering. Firstly, PCEs can be used as
a cheap surrogate to obtain mean and covariance estimates
of nonlinear transformations. This has been applied to yield
various PCE Kalman filters (KF) for nonlinear estimation
problems, including a PCE ensemble KF [26] and a PCE
extended KF [27]. Apart from the PCE KFs, several authors
have applied Bayes’ rule directly to the PCE expansion to
attain the posterior distribution of the states. In [28] PCEs
are used to propagate uncertainties, from which the moments
are fitted to a GM and used in Bayes’ rule. Similarly in
[29] the same procedure is used, however the update is
carried out using linear update laws considering higher order
moments. Using sampling the posterior moments of a PCE
expansion can be obtained from Bayes’ rule and used to fit
a posterior PCE expansion by updating the coefficients as
shown in [30]. The method in [31] similarly to [30] uses
posterior moments from Bayes’ rule, but accounts for time-
varying additive disturbances and uses the PCE in addition
for uncertainty propagation. [32] propose to use PCEs for
uncertainty propagation in conjunction with a particle filter.

In this paper we extend the work in [33] that proposes a
SNMPC algorithm for output feedback using the nonlinear
filter proposed by [30] and a PCE SNMPC algorithm as in
[22]. In the previous work additive process noise was ignored
due to the issue time-varying uncertainties cause for PCE
based methods. To address these issues we extended the
approach in [30] to be able to handle additive disturbance
noise and in addition formulate an efficient SNMPC algo-
rithm using a sparse Gauss-Hermite (sGH) sampling rule.
The framework is verified on an extensive case study of a
semi-batch polymerization reaction, for which we directly
minimise the required batch time subject to safety and
product quality constraints. The paper is comprised of the
following sections. In the subsequent section a general prob-
lem definition is given and the main algorithm is introduced.
In section 3 we give some background on PCE. In section
4 the PCE state estimator is outlined, while in section 5 we
introduce the Gauss-Hermite SNMPC formulation. Section
6 defines the case study, while in section 7 the results and
discussions of the case study are presented. Lastly, in section
8 conclusions are given.

II. PROBLEM SETUP
The problem to be solved is outlined in this section.

Consider a discrete-time system of nonlinear equations with
stochastic parameters and additive disturbance noise:

x′t+1 = f ′(x′t,ut) + wt, x′0 = x′0(ξ) (1)
yt = h′(x′t) + νt (2)

where t is the discrete time, x′ = [x,θ]T is an augmented
state vector, x ∈ Rnx are the system states, θ ∈ Rnθ are
parametric uncertainties, u ∈ Rnu denote the control inputs,
f ′(x′t,ut) = [f(x′t,ut),θt]

T are the dynamic equations for
the augmented state vector, f : Rnx+nθ×Rnu → Rnx repre-
sents the nonlinear dynamic system for the states, y ∈ Rny

denote the measurements, h : Rnx+nθ → Rny are the output

equations, ν ∈ Rny ∼ N (0,Σν) is additive measurement
noise assumed to follow a zero mean multivariate normal
distribution with known covariance matrix Σν, and w ∈
Rnx+nθ ∼ N (0,Σw) is additive disturbance noise assumed
to follow a zero mean multivariate normal distribution with
known covariance matrix Σw. The initial condition x′0 is as-
sumed to follow a known probability distribution represented
by a PCE with ξ ∈ Rnx+nθ ∼ N (0, I). For background
information on PCEs refer to section III.

To approximately represent the probability distribution of
x′t at each discrete time we use PCEs. Let x′t(ξ) correspond
to the PCE of x′ at time t. It is assumed that we are
initially given a PCE of x′ denoted by x′0(ξ) as shown
in Eq.1. Usually this initial probability distribution will
be broad with a relatively large variance representing the
uncertainty of the initial states and uncertain parameters.
At each sampling time t + 1 we measure yt+1 given by
Eq.(2). This measurement is then used to determine x′t+1(ξ)
by updating the PCE representation of x′t(ξ) using Bayes’
rule. The nonlinear filter using PCEs is outlined in section
IV. Given the PCE x′t(ξ) at each discrete time t, we wish
to control the dynamic system defined by Eq.(1) subject to
chance constraints and a stochastic objective. To accomplish
this we solve a probabilistic finite time-horizon optimal
control problem repeatedly in MPC fashion at each time t:

minimize
UN

E(J(N,x′t(ξ),UN ))

subject to
x′k+1 = f ′(x′k,uk) + wk ∀k ∈ Nk
P(gj(x

′
k,uk) ≤ 0) ≥ 1− ε ∀(k, j) ∈ Nk+1 × Ng

P(gNj (x′N ,uN ) ≤ 0) ≥ 1− ε ∀j ∈ NNg
uk ∈ Uk ∀k ∈ Nk
x′0 = x′t(ξ)

(3)
where Ng = {1, . . . , ng}, NNg = {1, . . . , nNg }, Nk =
{0, ..., N − 1}, Nk+1 = {1, ..., N}, the expectation of
J(N,x′t(ξ),UN ) is the objective, N is the time horizon,
the probability of the functions gj : Rnx+nθ × Rnu → R
over all times and gNj : Rnx+nθ × Rnu → R at the final
time exceeding 0 should be less than ε, the constraints on
the inputs are given by Uk ⊂ Rnu , and lastly UN :=
[u0, . . . ,uN−1] represents the control inputs.

The problem in Eq.(3) cannot be solved exactly since it
requires the propagation of stochastic uncertainties through
nonlinear transformations and involves chance constraints,
which require the evaluation of multivariate integrals. In-
stead, a simplified problem is formulated in section V
approximating Eq.(3) using a sparse Gauss-Hermite rule.
Overall we propose to use PCEs introduced in section III
to represent the probability distributions of the states xt
and the uncertain parameters θt jointly denoted as x′t at
each sampling time t. The SNMPC algorithm formulation
in section V exploits this uncertainty description to control
the dynamic system in Eq.(1), while the measurements from
Eq.(2) are utilised to update the PCE presentation of x′t



recursively as outlined in section IV. The proposed algorithm
is summarised below as Algorithm 1.

Algorithm 1: Output feedback PCE SNMPC
Input : f ′(x′,u), h(x′), Σν, Σw, x′0(ξ)
for each sampling time t = 0, 1, 2, . . . do

1) Solve PCE SNMPC problem (3) with x′t(ξ) and
obtain optimal control actions.

2) Apply the first control action to the plant.
3) Measure yt+1.
4) Apply PCE filter to update x′t(ξ) to x′t+1(ξ).

end

III. BACKGROUND: PCE

The polynomial chaos expansion (PCE) scheme will be
briefly outlined in this section, for more information refer to
[22], [34], [35]. In this work PCEs are used as an efficient
means to represent random variables. It can be shown that a
random variable γ with finite second order moments can be
expressed as a convergent series expansion:

γ(ξ) =

∞∑
j=0

ajφαj (ξ) (4)

where ξ ∈ Rnξ ∼ N (0, I) is a nξ-dimensional random
variable following a standard normal distribution with zero-
mean and unit variance, aj denote expansion coefficients
and φαj =

∏nξ

i=1 φαji(ξi) are multivariate polynomials with
φαji(ξi) being univariate polynomials of ξi of degree αji.

The univariate polynomials are chosen to satisfy an or-
thogonality property according to the pdf of ξ, which in the
case of standard Gaussian random variables are given by
Hermite polynomials. Hermite polynomials He with degree
j in terms of ξi can be expressed as:

Hej(ξi) = (−1)j exp

(
1

2
ξ2i

)
dj

dξji
exp

(
−1

2
ξ2i

)
(5)

These orthogonal polynomials have the useful property:

〈φi,φj〉 =

∫
φi(ξ)φj(ξ)p(ξ)dξ = δij〈φ2

i 〉 (6)

where δij is the Kronecker delta and p(ξ) is the pdf of ξ.
To approximate γ(ξ) for practical reasons the PCE in

Eq.(4) needs to be truncated:

γ(ξ) =
∑

0≤|αj |≤m

ajφαj (ξ) = aTφ(ξ) (7)

where φ(·) = [φ1(·), . . . ,φL(·)]T contains the multivariate
polynomials of the expansion, m denotes the order of trun-
cation, and |αj | =

∑nξ

i=1 αji. The truncated series consists
of L = (nξ+m)!

nξ!m! terms and a ∈ RL represents a vector of
coefficients of these terms.

From Eq.(7) we have a PCE representation of γ
parametrized by ξ. PCE may also represent multivari-
ate random variables as we require for x′. Let a

multivariate stochastic variable be given by γ(ξ) =
[γ1(ξ), . . . , γnγ (ξ)]T ∈ Rnγ=nξ with coefficients collected
in A = [a1, . . . ,anγ ], which is parametrized in terms of
standard normal variables ξ with the same dimension. The
properties of γ(ξ) are dependent on the coefficients A of
the expansion. Let each component of γ(ξ) be given by a
truncated PCE with the same order of truncation and the
same number of terms L, then the moments of γ(ξ) have
a closed-form expression in terms of the PCE coefficients.
The statistical moments of γ can be defined as:

Mr(A) =

∫ nξ∏
i=1

γrii (ξ)p(ξ)dξ (8)

where r ∈ Rnξ is a vector defining the moments with k =∑nξ

i=1 ri being the overall order.
The moments of the PCE expansion with the definition in

Eq.(8) are [29]:

Mr(A) =

∫ nξ∏
i=1

(aTi φ(ξ))rip(ξ)dξ (9)

IV. PCE STATE ESTIMATOR

The general outline for the PCE filter was taken from [30],
[36], however these works do not consider additive distur-
bance noise. Let Dt = {y1 . . . ,yt} be the measurements
collected up to time t and yt the most recent measurement.
The state estimation step concerns the update of the states
given the noisy measurements available. In our algorithm the
uncertainties x′t are given by PCEs. In particular, let x′t−1(ξ)
refer to the previously estimated PCE. Bayes’s rule can be
employed to update x′ from x′t−1|Dt−1 to x′t|Dt recursively
as follows:

p(x′t|Dt) =
p(x′t|Dt−1)p(yt|x′t, Dt−1)

p(yt|Dt−1)
(10)

Next we define each term on the RHS of Eq.(10), which are
dependent on the dynamic and measurement equation.

1) p(x′t|Dt−1): Prior distribution of x′t given the previous
measurements Dt−1, which can be expressed as:

p(x′t|Dt−1) =

∫
p(x′t|x′t−1)p(x′t−1|Dt−1)dx′t−1 (11)

where p(x′t|x′t−1) = N (x′t|f ′(x′t−1,ut−1),Σw) is a multi-
variate normal pdf with mean given by the dynamics defined
in Eq.(1) and the covariance by the disturbance noise evalu-
ated at xt. It should be noted that without disturbance noise
p(x′t|Dt−1) =

∫
δ(x′t− f ′(x′t−1,ut−1))p(x′t−1|Dt−1)dx′t−1.

2) p(yt|x′t, Dt−1): The pdf of the current measurement
yt being observed given x′t, which can be given as follows:

p(yt|x′t, Dt−1) = N (yt|h(x′t),Σν) (12)

3) p(yt|Dt−1): Total probability of observation yt given
previous measurements can be expressed as:

p(yt|Dt−1) =

∫
p(yt|x′t, Dt−1)p(x′t|Dt−1)dx′t (13)



If we take both sides of Eq.(10) times
∏nξ

j=1(x′tj)
rj and

integrate over both sides with respect to x′t we obtain:

M+
r =

∫ ∏nξ

j=1(x′tj)
rjp(yt|x′t, Dt−1)p(x′t|Dt−1)dx′t

p(yt|Dt−1)
(14)

where from Eq.(10) M+
r =

∫ ∏nξ

j=1(x′tj)
rjp(x′t|Dt)dx

′
t and

k =
∑nξ

j=1 rj . Now M+
r refers to the various k-th order

moments of the updated distribution of x′t, p(x
′
t|Dt).

Next we will deal with the approximation of the RHS
of Eq.(14). Evaluating the various multivariate integrals
required analytically is difficult and we therefore apply
sampling. We are given a PCE expansion at time t−1,
x′t−1(ξ), corresponding to the pdf p(x′t−1|Dt−1) in Eq.(11).
This distribution can be readily sampled, since ξ follows a
standard normal distribution. Apart from sampling ξ, we also
require samples of the disturbance w to deal with the inte-
grals over both xt−1 and xt. It should be noted that Gauss-
Hermite rules were not used for the sampling, since these
showed poor convergence due to the high nonlinearity of the
likelihood functions. Latin hypercube sampling was applied
instead with the inverse normal cumulative transformation to
improve the convergence rate over MC [37]:

α =
1

Ns

Ns∑
s=1

N (yt|h(x′t
(s)

),Σν) (15)

where α is the sample estimate of p(y(t)|Dt−1), x′t
(s)

=
f ′(xt−1(ξ(s)),ut−1) + w(s), Ns is the sample size, ξ(s) ∼
N (0, I) and w(s) ∼ N (0,Σw) are the sample points.

Now using the sample estimate in Eq.(15) and applying a
further sample estimate to Eq.(14) we obtain:

M (s)+
r =

∑Ns
s=1

∏nξ

j=1 (x′tj(ξ
(s)))rjN (yt|h(x′t

(s)
),Σν)

αNs
(16)

where M (s)+
r is an approximation of the RHS of Eq.(14).

To update x′t−1(ξ) we match the moments found in
Eq.(16) with those of the PCE x′t(ξ), which are a function
of its coefficients as shown in Eq.(9). The PCE is then fitted
by solving a nonlinear least-squares optimization problem:

Ât = arg min
At

∑
k≤m

||M+
r (At)−M (s)+

r ||22 (17)

where k =
∑nξ

j=1 rj was defined above as the order of the
moments and hence m defines the total order of moments we
want to match. M+

r (At) is parametrized by At as shown in
Eq.(9). The estimated coefficients Ât then define the updated
PCE x′t(ξ) as required for Algorithm 1.

V. SPARSE GAUSS HERMITE SNMPC
In this section we outline a SNMPC formulation to ap-

proximately solve the OCP stated in Eq.(3). The problem of
controlling a dynamic equation system given by Eq.(1) with
initial conditions represented by PCEs and additive time-
varying disturbance noise has been addressed in [24]. In
this section we propose to use a similar approach with some
changes. In [24] the initial conditions and parametric uncer-
tainties are propagated by using PCEs, while the disturbance

noise is propagated using linearization. We use a sGH rule
instead of PCEs, which is significantly cheaper at estimating
the mean and variance of nonlinear transformations. The
GH sampling rule is particularly well-suited for uncertainties
described by PCEs, since these are parametrized by standard
normal distributed variables. In addition, it can be seen in
[38] that for the same sample size the accuracy between GH
sampling rules and PCE approximations is nearly identical.

In this work we use a sGH quadrature rule proposed in
[39] to approximate mean and variance of the constraint and
objective functions, which create a deterministic sample of
ξ with corresponding weights. The sGH approximations of
expectation and variances of a function q(ξ) are:

E [q(ξ)] ≈ µq =

Nq∑
q=1

wqq(ξq) (18)

E
[
(q(ξ)− µq)2

]
≈ σ2

q =

Nq∑
q=1

wq
(
q(ξq)− µq

)2
(19)

where ξq and wq are given by the sGH quadrature rule with
overall Nq points. µq and σ2

q are the sGH mean and variance
approximation respectively.

The above approximation is utilised to account for the
contribution of the initial PCE x′t(ξ), while the time-varying
uncertainty w is accounted for by using linearisation. This
is necessary, since w is time-varying and hence each wt is
a separate random variable leading otherwise to a too high
dimension for sGH. Employing the law of total expectation
we can deal with the uncertainties using sGH for x′t(ξ) and
w using linearization, which can be stated as [31]:

E[q(x′t,w)] = Ex′
t
[Ew[q(x′t,w)|x′t]] (20)

Var[q(x′t,w)] = Ex′
t
[Varw[q(x′t,w)|x′t]]+

Varx′
t
[Ew[q(x′t,w)|x′t]] (21)

By approximating the inner expectation and variance over
w using linearisation, we arrive at:

E[q(x′t,w)] ≈ Ex′
t
[q(x′t,µw)] (22)

Var[q(x′t,w)] ≈ Ex′
t
[QΣwQT ]+

Varx′
t
[q(x′t,µw)] (23)

where µw denotes the mean of w, Q = ∂q
∂w |x′

t,µw
and Σw

is the covariance of w.
The remaining expectation and variances can then be

approximated by creating samples of x′t using the sGH rule.
Chance constraints are multivariate integrals that are very
difficult to estimate online. We use Chebychev‘s inequality
to robustly reformulate the chance constraints in terms of
only the mean and variance of the constraint function. Let γ
be a random variable with a finite variance, then [22]:

κε

√
σ2
γ + γ̂ ≤ 0, κε =

√
(1− ε)/ε⇒ P (γ ≤ 0) ≥ 1− ε

(24)
where ε ∈ (0, 1) ⊂ R is the probability that γ exceeds 0, γ̂
and σ2

γ are the mean and variance of γ respectively.



Next we state the finite-horizon stochastic OCP problem
that approximates Eq.(3) using the above results. For the
SNMPC algorithm we use linearization to account for and
propagate the uncertainty of w similar to an extended
Kalman filter based NMPC algorithm [1]. This is carried
out for each sample generated by the sGH rule and the
overall mean and variance of the objective and constraint
function are then found using the law of total expectation.
The chance constraints are then further approximated using
Chebychev‘s inequality in Eq.(24). First we create a sGH
quadrature sample design with Nq points, {ξ1, . . . ,ξNq}
each with corresponding weights wq . Assuming we are at
time t and are hence given a PCE representation x′t(ξ), the
SNMPC problem can be stated as follows:

minimize
UN

Nq∑
i=1

wqJ(N,x′t(ξi),UN )

subject to

µ
(i)
x′,k+1 = f(µ

(i)
x′,k,uk) ∀(k, i) ∈ Nk × Nq

Σ
(i)
x′,k+1 = F

(i)
k Σ

(i)
x′,kF

(i)T
k + Σw ∀(k, i) ∈ Nk × Nq

µ(k)
gj + κεσ

(k)
gj ≤ 0 ∀(k, j) ∈ Nk+1 × Ng

µgNj + κεσgNj ≤ 0 ∀j ∈ Ng
uk ∈ Uk ∀k ∈ Nk
µ
(i)
x′,0 = x′t(ξi) ∀i ∈ Nq

(25)
where µ

(i)
x′,k and Σ

(i)
x′,k+1 represent the mean and covariance

of x′k for sample i, F
(i)
k = ∂f ′

∂x′ |µ(i)

x′,k,uk
denotes the

linearised dynamic equation system at time k for sample
i, µ

g
(k)
j

=
∑Nq
i=1 wigj(µ

(i)
x′,k,uk) is the mean of the

constraint g
(k)
j , σ2

g
(k)
j

=
∑Nq
i=1 wiG

(i)

g
(k)
j

Σ
(i)
x′,kG

(i)T

g
(k)
j

+∑Nq
i=1 wi

(
gj(µ

(i)
x′,k,uk)− µ2

g
(k)
j

)2

is the variance

of constraint g
(k)
j , G

(i)

g
(k)
j

=
∂gj
∂x′ |µ(i)

x′,k,uk
is the

Jacobian matrix for the constraint g
(k)
j for sample

i, µgNj =
∑Nq
i=1 wig

N
j (µ

(i)
x′,N ,uN ) is the mean of

constraint gNj , σ2
gNj

=
∑Nq
i=1 wiG

(i)T

gNj
Σ

(i)
x′,kG

(i)

gNj
+∑Nq

i=1 wi

(
gj(µ

(i)
x′,k,uk)− µ2

gNj

)2
is the variance of

constraint gNj and lastly G
(i)T

gNj
=

∂gNj
∂x′ |µ(i)

x′,N ,uN
is the

Jacobian matrix for constraint gNj for sample i.
Solving Eq.(25) at each time t gives the required control

inputs for Algorithm 1.

VI. CASE STUDY

The algorithm outlined in section II is employed for the
control of a semi-batch polymerization reaction involving the
production of polyol from propylene oxide (PO) in a shrink-
ing horizon fashion. A schematic of the process is shown in
Fig. 1. A complex model for this process has been proposed
in [40], which was employed in [41] for NMPC and in [42]

Fig. 1. F is the monomer feedrate, V and T are the volume and temperature
of the liquid in the reactor respectively, W is water, M is the monomer, Dn

and Gn are the dormant and active product chains with length n respectively.

for multi-stage NMPC. The computational times reported
in these papers is relatively high at around 30 seconds to
minutes. This is due to the model being highly nonlinear and
requiring a separate balance equation for each polymer with
a specific chain length. To reduce computational times we
therefore simplified the model using the method of moments
[43] to derive differential equations for the average molecular
weight. Further, we disregard the balance equations for the
unsaturated proportion of the polymer and assume that there
is no water or methanol present in the reactor initially. In
the aforementioned work perfect temperature control was
assumed. We added a heat balance in this work due to the
importance of temperature control for safety reasons. The
simplified ordinary equation system can be stated as follows:

ṁ = FMWPO, m(0) = m0(ξ) (26a)

Ṫ =
(−∆Hp)kpnCPO

V mCpb
− UA(T − TC)

mCpb

− FMWPOCpf (T − Tf )

mCpb
, T (0) = T0(ξ) (26b)

˙PO = F − nC(kp + kt)PO
V

, PO(0) = PO0(ξ) (26c)

γ̇1 =
kpnCPO

V
, γ1(0) = γ10(ξ) (26d)

where m[g] is the liquid mass in the reactor, F [mol/s] is
the feed rate of the monomer, T [K] is the temperature of
the reactor, PO[mol] is the amount of monomer and γ1 is
the first moment and hence the average molecular weight of
the polymer chains, MWPO = 58.08g/mol is the molecular
weight of PO, ∆Hp is the enthalpy of the propagation
reaction, kp = Ap exp(−EAp/RT ), nC is the amount of
catalyst, V is the volume of the liquid in the reactor, Cpb
and Cpf are the heat capacities of the bulk liquid and
the monomer feed respectively, kt = At exp(−EAt/RT )
and TC [K] is the cooling water temperature. m0(ξ), T0(ξ),
PO0(ξ), and γ10(ξ) are the initial PCE expansions of the
states m, T , PO, and γ1 respectively.

The missing parameter values including the vaporliq-
uid equilibrium equations and temperature correlations can
be found in [40]. The aim of the control algorithm is
to minimize the required remaining batch time (tf [s])
to achieve a specified number average molecular weight



(NAMW[g/mol]) of the final product of 350g/mol and
ensuring that the amount of monomer (PO) at the end of the
batch does not exceed 1000ppm. The definitions NAMW can
be found in [40], which requires the zeroth moment γ0[mol].
Due the assumptions made this zeroth moment is a constant
in the defined problem and given in Tab. I. For safety reasons
the reactor temperature T [K] is constrained to remain below
420K. The control variables are the monomer feed rate
F [mol/s] to the reactor and the cooling water temperature
TC [K]. The chance of constraint violation was set to 0.05.
Apart from the uncertainty of the states, the variables pre-
exponential coefficient of the propagation kinetic constant
(Ap[m3/mol/s]) and the heat transfer coefficient (UA[W/K])
were assumed to be uncertain and added to the state vector
as shown in Eq.(1). Measurements during the reaction are
the pressure (P [bar]) of the reactor, the temperature (T [K])
of the reactor, and the amount of monomer (PO[mol]). The
discretization of Eq.(26) was carried-out utilising orthogonal
collocation. The resulting optimization problems for both the
sGH SNMPC problem and the PCE state estimator were
solved using Casadi [44] in conjunction with IPOPT [45].
The control problem to be solved is specified in Tab. I.

TABLE I
SPECIFICATIONS OF CONTROL PROBLEM

Augmented state (x′) m[g],PO[mol], T [K], γ1[mol]
Disturbance noise Σw = diag(0, 0, 1, 2, 50, 200)
Outputs (y) P [bar], T [K], PO[mol]
Output noise Σν = diag(0.25, 0.001, 1000)
Inputs (u) F [mol], TC [K]
Uncertainties Ap[m3/mol/s], nC [mol]
Objective minimize tf [s]
Path constraints T [K]− 420 ≤ 0
1st end constraint 350− NAMW[g/mol] ≤ 0
2nd end constraint PO[ppm]− 1000 ≤ 0
Probability ε = 0.05
Input constraints 0 ≤ F [mol/s] ≤ 10, 298.15 ≤ TC [K]
sGH SNMPC sGH accuracy = 2, sGH manner = 1
x′-PCE PCE order = 2
PCE filter Samples = 4000, Moments considered = 4
Discretization N = 8, Degree = 5
Initial PCE m0(ξ) 1537710
Initial PCE PO0(ξ) 10000 + 1000ξ2
Initial PCE T0(ξ) 378.15 + 4ξ3
Initial PCE γ10(ξ) 10000 + 500ξ4
Initial PCE AP 0(ξ) 8504 + 1000ξ5
Initial PCE UA0(ξ) 40000 + 4000ξ6
Reactor specs. VR = 17m3, nC = 1000mol, γ0 = 10000mol

VII. RESULTS AND DISCUSSIONS

In this section we verify Algorithm 1 by applying it to
the previously specified control problem. First we run the
algorithm on a specific realization of the initial uncertainties
on x′ as specified by the initial PCE in Tab. I, which is as fol-
lows: x′ = [1537710, 12371, 375.2, 9855, 10100, 36301]T .
The disturbances w and measurement noise ν are randomly
sampled. The results of this run are shown in Fig. 2.

The two graphs in the first row of Fig. 2 show the evolution
of the pdf of the two uncertain parameters Ap and UA
from its PCE. Firstly, it can be seen that both parameters
are significantly better approximated at the final time than

initially through the measurement updates. In particular, the
distribution of Ap starts out at around 7500, but thereafter
rapidly approaches its true value shown by the vertical black
line at around 10000. Nonetheless some bias remains towards
a lower value, however with some probability to take its
true value or higher. UA on the other hand does not have
such a bias and converges quickly to its true value, but the
distribution remains relatively broad due to influence of the
disturbance and measurement noise. The next two rows show
the trajectories of the 4 states as a continuous blue line, while
the black crosses and error bars represent the state estimates
with a 95% confidence interval of the PCE expansion. The
mass and monomer have near exact state estimates due to the
assumed low disturbance noise. The monomer has a slight
deviation initially but quickly converges to the true trajectory
once the first measurement becomes available. The ppm of
the monomer at the final time was found to be 916 and
hence 84 less than required. This can be explained by the
underestimation of Ap, which means the SNMPC will run
longer to ensure a sufficiently low ppm is reached. Temper-
ature has some significant uncertainty, which is accounted
for in the SNMPC algorithm to not violate the constraint to
remain below 420K. Lastly, the first moment over-shoots the
constraint required to reach 350mol/g NAMW and instead
reaches a NAMW of 385mol/g. This can again be explained
by the underestimation of Ap and hence increasing the batch
time to reach the required NAMW and ppm in at least 95%
of possible cases. This can also be seen in the graph in the
last row, where at first the sampling time decreases due to
less uncertainty but then increases again to ensure the end-
point constraints. In the 4th row the control inputs are shown,
which are as expected. First the feed rate of the monomer
is set to the maximum before it is set to zero to ensure a
low ppm a the end of the batch process. The reaction rate
is highest initially at which point the cooling temperature is
at its lower bound and after which only moderate cooling
temperatures are required to prevent constraint violations of
the reactor temperature.

Next we ran 100 MC simulations of the control problem.
This is compared to 100 MC simulations of a nominal NMPC
algorithm using the mean value of the PCE expansion as state
estimate from the PCE state estimator, but ignoring the shape
of the probability distribution otherwise. This is done to show
the importance of accounting for the inherent uncertainty
in the problem. The results of these MC simulations are
highlighted in Fig. 3. The first graph illustrates that while
the nominal NMPC method manages in only 49% of cases
to realize the required NAMW, the SNMPC approach due
its increased conservativeness manages to fulfil the NAMW
constraint in 99% of the simulations. Similarly the second
graphs shows that the SNMPC approach manages to reduce
the amount of monomer below the required threshold of
1000 ppm in 97% of realizations, while the nominal NMPC
adheres this end-point constraint in only 52% of the simu-
lations. The next graph shows that this increased robustness
comes at the price of on-average longer batch times. The
nominal NMPC took on average 4800 seconds, while the



Fig. 2. First row shows the pdfs at t = 0, 2, 5, 8 for Ap and UA, 2nd
and 3rd row show the trajectories of the states with the corresponding state
estimates as black-crosses with 95% confidence intervals, 4th row illustrates
the control inputs and the last row the changes in the sampling time.

SNMPC had average batch times of 9300 seconds. The final
graphs illustrate significantly better temperature control of
the SNMPC approach compared to the nominal NMPC.
In particular at the beginning ignoring the uncertainty of
the overall heat transfer coefficient UA leads to constraint
violations of up to 30K, while later on not accounting for
the disturbance also leads to constraint violations for nominal
NMPC method. The SNMPC method on the other hand
shows close to no constraint violations.

VIII. CONCLUSIONS

In conclusion, we have presented a new algorithm for
output feedback SNMPC that utilises a PCE nonlinear state
estimator to approximate the probability distribution of states
and uncertain parameters at each sampling time. This PCE
representation is then exploited in a SNMPC formulation to
account for both the initial value uncertainty using a sGH
sampling rule and additive disturbance noise employing lin-
earisation. Objectives and constraints were based on general
nonlinear functions. A semi-batch reactor case study verified

Fig. 3. Probability densities of NAMW, ppm of monomer, and batch time
at final time and temperature trajectories of SNMPC and nominal NMPC
based on 100 MC simulations

that the SNMPC framework is able to control the system with
large initial uncertainties and additive disturbance noise. The
PCE nonlinear state estimator is shown to able to accurately
update the distribution of the states and uncertain parameters,
while considering the uncertainty information from the dis-
tribution to avoid constraint violations. Furthermore, it was
shown that ignoring the uncertainty informations leads to
50% constraint violations of the end-point constraints and
large overshoots of the temperature path-constraint.
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