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Identifisering og karakterisering av biomarkører ved 
bruk av magnetisk resonans metabolomics

Sammendrag

Kreft og kardiovaskulære sykdommer er ledende dødsårsaker i industriland og i mange 

utviklingsland. De eksisterende kliniske og patologiske verktøy for disse sykdommene 

er ikke tilstrekkelige for å gi presis prediksjon av respons eller optimal individualisert 

behandling. Det er derfor et stort behov for å identifisere og implementere nye 

biomarkører for å oppnå bedre prediktiv, forebyggende og målrettet medisin.

Endring i cellenes stoffskifte er en viktig faktor i utviklingen av kreft og kardiovaskulær 

sykdom og derfor et viktig område innen biomedisinsk forskning. Studiet av små 

molekylære metabolitter i kroppsvæsker og vevsprøver (metabolomics), kan ved hjelp 

av magnetisk resonans spektroskopi (MRS) og multivariate dataanalyser, gi ny innsikt 

innenfor dette feltet. Identifikasjon av nye metabolske biomarkører for prediksjon, 

diagnose og behandlingsrespons av kardiovaskulær sykdom og kreft, har potensiale til å 

øke total overlevelse og pasientens livskvalitet, i tillegg til å spare samfunnet for store 

utgifter. 

Økt forekomst av livsstilssykdommer er en trussel mot folkehelsen, og det er behov for 

mer effektive forebyggings- og behandlingsstrategier. Flere studier har vist at 

forekomsten av metabolsk syndrom og kardiovaskulær sykdom er relatert til 

kondisjonsnivå. Lav maksimal aerob kapasitet er foreslått som en prediktiv faktor for 
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kardiovaskulær død. De eksakte molekylære mekanismene bak dette er uklare. Studier 

basert på metabolomics har resultert i unike funn som kan gi informasjon om de 

underliggende mekanismene til koronar hjertesykdom, kreft, kosthold og livsstil. Innen 

kreftforskning har metabolomics også et potensiale som et ekstra verktøy i 

diagnostisering og risikovurdering. Videre vil det være et relevant verktøy for å finne 

optimal individualisert behandling, med andre ord kun behandle pasienter som med 

størst sannsynlighet har effekt av en spesifikk behandling og dermed kan unngå 

unødvendig behandling.

Hovedmålet med forskningen presentert i denne avhandlingen var å evaluere bruken av 

metabolomics basert på bruk av høyoppløselig MRS og multivariat dataanalyse for å 

identifisere og karakterisere mulige biomarkører for ulike helsetilstander. Avhandlingen 

består av tre artikler hvor anvendelsen av MR metabolomics til å identifisere 

biomarkører for kondisjon, astrocytom grad og endringer i bukhinne-/pleuravæske fra 

kreftpasienter etter kjemoterapi ble evaluert.  Studiene ble utført i prøvematerialer fra et 

bredt spekter av mennesker, og spenner fra friske frivillige til pasienter med avansert

kreftsykdom.

I den første studien ble kondisjonsavhengige forskjeller i serumnivåer av fritt kolin og 

fosfatidylkolin i en gruppe friske frivillige observert. Resultatene viser at 

kolinmetabolitter er potensielle tidlige markører for kardiovaskulær sykdomsrisiko og 

bør studeres nærmere. I neste studie ble muligheten for å differensiere diffuse 

hjernesvulster av Grad II og IV astrocytom basert på metabolske profil vist. I det siste 
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arbeidet ble metabolske markører for kjemoterapirelaterte endringer i bukhinnevæske 

fra pasienter med eggstokkreft identifisert.

Denne avhandlingen har vist nytten av MR metabolomics og multivariat dataanalyse i 

utredningsfasen av biomarkører. Videre har nytten av MR baserte metabolomics 

teknikker for å finne molekylære signaturer av kreft og kondisjon blitt studert. Dette kan 

bidra ytterligere til den vitenskapelige forståelsen av underliggende biologi av svulster 

og kondisjon. 

Navn kandidat: Muhammad Riyas Vettukattil

Institutt: Institutt for sirkulasjon og bildediagnostikk

Veileder(e): Tone F. Bathen, Ingrid S. Gribbestad, Ulrik Wisløff

Finansieringskilde: NTNU

Ovennevnte avhandling er funnet verdig til å forsvares offentlig 

for graden Philosophiae Doctor i medisinsk teknologi

Disputas finner sted i Auditoriet,Medisinsk teknisk forskningssenter,

Fredag 27.september 2013, kl 12.15.

v



vi



Acknowledgements

The work presented in this thesis was performed at the MR Centre, Department of 

circulation and medical imaging, NTNU between October 2009 and September 2013. 

The financial support for my work was provided by the Norwegian University of 

Science and Technology (NTNU) and is hereby greatly acknowledged.

I would like to express my gratitude to my supervisors Prof. Tone Frost Bathen, Prof. 

Ingrid Susann Gribbestad and Prof. Ulrik Wisløff. Your enthusiasm, inspiration, support

and valuable advices are sincerely appreciated. Thank you to all my co-authors for their 

contributions and critical discussions.

I wish to thank all my colleagues at MR center for creating such a brilliant environment 

and helping me get through the difficult times, entertainments and the caring they 

provided. Special thanks to my office mates Morteza and Kirsten for the discussions,

encouragements and chitchats. “Spesiell takk til Torill og Kirsten for norsk oversettelse 

av sammendraget”. Sincere thanks to Guro, Siver and Trygve for their willingness to 

provide feedbacks on my writing.

Finally, thanks to my family for their support and encouragement, specifically to my 

wife Sinu for her affection and patience.

vii



viii



Summary

Cancer and cardiovascular disease are the leading cause of mortality in the developed 

countries and in many developing countries. The existing clinical and pathological tools 

for both these diseases are insufficient for accurate response prediction, or for an 

individualized treatment. There is a compelling need for identification and development 

of new biological markers to achieve a new era of predictive, preventive and targeted 

medicine.

Altered cellular metabolism is an important factor in the pathogenesis of cancer and 

cardiovascular disease and has become a major area of biomedical research. 

Metabolomics, the study of small molecular metabolites present in biofluids and tissue 

samples using magnetic resonance spectroscopy may hold the power to bring new 

insights on this subject. Identification of metabolic biomarkers for cardiac disease and 

cancer risk prediction, diagnosis and treatment response could have the power to 

increase overall survival and the patient quality of life, in addition to saving huge 

expenses for the society.

Increased prevalence of lifestyle-related diseases is an impending threat to public health, 

and calls for effective prevention and treatment strategies. Several studies have 

indicated that the occurrence of metabolic syndrome and cardiovascular disease are 

related to the exercise capacity. Low maximal aerobic capacity is suggested as a 

predictive factor for cardiovascular deaths. However, the exact molecular mechanisms 

behind this are unclear and are difficult to explore. Metabolomics based approach may 
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provide potential information in this direction and has resulted in unique findings in 

relation to coronary heart disease, cancer, diet, and lifestyle. The potential benefits of 

metabolomics within cancer research would be to serve as an additional tool in 

diagnosis and risk evaluation. In addition, targeting of specific patients who are more 

likely to benefit from a specific treatment than those who may not benefit from it or 

may be harmed is highly relevant. 

The main objective of the research presented in this thesis was to evaluate the use of 

high resolution magnetic resonances (MR) spectroscopy together with multivariate 

analysis based metabolomics for identifying and characterizing potential biomarkers of 

health-disease continuum. This thesis consists of three papers in which the applicability 

of MR metabolomics in identifying biomarkers of aerobic fitness, astrocytoma grading 

and chemotherapy dependent changes in malignant serous effusion was investigated. 

Metabolomic studies were performed on a broad range of subjects ranging from healthy 

volunteers to patients with advanced stage of malignancies.

In the first study, aerobic fitness dependent differences in serum levels of free choline 

and phosphatidylcholines in a group of healthy volunteers were observed. These choline 

metabolites are potential early markers of CVD risk and should be studied further. In 

the next study, the possibility of differentiating diffuse World Health Organization 

Grade II and IV astrocytoma based on their metabolic profiles were shown.  In the third 

paper, metabolic markers of chemotherapy related changes in ovarian serous carcinoma 

effusions were identified. 
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The usefulness of MR metabolomics together with multivariate data analysis in the 

exploratory phase of biomarker discovery has been illustrated in this thesis. 

Furthermore, the usefulness of MR based metabolomic techniques in capturing 

molecular signatures of cancers and aerobic fitness has been explored and may 

contribute further to the scientific understanding of underlying tumor biology and 

aerobic fitness.
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2HG 2-hydroxyglutarate

A-II astrocytoma grade II
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B0 the static magnetic field 
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IDH isocitrate dehydrogenase

KPS karnowsky performance status

ML-PLSDA multilevel partial least squares discriminant analysis

MRS magnetic resonance spectroscopy

MS mass spectrometry

NADPH reduced nicotinamide adenine dinucleotide phosphate

NMR nuclear magnetic resonance

OC ovarian carcinoma

PC principal component

PCA principal component analysis

PCho phosphocholine

PLD phospholipase D

PLS partial least squares
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PLS-DA partial least squares discriminant analysis

ppm parts per million 

PPP pentose phosphate pathway

PtdCho phosphatidylcholine

PtdEtn phosphatidylethanolamine

PTW parametric time warping

RF radio frequency

T1 longitudinal relaxation time

T2 transversal relaxation time

tCho total choline signal

TE echo-time

TSP trimethylsilyl 3-propionic acid sodium salt

VO2max maximal oxygen uptake
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Introduction

1 Introduction

1.1 Motivation

Cancer and coronary heart disease (CHD) are the leading causes of death in the majority 

of developed and many developing countries in the world.1,2 Despite the impressive 

progress in medical, scientific and technological achievements over the past decades, 

the prevalence of these diseases has reached alarming proportions. Existing diagnostic 

tools in the clinics are often insufficient for early diagnosis, risk stratification and in 

treatment response prediction. Hence, there is an urgent need to develop tools for early 

risk prediction, to actuate prevention strategies and to optimize the therapeutic regime to 

achieve a successful clinical outcome.

Biological mechanisms underlying cancers and CHD are complex and not fully

understood. There is an intricate interplay of genetic, environmental, and lifestyle 

factors involved in the pathogenesis of these diseases. Unraveling the complex 

association between disease phenotype and the individual’s genetic makeup is a 

challenging task. Recently, the use of molecular tools are gaining much attention in

detecting and studying DNA, RNA, proteins and metabolites to understand the 

biological basis of cancers and heart diseases. It is now possible to perform 

comprehensive and non-targeted analysis of gene products (i.e. RNA, proteins, and 

metabolites) present in a specific biological sample. These high throughput analytical 

techniques generate enormous amount of data which needs sophisticated computational 

methods for interpretation. A new field of research called systems biology has emerged 
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Introduction

which use a global top-down approach to elucidate the complex behavior which are 

difficult to explain by targeted experiments.3

Systems analysis of -omic (genomic, transcriptomic, proteomic or metabolomic) data 

helps to identify the biological processes and pathways which are most affected in the 

system being studied and help to highlight the key genes, proteins and metabolites as

potential biological indicators and drug targets. These biological indicators are also 

known as biomarkers, and they help to identify differences in disease populations and 

mark response to therapeutic strategies. The complex and interconnected nature of 

biological processes which underlines health and disease responses offers unique 

opportunities for using systems approaches to identify novel biomarkers. A systems 

perspective on disease involves the integration of several elements, from genome 

through phenotype as depicted in Fig. 1.1

Within systems biology, metabolomics has become a key platform, allowing the 

comprehensive and high throughput study of small molecular weight substances in 

cells, tissues and/or whole organisms. Metabolites represent the downstream products of 

gene expression and are closer to the phenome than the proteome or transcriptome.

Even subtle changes in the genes or proteins can give rise to as much as 10,000-fold 

change in the concentration of certain metabolites.4 The future of metabolomics lies on 

its ability to capture even smaller perturbations in the metabolome which occurs prior to 

the gross phenotypic manifestation of the disease.
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Introduction

Figure 1.1: Different levels of “omics” cascade. Integrated analysis of quantitative 

measurements at different levels of the cascade is used in the systems perspective of complex 

diseases. Metabolites lies close to the phenome and may better represent the dynamic changes 

in the phenotypes.

Biological mapping and identification of biomarkers using metabolomics is a rapid and 

objective technology with high clinical relevance within risk screening, patient 

stratification, and preventive medicine and in treatment monitoring. Further, application 

of metabolomic techniques can contribute to achieve a biological understanding of 

complex diseases and can complement the knowledge gained from other molecular 

techniques. Considering the complexity of most common diseases, a panel of 

biomarkers which portrays the major aspects of pathophysiology may provide 

additional information to the clinicians. Clinical decision making based on a panel of 

biomarkers may address the future goal of personalized medicine by identifying the 
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Introduction

individuals who will better benefit from a specific therapy. This thesis is aiming to 

identify and develop potential biomarkers of healthy and diseased state by applying

metabolomics.

1.1.1 Aerobic fitness

Aerobic fitness refers to endurance or the ability to exert for an extended period of 

time.5 During aerobic exercise, oxygen is consumed from the atmosphere and is 

transferred to the muscles via the circulatory system. An individual’s aerobic fitness is 

dependent on age and sex, and can be improved by exercise. The indicator of aerobic 

fitness level is known as maximal oxygen uptake (VO2max). VO2max is determined by the 

measurement of oxygen uptake during the performance of maximal work, typically 

while running on a treadmill or while cycling (Figure 1.2). VO2max is often expressed as

the maximum volume of oxygen consumed per minute. It may also be expressed as the 

absolute volume of oxygen consumed in liters per minute to indicate total work 

capacity, or volume of oxygen consumed per minute per kilogram body weight.6

As with other physiological functions, there are large individual variations in VO2max of 

subjects of the same age and gender. Some people show high VO2max without regular 

exercise owing to genetics and other factors, while some other people who exercise 

regularly do not show high VO2max. Genetics plays a major role in a person’s VO2max

and heredity can account for up to 25-50% of the variance seen between individuals.7
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Introduction

Figure 1.2: Maximal oxygen uptake. The point at which the oxygen consumption saturates is 

the VO2 max or the maximum oxygen uptake of an individuals. Adapted from Kent8

Several studies report that aerobic fitness level, measured by the VO2max, is the single 

best predictor of future CVD mortality in healthy people.9-13 Aerobic power appears to 

have more of an influence on CVD risk factors than physical activity level.14 Based on 

this, more knowledge of the differences between healthy individuals with a large 

difference in VO2max-level will be of great interest to identify novel biomarkers of low 

aerobic fitness that may also have a potential as an early biomarker of CVD risk.13,15-19

Identifying early markers of aerobic fitness may be helpful in actuating preventive

strategies in individuals before developing the symptoms of CVD. Furthermore, such 

markers may be of help in contributing towards the deeper understanding of the 

complex molecular mechanisms behind fitness and cardiovascular diseases.

1.1.2 Cancer metabolism 

Cancer is a disease characterized by uncontrolled proliferation of cells in which the cells 

acquire genetic changes that allows them to evade the normal growth regulatory signals. 
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The key biological changes occurring in the development of cancer, the hallmarks of 

cancer, are sustained proliferative signals, evasion of growth suppressors, resistance to 

cell death, attaining replicative immortality, induction of angiogenesis and activation of 

invasion and metastasis.20 Reprogramming of cellular metabolism and evasion of 

immune mediated destruction has recently been added as two emerging hallmarks. 

Metabolic changes occurring in connection with cancer has been noticed almost a 

century ago by Otto Warburg in his description of a switch in glucose metabolism from 

oxidative phosphorylation to glycolysis — the Warburg effect.21 In order to support the 

high rate of cellular proliferation, cancer cells show a shift in its metabolism towards 

biosynthesis. 

Intrinsic genetic mutations and external responses to the tumor microenvironment in 

turn control the metabolic phenotypes of tumor cells. Alteration in the cellular growth 

signaling pathways in cancer cells changes the cellular metabolism to match the need of 

cell division. Changes occur in the cellular metabolism of cancer cells to provide a 

continuous and rapid energy supply (ATP synthesis).22 Beyond the Warburg effect,

other changes can occur in the glycolytic pathway (e.g. up regulated M2 isoform of 

pyruvate kinase) to channel substrates through alternative pathways like the pentose 

phosphate pathway (PPP) and other pathways so that large quantities of reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) and other macromolecules are 

produced.22,23

Phospholipids play an important role in proliferating cells as they form an important 

component of the cell membrane. In eukaryotic cell membrane, phosphatidylcholine 

6



Introduction

(PtdCho) is the most abundant phospholipid.24 Phosphocholine (PCho, a precursor and a 

breakdown product of PtdCho) together with other phospholipids such as 

phosphatidylethanolamine (PtdEtn) and neutral lipids forms the characteristic bilayer 

structure of cellular membrane.25 Changes in the levels of choline containing 

metabolites are observed in most cancers and have complex links to malignant 

transformation and oncogenic signaling.25 This is further complicated by factors like 

hypoxia and acidic pH in tumor microenvironment which will also contribute to 

alteration in choline metabolites.25,26

Cancer cells are usually under higher oxidative stress compared with normal cells. The

production of two of the most abundant antioxidants, reduced NADPH and glutathione 

(GSH), has been shown to be modulated in cancers. Shunting of glycolysis through PPP 

results in NADPH production which can act as a crucial anti-oxidant and can fuel 

macromolecule synthesis.27 Hence, the metabolic alterations present in cancer cells 

promote not only ATP resources, but also macromolecular biosynthesis and redox 

control (Figure 1.3).
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Figure 1.3: The metabolic reprogramming in tumor cells. Small arrows pointing up or down 

indicate cancer associated upregulation or downregulation of enzymes. Changes indicated in red 

can be caused by the activation of HIF-1. CA9 and CA12, carbonic anhydrases 9 and 12; CPT, 

carnitine palmitoyltransferase; GLUT, glucose transporter; GSH, glutathione; HIF, hypoxia-

inducible factor; IDO, indoleamine 2,3-dioxygenase; HK, hexokinase; OXPHOS, oxidative 

phosphorylation; LAT1, L-type amino acid transporter 1; LDHA, lactate dehydrogenase 

isoform A; MCT, monocarboxylate transporter; PDH, pyruvate dehydrogenase; PDK, pyruvate 

dehydrogenase kinase; PFK, phosphofructokinase; PI3K, phosphatidylinositol 3-kinase; PGM, 

phosphoglycerate mutase; PKM2, pyruvate kinase isoform M2; PPP, pentose phosphate 

pathway; SCO2, synthesis of cytochrome c oxidase 2; TLK, transketolase; VDAC, voltage-

dependent anion channel. Reprinted with permission from Kroemer et al.28

Genetic mutations in the isocitrate dehydrogenase gene (IDH1/2) with the production of 

an 'oncometabolite' 2-hydroxyglutarate (2HG) have been found in gliomas and 

leukemias.29 Specifically this mutation is seen in more than 70% of the secondary 

gliomas. This finding strengthens the links between mutations in metabolic genes and 
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common cancers and opens up potential opportunities in exploring metabolic targets in 

brain cancers and leukemias for diagnosis and prognostication.30

1.1.3 Astrocytomas

Astrocytomas are one of the most common primary brain tumors in humans and are 

subdivided into histological grade II - IV according to the WHO classification (Table 

1.1). They arise from the star-shaped cells (astrocytes) that form the supportive tissue of 

the brain. Apart from astrocytes, other supporting cells in the central nervous system 

include oligodendrocytes and ependymal cells. Tumors arising from these supporting 

cells, also known as glial cells are collectively known as gliomas. Noninfiltrating 

astrocytomas usually grow more slowly than the infiltrating forms. Infiltrating, or 

diffuse astrocytomas are more common than noninfiltrating astrocytomas.31 They are 

generally more common in men and are most common in the cerebral hemispheres of 

adult patients. Due to the infiltrative growth into adjacent brain tissue a complete 

surgical removal is not possible. Diffuse astrocytomas tend to recur and lower grades 

frequently undergo malignant transformation despite advances in radiotherapy and 

chemotherapy.32 As there are differences in the management of high and low grade 

astrocytomas, it is essential to identify molecular and metabolic factors that may stratify 

these patients with regards to optimal treatment and prognostication.
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Table 1.1: WHO Classification (Adapted from Louis et al.33 )

Grade Prognosis Examples

I Excellent prognosis Juvenile pilocytic astrocytoma
Pleiomorhic xanthroastrocytoma

II Variable Prognosis Astrocytoma

III Poor prognosis Anaplastic astrocytoma

IV Aggressive tumor Glioblastoma multiforme

1.1.4 Malignant serous effusions

Serous cavities in the human body are the mesothelial lined potential spaces 

surrounding lung, heart and abdomen. Normally these cavities are obliterated and 

contain a very small amount of fluid, which is an ultrafiltrate of plasma. When the 

production and resorption of this ultrafiltrate are unbalanced, fluid may accumulate, 

resulting in an effusion. It is believed that the mechanisms underlying malignant 

effusion accumulation include lymphatic obstruction by metastatic cells impeding the 

outflow of peritoneal fluid, increased vascular permeability and new blood vessel 

formation, increased production by lining cells, changes in the peritoneal stroma and 

fibrin accumulation.34,35 A major portion of the increase in vascular permeability which 

contributes to effusion formation is caused by malignancy-induced angiogenesis, 

resulting in accumulation of protein-rich fluid (a filtrate of whole blood) in the 

peritoneal cavity. The accumulation of malignant effusions is a common event in 

clinical practice. The diagnosis of malignant effusion indicates disease progression and 

is associated with a worse prognosis. Effusions containing tumor cells may accumulate 
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within the serosal cavities, i.e. the peritoneal, pleural and pericardial cavity in 

practically every cancer type. In adults, the most common organs of origin are the 

breast, lung and ovary, with gastrointestinal cancers as an additional relatively common 

origin, especially in Asian countries.34 In addition to metastases, the serosal cavities are 

the site of origin of several cancers, including malignant mesothelioma and primary 

peritoneal carcinoma, although these are by far outnumbered by metastatic cancer. The 

finding of cancer cells in effusions is generally a marker of advanced-stage disease and 

is associated with poor survival in the majority of cases.34 Often, the patients with 

malignant effusions are in a critically ill situation, and it is difficult to obtain a tissue 

sample or metastatic nodule for biopsy. In these patients, the analysis of the malignant 

fluid may be the only feasible option. Malignant effusions in serosal cavities represent 

an important source for potential metabolic markers. It may aid in understanding more 

about the metabolic basis behind malignant effusions, to identify novel biomarkers for 

diagnosis and treatment and to discover potential targets for therapy.

1.2 Metabolomics

Metabolomics provides a ‘top down’ integrated view of complex biochemical events

occurring in complex organisms by measuring the global, dynamic metabolic responses 

with a wide array of analytical techniques. Magnetic resonance spectroscopy (MRS) and 

mass spectrometry (MS) are the most commonly used analytical methods for 

metabolomic studies.36 These techniques also help in metabolite identification by

providing information on the metabolite structure.37 Owing to the diversity in 

metabolites with different physical and chemical composition, it is practically 

impossible to explore the entire metabolome using a single analytical technique. Even 
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though there is an intimate connection between genes, proteins and metabolites in a 

biological system, gene and protein expressions often may not directly correlate to the 

metabolite concentrations. This emphasise clearly the need for an additional 

measurement at the metabolite level and the role of metabolomics in studying 

gene/environment interactions (Fig 1.4).38

Figure 1.4: Metabolomics to study gene/environment interactions. Metabolism can be affected 

in two different ways in an extreme scenario. In the first case, a small mutation in the genome 

can cause minor changes in the transcriptome but a bigger change in the metabolome. Secondly, 

to maintain the homeostasis of the biological system in response to stressful stimuli, a large 

change in the transcriptome and proteome can occur with minimal change in the metabolome, 

hence maintaining the metabolic homeostasis.  The figure is reprinted with permission from 

Manuel Mayr. 38

Although classic genetics aims to relate the DNA sequences directly to the phenotype, 

“-omic” technologies allows to move the focus from a specific gene to the actual effect 

of the gene. Since it is impossible to correlate the gene or protein profiles directly to the 
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metabolic composition, the importance of measuring small molecular weight 

metabolites are gaining wider attentions. By “metabolomic profiling”, it is now possible 

to perform quantitative and qualitative measurement of a subset of metabolites in 

biological samples such as body fluids and tissues. Similar to other “-omic” studies, 

metabolomics aims for objective and unbiased measurements of metabolite dynamics.39

Metabolomic studies offer certain advantages. Being downstream in the traditional 

biological information cascade from genes, transcripts and proteins, metabolic 

perturbations will be more close to the phenotype. The metabolome is highly dynamic 

and changes can occur in short intervals of time (within seconds), and can thus be a 

rapid indicator of biological changes. Hence metabolic perturbations may have the 

potential for capturing early changes in clinical systems far ahead of the appearance of 

disease symptoms and more invasive measures are required.16

A typical metabolomic study follows a common workflow.16,39,40 It starts with a 

biological question and experiment followed by sample collection. After sample 

preparation, appropriate analytical experiment(s) are performed to acquire data.  The 

high density metabolic data is then subjected to pre-processing and analysis followed by 

biological interpretation (Fig. 1.5). The analytical techniques MRS and MS are 

commonly used for metabolomics studies. Both techniques have their own advantages 

and disadvantageous. MS is more sensitive than MRS while MRS is more reproducible, 

needs minimal sample preparation and can be performed in a non-destructive manner.

Furthermore, advances in high-field clinical scanners and newer methods for in vivo
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MRS offers potential for future clinical translation of the ex vivo MRS markers to aid in

vivo diagnostics. 

Figure 1.5: Metabolomics Work Flow. Adapted from Mamas M. et al39

1.2.1 MR spectroscopy

MR Spectroscopy (MRS) is an analytical technique which can detect and quantify a

wide range of biochemical metabolites. All nuclei with non-zero spin have an intrinsic 

magnetic moment and may be studied by MRS. Spin ½ nuclei that are commonly 

studied include 1H (the most popular nucleus for NMR studies), 13C, 19F and 31P. In 

contrast, the abundant isotopes of carbon and oxygen, 12C and 16O, have an even 

number of both protons and neutrons which form pairs to cancel out the individual spins

and hence cannot be studied by MRS. The high natural abundance of protons (1H) in 

organic compounds and biological samples has made it a common nuclei for magnetic 
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resonance spectroscopy. Phosphorus MRS (31P) is of particular interest for studies on 

phospholipid analysis and energy metabolism.41

Figure 1.6: Basic principles of magnetic resonance. The figure illustrates the different spin 

states, energy differences and the field (B0) frequency relationships. Figure adapted from  Shung 

et al42

In the absence of an external or applied magnetic field (B0), the nuclear spins orient 

randomly. However, when there is an applied magnetic field, the nuclei orient 

themselves with or against the larger applied field. The spin state which is parallel to the 

applied field has lower energy than the spin state which is antiparallel to the applied 

field. The energy difference E between the spin states is proportional to the strength of 

B0 (Figure 1.6). Spins in the lower energy states can be transferred to a higher energy 
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state by applying an external radio frequency (RF) pulse.  Following an RF pulse, spins 

return back to their low energy state, emitting the energy back as radio waves. This 

emitted energy can be detected and forms the basis of the MR signal.

A plot of intensity of MR signal versus the magnetic field frequency is known as the

MR spectrum. When the spins returns back to equilibrium, they go through relaxation 

processes characterized by two time constants called longitudinal (T1) and transverse 

(T2) relaxation. T1 relaxation depends on the net transfer of the energy to the 

environment. Larger molecules like proteins and lipids have a relatively short T1 while 

smaller molecules have a longer T1. The decay of transverse magnetisation (T2) 

depends on the dephasing of individual magnetic moments. Factors like molecular 

motion, viscosity, temperature, free water content, presence of paramagnetic atoms and 

field inhomogeneity can affect the T2. In MR experiments, the T1 and T2 values of 

molecules are important in setting up the correct acquisition protocols.  For obtaining 

accurate relative signal intensities from a sample, a recycle delay of at least five times

the longest T1 has to be used, so that all nuclei can return back from their excited state 

to equilibrium before the subsequent excitation. Similarly large molecules have a short 

T2, which can be exploited to filter out the signals from macromolecules like lipids.

The molecular environment around a nucleus is slightly (typically by a few parts per 

million) modified because of the shielding effect of the electron cloud resulting in small 

changes in the effective magnetic field experienced by the nucleus. This results in small 

changes in the resonance frequency of the given nucleus. Being very small, this shift in 

resonance frequency is expressed in relation to a standard reference frequency and is 

known as the chemical shift.
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Higher magnetic field strength offers well resolved and detailed spectra of small 

metabolites. For example, overlapping resonances from glycerophosphocholine (GPC), 

phosphocholine (PCho), and free choline in vivo, can be studied separately at higher 

field strengths with ex vivo high-resolution MRS. The greater spectral resolution with 

increasing magnetic field strength also enhances the quantification precision.

1.2.2 MRS of biofluids

Metabolic profiling of biofluids can provide an extensive view of changes in 

endogenous metabolites in monitoring cellular responses to normal physiology or 

perturbations such as diseases and drug treatments.43-50 Clinical biomarkers of disease 

conditions are best found in the biofluids which is bathing the most affected organ. For 

example markers of lung diseases may be present in saliva or breath-condensate, 

cerebro spinal fluid for neuronal diseases, urine or blood for kidney diseases, and blood 

for cardiac diseases. Among the biofluids, blood and urine is more widely used for 

clinical metabolomic studies.51-56 Analysis of metabolites in biofluids as a diagnostic 

tool has several advantages such as non-invasive or minimally-invasive sample 

collection and the possibility of multiple sample collection over a time course thus 

making it an ideal choice for clinical studies.57

1.2.3 HR-MAS MRS 

The line width of an MR signal depends strongly on the microscopic environment of the 

nucleus under study. MR spectra from solid or semi-solid tissue samples present much 

broader signals compared to liquid samples due to their large dipolar interactions and 
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chemical shift anisotropy. In liquid samples the rapid isotropic motion of the molecules 

averages the anisotropic interactions, resulting in an isotropic chemical shift frequency 

and a disappearance of the line broadening due to dipolar couplings. In solids, the lack 

of mobility leads to anisotropic broadening and spectra with overlapping signals.58

Figure 1.7: Magic-angle spinning: The sample (blue) is rotating with high frequency inside the 

main magnetic field (B0 m with respect to the 

direction of B0. Image credits to Wikimedia Commons.

When the sample is spun at an angle ( m) to the magnetic field (Figure 1.7), the dipolar 

interactions between the nuclei are dependent on the angle and the spin rate. At an angle 

of 54.7 degree also known as ‘magic angle’, some of the dipolar interactions are 

annulled and hence results in improved spectral resolution.58 This technique has been 

successfully used to study the metabolic profiles of intact tumor samples from breast, 

brain, kidney, prostate and lung tumors.59-64 The technique is non-destructive and 

requires only minimal sample preparations. The sample remains intact after the MR 
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experiment and can be used for further analysis like histopathology, proteomics and 

gene expression studies.

1.2.4 MRS data acquisition 

Metabolic data acquisition is typically performed on biofluids or tissue samples 

(biopsies). Typical proton spectra of malignant effusions associated with carcinoma of 

breast, ovary and mesothelioma obtained from a high resolution spectrometer (Fig. 1.8)

are comprised of sharp signals (narrow line width) from low molecular metabolites such 

as sugars, amino acids and small metabolites as well as broad signals from different 

groups of lipids and macromolecules. Most of the biological samples contain a high 

proportion of water protons and the huge size of the water peak can strongly limit the

dynamic range of the metabolite detection and loss of signal from low concentration 

substances. Hence, suppression of water signal by specialised pulse sequences that use 

water presaturation or excitation sculpting is commonly used to improve the signal-to-

noise ratio for endogenous metabolites.65 Based on the differences in spin properties of 

macromolecules and small metabolites, there are several spectral filtering techniques 

which can selectively enhance or suppress specific groups of metabolites. 

Macromolecules tend to have shorter T2 relaxation times and smaller diffusion 

coefficients than those of smaller molecules due to their longer rotational correlation 

times and limited translational motion. Hence it is possible to filter the MR spectra 

based on these properties. Smaller molecules such as endogenous metabolites present in 

biofluids can be observed selectively by applying spin-echo loops (Carr–Purcell–

Meiboom–Gill (CPMG)), based on their longer relaxation times, prior to NMR data 

acquisition. This is known as T2-edited spectroscopy.66
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Figure 1.8: Proton magnetic resonance spectra from malignant effusions: Assignments of 

various metabolites visible in the MR spectra are shown.  The region between 6.9 ppm-7.9ppm 

is scaled up to show the assignments.  The red spectrum is from breast carcinoma effusion, the 

green from mesothelioma and the blue from ovarian carcinoma. Reproduced with permission 

from Vettukattil et al.67

1.3 Data analysis

Metabolomic experiments generate large amounts of data which needs sophisticated and 

powerful computational tools for proper analysis and interpretation. Multivariate data 

analysis techniques are able to tackle the colinearities in the MR spectral variables and 

are commonly used in metabolomic studies. Pattern recognition tools are used to 

analyse the large multivariate datasets. Both unsupervised and supervised techniques 

can be used to derive metabolic profiles.68
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1.3.1 Preprocessing of MR spectra

Prior to multivariate analysis, several preprocessing techniques are applied on the MR 

spectra to improve the quality of the spectral data for multivariate analysis. Optimal 

preprocessing techniques are critical in determining the outcome of data analysis.69

Commonly employed preprocessing routines in MR metabolomic data are baseline 

correction, scaling, normalisation and peak alignment.

Baseline correction is used to remove the baseline distortions in MR spectra. Baseline 

distortion can offset the intensity values and result in inaccuracy in peak assignment and 

quantification. Scaling and normalisation are used to make the data from all samples 

directly comparable to each other. Special care should be taken during this stage of data 

analysis to avoid wrong comparison between spectral data.70 One of the commonly used 

normalisation technique is to set the total spectral area to a constant sum, known as area 

normalisation. Area normalisation compensate for the differences in sample weights and 

concentration. Other commonly used normalisation techniques are range normalisation 

and normalisation to a “housekeeping” metabolite.70 The variation in pH, temperature 

and intermolecular interactions results in misalignment of peaks in MR spectra.

Alignment of spectral peaks is an important step before multivariate analysis. Several 

peak alignment algorithms are used to achieve a properly aligned spectral data.71

Commonly employed peak alignment techniques for MR spectra includes interval 

correlated shifting (icoshift)72, correlation optimized warping (COW)73 and parametric 

time warping (PTW).74
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1.3.2 Principal component analysis (PCA)

PCA is a commonly used non supervised technique for multivariate data exploration.75

It reduces the dimensionality of the data and reveals the hidden structure within a 

dataset. The variance structure of the data is explained through linear combinations of 

the variables called principal components (PCs). The first PCs will be in the direction 

explaining most of the variance in the data set. In the score plot of the PCA, samples 

with a similar metabolic profile will cluster, while the corresponding loading profile 

displays the importance of each variable within the PC.

1.3.3 Partial least squares (PLS)

Partial least squares is a supervised analysis method used to identify the fundamental 

relations between two matrices, usually the spectral data X and the clinical outcome or  

some other sample characteristics Y.75 Similar to PCA, PLS is also a linear 

decomposition technique while it differs in the optimization problem that is solved to 

find a projection matrix. PLS finds projection directions for which the covariance 

between the data matrix or predictor variables, X, and the responses, Y is maximized.

PLS models can be interpreted in a similar way as PCA models using the scores and

loadings plots. PLS Discriminant Analysis (PLS-DA) consists of a classical PLS 

regression where the response variable is a categorical one and expresses the class 

memberships.

1.3.4 Multilevel analysis

In metabolic studies where the metabolic changes of interest are subtle compared to the 

between subject variation, it may be difficult to capture the relevant information. If the 
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interventions are performed on the same patient, it is possible to utilize the multilevel 

structure of the data to capture within subject variations.76 Multilevel PLS-DA

(MLPLS-DA) is used for paired comparisons of multivariate data. MLPLS-DA can be 

considered a multivariate extension of a paired t test that generates different multivariate 

submodels for the between-subject and within-subject variation in the data. This allows 

to split the variations and hence to analyse without being confounded by the other 

variation sources.

1.3.5 Validation

Validation of multivariate models is a crucial step to evaluate the performance and 

stability of the statistical model. This involves several techniques like cross validation, 

independent test sets and permutation testing. Using a separate independent test set 

with similar type of samples as used in the calibration set would be the ideal way for 

validation. However, in most of the real life situations, we have access to only a finite 

set of samples, usually less than what is wanted. Hence an approach called cross 

validation is used where the data is split into a training set and a test set. In a full cross 

validation (leave one out), only one sample is used for testing the model while all other 

samples are used to build the model. The process is repeated leaving one sample at a 

time for the whole dataset, and the average of the classification result is estimated. This 

is a convenient technique for small sample size (n~20) at the expense of overfitting and 

over optimistic results.77 Alternate approaches includes using random subsets (a small 

percentage of the whole data) to test the model.
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A permutation test is used to assess the statistical significance of the classification 

results.78 During this process the class labels are randomly assigned to the samples. The 

classification result is calculated after the permutation and after repeating the process 

several times (typically >1000).79 The classification error distribution from the model 

using permuted classes can be compared with the original model to assess the 

significance of the model.

1.4 Biomarkers

Recently, biomarkers have gained wide attention among the scientific community and 

clinical practice. Clinicians are always in need of tools to aid in better patient 

management, and valid biomarkers can significantly help in risk stratification, effective 

prognostication and to effectively treat patients with diseases. A consensus panel at the 

National Institutes of Health standardized the definition of a biomarker in 2001 as ‘a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention or other health care intervention’.80 A biomarker can be measured in 

biological samples (like serum, tissue or urine), it can be recorded (like blood pressure, 

Electro cardiogram) or it can be a parameter derived from an imaging test like MR or 

CT scan.

Potential usefulness of biomarkers can range along the whole spectrum of the disease 

process. Prior to diagnosis, they can be used for screening and risk assessment. On the 

other hand, during diagnosis, biomarkers can aid in staging, grading, and selection of 
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initial therapy. During therapy, they can be useful in monitoring therapy, selecting 

additional therapies, or in monitoring recurrence.

1.4.1 Characteristics of an ideal biomarker

Optimal patient management is the key expectation out of a biomarker. A biomarker

will be of clinical value only if it is accurate, reproducible, acceptable to the patient, 

easy to interpret by clinicians, and has high sensitivity and high specificity. A new 

biomarker should prove its ability in multiple studies by showing its ability to explain

the outcomes independent of the established predictors in a consistent pattern. There 

should be validation data to suggest that knowledge of biomarker levels can change the 

patient management. During validation, performance characteristics like sensitivity, 

specificity and reproducibility of the biomarker must be evaluated. 

The clinical value of a biomarker depends on its accuracy, reproducibility of the 

measurements, and patient compliance. The intended use of a biomarker may affect the 

desirable characteristics of a biomarker. For biomarkers indicating disease progression 

or treatment response, sensitivity or specificity are less important compared to screening 

biomarkers because the patient serves as his or her own control.81 Similarly, costs may 

be less important for prognostic markers because only people with the disease are 

tested.

The course of biomarker development faces complex challenges and uncertainty. Most 

of the current biomarkers do not satisfy the required characteristics. Validation and 

demonstration of clinical utility of new biomarkers needs generation of prospective 
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data. If a biomarker is to be used as a surrogate endpoint, it needs the highest level of 

evidence to prove that the marker accurately predicts the clinical endpoint of interest in 

well-designed studies.82

Table 1.2: Biomarker Validation and Qualification

Type of 
Biomarker

Definition Purpose

Exploration Research and development 
tool

Hypothesis generation

Demonstration Probable or emerging 
biomarker

Decision making, supporting evidence 
with primary clinical evidence

Characterization Known or established 
biomarker

Decision making, dose finding, 
secondary/ tertiary claims

Surrogacy Biomarker can substitute for 
a clinical endpoint

Regulatory approval

NOTE: Shown are four categories of biomarkers used for drug development and their 
intended purpose.
SOURCE: Adapted from Wagner, 2006.83

In a complex and heterogeneous diseases like cancers, it is unlikely that a single 

biomarker can detect all the subtypes and stages of the disease with optimum sensitivity 

and specificity. Combining several biomarkers could be a way to improve the sensitivity 

of diagnostic markers. Multiple biomarker panels have been tried in cardiovascular risk 

assessment and in ovarian carcinomas with improved results.84,85 The four main 

categories of biomarkers used for drug development and their intended purposes are shown 

in Table 1.2.

Recent advances in molecular biology and development of microarrays, proteomics, 

metabolomics and nanotechnology has opened up new opportunities in the biomarker 
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development. A system biology based approach with cross collaboration between 

biologists, clinicians, chemists, computer scientists have greatly improved our ability to 

retrieve, analyse and characterize huge amount of data generated by the various –omic 

platforms. These approaches also focus on the multiple components of the deranged 

regulatory networks and uses multi parametric analyses to detect intricate 

derangements. Compared to a single biomarker or pathway analysis, this multi-

parametric approach may provide better insight in to diagnosis, prognosis and 

treatment.86

1.4.2 Metabolomics in biomarker development

The development and application of novel “omics” technologies are directly related to

the recent growth in biomarker discovery. Metabolomics allows simultaneous and 

parallel assessment of the metabolites present in cells, tissues and biofluids and helps to 

capture the alteration in the biochemistry associated with pathologies. The process of 

biomarker discovery involves different phases ranging from preclinical exploration to 

clinical use and disease control.87 The first step in metabolic biomarker search often 

begins with preclinical studies, comparing tumor tissue with non tumor tissue. These are 

exploratory studies to identify characteristics unique to tumor tissue that might lead to 

ideas for clinical tests for detecting pathologies like cancer. Key objectives of different 

phases in biomarker discovery are depicted in Table. 1.3. Most of the work in this thesis 

involves the first phase in biomarker search.  
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Table 1.3: Five Phases of biomarker development- from discovery to delivery (adapted from 

Pepe et al,87 with permission from Oxford University Press)

Description Phases Objective

Preclinical 
Exploratory   

PHASE 1 Identify promising directions & feasibility

Clinical Assay and 
Validation

PHASE 2 Clinical Assay to Detect established Disease

Retrospective 
Longitudinal

PHASE 3 Case-control studies using repository 
specimens

Prospective 
Screening

PHASE 4 Longitudinal studies to predict disease

Disease Control PHASE 5 Clinical use

Although metabolomic studies of human diseases in the last decade have discovered a

number of novel biomarkers, none have currently made the transition to routine use in

clinical practice.39 Metabolites identified from these early studies will need to form the 

basis of larger, prospective, externally validated studies in clinical cohorts for their

future use in the clinics.

1.4.3 Metabolomics in cancer biomarker development

Biomarkers have a potential role in clinical medicine for prognostic and predictive 

purpose. Several exploratory studies are done on cell cultures, experimental animals for 

evaluating metabolic biomarkers for cancer diagnostics followed by their evaluation in 

tumour tissue or biofluids.88 Standard metabolomics experiments has shown that many 

tumors in general have elevated phospholipids, increased glycolytic activity, 
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channelling of glycolytic carbon for synthetic  activity, and high glutaminolysis.25,89,90

Metabolomics has been successfully used in breast and prostate cancer studies to detect 

changes in choline metabolites and glycolytic products.91-93 Similarly, metabolomics 

studies in brain tumors and ovarian tumors have shown metabolic biomarkers of 

potential clinical value.94-96 However, there are still several missing links in the 

knowledge about the tumor metabolome and the metabolic profiles vary among distinct 

tumor types making it difficult to generalise the findings among tumor groups.68

1.4.4 Metabolomics in cardiovascular health

Prognostic markers of adverse cardiovascular outcomes like low density lipoprotein 

(LDL) cholesterol are popular even among the general public. Diagnostic markers of 

acute changes like troponin I and troponin T are widely used to aid the diagnosis of 

myocardial infarctions. There is always a compelling need for identifying biomarkers of 

cardiovascular fitness, which can detect the adverse changes at a very early stage of the 

pathogenesis. Metabolomic studies have been used in experimental and epidemiological 

studies with the aim of detecting biomarkers of cardiac health. In patients with 

hypertrophic obstructive cardiomyopathy undergoing “planned myocardial infarction”, 

metabolic profiling of the plasma samples revealed metabolic changes as early as 10 

minutes following the procedure.19 In a normal physiological context, exercise related 

metabolic changes are detected in the plasma of individuals running on a treadmill.97

There are several studies which explored the metabolites in blood plasma associated 

with inflammation, oxidative stress and lipid metabolism, which are key mediators in

CVD pathogenesis.98-102 Although the application of metabolomics in the clinics is still 
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in its infancy, it is a powerful technique to address complex tasks such as cardio-

vascular risk assessment, treatment response monitoring and patient management.
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2 Thesis Objectives

The main objective of the research presented in this thesis was to evaluate the use of 

high resolution MRS together with multivariate analysis based metabolomic pipeline for 

identifying and characterizing potential biomarkers of health-disease continuum. In

more detail:

1. To investigate metabolic differences between healthy individuals with high and 

low aerobic fitness (VO2max) by MR metabolomics, and further to describe these 

differences qualitatively and quantitatively.

2. To characterize the metabolic profile of astrocytomas with ex vivo HR-MAS 

MRS and to establish MRS markers to distinguish WHO grade II (A-II) and 

grade IV astrocytomas (glioblastomas; GBM) at a metabolic level and to assess 

the correlation between MR spectral profiles, baseline patient characteristics, 

and preoperative magnetic resonance imaging (MRI)-defined tumor volume.

3. To identify the metabolic differences between ovarian serous carcinoma 

effusions obtained pre- and post-chemotherapy, as well as to compare ovarian 

carcinoma effusions with breast carcinoma and malignant mesothelioma 

specimens.
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3 Materials and methods

3.1 Patients and data sets

In paper I, all the subjects were healthy people from the Nord-Trøndelag Health Study 

(HUNT3) in Norway, which was carried out between 2006 and 2008. Among 50,821 

participants in HUNT3, 4631 healthy, adult subjects attended a sub-study called the 

Fitness Study, designed to measure VO2max.103 From the Fitness Study-population, 220 

individuals between 40 and 59 years were selected pair-wise with one having low and 

the other high VO2max (selected from top or bottom 15 subjects within each age-year), 

but otherwise same gender, equal age in years, same physical activity index score 

(within 15% difference) and equal time since last meal. Subjects were ranged according 

to VO2max reported as mL kg min , and maximum five pairs of subjects were 

matched from each age-year. Two subjects did not provide a blood sample, and the 

study thus included 218 subjects (45 males and 63 females in the low VO2max-group, 

and 46 males and 64 females in the high VO2max-group).

The study cohort in paper II was 58 patients (median age, 57 years; range, 27-81 years; 

27 female, 31 male patients) with histologically verified supratentorial, diffuse 

astrocytomas (48 glioblastomas and 10 A-IIs). Preoperative functional status of the 

patients was evaluated with the Karnofsky Performance Status Scale.104 Preoperative 

MRI was used to determine tumor volumes. Tumor volumes were estimated with an

ellipsoid volume formula ( ) based on the maximum tumor diameters in the 

perpendicular dimensions as described elsewhere.105,106 All surgeries were performed 
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under general anesthesia with an ultrasound-based neuronavigation system. Patient and 

tumor characteristics are presented in Table 3.1

Table 3.1: Baseline characteristics

Parameter GBM A-II

Patientsa 48 10

Median (range) age (years) 58 (27-81) 47 (29-71)

Gender(female/male) 25/23 2/8

Preoperative KPS KPS 90-100  10%

KPS 70-80    61%

KPS <70       29%

KPS 90-100    64%

KPS 70-80      27%

KPS  <70        9%  

Recurrent Tumor 17b 2

Abbreviations: GBM, glioblastoma; A-II, WHO grade II astrocytoma

Note: Recurrent Tumor denotes that the patient has been operated earlier. For patients 

with GBM, this means that they have been operated for either an A-II or GBM 

previously. Four among 17 recurrent GBM has a previous histology of A-II.
aUnless otherwise indicated, values are numbers of patients.
bFour of the glioblastomas were secondary, i.e. previous histology was A-II.

In paper III, the samples comprised of pleural and peritoneal effusions from 95 patients 

diagnosed with ovarian carcinoma, 10 with breast carcinomas, and 10 with malignant 

mesotheliomas. Among the ovarian carcinomas, 8 were paired peritoneal specimens 

obtained pre- and post-chemotherapy from the same patient. All these specimens were 

submitted to the Norwegian Radium Hospital, Oslo, Norway from 1999-2012.
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All studies were approved by the Regional Committees for Medical and Health 

Research Ethics, and written informed consent was obtained from all included patients.

3.2 Sample handling

For paper I, which is focusing on serum markers of aerobic fitness, venous non-fasting 

blood samples were collected in serum-tubes with no additives. The blood was 

centrifuged at 3000 rpm for 10 minutes approximately 1 hour after sample collection. 

HUNT biobank at Levanger, Norway

until being used for metabolic profiling. Before analyses, the serum samples were 

slowly thawed at 4°C. Aliquots of 150 μL were mixed with equal amounts of buffer 

solution (Na2HPO4 ×7H2O (0.075M), 4% NaN3 in H2O (5ml, mass % of NaN3 versus 

mass % of H2O), TSP (3-(trimethyl-silyl) propionic acid-d4, 0.4g), D2O (100 mL), pH 

adjusted to 7.4 with 1M HCl (1M NaOH), filled up to 500 mL with H2O) and 

transferred to high-quality 3 mm MR tubes. The ratio between H2O and D2O was 90:10 

in all samples.

Paper II deals with tissue samples from brain tumors. During surgery, tumor biopsies 

for this study were put in cryogenic vials within a median delay of 60 seconds and snap-

frozen in liquid nitrogen (-196 ºC). Separate biopsies from the same tumor area were 

sent for routine histological analysis. All samples to be analysed by HR-MAS

were stored in a cryogenic tank to prevent biochemical degradation until analysis.
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Samples in paper III were biofluids from pleural and peritoneal effusions. Effusions

were submitted for routine diagnostic purposes and were processed immediately after 

tapping. Effusion specimens were centrifuged, and supernatants were frozen at -70°C.

Subsequent treatments were similar to the serum samples in paper I

3.3 MRS protocol

3.3.1 MRS of biofluids

The MR spectra were acquired using a Bruker Avance III 600MHz/54 mm US-Plus 

(Bruker Biospin, Rheinstetten, Germany) operating at 600 MHz for proton (1H), 

equipped with a QCI cryoprobe. All spectra were recorded in an automatic fashion 

using a Bruker SampleJet and the ICON-NMR software (Bruker Biospin, Rheinstetten, 

Germany). Proton spectra were obtained at a constant temperature of 300 K (27ºC) 

using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with 

presaturation during the relaxation delay (cpmgpr1d; Bruker Biospin pulse sequence

library) to achieve water suppression and to facilitate the detection of low molecular 

weight species by avoiding the large overlapped signals derived from large molecules 

such as proteins and lipids. The spectra were collected with 64 scans and 4 dummy 

scans. The acquisition time was 3.067 seconds, measuring the FID via collection of 32K

complex data points resulting in a spectral width of 20.0363 ppm. A relaxation delay of 

4 seconds was used, during which presaturation at 25 Hz was applied. The receiver gain 

was kept at a constant value of 90.5 and the effective echo time was 80ms. The FIDs 

were Fourier transformed after exponential line broadening of 1 Hz. For metabolite 

quantification, nuclear overhauser effect spectroscopy (“noesy”, Bruker Biospin pulse 

sequence library: noesygppr1d) spectra were acquired using 32 transients with four 

36



Materials and methods

dummy scans, 96 K points per spectrum giving an acquisition time of 2.72 seconds and 

a mixing time of 10 ms, and apodized using an exponential line broadening parameter 

of 1Hz, and a 4 seconds recycle delay. Measurement and processing was done in full 

automation using Bruker Biospin standard automation programs controlled by ICON-

NMR (along with TopSpin v3 patchlevel 3, Bruker Biospin, Rheinstetten, Germany).

3.3.2 MRS of tissue samples

The HR-MAS experiments were performed with a Bruker Avance DRX600 

spectrometer with a 1H/13C HR-MAS probe (Bruker BioSpin GmbH, Rheinstetten, 

Germany) with magnetic field gradients aligned with the magic angle axis. Before the 

HR-MAS experiments were performed, tumor tissues were sliced to fit 30-mL leak-

proof disposable inserts (Bruker Biospin Corp, Billerica, Massachusetts) filled with 

phosphate-buffered saline buffer (3 mL of a mixture of TSP [4.5 mmol/L], sodium 

formate [20 mmol/L] and D2O-based phosphate buffered saline). Sample preparation 

was performed on an ice block to maintain a low-temperature working atmosphere. The 

inserts were further placed in zirconium MAS rotors (4mm). Mean ± SD sample weight 

was 7.7 ± 3.4 mg. All spectra were acquired at spin rate of 5 kHz and at 4oC to 

minimize tissue degradation. Proton spectra were acquired with a spin-echo Carr-

Purcell-Meiboom-Gill sequence (cpmgpr; Bruker Biospin pulse sequence library) with

3-second water suppression before a 90o excitation pulse. T2 filtering to suppress broad 

resonances from lipids and macromolecules was obtained with an effective echo time of 

32 ms. With an acquisition time of 1.64 seconds, 128 transients were collected over a 

10-kHz spectral region containing 32K points, giving a repetition time of 4.64 seconds.
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Phosphorous HR-MAS experiments were performed with a Bruker Avance III 600 

MHz/54 mm US spectrometer with a 1H/13C/31P HR-MAS probe (Bruker BioSpin 

GmbH, Rheinstetten, Germany). 31P HR-MAS spectra were acquired with a spin rate of 

5 kHz at 4 o C with the use of a 1-dimensional power-gated sequence with 1H

decoupling (zgpg; Bruker Biospin pulse sequence library). With an acquisition time of 

0.67 seconds, 512 transients were collected (repetition time = 2.67 seconds) over a 24-

kHz spectral region containing 32K points.

3.4 Data analysis

All multivariate analyses in this thesis were performed with MATLAB (version 7.9.0; 

The Math Works, Natick, Massachusetts) and PLS_Toolbox version 5.8.3 (Eigenvector 

Research, Manson, Washington). The spectra were peak aligned with icoshift.72 PASW 

Statistics 17.0 (IBM, New York) was used for traditional statistical analyses. All 

statistical tests were two-sided, and p-values below 0.05 were considered statistical 

significant. Kolmogorov-Smirnov test was used to test for normality. One-Way 

ANOVA was used for comparing variables between the high and the low VO2max-

groups, and the Kruskal-Wallis test was used in non-parametric analyses. Results are 

given in mean ± SE. Pearson’s correlation was used to study associations between 

normally distributed variables, and Spearman’s correlation was used in non-parametric 

analyses. 

3.5 Clinical diagnostics and Histopathology

Weight and height of subjects in the HUNT study (Paper I) were measured on a 

combined scale (Model DS-102, Arctic Heating AS, Nøtterøy, Norway), and BMI was 
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calculated as weight divided by height squared (kg m ). Blood pressure and resting 

heart rate were both measured while sitting (Critikon Dinamap 845XT, GE Medical 

Systems, Little Chalfont, Buckinghamshire, United Kingdom) and followed established 

guidelines.107 An individualized protocol was applied to measure VO2max treadmill 

running to exhaustion.108 The VO2max-test was performed using a ramp protocol where 

the speed was constant and the incline was increased with 2% every second minute until 

VO2max was reached. All clinical-chemical analyses for the paper I was performed on 

fresh venous non-fasting blood samples at Levanger Hospital, Norway.

For routine histopathological analyses in paper II, resected astrocytoma tissue was fixed 

in buffered formalin and embedded in paraffin wax, and 5-mm-thick sections were cut 

and stained with hematoxylin, eosin, and saffron. An experienced neuropathologist 

examined all sections, and the astrocytomas were graded according to the latest WHO 

criteria into grades II to IV.33 After HR-MAS analyses, the sections were examined

microscopically to assess the fraction of tumor cells and necrosis. IDH1 expression 

status was evaluated using immunohistochemistry. Briefly, 5-mm-thick sections were 

incubated with the primary antibody (antihuman IDH1 R132H; Dianova, Hamburg, 

Germany; dilution, 1:10, incubation time, 30 minutes at room temperature) after 

quenching ofendogenous peroxidase activity with 3% hydrogen peroxide and antigen 

retrieval by pressure cooking. The immunostaining was carried out on a DAKO 

Autostainer (Dako, Glostrup, Denmark).

For the effusion samples in paper III, cell blocks were prepared using the Thrombin clot 

method. Diagnoses were established using morphology and immunohistochemistry. 
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Effusion specimens were centrifuged, and supernatants were frozen at -70°C. Smears 

and H&E-stained cell block sections were reviewed by a surgical pathologist 

experienced in cytopathology.
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4 Summary of papers

Paper I

Serum levels of choline-containing compounds are associated with aerobic fitness 

level: the HUNT-study.

Cardiovascular disease (CVD) is a leading cause of death worldwide, and the number of 

people at risk is continuously growing. New methods for early risk prediction are 

therefore needed to actuate prevention strategies before the individuals are diagnosed 

with CVD. Several studies report that aerobic fitness level, measured as maximal 

oxygen uptake (VO2max), is the single best predictor of future CVD mortality in healthy 

people. Based on this, we wanted to study differences between healthy individuals with 

a large difference in VO2max -level to identify new biomarkers of low aerobic fitness that 

may also have potential as early biomarkers of CVD. Serum samples from 218 healthy 

individuals with a low VO2max (n = 108, 63 women) or high VO2max (n = 110, 64 

women) were analysed with MR metabolomics. In addition, standard clinical-chemical 

analyses for glucose, lipids, liver enzymes, micro-CRP, and colorimetric analysis on 

circulating choline were performed. Individuals in the low VO2max -group had increased 

serum levels of free choline, decreased phosphatidylcholine, increased glucose and 

decreased unsaturated fatty acids compared to the individuals in the high VO2max-group.

Aerobic fitness dependent differences in serum levels of free choline and 
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phosphatidylcholine are observed. They should be further studied as potential early 

markers of CVD risk.

Paper II

Differentiating Diffuse World Health Organization Grade II and IV Astrocytomas 

with Ex Vivo Magnetic Resonance Spectroscopy.

The prognosis and treatment of astrocytomas, which are primary brain tumors, vary 

depending on the grade of the tumor, necessitating a precise preoperative classification. 

Magnetic resonance spectroscopy (MRS) provides information about metabolites in 

tissues and is an emerging non-invasive tool to improve diagnostic accuracy in patients 

with intracranial neoplasia. This study aims to investigate whether ex vivo MRS could 

differentiate World Health Organization grade II (A-II) and IV astrocytomas 

(glioblastomas; GBM) and to correlate MR spectral profiles with clinical parameters.

Patients with A-II and GBM (n = 58) scheduled for surgical resection were enrolled. 

Tumor specimens were collected during surgery and stored in liquid nitrogen before 

being analysed with high-resolution magic angle spinning MRS. The tumors were 

histopathologically classified according to World Health Organization criteria as GBM 

(n = 48) and A-II (n = 10). Multivariate analysis of ex vivo proton high-resolution magic 

angle spinning spectra MRS showed differences in the metabolic profiles of different 

grades of astrocytomas. A-II had higher levels of glycerophosphocholine and myo-

inositol than GBM. The latter had more phosphocholine, glycine, and lipids. A

significant metabolic difference between recurrent and nonrecurrent GBM (P < .001)
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was observed. Primary GBM had more phosphocholine than recurrent GBM. A 

significant correlation (P < .001) between lipid and lactate signals and histologically 

estimated percentage of necrosis was observed in GBM. Spectral profiles were not 

correlated with age, survival, or magnetic resonance imaging-defined tumor volume. Ex 

vivo MRS can differentiate astrocytomas based on their metabolic profiles.

Paper III

Proton magnetic resonance metabolomic characterization of ovarian serous 

carcinoma effusions: chemotherapy-related effects and comparison with malignant 

mesothelioma and breast carcinoma 

Malignant serous effusions are a common manifestation of advanced cancer, associated 

with significant morbidity and mortality. The aim of this study was to identify the 

metabolic differences between ovarian serous carcinoma effusions obtained pre- and 

post-chemotherapy, as well as to compare ovarian carcinoma (OC) effusions with breast 

carcinoma and malignant mesothelioma specimens. The supernatants of 115 effusion 

samples were analysed by high-resolution magnetic resonance (MR) spectroscopy in 

vitro and multivariate analysis. The samples comprised of pleural and peritoneal 

effusions from 95 OC, 10 breast carcinomas, and 10 malignant mesotheliomas. Among 

the OC, 8 were paired peritoneal specimens obtained pre- and post-chemotherapy from 

the same patient. OC had elevated levels of ketones (aceto-acetate and beta-

hydroxybutyrate) and lactate compared to malignant mesotheliomas and breast

carcinomas, whereas the latter had more glucose, alanine, and pyruvate. Multivariate 

analysis of paired effusions in OC showed a significant increase in glucose and lipid 

levels in the post-treatment spectra (P=0.039). MR spectroscopy is a promising 
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technique for comprehensive and comparative studies of metabolites in malignant 

serous effusions and our study shows that small metabolites associated with effusions 

might improve our understanding of tumor biology and disease progression and has 

diagnostic potential in this differential diagnosis.  
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5 Discussion

The main goal of this thesis was to evaluate the use of high resolution MR

metabolomics for identifying and characterizing potential biomarkers in the health-

disease continuum. Subjects in this thesis ranged from healthy volunteers (Paper I) to 

patients with advanced stage of malignancies (in Paper II and III). In the first study,

aerobic fitness dependent differences in serum levels of free choline and 

phosphatidylcholines in a group of healthy volunteers were observed. In paper II, the 

possibility of differentiating diffuse World Health Organization Grade II and IV 

astrocytomas based on their metabolic profiles were showed. Metabolic markers of 

chemotherapy related changes in ovarian serous carcinoma effusions were identified in 

Paper III. In addition, the metabolic portraits of ovarian carcinomas were compared with

breast carcinoma effusions and mesotheliomas in paper III. Throughout these studies, 

the utility of using a high resolution MR based metabolomics approach for biomarker 

discovery has been investigated. This thesis also evaluates the role of advanced

multivariate analysis techniques in deciphering the complex and multidimensional 

spectral data. In paper I and III, the samples were biofluids and its usability in detecting 

perturbations of endogenous metabolites in normal physiology (aerobic fitness, paper I) 

and pathology (malignant effusions, paper III) was explored. The extension of the MR

metabolomics technique to intact biopsy specimens from brain tumor patients was

evaluated in paper II, and potential markers for tumor grading and prognostication were 

identified. The usefulness of MR metabolomic techniques in capturing molecular 

signatures of complex pathologies like cancer has been explored (paper II, III). This 

may contribute further to the scientific understanding of the underlying tumor biology.
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5.1 Metabolic profiling for biomarker identification

MRS and mass spectrometry are the two main analytical techniques widely used in the 

study of metabolites in biological fluids and tissues from biopsy samples.65,109,110 MRS

offers a nondestructive and highly reproducible way for analyzing metabolites with 

minimal sample preparation. In all the studies included in this thesis, MR based 

metabolomics were used for metabolic profiling tissue or biofluids. All these studies 

generated snap shots of metabolic activity ranging from physiological (paper I) to 

pathological conditions (paper II and III). The complexity of the data was handled by

multivariate techniques. To identify the biochemical similarity between samples and to 

capture the metabolic patterns indicative of a particular physiological or pathological 

state, linear projection methods like PCA and PLS-DA has been utilized in all papers (I-

III). The usefulness of MRS based metabolomic for characterizing the biomarkers of 

clinical importance and to uncover disease mechanism has been evaluated in these 

studies.

Most of the works in this thesis are in the discovery or explorative phase of biomarker 

research. In an exploratory study, it is important to ensure that sample handling and data 

acquisition is optimized to maintain the stability of metabolites. Sample storage and 

preparation has to be optimal to avoid sample aging and degradation. In our study, all 

samples were stored and transported at very low temperatures ( or °C) to

ensure metabolite stability.111,112
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The process of biomarker discovery has a long path when it comes to real clinical 

translation of the findings. The quality of the initial sample set is vital in determining 

the sensitivity, specificity, accuracy of biomarkers and the success rate of clinical 

translation. Often the term “differentiating metabolite” is more appropriate than the term 

biomarker for describing the metabolic markers identified in the exploratory phase of 

the biomarker discovery.113 There is always a need for a multistep qualification process 

with rigorous assessment of precision, accuracy and diagnostic or prognostic value. In 

addition, it is also beneficial to have additional scientific evidence showing the link 

between a candidate biomarker and the pathophysiology of interest. 

MR metabolomics is a useful technique to identify the biochemical signatures of 

physiology and pathology. The potential use of metabolomic biomarkers can range 

widely from screening, prognostication and prediction of disease recurrence to

evaluation of treatment related changes. The different studies covered in this thesis have 

explored the potentials of metabolomic techniques in clinical (paper II and III) and in 

population based studies (HUNT study, paper I). A summary of potential metabolic 

biomarkers identified in this thesis are shown in Table 5.1

5.2 Analysis of metabolomic data

In all the papers included in this thesis, multivariate data analysis techniques played an 

important role in extracting the knowledge from the high dimensional MR spectral data.

PCA and PLS-DA were used in paper I and II whereas in paper III, MLPLS-DA was 

also added to utilise the multilevel structure of the data. Since a single biomarker is 

often insufficient and nonspecific for a given condition, multivariate methods are of 

47



Discussion

special importance in metabolomics.114 One of the advantages of multivariate 

techniques is the ability to use the whole spectra as an input for analysis, without the 

need for metabolite quantification. Although metabolite quantification is helpful in 

detailed understanding of metabolic complexities and for determining characteristic 

biomarkers, quantitative MRS of biological samples poses several challenges. High 

degree of overlap in the (peaks obtained from) MR spectra of biological sample makes 

it difficult to precisely quantify the metabolites. 32,115 The techniques such as peak 

fitting are more useful in targeted metabolomic studies than non-targeted exploratory 

studies and are often subjective and time consuming. Absolute metabolic quantification 

needs a stable reference compound which is added to the sample (external reference) or

present inside the sample (internal reference). Using TSP as a reference is limited as it 

binds to proteins in the tissue samples/biofluids. Using a relative quantification 

approach based on metabolite ratio is often used. Ratio based approaches can be 

affected if there exists a positive correlation between the metabolites. In this thesis, 

being a non-targeted and exploratory phase of biomarker research, only multivariate 

techniques are used.

By using the whole spectra, multivariate techniques can identify the patterns of 

metabolites which are linked with the conditions or disease under study. The 

multivariate models used in this thesis are all linear models and allows the interpretation 

of the metabolites which are responsible for the discrimination between the study 
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Discussion

groups. This is important in biomarker studies which are in the exploratory phase so that 

they can contribute towards improving the biological insights and in possible 

identification of treatment targets. All PLS-DA models were cross validated to achieve 

reliable classification results. The classification accuracy was further evaluated using 

permutation testing to rule out spurious discoveries from random classifications.

The use of multivariate paired data analysis to capture chemotherapy related changes in 

the metabolic composition of serous effusions was explored in Paper III. In this 

analysis, the advantage of the multilevel structure of the data has been considered. This 

method uses the net difference before and after chemotherapy as the input for 

multivariate analysis so as to examine the treatment related variation. This technique is 

useful to detect the metabolic changes related to treatment which are more subtle than 

the larger variation between the patients.

5.3 Serum markers of aerobic fitness

In this study, the metabolic patterns related to aerobic fitness in a group of healthy 

individuals (218 subjects) using high resolution MR metabolomics of the serum samples

were explored. The results showed that individuals with low VO2max had decreased

serum levels of phosphatidylcholine, increased choline and decreased unsaturated fatty 

acids compared to the individuals in the high VO2max group. VO2max being a single best 

predictor of future cardio-vascular disease related mortality, the indicators of low 

aerobic fitness may have a potential role in early CVD risk prediction.9,11-13 Previously, 

metabolomics studies using plasma and serum samples have been successfully utilized 

to detect biomarkers associated with clinical conditions such as coronary artery disease
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and myocardial infarction.17,19,116 However, there is a scarcity of evidence on the link 

between serum metabolites and cardiovascular fitness. In this study, serum samples 

from a group of healthy volunteers were investigated for markers of aerobic fitness. To 

account for the age, gender, physical activity and fasting status dependent variations in 

the metabolites, the participants were thoroughly matched.

Elevated levels of serum free choline have previously been associated with metabolic 

syndrome with a cluster of CVD risk factors.117 This may indicate that, elevated levels 

of cholines in the low VO2max group may have importance in future CVD risk 

prediction. This needs to be evaluated in future studies. Such early markers of risk 

prediction may have value in actuating preventive strategies at an earlier stage. As there 

is a switch in the levels of choline- phosphatidylcholine metabolites between the two 

groups, there might be differences in the choline biosynthesis or breakdown systems in 

the body in relation to aerobic fitness. Previously, it was shown that phospholipase D 

(PLD) activity, an enzyme linked with choline synthesis has been elevated in patients 

with atherosclerosis, hypertension, oxidative stress and inflammations.18 PLD catalyses 

the hydrolysis of PtdCho to phosphatic acid, releasing free choline. A high PLD activity 

in healthy subjects with low aerobic fitness can be speculated and needs further 

evaluation. In addition to changes in the levels of choline containing compounds, 

spectral profiles also indicated a decreased amount of unsaturated fatty acids in subjects 

with low aerobic capacity. Associations between low serums levels of unsaturated fatty 

acids have previously been associated with CVD risk.118
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There were certain limitations in this study. It would have been ideal to get a blood 

sample after overnight fasting to avoid the effect of chylomicrons from the circulation 

to have a more detailed overview of the lipids and lipoprotein subclass.119 However, a 

longer fasting time is difficult to accomplish in a population-based large-scale study 

which involves VO2max measurement. Future studies should be conducted on 

phosphatidylcholine and free choline to validate their potential as early markers of CVD 

and predictor of VO2max. This may help in actuating preventive strategies like life style 

modifications at an early stage in the pathogenesis of CVD.

5.4 Characterization of astrocytomas

In paper II, the potential use of MRS in differentiating stage II astrocytomas from stage 

IV astrocytoma (glioblastoma) has been addressed. Compared to paper I and III, this 

study involved tissue samples and are therefore analysed by magic angle spinning MR

based metabolomics. Multivariate analysis of the spectral data showed higher level of 

glycerophosphocholine and myo-inositol in grade II astrocytomas and higher levels of 

glycine, lipids and phosphocholine in grade IV astrocytomas. Further, there were 

significant metabolic differences between recurrent and non-recurrent gliomas. 

Histological estimates of necrosis in glioblastomas correlated with the levels of lipids 

and lactate. Moreover, the oncometabolite 2-hydroxyglutarate was detected in the HR-

MAS spectra and was associated with IDH mutation.

Previously, MRS has been used in neurooncology for differentiating brain tumor types, 

for drug development, response monitoring, and prognosis prediction.120-126 The total 
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choline (tCho) signal has been suggested as a biomarker for predicting cancer in vivo

and is elevated in brain tumors compared to normal brain tissue.25,123,127 Results from 

paper II shows that, HR-MAS at higher field strengths provides detailed information on 

cholines and resolves the tCho signal to GPC, PCho and free choline. The usability of 

ex vivo, high resolution MR metabolomics in identifying and establishing MR 

biomarkers of tumor grading has been evaluated. The importance of resolving GPC and 

PCho in discriminating different grades of astrocytomas was confirmed in this 

study.128,129

Abnormal choline metabolism associated with oncogenesis and tumor progression is an 

emerging metabolic hallmark of cancer.25 Increased expression of genes encoding 

choline kinase and choline transporters, and a reduction in phospholipase C gene 

expression has been observed in high grade gliomas.129 This may possibly explain the 

high PCho levels in glioblastomas. The balance between synthesis and degradation of 

choline metabolites determines the GPC/PCho ratios. Alteration in choline metabolites 

can also be linked to changes in tumor microenvironment such as hypoxia and acidic 

pH.25,26 Noninvasive assessment of choline metabolites by MRS allows discrimination 

of tumor grades and can have a potential role in assessing treatment response.130,131 In

our study, two different types of astrocytomas were differentiated based on their 

metabolic profiles. Furthermore, the potential role of phosphorous MRS in improving 

the detection of GPC and PCho on a pilot basis was explored. These findings may offer 

a unique translational possibility of using these individual choline metabolites in in vivo

characterization of diffuse astrocytomas. Advances in MRS techniques and improved 

field strength can tackle the problems like low sensitivity of phosphorous MRS in
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vivo.132-134 The clinical feasibility of detecting phosphorylated brain metabolites has 

been proved in pilot studies on patients with brain tumors.134 In addition to tumor grade 

dependent differences in metabolic profiles, a metabolic difference between recurrent 

and non recurrent glioblastomas was present. Recurrent glioblastomas had lower PCho 

levels than non-recurrent glioblastomas, probably reflecting the radiotherapy and/or 

chemotherapy related changes. This could also be due to difference in the choline 

metabolism between recurrent and non-recurrent glioblastomas. However, this needs 

further exploration as the process of glioma progression is a complex event which 

involves evolution of oncogenes and tumor suppressor genes over a period of time in a 

changing tumor micro environment.

Recently, IDH mutations are gaining wider attention in the context of gliomas. This is 

due to the improved life expectancy in glioma patients harboring this mutation.135,136 A

mutant IDH gene results in an altered enzyme which produces 2-hydroxyglutarate (2-

HG) from alpha-ketoglutarate.137 This newly produced 2-HG or oncometabolite is 

scarce in non-mutants and can be non-invasively detected using MRS. Hence it can be a 

non-invasive biomarker for sub-classification of glioma by identifying patients with 

improved prognosis. In our study (paper III), this oncometabolite was detected in the 

majority of the samples with IDH mutation (5 out of 8). This shows that, probing for 

MR detectable biomarkers at higher field strength helps to establish MR detectable 

markers for potential in vivo translation with improvements in MR equipments and 

pulse sequences. Still, it should be kept in mind that sensitivity limitations in MR is 

often an obstacle in the clinical translation of the findings.
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One of the main limitations of this study was the small number of patients. The findings 

in this study need to be confirmed in a larger patient cohort. As in most of the 

metabolomic marker research, this study too is in the initial exploratory phase or the 

phase I of the biomarker development. Astrocytomas are highly heterogenous, 

especially the glioblastomas, and this can results in overlaps in the multivariate 

classifier. In this study we were unable to recruit patients with anaplastic astrocytoma 

(WHO grade III); and future studies including them will aid in a broader comparison 

among grade II, III and IV. There are certain limitations which are inherent to ex vivo

studies.  Despite the possibility of detecting higher number of metabolites ex vivo,

studies are vulnerable to metabolic changes which may occur in connection to the 

biopsy procedure, transportation and experimental process and sample storage. It has 

been shown that snap freezing can minimize the metabolic changes from sample 

handling111, and in this study all samples were snap-frozen. Furthermore, previous 

studies have shown that high resolution ex vivo HR-MAS spectra can be directly related 

to in vivo proton MRS for metabolites like creatine, total choline, N-acetyl aspartate, 

myo-inositol and lipid signals (1.3 and 0.9 ppm) which are not likely to change within 

an extended ischemic period during surgery.112,138 Another potential issue associated 

with HR-MAS is the sample degradation that may result from sample spinning. To 

minimize this issue, we kept the sample spinning for less than one hour. There were two 

samples out of 58 with sub optimal morphology after HR-MAS experiment. However, 

those samples still had a large number of intact tumor cells for performing histo-

pathological examination after HR-MAS. Despite these limitations, this ex vivo

metabolic profiling of tumor tissue samples provided a wealth of knowledge and insight 

which might be helpful in the future studies for finding in vivo markers that can be 
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accurate surrogates for pathological classification of astrocytomas in a non-invasive

way.

Metabolic profiling using HR-MAS together with multivariate analysis is a useful 

technique in characterizing and identifying metabolic markers linked with different 

grades of astrocytomas. The potential role of different MRS technique such as 

phosphorous MRS in improving the discrimination between GPC and PCho, the most 

important choline metabolites associated with different grades of astrocytoma, has been 

explored. A comprehensive approach which incorporates various techniques like 31P

MRS, proton MRS, and molecular markers like IDH1 may add a new dimension to 

classification and management of astrocytomas. 

5.5 Metabolic portraits of malignant serous effusions

Metabolic differences between ovarian serous carcinoma effusions obtained pre- and 

post-chemotherapy has been portrayed in paper III. Metabolic characterization of the 

malignant serous effusion from ovarian carcinomas was performed and the metabolic 

profiles were compared to serous effusions in breast carcinoma and malignant 

mesotheliomas. The use of high resolution MRS of biofluids coupled with multivariate 

analysis was evaluated. Furthermore, the study demonstrated the power of utilizing the 

multilevel structure of the data to capture chemotherapy related changes in 

metabolites.76
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MRS of effusion fluids has previously been used to differentiate benign and malignant 

peritoneal effusions.139 Metabolic profiling of biofluids as a diagnostic tool has several 

advantages such as noninvasive or minimally invasive sample collection and the 

possibility of collecting multiple samples over a time course, making it an ideal choice 

for clinical studies.57 In paper III, the role of high resolution MRS was evaluated in a 

rapid, non-targeted manner to identify metabolic biomarkers of diagnostic and 

therapeutic importance in supernatants of 115 effusion samples. The ovarian carcinomas 

had elevated levels of ketones (acetoacetate and beta-hydroxybutyrate (BHB)) and 

lactate compared to malignant mesotheliomas and breast carcinomas whereas the later 

had more glucose, alanine and pyruvate. Even though the exact biological basis is 

unclear, elevated levels of acetone, acetoacetate and BHB are observed in serum 

samples of early stage ovarian cancer and colorectal cancer.140,141 The growing energy 

demand by tumor cells can trigger lipolysis which may contribute towards the elevated 

levels of ketones.140 Effusions represent an advanced stage of malignancy (stage III and 

IV) and during the process of metastasis to serous cavities; malignant cells can remain 

viable while suspended in the effusion fluid. The effusion fluids provide a 

microenvironment for the tumor cells and helps in the exchange of nutrients and 

mitogenic factors;142,143 hence the metabolic composition of the effusion fluid may 

closely reflect the severity and invasiveness of the metastatic cells. MRS of the effusion 

fluids help to study the metabolic composition of the serous fluid in a global non-

targeted manner. Future targeted studies are needed to further understand the details of 

the underlying mechanisms of energy transfers and metabolic fluxes in malignant 

effusions.
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Post-chemotherapy samples showed an elevation of glucose and lipids with a reduction 

in BHB and lactate in the effusions. This may indicate a reduction in the number of live 

malignant cells or a change in tumor metabolism resulting in reduced glucose uptake 

from the medium. Treatment related reduction in glucose uptake has been shown in 

ovarian cancer cell lines (OVCAR-3) in response to cisplatin treatment in previous 

studies.144 Future studies targeting glucose uptake by malignant cells in effusion fluids 

as a tool for chemosensitivity evaluation is warranted. Evaluation of chemotherapy 

induced changes failed in non-matched samples indicating the importance of 

multivariate paired data analysis.

The small number of samples involved was also here a limitation to the study.  The 

small number of patient matched samples (8 pairs) precluded the analysis of association 

between clinical parameters such as treatment response and survival in relation to 

metabolic profiles. This study looked only at the metabolic profiles of the effusion 

fluids and a combined metabolic profiling which includes the tumor cells from patient 

matched ovarian carcinomas from different anatomical sites could be an area of future 

research.

5.6 Translational perspectives

The most important and ultimate objective of biomarker discovery is the translation of 

those biomarkers to clinical practice so that the result of the research will be useful for 

enhancing human health and well-being. With the development in “omics” 

technologies, there are thousands of scientific publications documenting potential 

58



Discussion

biomarkers for developing effective therapies and improving patient benefits. However, 

only a few biomarkers have been successfully validated for routine clinical use.145,146

There are several practical issues such as logistical and regulatory challenges for large 

scale validation studies, lack of robustness in analytical technologies and

standardisation of protocols used in clinical trials.146,147 Metabolomics based biomarkers 

are successfully used in screening neonates for inborn errors of metabolism.148

However, the number of metabolomic based tests excluding the inborn error of 

metabolism remains “zero”.149 The changes in the biomarker concentration are often 

subtle and distributed among several metabolites in many common complex diseases

compared to profound metabolic changes in inborn error of metabolism, making it 

difficult to develop a single, accurate test. There is a need for standardisation of 

protocols among different laboratories and biomarker discovery should move in to a 

large collaborative network of multidisciplinary team. There should be more clarity in 

the description of laboratory techniques and reporting of biomarker research.149,150

Metabolite reporting should shift from qualitative to quantitative analysis, with explicit 

description of changes in metabolite concentration than qualitative way, as in many 

current metabolic studies. The potential of biomarkers in improving patient 

management and quality of life is greater than several other areas of biomedical 

research. It is important to tackle these obstacles in translation of biomarker research to 

a clinically useful product.

59



Conclusions and future perspectives

6 Conclusions and future prospects

Metabolic profiling of serum samples from healthy volunteers showed that choline 

containing metabolites are associated with aerobic fitness. Low VO2max was associated 

with elevated levels of free choline and decreased levels of phosphatidylcholine. We 

need to do further studies to identify the exact mechanisms behind this shift in 

choline/phosphatidylcholine profiles between high and low VO2max individuals. They 

should also be further studied as potential early markers of CVD risk.

The second study (Paper II) showed that HR-MAS based metabolic profiling of intact 

tissue samples from tumor biopsies could be a potential tool for differentiating different 

grades of astrocytomas. Resolving GPC and PCho from tCho is important in metabolite 

based discrimination of astrocytoma grades. No significant correlation was observed 

between metabolic profiles and baseline patient characteristics. Combined use of 

different MRS techniques like 31P MRS, 1H MRS together with molecular markers like 

IDH1 may help in classification and in moving towards a personalized management of 

astrocytomas. In vivo translation of these results still has a way to go. Clinically 

approved in vivo scanners operate at lower field strengths (1.5-3 T) compared with ex 

vivo spectrometers (in our case, 14 T); thus, the sensitivity is inherently lower. 

Significant progress is being made toward the use of 7-T MRI in the clinical setting, and 

the development of technologies requiring shorter scanning time will follow. Hence, 

clinical translation of our results for in vivo validations should be performed in the near 

future.
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In the third paper, the differences in metabolic profiles of malignant serous effusion 

from different anatomical sites were detected, and metabolic features related to 

chemotherapy exposure were identified using MRS. Metabolic characterization by high 

resolution proton MR spectroscopy could be a promising technique to further 

understand the mechanisms of effusion development in malignancies and to target 

clinical intervention.

In summary, all studies in this thesis showed that MRS based metabolomics is a useful 

technique in characterizing potential biomarkers of physiology and pathology. MR 

metabolomics allows rapid exploration of physiological and pathologic changes in 

samples that can be obtained in a minimally invasive manner. The method is therefore 

suited for early identification of specific metabolites or as patterns within a metabolic 

profile.
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Abstract

Background: Cardiovascular disease (CVD) is a leading cause of death worldwide, and the number of people at risk is
continuously growing. New methods for early risk prediction are therefore needed to actuate prevention strategies before
the individuals are diagnosed with CVD. Several studies report that aerobic fitness level, measured as maximal oxygen
uptake (VO2max), is the single best predictor of future CVD mortality in healthy people. Based on this, we wanted to study
differences between healthy individuals with a large difference in VO2max-level to identify new biomarkers of low aerobic
fitness that may also have potential as early biomarkers of CVD risk.

Methodology/Principal Findings: Serum samples from 218 healthy individuals with a low VO2max (n = 108, 63 women) or
high VO2max (n = 110, 64 women) were analysed with MR metabolomics. In addition, standard clinical-chemical analyses for
glucose, lipids, liver enzymes, micro-CRP, and colorimetric analysis on circulating choline were performed. Individuals in the
low VO2max-group had increased serum levels of free choline, decreased phosphatidylcholine, increased glucosȩ and
decreased unsaturated fatty acids compared to the individuals in the high VO2max–group.

Conclusions/Significance: Aerobic fitness dependent differences in serum levels of free choline and phosphatidylcholine
are observed. They should be further studied as potential early markers of CVD risk.

Citation: Bye A, Vettukattil R, Aspenes ST, Giskeødegård GF, Gribbestad IS, et al. (2012) Serum Levels of Choline-Containing Compounds Are Associated with
Aerobic Fitness Level: The HUNT-Study. PLoS ONE 7(7): e42330. doi:10.1371/journal.pone.0042330

Editor: Daniel Monleon, Instituto de Investigación Sanitaria INCLIVA, Spain

Received March 14, 2012; Accepted July 3, 2012; Published July 30, 2012

Copyright: � 2012 Bye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was supported by grants from the K.G. Jebsen Foundation, the Norwegian Council on Cardiovascular Disease, St. Olavs Hospital and the
Liaison Committee between the St. Olavs Hospital and the Faculty of Medicine, Norwegian University of Science and Technology (NTNU), the Norwegian Research
Council Funding for Outstanding Young Investigators, the Royal Norwegian Society of Sciences and Letters (DKNVS) and the Foundation for Cardiovascular
Research at St. Olavs Hospital and NTNU. There are no disclosures to report. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: muhammad.r.vettukattil@ntnu.no.

. These authors contributed equally to this work.

Introduction

Cardiovascular disease (CVD) is a leading cause of death

worldwide, and the number of people at risk is continuously

growing [1]. New methods for early risk prediction are therefore

needed to actuate prevention strategies before the individuals are

diagnosed with CVD. Aerobic fitness level, measured as

maximal oxygen uptake (VO2max), is a strong marker for

cardiac health. Large-scale epidemiological studies have dem-

onstrated that low VO2max is the single best predictor of future

CVD mortality both in healthy individuals and in patients with

CVD [2–6]. Based on this, more knowledge of the differences

between healthy individuals with a large difference in VO2max-

level will be of great interest to identify new biomarkers of low

aerobic fitness that may also have a potential as an early

biomarker of CVD risk.

Emerging metabolite profiling technologies have recently made

it possible to acquire ‘‘snapshots’’ of the metabolic processes at a

given point in time [7,8]. This methodology, termed metabolo-

mics, involves a high throughput analysis of small-molecular

metabolites that are downstream products of preceding gene

expressions and protein activity. Within systems biology, magnetic

resonance (MR) metabolomics has become one of the key

platforms, allowing rapid analysis of samples with minimal sample

preparation. The acquired metabolic profiles can be useful for a

better understanding of the metabolic perturbations associated

with health and disease.

Previously, serum and plasma MR metabolomics have been

successfully used in the detection of biomarkers associated with

various clinical conditions such as coronary artery disease and

myocardial infarction [9–11]. Serum metabolites such as citric

acid, threonine, and choline have previously been associated with

the incidence of CVD, but so far the evidence is sparse [9–11]. To

our knowledge, no previous study has searched for serum

metabolites associated with aerobic fitness level in a healthy

population. The aim of the present study was to investigate

metabolic differences between healthy individuals with high and

low VO2max by MR metabolomics, and further to describe these

differences qualitatively and quantitatively.
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Results

The high and the low VO2max-groups, which were matched for

age, fasting time and level of self-reported physical activity, had

significantly different body weight, waist circumference, waist-to-

hip-ratio, body mass index (BMI), mean arterial blood pressure,

resting heart rate, non-fasting glucose, triglycerides, micro C-

reactive protein (CRP), alanine aminotransferase (ALAT) and

gamma glutamyl transferase (Gamma-GT), but not total choles-

terol (Table 1). Data from questionnaires revealed that the own-

reported health status was significantly better in the high VO2max-

group compared to the low VO2max-group (Table 2). Dietary

questionnaires indicated only differences in fruit and berry intake

between the two groups (Table 2).

MR spectra indicated differences between the metabolic profiles

of the high and low VO2max-groups (Figure 1A). Exploration of the

corresponding loading profiles (Figure 1B) and MR spectra

(Figure 2) showed that low VO2max-subjects had higher levels of

lipid methylene (-CH2-) protons (peak at 1.3 ppm), indicating

decreased amounts of unsaturated fatty acids in serum from the

low VO2max-subjects. The low VO2max-subjects also had lower

levels of phosphatidylcholine (PtdCho) (-N(CH3)3
+, peak at

3.24 ppm) (Figure 2). A permutation test showed that the

differences in the metabolic profiles between high and low

VO2max-subjects were highly significant (p,0.001). The model

created by the MR metabolomics analysis could predict whether a

subject has a low or high VO2max with a sensitivity and specificity

of 63% and 65%, respectively.

A subsequent colorimetric analysis to further study the

differences in choline-containing compounds showed that the

levels of free choline were significantly higher in the low VO2max-

group compared to the high VO2max-group (14.5761.55 vs.

10.1360.91 mM, p=0.017). The serum choline levels seemed to

correlate with the serum triglycerides levels (high VO2max-group,

r = 0.50, p,0.005 and low VO2max-group, r = 0.74, p,0.0001).

There was no correlation between free choline levels and fasting

status.

Replicate 1H MR spectra of serum with assignments of the main

metabolites are illustrated in Figure 3. The score plot (Figure 3)

clearly displays a larger inter subject variance compared to intra

subject variance, which indicates excellent reproducibility. To

further assess the agreement between metabolite levels obtained by

laboratory assays and MR, the glucose concentration obtained by

standard methodology were correlated with the MR signal

intensities (relative quantification by peak integration 3.90–

3.94 ppm) for glucose. The data showed strong correlations

(R2 = 0.83).

Discussion

The main findings of this study were that the subjects with low

VO2max had increased serum levels of free choline and decreased

serum levels of phosphatidylcholine (PtdCho) compared to subjects

with high VO2max. In human cells, the majority of choline is taken

up by the cells and conversed into PtdCho. Since the ratio of

choline/PtdCho is switched between the subjects with high and

low VO2max, there might be difference in one of the enzymes of

the plasma membrane, phospholipase D (PLD). PLD catalyzes the

hydrolysis of PtdCho to phosphatic acid (PA), releasing soluble

choline. High PLD activity and increased level of PA has

previously been associated with oxidative stress, hypoxia, inflam-

mation, atherosclerosis and hypertension (reviewed in [12]). In the

Table 1. A statistical overview of the participants in this study.

Variable Low VO2max-group High VO2max-group p-value

n mean CI n mean CI

Age 108 49.5 48.4–50.6 110 49.5 48.4–50.6 –

VO2max (mL?kg20.75?min21) 108 93.9 90.9–96.9 110 138.0 133.4–142.7 –

Physical activity index score 108 3.7 3.4–4.0 110 3.7 3.4–4.0 –

Waist (cm) 108 93.6 91.5–95.7 110 86.3 84.6–88.1 0.0004**

Hip (cm) 108 103.8 102.4–105.3 110 100.1 99.2–101.1 0.0004**

Arm circumference (cm) 108 30.3 29.7–30.9 110 28.7 28.3–29.2 0.0004**

Weight (kg) 108 80.7 77.9–83.5 110 73.5 71.4–75.6 0.0004**

Waist-to-hip-ratio 108 0.90 0.88–0.91 110 0.86 0.85–0.87 0.0004**

BMI 108 27.5 26.8–28.3 110 24.8 24.3–25.2 0.0004**

Heart rate at rest 103 62.3 60.2–64.4 102 55.8 53.9–57.7 0.0004**

Systolic blood pressure (mmhg) 108 128.5 125.6–131.5 110 124.9 122.2–127.5 0.070

Diastolic blood pressure (mmhg) 108 75.2 73.2–77.1 110 72.5 70.7–74.3 0.051

Mean arterial pressure 108 93.0 90.9–95.1 110 90.0 88.0–91.9 0.038*

Alanine aminotransferase (U/L) 13 40.3 20.7–59.9 25 25.3 21.3–29.4 0.038*

Gamma glutamyl transferase (U/L) 13 52.8 20.2–85.4 25 27.8 18.8–36.8 0.049*

Non-fasting glucose (mmol/L) 103 5.7 5.4–6.0 104 5.2 5.0–5.3 0.004**

Cholesterol (mmol/L) 103 5.6 5.4–5.7 104 5.5 5.3–5.6 0.447

HDL-cholesterol (mmol/L) 103 1.4 1.3–1.4 104 1.5 1.4–1–5 0.074

Triglycerides (mmol/L) 77 1.7 1.5–1.9 90 1.3 1.1–1.4 0.002**

Serum micro C-reactive protein (mg/L) 76 2.2 1.3–3.2 90 1.2 0.9–1.6 0.040*

VO2max: Maximal oxygen uptake, CI: Confidence Interval, BMI: Body Mass Index, HDL: High Density Lipoprotein. P-values below 0.05 are flagged. **p,0.005, *p,0.05.
doi:10.1371/journal.pone.0042330.t001
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heart, high PLD activity and increased level of PA are suggested to

be involved in the signaling cascade promoting pathological

cardiac hypertrophy [13]. If our assumptions are correct, even

healthy individuals with a low aerobic fitness may have a high

PLD activity, which may link low aerobic fitness to the future

development of CVD.

Other explanation for the high levels of serum choline in the low

VO2max-group may be release of choline from damaged organs,

impaired tissue uptake or choline-rich diet [14,15]. In patients

with severe repetitive arrhythmias and hemodynamic compromis-

es, choline has been shown to leak from ischemic tissues into the

blood stream [16–18]. However, since the participants in the

current study were healthy it seems unlikely that the increased

levels of choline arise from myocardial release. Regarding diet, a

previous study indicated a weak inverse association between serum

choline and time since last meal [19]. In the current study the

groups were matched on fasting status, and no important

differences were found in diet. Thus, the observed differences in

free choline levels are not likely to be caused by differences in food

intake.

High serum levels of free choline have previously been

associated with an increased prevalence of the metabolic syndrome

(a cluster of risk factors of CVD) [19]. Since the subjects in the low

VO2max-group not fulfilled the criteria for the metabolic

syndrome, our results may indicate that serum levels of choline

may have prognostic value for future CVD even among healthy

subjects. Free choline levels should therefore be assessed in a large

healthy cohort to prospectively study the prognostic value for later

cardiovascular events. Furthermore, elevated levels of choline have

recently been recognized as a novel biomarker for early risk

stratification in patients with suspected acute coronary syndrome

[16–18]. To our knowledge, no previous study has reported

associations between VO2max level and free choline.

In addition to the differences in choline-containing compounds,

the MR spectra also indicated that the subjects with low VO2max

had decreased amounts of unsaturated fatty acids. Decreased

serum levels of unsaturated fatty acids have previously been

associated with increased risk of CVD [20].

The differences in weight, waist circumference, waist-to-hip-

ratio, BMI, mean arterial blood pressure, resting heart rate, non-

Table 2. Data from questionnaires.

Variable Low VO2max-group High VO2max-group p-value

n mean CI n mean CI

Own reported health status (scale 1–4) 104 3.0 2.8–3.1 107 3.3 3.2–3.4 0.001**

Vegetables intake (scale 1–5) 108 3.5 3.3–3.6 110 3.6 3.4–3.7 0.293

Fruit and berry intake (scale 1–5) 108 3.4 3.2–3.7 110 3.8 3.6–4.0 0.029*

Sausage and hamburger intake (scale 1–5) 108 1.3 1.3–1.5 108 1.2 1.2–1.4 0.102

High-fat fish intake (scale 1–5) 108 1.5 1.5–1.8 108 1.5 1.4–1.7 0.730

Food intake: 1 = 0–3 times a month, 2 = 1–3 times a week, 3 = 4–6 times a week, 4 =Once a day, 5 = 2 times or more each day. VO2max: Maximal oxygen uptake, CI:
Confidence interval. P-values below 0.05 are flagged. **p,0.01, *p,0.05.
doi:10.1371/journal.pone.0042330.t002

Figure 1. Principal Component Analysis (PCA) of the serum 1H MR spectra. (A) In the score plot, high VO2max subjects are shown in green
(higher density in upper left part) and low VO2max subjects are shown in red. (B) The loadings plot visualizes the differences in metabolites between
the two groups. The signals originating from within the core of the serum lipoprotein particles (-CH3 at 0.86 ppm, -CH2- at 1.3 ppm) and choline-
containing compounds (-N (CH3)3

+, at 3.24 ppm) are mainly responsible for the clustering. VO2max: Maximal oxygen uptake.
doi:10.1371/journal.pone.0042330.g001
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Figure 2. Visualization of the metabolic differences in MR spectra. The green spectrum is from a high VO2max subject (green dots in PCA
score plot) and the red spectrum is from the low VO2max (red dots in PCA score plot). VO2max: Maximal oxygen uptake.
doi:10.1371/journal.pone.0042330.g002

Figure 3. Representative 1H NOESYGPPR 1D spectra with assignments of the main metabolites. The spectra in red (and black) consist of
5 spectra (superimposing) from two of the subjects. The reproducibility was evaluated by PCA and the score plot shows the spectra from all 6
subjects, clearly depicting larger inter subject variance compared to intra subject variance. NACl and NAC2 refer to composite acetyl signals from a1-
acid glycoprotein. PCA: Principal Component Analysis.
doi:10.1371/journal.pone.0042330.g003
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fasting glucose, triglycerides, micro-CRP between the high and

low VO2max-groups are supported by previous findings [21–23].

In addition, the increased levels of circulating liver enzymes

(ALAT and Gamma-GT) in the low VO2max-group may reflect

more liver fat and increased insulin resistance [24]. Previous

results from a study of rats with genetically low aerobic capacity

indicate that low VO2max impairs the hepatic oxidative capacity

and therefore contributes to increased amounts of liver fat [25].

Elevated levels of Gamma-GT, even within the normal range,

have previously been associated with the presence of CVD risk

factors, metabolic syndrome, and type 2-diabetes [26,27].

Ideally, obtaining blood samples after overnight fasting would

be preferable due to the elimination of chylomicrones from the

circulation further enabling a more detailed overview of lipids and

lipoprotein sub-classes [28]. However, fasting for several hours is

neither easy to accomplish in a population-based large-scale study,

nor preferable when performing a VO2max-test. In addition to a

possible influence on the lipid metabolites in the MR spectra, it is

also possible that the lack of fasting may have interfered with the

results on glucose and total cholesterol levels. In this study there

was no difference in total cholesterol levels between the high and

low VO2max-group. Previous studies have reported inverse

correlation between VO2max and total cholesterol [29,30].

In conclusion, low VO2max is associated with elevated levels of

free choline and decreased levels of phosphatidylcholine, even in a

cohort of healthy individuals. The precise reason for the shift in

the choline/phosphatidylcholine ratio between subjects in the high

versus the low VO2max-group is unclear, but might be associated

with phospholipase activity, or differences in cardiac or hepatic

release. Further studies should be conducted on free choline and

phosphatidylcholine to validate their potential as early risk-

markers of CVD and predictors of VO2max.

Materials and Methods

Study Participants
The third wave of the Nord-Trøndelag Health Study (HUNT3)

in Norway was carried out between 2006 and 2008 and the results

reported in the present publication stems from this part of the

large HUNT study. Among 50,821 participants in HUNT3, 4631

healthy, adult subjects attended a sub-study designed to measure

VO2max, called the Fitness Study [31]. Participants in the Fitness

Study reported to be free from heart- or lung-disease (details

previously described [31]). From the Fitness Study-population, 220

individuals between 40 and 59 years were selected pair-wise with

one having low and the other high VO2max (selected from top or

bottom 15 subjects within each age-year), but otherwise same

gender, equal age in years, same physical activity index score

(within 15% difference) and equal time since last meal. Subjects

were ranged according to VO2max reported as mL?kg20.75?min21,

and maximum five pairs of subjects were matched from each age-

year. Two subjects did not provide a blood sample, and the study

thus included 218 subjects (45 males and 63 females in the low

VO2max-group, and 46 males and 64 females in the high VO2max-

group).

The study was approved by the Regional Committee for

Medical Research Ethics, the Norwegian Data Inspectorate, and

by the National Directorate of Health. The study is in conformity

with Norwegian laws and the Helsinki declaration, and all

participants signed a document of consent.

Clinical Measurements
Weight and height were measured on a combined scale (Model

DS-102, Arctic Heating AS, Nøtterøy, Norway), and BMI was

calculated as weight divided by height squared (kg m22). Blood

pressure and resting heart rate were both measured while sitting

(Critikon Dinamap 845XT, GE Medical Systems, Little Chalfont,

Buckinghamshire, United Kingdom) and followed established

guidelines [32].

An individualized protocol was applied to measure VO2max

treadmill running to exhaustion [33]. The VO2max-test was

performed using a ramp protocol where the speed was constant

and the incline was increased with 2% every second minute until

VO2max was reached. Oxygen uptake kinetics were measured

directly by a portable mixing chamber gas-analyzer (Cortex

MetaMax II, Cortex, Leipzig, Germany) with the participants

wearing a tight face mask (Hans Rudolph, Kansas City, USA)

connected to the MetaMax II. The system has previously been

found valid [34]. Heart rate was measured by radio telemetry

(Polar S610i, Polar Electro Oy, Kempele, Finland). From the

warm-up pace, the load was regularly increased when oxygen

uptake kinetics flattened. Along with a respiratory quotient of 1.05

or higher, a maximal test was considered achieved when the

oxygen uptake did not increase more than 2 mL?kg21?min21 at

the highest effort or before the participant disembarked the

treadmill [35]. VO2max was measured as litres of oxygen per

minute (L?min21), and subsequently calculated as VO2max relative

to body mass (mL?kg21?min21) and VO2max scaled

(mL?kg20.75?min21).

Blood Analysis
All clinical-chemical analyses were performed on fresh venous

non-fasting blood samples at Levanger Hospital, Norway. Non-

fasting glucose (mmol/L) was analysed by Hexokinase/G-G-PDH

methodology (reagent kit 3L82-20/3L82-40 Glucose, Abbot,

Clinical Chemistry, USA). HDL-cholesterol (mmol/L) was ana-

lysed by Accelerator selective detergent methodology (reagent kit

3K33-20 Ultra HDL, Abbot, Clinical Chemistry, USA). Triglyc-

erides (mmol/L) were analysed by Glycerol Phosphate Oxidase

methodology (reagent kit; 7D74 Triglyceride, Abbot, Clinical

Chemistry, USA). Creatinine (mg/dl) was analysed by Alkaline

Picrate methodology (reagent kit; 7D65-20 Creatinine, Abbot,

Clinical Chemistry, USA). Alanine aminotransferase (U/L) was

analysed by NADH (with P-59-P) methodology (reagent kit; 8D36-

30 Alanine aminotransferase activated, Abbot, Clinical Chemistry,

USA). Measurements below the instrument range were recorded

as 9 U/L. Gamma glutamyl transferase (Gamma-GT) (U/L) was

analysed by L-Gamma-glytamyl-3-carboxy-4-nitroanilide sub-

strate methodology (reagent kit; 7D65-20 Gamma-glutamyl

transferase, Abbot, Clinical Chemistry, USA). Measurements

below and above instrument range were recorded as 3 U/L and

1544 U/L, respectively. Serum micro C-reactive protein (mg/L)

was analysed by Areoset CRP Vario kit (Abbot, Clinical

Chemistry, USA). Measurements below instrument range are

recorded as 0.

Questionnaire-based Information
Physical activity was registered based on the responses to a self-

administered questionnaire applied (http://www.ntnu.edu/hunt/

data/que) [36]. The questionnaires included three questions:

Question 1: ‘‘How frequently do you exercise?’’, with the response

options ‘‘Never’’ (0), ‘‘Less than once a week’’ (0), ‘‘Once a week’’

(1), ‘‘2–3 times per week’’ (2.5) and ‘‘Almost every day’’ (5).

Question 2: ‘‘If you exercise as frequently as once or more times a

week: How hard do you push yourself?’’ with the response options:

‘‘I take it easy without breaking a sweat or losing my breath’’ (1), ‘‘I

push myself so hard that I lose my breath and break into sweat’’ (2)

and ‘‘I push myself to near exhaustion’’ (3). Question 3: ‘‘How

Metabolites and Fitness in Healthy Subjects
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long does each session last?’’, with the response options: ‘‘Less than

15 minutes’’ (0.1), ‘‘16–30 minutes’’ (0.38), ‘‘30 minutes to

1 hour’’ (0.75) and ‘‘More than 1 hour’’ (1.0). Each participant’s

response to the above mentioned three questions (i.e. numbers in

brackets) were multiplied to calculate a physical activity index

score [36]. As the second and third question only addressed people

who exercised at least once a week, both ‘‘Never’’ and ‘‘Less than

once a week’’ yielded an index score of zero. Participants with a

zero score were categorized as inactive.

Dietary habits were self-reported in a questionnaire. For ‘‘Fruit

and berries’’, ‘‘Vegetables’’, ‘‘Sausages/hamburgers’’ and ‘‘High-

fat fish’’ the possible response-options were ‘‘0–3 times a month’’

(1), ‘‘1–3 times a week’’ (2), ‘‘4–6 times a week’’ (3), ‘‘once a day’’

(4), and ‘‘twice or more a day’’ (5). Health-status was also self-

reported and the options were ‘‘bad’’ (1), ‘‘not quite good’’ (2),

‘‘good’’ (3), or ‘‘very good’’ (4). The mean values were calculated

from the answers from all the participants in each group (i.e.

numbers in brackets).

Metabolic Profiling
Venous non-fasting blood samples were collected in serum-

tubes with no additives. The blood was centrifuged at 3000 rpm

for 10 minutes approximately 1 hour after sample collection. The

serum samples were stored at 280uC in the biobank until being

used for metabolic profiling. The serum samples were slowly

thawed at 4uC. Aliquots of 150 mL were mixed with equal

amounts of buffer solution (Na2HPO4 67H2O (0.075M), 4%

NaN3 in H2O (5ml, mass % of NaN3 versus mass % of H2O), TSP

(3-(trimethyl-silyl) propionic acid-d4, 0.4g), D2O (100 mL), pH

adjusted to 7.4 with 1M HCl (1M NaOH), filled up to 500 mL

with H2O) and transferred to high-quality 3 mm MR tubes. The

ratio between H2O and D2O was 90:10 in all samples. In order to

assess the reproducibility of sample preparation and spectral

acquisition, our daily protocol included a set of five samples

individually prepared from a single healthy individual every day.

MR Experiments
The MR spectra were acquired using a Bruker Avance II

(Bruker Biospin, Rheinstetten, Germany) with digital receiver unit

(DRU) operating at 600 MHz for proton (1H). The probe was a

TCI 1H-13C/15N/D with z-gradient and automated tuning and

matching unit. All spectra were recorded in an automatic fashion

using a BACS-60 sample changer and the ICON-NMR software

(Bruker Biospin). Proton spectra were obtained at a constant

temperature of 310 K using a modified Carr-Purcell-Meiboom-

Gill (CPMG) pulse sequence with presaturation during the

relaxation delay (Bruker: cpmgpr1d) to achieve water suppression

and to facilitate the detection of low molecular weight species by

avoiding the large overlapped signals derived from proteins and

large molecules. The spectra were collected with 64 scans and 4

dummy scans. The acquisition time is set to 3.067 sec, measuring

the FID via collection of 36864 complex data point resulting in a

sweep width of 20.0363 ppm. A relaxation delay of 4 seconds was

used, during which a presaturation of 25 Hz was applied. Effective

echo time was 80ms and data acquisition starts at maximum of last

echo. An exponential apodization of 1Hz was applied prior to

Fourier transform. Measurement and processing was done in full

automation using Bruker standard automation programs con-

trolled by ICON-NMR (along with TopSpin v2.1 patchlevel 6).

Chemical shift was calibrated to the middle of the alanine peaks at

1.50 ppm. The reproducibility spectra were acquired using

nuclear Overhauser effect spectroscopy (NOESY, Bruker: noe-

sygppr1d) with the same parameters as CPMG with the exception

of 32 scans. The assignments of chemical shifts were done on the

basis of previously published data [37].

Data Processing and Multivariate Analysis
Data analysis was performed with MATLAB (Version 7.9.0;

The Math Works, Natick, MA, USA). The spectra were divided

into 850 segments, each 0.01 ppm wide for a spectral window

ranging from 0.5 to 9.0 ppm to reduce minor chemical shift

alterations [38]. The segments between 4.5–5.0 ppm were

excluded to remove variation in water suppression efficiency.

Spectra were finally normalized by setting the total spectral area to

a constant value ( = 1) for all spectra to minimize possible

differences in serum concentration between the samples.

Unsupervised principal component analysis (PCA) and super-

vised partial least squares discriminant analysis (PLS-DA) were

performed using PLS_Toolbox v5.8.3 (Eigenvector Research,

Manson, WA, USA). PCA reduces the dimensionality of the data

and summarizes the structure of the multiple MR spectra

visualized in score plots and loading profiles. The variance

structure of the data is explained through linear combinations of

the variables called principal components (PCs). The first PCs will

be in the direction explaining most of the variance in the data set.

In the score plot of the PCs, samples with a similar metabolic

profile will cluster, while the corresponding loading profile displays

the importance of each variable within the PC. PLS-DA is a

supervised classification method which uses the class information

to detect variables generating maximum separation between the

classes (high and low aerobic capacity). All statistical models were

cross-validated with a single 10-fold Venetian blind cross

validation; in each run 10% of the data were left out of the

training and used to test the model. The optimal model contains

the number of latent variables yielding the lowest percentage of

misclassification. A permutation test was performed (10000

permutations) to evaluate the significance of the difference

between the classes [39].

To evaluate the reproducibility of the sample preparation and

metabolomics analyses, PCA of the replicate spectra from single

subjects (in total 30 sample preparations from 6 subjects) were

performed for comparison of the inter versus intra subject

variance.

Colorimetric Analysis of Free Choline
In a sub-cohort of 39 participants (20 women and 19 men) from

the low VO2max-group and 38 participants (21 women and 17

men) from the high VO2max-group, the level of free choline was

measured in serum. The groups were matched on fasting status,

age and physical activity index score. The serum was analysed

with the Choline/Acetylcholine Quantification Kit according to

the manufacturer’s instructions (Abnova, Taipei City, Taiwan).

Statistical Analyses
PASW Statistics 17.0 (IBM, New York, USA) was used for

traditional statistical analyses. All statistical tests were two-sided,

and p-values below 0.05 were considered statistical significant.

Kolmogorov-Smirnov test was used to test for normality. One-

Way ANOVA was used for comparing variables between the high

and the low VO2max-groups, and Kruskal-Wallis test was used in

non-parametric analyses. Results are given in mean 6 SE.

Pearson’s correlation was used to study associations between

normally distributed variables, and Spearman’s correlation was

used in non-parametric analyses. The correlation analyses were

performed separately for the high and low VO2max-group.
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