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Abstract 
Filtered Two Fluid Models (fTFMs) aim to enable accurate industrial-scale simulations of fluidized beds 
by means of closures accounting for the effects of bubbles and clusters. The present study aims to 
improve anisotropic closures for the drift velocity, which is the primary sub-grid effect altering the 
filtered drag force, by deriving increasingly complex closures by considering additional independent 
variables (markers). Three different anisotropic closures, as well as an isotropic closure, are evaluated. 
A priori tests revealed a significant increase in the predictive capability of the closures as the 
complexity, in terms of the number of markers considered, increases. However, this improvement is 
relatively small when compared to the effect of considering anisotropy. Next, a posteriori tests were 
completed by comparing coarse-grid simulations of bubbling, turbulent and core-annular fluidization 
against benchmark resolved TFM simulations. This analysis shows good performance of all anisotropic 
closures, with negligible to minor effects of increasing the drag closure’s complexity by considering 
additional markers. On the other hand, the isotropic closure lacks generality and shows poor grid 
independence behaviour. It is therefore concluded that it is essential to include important physical 
effects, such as anisotropy, in fTFM closures, while complexity in terms of the number of markers 
considered is of lesser importance. 
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1 Introduction 
Fluidized beds are commonly used in many process industries due to their excellent mixing and mass 
and heat transfer capabilities. Simulation of these reactors by means of computational fluid dynamics 
(CFD) is particularly challenging due to the complex multiphase flow behaviour that fluidized beds 
exhibit, as well as the huge number of particles that typical industrial systems contain. A common 
solution is to simulate a fluidized bed by means of a Two Fluid Model (TFM). Here the solid particles 
are assumed to behave as a continuum, thereby reducing the computational cost by no longer 
requiring individual particles to be tracked. However, closures based on the Kinetic Theory of Granular 
Flow (KTGF) (Gidaspow et al., 1992; Lun et al., 1984) are required to model the effects of collisions and 
random translations of individual particles. A major limitation of the TFM is that it requires the solid 
clusters and gas bubbles, which are typical of fluidization and can occur on lengths scales as small as 
several particle diameters, to be resolved (Cloete et al., 2011; Cloete et al., 2015a, 2016c). This requires 
restrictively small grid cells to be used for accurate results, therefore studies using the TFM are 
generally limited to lab-scale studies (Bakshi et al., 2016; Cloete et al., 2016a; Cloete et al., 2015b; 
Cloete et al., 2013; Ellis et al., 2011; Hamidouche et al., 2019; Ostermeier et al., 2017; Tricomi et al., 
2017).  

The concept of a filtered TFM was proposed by Igci et al. (2008) as a possible method by which accurate 
results could be obtained for larger fluidized beds, while maintaining reasonable computational times 
by allowing coarse grid cells to be used. The basic idea is to develop closures for the effects of the sub-
grid-scale clusters and bubbles that are not resolved in the coarse-grid simulations. The quantities that 
require closure can be identified by spatially averaging the governing equations of the TFM, and the 
necessary closures can be developed by filtering and subsequent analysis of data from resolved TFM 
simulations (Igci and Sundaresan, 2011), ideally informed by theoretical considerations 
(Schneiderbauer, 2017).  

An approach based on the analysis of filtered resolved TFM data has been the most widely used in the 
fTFM literature, and several groups have reported closures based on this methodology (Gao et al., 
2018; Igci and Sundaresan, 2011; Ozel et al., 2013). This is also the approach that has been followed 
previously by our research group (Cloete et al., 2017a, 2018a; Cloete et al., 2018b; Cloete et al., 2018c), 
and which will be followed in the present study. To derive closures from resolved TFM data, the data 
is generally filtered and then mapped out as a function of the size of the averaging region, referred to 
as the filter size, and other discretized independent variables, referred to as markers in the fTFM 
literature.  

Previous research has revealed that for the large grid sizes that are typical of industrial-scale fluidized 
bed simulations (Cloete et al., 2016b), closures are necessary for the filtered drag force (Cloete et al., 
2018a; Ozel et al., 2013; Schneiderbauer, 2017), the meso-scale interphase force (resulting from 
fluctuations in the gas pressure gradient) (Cloete et al., 2018a) and the meso-scale solids stresses 
(Cloete et al., 2018b; Ozel et al., 2013). Our previous papers have revealed the importance of 
accounting for anisotropy in these closures (Cloete et al., 2018a; Cloete et al., 2018b). However, 
despite the significant improvements that were made in these closures compared to the state-of-the-
art, detailed 2D verification in the bubbling and turbulent fluidization regimes has still revealed 
significant differences between resolved TFM and coarse-grid fTFM simulations employing these 
closures. 

The present study will therefore aim to further improve the accuracy of coarse grid fTFM simulations 
by focussing on the closure for the filtered drag force, which is generally accepted as the most 
important closure in fTFMs (Ozel et al., 2013; Schneiderbauer, 2017). The fTFM literature, as well as 
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the related work on sub-grid drag corrections using the EMMS methodology (Luo et al., 2017; Wang 
and Li, 2007; Yang et al., 2004), has generally accounted for meso-scale structures by multiplying the 
microscopic drag law evaluated at the filtered conditions with an isotropic drag correction factor. 
These closures are typically derived by considering the vertical direction data, assuming that the 
vertical drag is of much greater significance than the lateral drag forces. However, recent work has 
indicated that, although the vertical component of the drag is larger, the lateral contributions are 
clearly not insignificant and are drastically mispredicted by an isotropic fTFM drag closure based on 
the vertical direction data (Cloete et al., 2018a). The anisotropy in the sub-grid drag correction should 
therefore be accurately accounted for. 

It has recently been shown that the drift velocity-based formulation of the filtered drag force (Ozel et 
al., 2013; Parmentier et al., 2012) offers clear benefits, primarily by making it simpler to account for 
effects due to drag anisotropy (Cloete et al., 2018a). It was also shown that the drift velocity consists 
of a part that is proportional to the filtered slip velocity in the direction considered, and another part 
that is aligned with the direction of gravity and independent of the filtered slip velocity. The drift 
velocity was then closed by means of a 2-marker closure with the filtered solids volume fraction as the 
first marker and the filtered slip velocity as the second marker, similar to previous studies (Gao et al., 
2018; Milioli et al., 2013; Sarkar et al., 2016; Schneiderbauer and Pirker, 2014). In the present study, 
the importance of the filtered slip velocity as the second marker is first evaluated by deriving and 
testing a similar 1-marker anisotropic drift velocity-based closure. Next, it is revealed that the drift 
velocity can be redefined as a co-variance of the filtered gas velocity and filtered gas volume fraction. 
A complex 3-marker model is then derived and evaluated by adding a gradient product marker (GPM) 
as an additional independent variable, analogous to what was previously proposed for meso-scale 
solids stresses (Cloete et al., 2018b). 

The results of this study are presented in the following order. First, the development of the 1-, 2- and 
3-marker anisotropic closures is detailed. Second, these closures, as well as an older isotropic 2-marker 
closure (Cloete et al., 2018a; Cloete et al., 2018c) for perspective, are evaluated in an a priori manner 
by comparing resolved simulation data to model predictions. Third, the filtered drag force closures are 
tested in an a posteriori assessment by comparing resolved TFM simulation results to coarse grid 
simulations using the different fTFM closures. A wide range of fluidization regimes are considered to 
assess model generality. The main objective of the study is therefore to evaluate how increasing the 
number of independent variables in an fTFM drag closure affects the performance of coarse-grid fTFM 
simulations. This objective is pursued in a structured manner by considering a fixed fine-grid database 
and maintaining a similar closure structure when deriving closures of increasing levels of complexity. 
To conclude, the results are interpreted to help guide future fTFM development efforts.  

2 Methodology 
In this study, results from three sets of simulations are presented. The first simulation set consists of 
resolved TFM simulations in fully-periodic 2D domains, which are used for closure development. These 
simulations, as well as the data analysis using the open-source library, CPPPO (Municchi et al., 2016), 
is described in detail in our previous publications (Cloete et al., 2018a; Cloete et al., 2018b). Since 
exactly the same data set is used for the closures developed in our present paper, information 
regarding the periodic simulations is not repeated here. This section will therefore focus on describing 
the other two simulation sets, which are the resolved TFM and coarse-grid fTFM simulations for 
different fluidization regimes that are using to verify the developed closures. 
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2.1 Governing equations of the resolved TFM 
This study employs a standard TFM in the resolved simulations, which will be described here briefly. 
For the interested reader, more details can be found in a previous study (Cloete et al., 2011). 

The following continuity equations are solved for the gas and solids phases, respectively. 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛼𝛼𝑔𝑔𝜌𝜌𝑔𝑔� + 𝛻𝛻 ⋅ �𝛼𝛼𝑔𝑔𝜌𝜌𝑔𝑔𝜐⃗𝜐𝑔𝑔� = 0 Equation 1 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠) + 𝛻𝛻 ⋅ (𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠𝜐⃗𝜐𝑠𝑠) = 0 Equation 2 

It can be noted that the volume fractions of the two phases sum to unity. The following momentum 
conservation equations are also solved. 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛼𝛼𝑔𝑔𝜌𝜌𝑔𝑔𝜐⃗𝜐𝑔𝑔� + 𝛻𝛻 ⋅ �𝛼𝛼𝑔𝑔𝜌𝜌𝑔𝑔𝜐⃗𝜐𝑔𝑔𝜐⃗𝜐𝑔𝑔� = −𝛼𝛼𝑔𝑔𝛻𝛻𝛻𝛻 + 𝛻𝛻 ⋅ 𝜏𝜏̅𝑔̅𝑔 + 𝛼𝛼𝑔𝑔𝜌𝜌𝑔𝑔𝑔⃗𝑔 + 𝐾𝐾𝑠𝑠𝑠𝑠�𝜐⃗𝜐𝑠𝑠 − 𝜐⃗𝜐𝑔𝑔� Equation 3 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠𝜐⃗𝜐𝑠𝑠) + 𝛻𝛻 ⋅ (𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠𝜐⃗𝜐𝑠𝑠𝜐⃗𝜐𝑠𝑠) = −𝛼𝛼𝑠𝑠𝛻𝛻𝛻𝛻 − 𝛻𝛻𝑝𝑝𝑠𝑠 + 𝛻𝛻 ⋅ 𝜏𝜏̅̅𝑠𝑠 + 𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠𝑔⃗𝑔 + 𝐾𝐾𝑠𝑠𝑠𝑠�𝜐⃗𝜐𝑔𝑔 − 𝜐⃗𝜐𝑠𝑠� Equation 4 

In both momentum equations, the last term represents the momentum transfer rate due to drag, 
which is closed by the Huilin-Gidaspow model (Huilin and Gidaspow, 2003) in this study. In the solids 
momentum equation, the solids stresses (contained in the second and third terms on the right-hand 
side) require closures for the granular pressure (Lun et al., 1984), as well as for the granular shear 
(Gidaspow et al., 1992) and bulk (Lun et al., 1984) viscosities as predicted by the KTGF. Additionally, 
closures (Johnson and Jackson, 1987; Schaeffer, 1987) are required to account for the effects of 
prolonged frictional contacts between the particles, since a previous study indicated that including 
frictional stresses has a significant influence on the qualitative behaviour of fTFM closures (Cloete et 
al., 2017a). 

In the kinetic theory stresses, information about the granular temperature, a measure of the random 
fluctuating energy of the particles, is required. For this, the following transport equation is solved. 

3
2
�
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠𝛩𝛩𝑠𝑠) + 𝛻𝛻 ⋅ (𝛼𝛼𝑠𝑠𝜌𝜌𝑠𝑠𝜐⃗𝜐𝑠𝑠𝛩𝛩𝑠𝑠)� = �−𝑝𝑝𝑠𝑠𝐼𝐼 ̅̅+ 𝜏𝜏̅̅𝑠𝑠�:𝛻𝛻𝜐⃗𝜐𝑠𝑠 + 𝛻𝛻 ⋅ �𝑘𝑘𝛩𝛩𝑠𝑠𝛻𝛻𝛩𝛩𝑠𝑠� − 𝛾𝛾𝛩𝛩𝑠𝑠 + 𝜙𝜙𝑔𝑔𝑔𝑔 Equation 5 

Here, from left to right, the terms on the right-hand side of the equation are: the generation of granular 
temperature due to the solids stresses, the granular conductivity (Gidaspow et al., 1992), the 
dissipation of granular temperature due to inelastic collisions (Lun et al., 1984) and the dissipation due 
to the interphase drag (Gidaspow et al., 1992).  

2.2 Governing equations of the filtered TFM 
The filtered versions of the equations presented in section 2.1 can be derived by applying a spatial 
average, and then re-arranging by defining phase-weighted averages and fluctuating quantities. This 
is detailed in previous work (Cloete et al., 2018a; Cloete et al., 2018b) and is therefore not repeated 
here in detail. However, it should be noted that, in our present study, the fluctuating component is 
defined relative to the average (filtered) value that is fixed in the filter region. This is different to the 
definition common in single-phase LES (where the fluctuating component is defined relative to the 
local average). Thus, our filtered equations do not contain Leonard and cross terms, since these terms 
are lumped into our terms that account for spatial fluctuations. Most importantly, it means that, in the 

present work, the following identities hold: 𝜌𝜌𝑔𝑔𝛼𝛼𝑔𝑔𝜐⃗𝜐𝑔𝑔
′′𝜐⃗𝜐𝑔𝑔

′′������������� =  𝜌𝜌𝑔𝑔𝛼𝛼𝑔𝑔𝜐⃗𝜐𝑔𝑔𝜐⃗𝜐𝑔𝑔������������ − 𝜌𝜌𝑔𝑔𝛼𝛼𝑔𝑔���𝜐⃗𝜐𝑔𝑔�𝜐⃗𝜐𝑔𝑔�, 𝜌𝜌𝑠𝑠𝛼𝛼𝑠𝑠𝜐⃗𝜐𝑠𝑠
′′𝜐⃗𝜐𝑠𝑠

′′������������ =  
𝜌𝜌𝑠𝑠𝛼𝛼𝑠𝑠𝜐⃗𝜐𝑠𝑠𝜐⃗𝜐𝑠𝑠����������� − 𝜌𝜌𝑠𝑠𝛼𝛼𝑠𝑠���𝜐⃗𝜐𝑠𝑠� 𝜐⃗𝜐𝑠𝑠�  and 𝛼𝛼𝑔𝑔′𝛻𝛻𝑝𝑝′��������� = 𝛼𝛼𝑔𝑔𝛻𝛻𝛻𝛻������� − 𝛼𝛼𝑔𝑔���𝛻𝛻𝑝̅𝑝 = −𝛼𝛼𝑠𝑠′𝛻𝛻𝑝𝑝′��������� = −(𝛼𝛼𝑠𝑠𝛻𝛻𝑝𝑝������� − 𝛼𝛼𝑠𝑠���𝛻𝛻𝑝̅𝑝). The interested 
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reader may see Appendix A.1 in our previous publication (Cloete et al., 2018a) for a more detailed 
explanation. 

The following discussion is limited to the filtered gas and solids momentum conservation equations, 
since these equations contain all the terms that require closure to simulate the hydrodynamics of 
fluidized beds using industrially relevant grid sizes. 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔𝛼𝛼𝑔𝑔���𝜐⃗𝜐𝑔𝑔�� + 𝛻𝛻 ⋅ �𝜌𝜌𝑔𝑔𝛼𝛼𝑔𝑔���𝜐⃗𝜐𝑔𝑔�𝜐⃗𝜐𝑔𝑔��

= −𝛼𝛼𝑔𝑔���𝛻𝛻𝑝̅𝑝 − 𝛻𝛻 ⋅ �𝜌𝜌𝑔𝑔𝛼𝛼𝑔𝑔𝜐⃗𝜐𝑔𝑔
′′𝜐⃗𝜐𝑔𝑔

′′�������������� + 𝛻𝛻 ⋅ 𝜏𝜏̅𝑔̅𝑔��� + 𝛼𝛼𝑔𝑔���𝜌𝜌𝑔𝑔𝑔⃗𝑔 + 𝐾𝐾𝑠𝑠𝑠𝑠�𝜐⃗𝜐𝑠𝑠 − 𝜐⃗𝜐𝑔𝑔�����������������

− 𝛼𝛼𝑔𝑔′𝛻𝛻𝑝𝑝′��������� 

Equation 6 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑠𝑠𝛼𝛼𝑠𝑠���𝜐⃗𝜐𝑠𝑠� � + 𝛻𝛻 ⋅ �𝜌𝜌𝑠𝑠𝛼𝛼𝑠𝑠���𝜐⃗𝜐𝑠𝑠� 𝜐⃗𝜐𝑠𝑠� �

= −𝛼𝛼𝑠𝑠���𝛻𝛻𝑝̅𝑝 − 𝛻𝛻𝑝𝑝𝑠𝑠� − 𝛻𝛻 ⋅ �𝜌𝜌𝑠𝑠𝛼𝛼𝑠𝑠𝜐⃗𝜐𝑠𝑠
′𝜐⃗𝜐𝑠𝑠

′����������� + 𝛻𝛻 ⋅ 𝜏𝜏̅̅𝑠𝑠� + 𝛼𝛼𝑠𝑠���𝜌𝜌𝑠𝑠𝑔⃗𝑔

+ 𝐾𝐾𝑔𝑔𝑔𝑔�𝜐⃗𝜐𝑔𝑔 − 𝜐⃗𝜐𝑠𝑠����������������� − 𝛼𝛼𝑠𝑠′𝛻𝛻𝑝𝑝′��������� 

Equation 7 

In both equations, all the required information is available in the coarse-grid simulations for both terms 
on the left-hand side, the term due to the resolved gas pressure gradient (first term on the right-hand 
side) and the term due to gravity (fourth term on the right-hand side of Equation 6 and fifth term on 
the right-hand side of Equation 7). All other terms require closure. The filtered micro-scale gas phase 
stresses (third term on the right-hand side of Equation 6) are generally evaluated at their filtered values 
(Pope, 2000; Schneiderbauer, 2017). The meso-scale gas stresses (second term on the right-hand side 
of Equation 6) can safely be neglected for gas-particle flows (Milioli et al., 2013). This is due to the large 
density difference of the phases.  

Considering the filtered microscopic solids stresses (second and fourth terms on the right-hand side of 
Equation 7), the kinetic theory contributions are approximated by evaluating the closures used in the 
resolved TFM at their filtered values. The filtered granular temperature is approximated based on the 
unfiltered granular temperature transport equation, which was previously shown to be sufficient for 
the filter sizes considered here (Cloete, 2018). The filtered frictional stresses are closed based on the 
results of a previous study (Cloete et al., 2018b). 

Anisotropic closures are used for the meso-scale solids stresses (Cloete et al., 2018b) (third term on 
the right-hand side of  Equation 7) and the meso-scale interphase force (Cloete et al., 2018a) (last term 
on the right-hand side of Equation 6 and Equation 7). The present study will focus on the remaining 
unclosed term that appears in both filtered momentum equations, the filtered drag force (second last 
term in both equations). 

2.3 TFM and fTFM solver  
Both resolved and coarse-grid fTFM simulations are perform in FLUENT 16.2. The phase-coupled 
SIMPLE algorithm (Patankar, 1980) is used for pressure-velocity coupling, and all other equations are 
discretized based on the QUICK scheme (Leonard and Mokhtari, 1990). The second-order implicit 
scheme is used for time discretization, since this has previously been found to be a requirement for 
time step independent solutions in dilute flow (Cloete et al., 2011). The terms that require closure in 
the fTFM were included as source terms in the momentum equations by using User-defined Functions 
(UDFs) in FLUENT. 
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2.4 Geometry and boundary conditions of the verification simulations 
Three verification cases were considered to evaluate the developed fTFM closures over a range of 
fluidization conditions. Based on the correlations of Bi and Grace (1995), the cases were chosen at the 
geometric centre of the bubbling regime, at the start of the turbulent regime and at the geometric 
centre of the core-annular transport regime. The gas fluidization velocity considered in each case is 
listed in Table 1. 

Table 1 - Summary of the three verification cases considered in this study 

Verification case Gas inlet velocity (m/s) Height (m) Width (m) 
Bubbling 0.086  0.80 0.48 
Turbulent  1.171 1.20 0.32 
Core-annular 4.229 1.60 0.24 

 

The simulations were performed in rectangular 2D domains, with the aspect ratio increasing with 
increasing fluidization velocity, as shown in Table 1. The choice of 2D simulations is justified based on 
previous findings that fTFM closures derived from 2D and 3D resolved TFM simulations are 
qualitatively similar (Igci et al., 2008) and that fTFM closures derived in 2D can perform well in 
validation against 3D experimental data (Cloete et al., 2018c). Developing and verifying fTFM closures 
in 2D therefore speeds up the development of the closures by allowing multiple resolved simulations 
to performed at different conditions, and by allowing simulation of larger domains that are more 
representative of industrial-scale systems. The resulting closures can then either be used directly in 
coarse-grid 3D simulations or, in the future, the lessons learned from 2D data can be applied to 
datasets from resolved TFM simulations in 3D. 

For all three cases the bottom boundary was set as an inlet with a uniform gas velocity. The side 
boundaries are set as walls with a no-slip boundary conditions for the gas and a free-slip boundary 
condition for the solids. It can be noted that although a partial-slip boundary conditions would be more 
realistic for the solids, such a boundary condition would require an additional closure for the filtered 
shear stress at the walls. Developing such a closure is outside the scope of the present study, therefore 
a free-slip boundary conditions is deemed sufficient for verification purposes. The top boundary is set 
as a pressure outlet. For the bubbling and turbulent cases the domain-averaged solids volume fraction 
inside the fluidized bed is initialized as 0.25 and 0.05, respectively. A small amount of solids reach the 
outlet in the turbulent case. In order to maintain a constant solids inventory, the outgoing solids are 
uniformly reintroduced at the inlet. For the core-annular case, solids are injected at a mass flux of 
150 𝑘𝑘𝑘𝑘

𝑚𝑚2𝑠𝑠
  at a port in each of the walls. These ports are located 4 cm above the inlet boundary and are 

4 cm wide. 

In the resolved TFM simulations, a uniform grid with a size of 0.625 mm (8.33 𝑑𝑑𝑝𝑝) is used, which is the 
same as what is used in the fully-periodic resolved TFM simulations used to generate data for 
developing the closures in this study. In the coarse grid simulations, grid sizes of 10mm (133 𝑑𝑑𝑝𝑝 or 2.06 
times the characteristic length), 20mm (267 𝑑𝑑𝑝𝑝 or 4.12 times the characteristic length) and 40 mm 
(533 𝑑𝑑𝑝𝑝 or 8.23 times the characteristic length) are considered, where the characteristic length scale 
is chosen as the particles' relaxation length, 𝑣𝑣𝑡𝑡2/𝑔𝑔. Assuming perfect parallelization of the solver, the 
coarse-grid simulations will lead to approximately 3-5 orders of magnitude reduction in computational 
time in 2D, and approximately 5-7 orders of magnitude in 3D. 

After initialization, the simulations are run for sufficient time to reach a pseudo-state state, which is 
determined by monitoring domain-averaged quantities of the phase velocities and the solids volume 
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fraction in the core-annular case. The simulations are then time-averaged to allow comparison 
between the resolved TFM and coarse-grid fTFM simulations. Time-averaging is performed for 30 s in 
the bubbling case and 15 s for the turbulent and core-annular cases. 

To conclude this section, Figure 1 visually compares the three verification cases that are considered by 
showing instantaneous solids volume fractions contours from the resolved TFM simulations. 

 

Figure 1 - Instantaneous solids volume fraction contours in a) the bubbling case, b) the turbulent case and c) the core-annular 
case. Blue indicates that no solids are present and red indicates maximum packing.  

2.5 Material properties of the verification simulations 
The particle and gas properties considered in the verification simulations are summarised in Table 2. 
It can be noted that these are exactly the same conditions that were considered in the fully-periodic 
resolved TFM simulations that are used to derive the fTFM closures. The scope of the present study is 
therefore limited to investigating how the accuracy of fTFM closures can be improved for a specific set 
of particle and fluid properties. Scaling of the closures to different conditions will be considered in a 
future study. 

Table 2 - The material properties used in this study 

𝑑𝑑𝑝𝑝 Particle diameter 75×10-6 m 

𝜌𝜌𝑠𝑠 Particle density 1500 kg/m3 

𝜌𝜌𝑔𝑔 Gas density 1.3 kg/m3 

𝜇𝜇𝑔𝑔 Gas viscosity 1.8×10-5 kg/(m.s) 
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𝑣𝑣𝑡𝑡 Terminal settling velocity 0.2184 m/s 

3 Results and discussions 
The results in the present study are structured in the following way. First, the development of the three 
different anisotropic drag closures with different levels of complexity (one marker, two markers and 3 
markers) are presented. The 2-marker closure, which has previously appeared in a peer-reviewed 
publication (Cloete et al., 2018a), is only discussed briefly for context, whereas the newly derived 1-
marker and 3-marker closures are discussed in more detail. Second, the closures are evaluated in an a 
priori manner by comparing observations from the resolved periodic TFM simulations to model 
predictions. Third, the closures are evaluated in an a posteriori manner by comparing the results of 
resolved TFM simulations to those of coarse-grid fTFM simulations over a range of fluidization 
conditions. 

3.1 Closure development 
In a previous study (Cloete et al., 2018a), it was shown that accurate anisotropic filtered drag force 
closures can be constructed based on the drift velocity approach (Ozel et al., 2013; Parmentier et al., 
2012), as shown in Equation 11.  

𝐾𝐾𝑔𝑔𝑔𝑔�𝜐𝜐𝑔𝑔,𝚤𝚤 − 𝜐𝜐𝑠𝑠,𝚤𝚤�������������������� = 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾𝑔𝑔𝑔𝑔,ℎ𝑜𝑜𝑜𝑜(𝜐𝜐�𝑔𝑔,𝑖𝑖 − 𝜐𝜐�𝑠𝑠,𝑖𝑖 − 𝜐𝜐𝑑𝑑,𝑖𝑖)  Equation 8 

Contrary to previous studies based on the drift velocity approach (Ozel et al., 2013; Ozel et al., 2017; 
Parmentier et al., 2012; Schneiderbauer and Saeedipour, 2018) it was found that a closure for the non-
linearity correction factor, 𝐶𝐶𝑁𝑁𝑁𝑁, is necessary for industrially relevant filter sizes. The reason for this 
different conclusion is that the previous work on the drift velocity approach were all based on 3D fine-
grid simulations that were limited to small domain sizes, and therefore small filter sizes, due to the 
computational cost of 3D simulations. However, it was previously shown from both 2D and 3D data 
(Cloete et al., 2018a) that the importance of the non-linearity correction factor increases substantially 
with increasing filter size. It can increase the modelled filtered drag force by up to a factor of 2 at grid 
sizes relevant to industrial scale simulations (Cloete et al., 2018a), and should therefore be closed.  

It was found that this non-linearity correction factor, which accounts for assumptions when deriving 
the drift-velocity form of the filtered drag force, can be accurately closed using an isotropic 2-marker 
closure. Furthermore, the benefit of such a closure was demonstrated in 2D verification cases, where 
it reduced the grid dependence in coarse-grid simulations of bubbling fluidization. This closure from 
our earlier study (Cloete et al., 2018a) is deemed sufficient for the present study, which will focus on 
the closure for the drift velocity. We note in passing that the closure for 𝜐𝜐𝑑𝑑,𝑖𝑖 has a substantially larger 
effect on the filtered drag force than that for 𝐶𝐶𝑁𝑁𝑁𝑁 (Cloete et al., 2018a), motivating our argument. 

3.1.1 2-marker closure 
First, a description of the anisotropic 2-marker closure presented in our previous study (Cloete et al., 
2018a) is briefly repeated here in Equation 12 to Equation 15, since the other two closures that will be 
discussed in the present study are based on this 2-marker closure. It can be noted that, in the present 
study, the slip velocity is defined as the difference between the gas and solid phase velocities (𝜐𝜐𝑔𝑔,𝑖𝑖 −
𝜐𝜐𝑠𝑠,𝑖𝑖), whereas the filtered slip velocity is the difference between the filtered values (𝜐𝜐�𝑔𝑔,𝑖𝑖 − 𝜐𝜐�𝑠𝑠,𝑖𝑖).  Finally, 
the adjusted slip velocity, to which the modelled filtered drag force is proportional to, is defined as the 
difference between the filtered slip velocity and the drift velocity (𝜐𝜐�𝑔𝑔,𝑖𝑖 − 𝜐𝜐�𝑠𝑠,𝑖𝑖 − 𝜐𝜐𝑑𝑑,𝑖𝑖). In the closures, 
the filtered slip velocity, drift velocity and adjusted slip velocity are all scaled based on the steady state 
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sedimentation speed of the suspension evaluated at the filtered solids volume fraction. This is 
motivated by previous work that  found that such an approach results in a simpler dependency of the 
closure on the filtered solids volume fraction (Cloete et al., 2018a). 

In Equation 12 to Equation 15 it can be seen that the drift velocity was found to consist of two 
contributions: one that acts only in the direction aligned with gravity and which is independent of the 
filtered slip velocity, i.e., the term 𝑘𝑘1 in Equation 13, and another that is proportional to the filtered 
slip velocity in the direction considered, i.e., the term 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ (1 − 10−𝑘𝑘2) in Equation 13. In the latter 
contribution, a larger value of 𝑘𝑘2 means that the drift velocity contribution will be a larger proportion 
of the filtered slip velocity, which results in a smaller adjusted slip velocity in Equation 12. Additionally, 
it was found that 𝑘𝑘2 increases with increasing absolute values of the filtered slip velocity in the 
direction considered. This is in agreement with earlier isotropic 2-marker models (Gao et al., 2018; 
Milioli et al., 2013; Sarkar et al., 2016; Schneiderbauer and Pirker, 2014) that generally found the drag 
correction to increase with increasing filtered slip velocity magnitude. 

𝜐𝜐𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
∗ = 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ − 𝜐𝜐𝑑𝑑,𝑖𝑖
∗  Equation 9 

𝜐𝜐𝑑𝑑,𝑖𝑖
∗ = 𝑘𝑘1 + 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ (1 − 10−𝑘𝑘2) Equation 10 

𝑘𝑘1 = 𝑥𝑥1 �
2
𝜋𝜋
� (𝛼𝛼𝑠𝑠���𝑥𝑥2) atan �𝑥𝑥3 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� 

𝑘𝑘1 = 0 if 𝑖𝑖 is in the direction perpendicular to gravity 

Equation 11 

𝑘𝑘2 = �
2
𝜋𝜋
�
2

atan(𝑥𝑥5𝛼𝛼𝑠𝑠���) atan �𝑥𝑥3 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� �𝑥𝑥6𝛼𝛼𝑠𝑠���𝑥𝑥7

+ 𝑥𝑥8 �
2
𝜋𝜋
� atan�𝑥𝑥9𝛼𝛼𝑠𝑠���𝑥𝑥10�𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ � � 𝑙𝑙𝑙𝑙𝑙𝑙�𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
∗ �� 

Equation 12 

𝑥𝑥1 = −1.40, 𝑥𝑥2 = 1.38, 𝑥𝑥3 = 48.5 �2
𝜋𝜋
� atan (0.235∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ), 𝑥𝑥4 = 0.553, 𝑥𝑥5 = 333∆𝑓𝑓𝑓𝑓𝑓𝑓∗

1.92,  

𝑥𝑥6 = 1.76 �2
𝜋𝜋
� atan (1.29∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ), 𝑥𝑥7 = 1/(2.40∆𝑓𝑓𝑓𝑓𝑓𝑓∗

0.234), 𝑥𝑥8 = 1/ �2.44 �2
𝜋𝜋
� atan�1.92∆𝑓𝑓𝑓𝑓𝑓𝑓∗ �� ,  

𝑥𝑥9 = 25.6∆𝑓𝑓𝑓𝑓𝑓𝑓∗  and 𝑥𝑥10 = 1.56. 

It is noted that the filter size is non-dimensionalized as ∆�𝑓𝑓= ∆𝑓𝑓/ (𝑣𝑣𝑡𝑡
𝑔𝑔2

), as commonly done in the fTFM 

literature (Igci et al., 2008; Milioli et al., 2013; Sarkar et al., 2016). Furthermore, in the closures, a re-
scaled filter size is defined as 𝛥𝛥𝑓𝑓∗ = max�𝛥̂𝛥𝑓𝑓 − 𝛥̂𝛥𝑓𝑓,min, 0�. 𝛥̂𝛥𝑓𝑓,min is set to 0.1285, the dimensionless grid 
size at which the fine grid simulations were performed. The use of this re-scaled filter size in the 
closures ensures that the fTFM closures tend to no sub-grid corrections when the filter size tends to 
the grid size used in the resolved TFM simulations (Cloete et al., 2018b). 

The gravitational contribution, 𝑘𝑘1 in Equation 11, warrants further discussion, since it forms an integral 
part of all three anisotropic closures presented in our present study. This contribution means that, 
when considering the gravity aligned direction, a positive (i.e., vertically upward) filtered drag force 
will be predicted for a filtered slip velocity of zero. A possible explanation for this interesting 
phenomenon is that instances of negative slip velocity (i.e., vertically downward) are most likely to 
occur in regions of low particle concentration where the gas flow can respond rapidly to short-lived 
negative forces arising from dynamic pressure fluctuations in the bed. Since the drag force increases 
super-linearly with the solids volume fraction in a homogeneous suspension, the following scenario 
will then give a positive (i.e., upward) total drag force in the filter region at zero filtered slip velocity: a 
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positive force resulting from a positive slip in a dense region will outweigh the relatively small negative 
force created by negative slip velocities in dilute regions. In such a scenario, the filtered vertical gas 
and solids velocities may cancel each other out (leading to a zero filtered slip velocity), but still result 
in a positive vertical filtered drag force. The likelihood of this situation occurring will increase with filter 
size and filtered solids volume fraction (up to a certain packing where the suspension becomes 
homogenous), since both these factors will increase the probability of both dilute and dense regions 
occurring in a filter region.  

It should be noted that the instances of near-zero filtered slip velocities discussed here represent only 
a small fraction of the total samples in the fine-grid data. Also, the time-averaged filtered slip velocity 
will still tend to be directed upwards, therefore the speculation about occasional negative slip 
velocities does not contradict the well-established fact that the gas will tend to rise faster in dilute 
regions than in dense emulsions. 

The expected trends of a larger gravitational contribution with an increase in filter size and filtered 
solids volume fraction were clearly observed in the data from fine-grid simulations presented in our 
previous study (Cloete et al., 2018a), and are reflected in the closure in Equation 14. A further 
consequence of the gravitational contribution is that, at small positive filtered slip velocities in the 
vertical direction, the predicted filtered drag force is in fact greater than the drag force predicted by 
the microscopic drag force evaluated at the filtered values. This behaviour corresponds to the data 
from our fine-grid simulations, and was also recently observed by Schneiderbauer and Saeedipour 
(2018) in 3D resolved TFM simulations. The isotropic fTFM drag closures common in literature do not 
account for this effect (which is prominent at small filtered slip velocities and large filter sizes), since 
they assume that the filtered drag force is always smaller than the microscopic drag force evaluated 
at the filtered values. 

It should be noted that the way that the anisotropy is accounted for in the 2-marker closure, as well as 
in the other anisotropic closures presented subsequently, does not satisfy Galilean invariance, 
specifically rotational invariance. However, the proposed closures will remain reasonable as long as a 
Cartesian or 2D axisymmetric coordinate system is used with the vertical axis aligned with gravity. 
Since the vast majority of fluidized simulations will meet this requirement, the lack of rotational 
invariance should not be a significant limitation in practice. The positive results in the remainder of the 
present study also indicate that the approach to account for anisotropy is sufficient, especially when 
considering that the purpose of the fTFM is to serve as a pragmatic modelling tool to enable reasonably 
accurate simulations of industrial-scale fluidized beds. It can, however, be noted that a methodology 
for constructing Galilean invariant anisotropic drag closures was recently discussed by Jiang et al. 
(2018), although these authors did not attempt to establish such a closure. Since the anisotropic 
closures proposed in the present study appear to perform satisfactorily, the derivation of Galilean 
invariant closures will also not be attempted here but is recommended for future work. 

3.1.2 1-marker closure 
Next, a simplified 1-marker closure, Equation 16 to Equation 19, is constructed to evaluate the 
importance of the filtered slip velocity as marker in the 2-marker closure. This is done by neglecting 
the filtered slip velocity as an independent variable in the expression for 𝑘𝑘2 in Equation 19, therefore 
the drift velocity contribution proportional to the filtered slip velocity no longer increases with 
increasing filtered slip velocity.  

𝜐𝜐𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
∗ = 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ − 𝜐𝜐𝑑𝑑,𝑖𝑖
∗  Equation 13 

𝜐𝜐𝑑𝑑,𝑖𝑖
∗ = 𝑘𝑘1 + 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ (1 − 10−𝑘𝑘2) Equation 14 
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𝑘𝑘1 = 𝑥𝑥1 �
2
𝜋𝜋
� (𝛼𝛼𝑠𝑠���𝑥𝑥2) atan �𝑥𝑥3 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� 

𝑘𝑘1 = 0 if 𝑖𝑖 is in the direction perpendicular to gravity 

Equation 15 

𝑘𝑘2 = �
2
𝜋𝜋
�
2

atan(𝑥𝑥5𝛼𝛼𝑠𝑠���) atan �𝑥𝑥3 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� (𝑥𝑥6𝛼𝛼𝑠𝑠���𝑥𝑥7) Equation 16 

𝑥𝑥1 = −3.44, 𝑥𝑥2 = 2.09, 𝑥𝑥3 = 21.6 �2
𝜋𝜋
� atan (0.216∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ), 𝑥𝑥4 = 0.559, 𝑥𝑥5 = 99.7∆𝑓𝑓𝑓𝑓𝑓𝑓∗

3.31, 𝑥𝑥6 = 2.19 

and 𝑥𝑥7 = 1/(2.08∆𝑓𝑓𝑓𝑓𝑓𝑓∗
0.246). 

Using the coefficients above, a fit with 𝑅𝑅2 = 0.990 is obtained against the binned data. Since the 
filtered slip velocity is not used as a marker in the binning procedure, the mean filtered slip velocity in 
each filtered solids volume fraction bin is used in Equation 17 when calibrating the parameters of the 
closure model. Since each bin does not have a fixed filtered slip velocity value, the binned data for the 
1-marker model is best displayed in the form −log (1 − 𝜐𝜐𝑑𝑑,𝑖𝑖

∗ /𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
∗ ), as shown in Figure 2. From the 

binned data, it is clear that this scaled ratio of the drift velocity to the filtered slip velocity is dependent 
on the direction considered. Importantly, it can be seen that the 1-marker model proposed in this 
section accurately predicts the binned data in both directions due to the anisotropic contribution in 
Equation 18. Furthermore, the drift velocity correctly goes to zero in the limits of dilute and dense 
filtered solids volume fractions. 

 

Figure 2 – The average value of −𝒍𝒍𝒍𝒍𝒍𝒍 (𝟏𝟏 − 𝝊𝝊𝒅𝒅,𝒊𝒊
∗ /𝝊𝝊�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝒊𝒊

∗ ) plotted against the filtered solids volume fraction for a) the lateral 
direction and b) the vertical direction. Symbols show the binned observations and lines the closure model predictions.  
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3.1.3 3-marker closure 
While investigating anisotropic closures for the meso-scale solids stresses (Cloete et al., 2018b), it was 
found that a filtered co-variance quantity in the form of 𝑋𝑋′𝑌𝑌′������ can be modelled by a marker of the form 

𝑀𝑀 = �𝑑𝑑𝑋𝑋
�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑌𝑌�
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑋𝑋�
𝑑𝑑𝑑𝑑

𝑑𝑑𝑌𝑌�
𝑑𝑑𝑑𝑑
�, referred to as the “gradient product marker” (GPM). This approach can similarly 

be applied to the drift velocity, when it is redefined as follows: 𝜐𝜐𝑑𝑑,𝑖𝑖 =
𝛼𝛼𝑔𝑔′ 𝜐𝜐𝑔𝑔,𝚤𝚤

′���������

𝛼𝛼�𝑠𝑠𝛼𝛼�𝑔𝑔
. The derivation of this 

definition is given in the appendix. Applying the GPM concept to the scaled drift velocity, the “drift 
GPM” can be expected to be a promising candidate as a third marker in the drift velocity closure. It can 
be defined in 2D as follows: 

Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 =
�
𝑑𝑑𝛼𝛼𝑔𝑔���
𝑑𝑑𝑑𝑑

𝑑𝑑𝜐𝜐𝑔𝑔,𝚤𝚤����
𝑑𝑑𝑑𝑑 +

𝑑𝑑𝛼𝛼𝑔𝑔���
𝑑𝑑𝑑𝑑

𝑑𝑑𝜐𝜐𝑔𝑔,𝚤𝚤����
𝑑𝑑𝑑𝑑 �

𝛼𝛼𝑠𝑠��� 𝛼𝛼𝑔𝑔���𝑣̅𝑣𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 Equation 17 

Note, that we use 𝜐𝜐𝑔𝑔,𝚤𝚤���� here, i.e., the algebraic average gas-phase velocity, and not the Favre-average 
velocity 𝜐𝜐�𝑔𝑔,𝑖𝑖. Additionally, 𝑣̅𝑣𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 refers to the steady state sedimentation velocity evaluated at the 
filtered solids volume fraction. 

In the present study, the drift GPM is non-dimensionalized as Μ�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 = Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
𝑣𝑣𝑡𝑡4

𝑔𝑔2
. Additionally, since 

the GPM is highly dependent on the filter size, the following scaling is applied for the binning process 
to ensure a better distribution of data through the parameter space: 

𝛭𝛭𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
∗ = Μ�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖

𝑎𝑎𝛥𝛥𝑓𝑓
∗ (𝑏𝑏+𝑐𝑐𝛥𝛥𝑓𝑓

∗ )  Equation 18 

Where 𝑎𝑎 = 3.28, 𝑏𝑏 = −1.81 and 𝑐𝑐 = −0.0120. 𝛭𝛭𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
∗  will henceforth be referred to as the scaled 

drift GPM.  

For the 3-marker closure proposed in this section, the adjusted slip velocity is binned for each filter 
size as a function of the filtered solids volume fraction, the scaled filtered slip velocity in the direction 
considered and the scaled drift GPM in the direction considered. The binned data for the scaled 
adjusted slip velocity is shown in Figure 3 plotted against the scaled drift GPM. It is clear that there is 
a strong dependence of the adjusted slip velocity with respect to the drift GPM at both small and large 
filter sizes. The drift GPM dependence appears to be of similar importance as the filtered slip velocity 
dependence.  

Specifically, increasing drift GPM values lead to smaller adjusted slip velocities, and therefore also 
smaller filtered drag forces. At the smaller filter size considered, the scaled adjusted slip velocity tends 
to flatten out at large absolute values of the drift GPM. At the larger filter size considered, such a trend 
cannot be clearly distinguished. However, this is most likely due to the fact that large enough GPMs do 
not occur in the resolved simulations: intermediate filter sizes, for which the results are not shown 
here, confirm that the adjusted slip velocity becomes independent of the drift GPM at large absolute 
values of the drift GPM. Lastly, it is noted that there appears to be some correlation between the 
filtered slip velocity and the drift GPM for a specific direction. As seen from Figure 3, the drift GPM 
tends to be positive at large positive slip velocities and negative at large negative slip velocities. 
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Figure 3 - The scaled adjusted slip velocity for the lateral direction (left) and vertical direction (right) plotted against the scaled 
drift GPM at ∆�𝒇𝒇= 𝟏𝟏.𝟗𝟗𝟗𝟗 (top) and ∆�𝒇𝒇= 𝟏𝟏𝟏𝟏.𝟏𝟏 (bottom). The data shown is for an intermediate filtered solids volume fraction, 
𝜶𝜶𝒔𝒔��� = 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐 . 

It is interesting to note the similarities between the proposed drift GPM and the theory-based closures 
of Schneiderbauer (2017). Firstly, the latter study found that the sub-grid drag reduction increased 
with increasing solids volume fraction variance, which was found to be proportional to the magnitude 
of the gradient of the filtered solids volume fraction. Secondly, Schneiderbauer (2017) found that the 
sub-grid drag correction also increased with increasing sub-grid gas-phase stresses, which was found 
to be proportional to the gas-phase shear rate magnitude (i.e., the filtered gas phase velocity 
gradients). Similarly, in the present study, we find that the sub-grid drag correction increases with 
increasing values of the drift GPM, which is proportional to the gas volume fraction and velocity 
gradients. However, an important difference is that the present study does not account for the 
production of sub-grid stresses due to interfacial work, as described by Schneiderbauer (2017). On the 
other hand, the drift GPM allows for a decrease in the sub-grid drag reduction in case the filtered gas 
volume fraction gradients and gas velocity gradients are not correlated (i.e., have different signs). This 
aspect is not included in the theory of Schneiderbauer (2017). Future work is therefore suggested to 
explore the similarities and differences of these two approaches. 

Through a rigorous analysis of the binned data, it was found that the scaled adjusted slip velocity could 
be closed using the 3-marker closure given by Equation 22 to Equation 26 and the set of coefficients 
summarized below Equation 26. The third marker adds a substantial amount of complexity to the 
closure fitting process. This is due to (i) the large increase in the number of bins caused by the added 
dimension in the binned data, and (ii) due to the complex interactions between the different markers. 
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The process that was used to overcome this complexity is described in greater detail in the thesis of 
Cloete (2018) for the interested reader.  

Compared to the 2-marker model, it can be seen that the gravitational and slip velocity contributions 
(i.e., 𝑘𝑘1 and  𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ �1 − 10−𝑘𝑘2�, respectively) remain similar, with only minor changes in the filter size 
dependencies of the coefficients. Most important, it is found that the effect of the drift GPM can be 
included as an additional term 𝑘𝑘3, which is denoted as the “gradient contribution term” in what 
follows. Therefore, gradients in the flow (specifically in the filtered gas volume fraction and in the 
algebraically averaged gas velocity field) can be identified as an additional source of drift velocity. It 
can be physically understood that large drift GPMs in a coarse grid filtered simulation indicates the 
presence of a cluster interface, which cannot be well resolved on a coarse grid. It is well known that 
poor cluster interface resolution overpredicts gas-solid contact, leading to overpredictions of 
interphase mass, momentum and energy transfer. The use of the drift GPM as marker allows the model 
to directly address this overprediction of momentum transfer.  

In the gradient contribution term, i.e., 𝑘𝑘3 in Equation 26, the first two arctangent functions ensure that 
the gradient contribution to the drift velocity is zero at the dilute and dense limits. The third arctangent 
function, i.e., 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥13Μ�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖�, causes the gradient contribution to saturate at large absolute values 
of the drift GPM, as observed in the binned data. The filter size dependency of 𝑥𝑥13 compensates for 
the fact that the dimensionless drift GPM decreases rapidly with increasing filter size. Therefore, at 
large filter sizes, the gradient contribution saturates at smaller drift GPM values.  

The next three terms identify different parts of the gradient contribution. The first part (proportional 
to 𝑥𝑥14) is due to only the drift GPM and takes the sign of the drift GPM. The second part (proportional 

to �𝑥𝑥16 �𝛼𝛼𝑠𝑠� − 𝑥𝑥4

2
�
𝑥𝑥17

+ 𝑥𝑥18�) is due to the interaction of the drift GPM and the filtered slip velocity, 

since it is observed that the gradient contribution increases at large absolute slip velocities. It is found 
that this part has a minimum effect at intermediate volume fractions, but the effect increases towards 
the dilute and dense limits. However, it can be noted that the first two arctangent functions still ensure 
that this part goes to zero at the dilute and dense limits. Furthermore, this GPM-slip interaction part 
of the gradient contribution takes the sign of the drift GPM and its absolute value is symmetrical 
around a drift GPM of zero.  

The third part of the gradient contribution (proportional to 𝑥𝑥19) is an asymmetrical GPM-slip 
interaction part, since it is observed that, near the dilute and dense limits, there is an additional effect 
in case the drift GPM and the filtered slip velocity have opposite signs. This asymmetrical effect can 
clearly be seen in Figure 4, where the drift GPM dependence is compared at dilute and intermediate 
volume fractions. The asymmetrical GPM-slip interaction part has no effect at intermediate volume 
fractions, but the effect increases towards the dilute and dense limits, similarly to the symmetrical 
GPM-slip interaction part. In the closure model, by using min�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ Μ�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖�, 0�, this part is 

defined in such a way that it only has an effect in case the drift GPM and the filtered slip velocity has 
opposite signs. Also, this part has the opposite sign as the drift GPM. The asymmetrical interaction part 
therefore has an effect in the opposite direction as the symmetrical interaction part. 

𝜐𝜐𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
∗ = 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ − 𝜐𝜐𝑑𝑑,𝑖𝑖
∗  Equation 19 

𝜐𝜐𝑑𝑑,𝑖𝑖
∗ = 𝑘𝑘1 + 𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ �1 − 10−𝑘𝑘2� + 𝑘𝑘3 Equation 20 

𝑘𝑘1 = 𝑥𝑥1 �
2
𝜋𝜋
� (𝛼𝛼𝑠𝑠���𝑥𝑥2) atan �𝑥𝑥3 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� Equation 21 
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𝑘𝑘1 = 0 if 𝑖𝑖 is in the direction perpendicular to gravity 

𝑘𝑘2 = �
2
𝜋𝜋
�
2

atan(𝑥𝑥5𝛼𝛼𝑠𝑠���) atan �𝑥𝑥3 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� �𝑥𝑥6𝛼𝛼𝑠𝑠���𝑥𝑥7

+ 𝑥𝑥8 �
2
𝜋𝜋
� atan�𝑥𝑥9𝛼𝛼𝑠𝑠���𝑥𝑥10�𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

∗ � � 𝑙𝑙𝑙𝑙𝑙𝑙�𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
∗ �� 

Equation 22 

𝑘𝑘3 = �
2
𝜋𝜋
�
3

atan(𝑥𝑥11𝛼𝛼𝑠𝑠���) atan �𝑥𝑥12 max(𝑥𝑥4 − 𝛼𝛼𝑠𝑠���, 0)� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥13Μ�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖� �𝑥𝑥14

+ �𝜐𝜐�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
∗ �𝑥𝑥15 ��𝑥𝑥16 �𝛼𝛼𝑠𝑠��� −

𝑥𝑥4
2
�
𝑥𝑥17

+ 𝑥𝑥18�

+ min�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜐𝜐�𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖
∗ Μ�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖�, 0� 𝑥𝑥19 �𝛼𝛼𝑠𝑠��� −

𝑥𝑥4
2
�
𝑥𝑥17
�� 

Equation 23 

𝑥𝑥1 = −1.74 �2
𝜋𝜋
� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�1.71∆𝑓𝑓𝑓𝑓𝑓𝑓∗ �, 𝑥𝑥2 = 1.54, 𝑥𝑥3 = 21.8 �2

𝜋𝜋
� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�0.708∆𝑓𝑓𝑓𝑓𝑓𝑓∗ �, 𝑥𝑥4 = 0.558,  

𝑥𝑥5 = 45.6∆𝑓𝑓𝑓𝑓𝑓𝑓∗
2.10, 𝑥𝑥6 = 2.09 �2

𝜋𝜋
� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�0.331∆𝑓𝑓𝑓𝑓𝑓𝑓∗ �, 𝑥𝑥7 = 0.248, 𝑥𝑥8 = 0.308 , 𝑥𝑥9 = 6.35∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ,  

𝑥𝑥10 = 1.22, 𝑥𝑥11 = 4030, 𝑥𝑥12 = 194, 𝑥𝑥13 = 0.0742∆𝑓𝑓𝑓𝑓𝑓𝑓∗
1.89, 𝑥𝑥14 = 1/ �3.53 �2

𝜋𝜋
� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�0.303∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ��,  

𝑥𝑥15 = 1/ �1 + 4.69 �2
𝜋𝜋
� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�0.0604∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ��, 𝑥𝑥16 = 9.18, 𝑥𝑥17 = 2.84, 𝑥𝑥18 = 1/�2.24∆𝑓𝑓𝑓𝑓𝑓𝑓∗ � and  

𝑥𝑥19 = 1/ �0.0742 �2
𝜋𝜋
� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�0.419∆𝑓𝑓𝑓𝑓𝑓𝑓∗ ��. 

The closure model presented in this section yields an excellent fit to the binned data over all filter sizes 
with 𝑅𝑅2 = 0.979. This is demonstrated for the intermediate filter size in Figure 5, where the scaled 
adjusted slip velocity is plotted against the filtered solids volume fraction at different filtered slip 
velocities and scaled drift GPM values. Additionally, Figure 4 shows how the closure models capture 
the drift GPM dependency to predict the scaled adjusted slip velocity. 

 

 

Figure 4 - The scaled adjusted slip velocity for the lateral direction plotted against the scaled drift GPM at ∆�𝒇𝒇= 𝟓𝟓.𝟗𝟗𝟗𝟗 for a) a 
dilute filtered solids volume fraction, 𝜶𝜶𝒔𝒔��� = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and b) an intermediate filtered solids volume fraction, 𝜶𝜶𝒔𝒔��� = 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐 . 
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Figure 5 - The scaled adjusted slip velocity for the lateral direction (left) and the vertical direction (right) plotted against the 
filtered solids volume fraction at ∆�𝒇𝒇= 𝟓𝟓.𝟗𝟗𝟗𝟗 for different scaled drift GPMs (top, centre and bottom rows). 

A potential issue with using the drift GPM is that, as can be noted from Equation 20, the definition of 
the drift GPM requires the algebraic average of the gas velocities in the filter region. However, the 
filtered momentum transport equations, discussed in section 2.2, solves for the phase-weighted gas 
velocities. From the derivation of the newly proposed drift velocity definition (see the appendix) it is 
found that the algebraic average of the gas velocity can be calculated as: 
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𝜐𝜐𝑔𝑔,𝚤𝚤���� = 𝜐𝜐�𝑔𝑔,𝑖𝑖 − 𝛼𝛼�𝑠𝑠𝜐𝜐𝑑𝑑,𝑖𝑖 Equation 24 

It is therefore clear that the model prediction for the drift velocity (which requires the drift GPM to be 
known) is required to calculate 𝜐𝜐𝑔𝑔,𝚤𝚤����, which is necessary to calculate the drift GPM. Thus, the algebraic 
average of the gas velocity is implicitly defined. Fortunately, this can easily be solved via a simple 
iteration loop: For the current iteration, the value of the drift velocity from the previous iteration is 
used to calculate 𝜐𝜐𝑔𝑔,𝚤𝚤����, the drift GPM, the new drift velocity and the filtered drag force, in that order. 
For the first iteration of the simulation the 𝜐𝜐𝑔𝑔,𝚤𝚤���� can simply be approximated as 𝜐𝜐�𝑔𝑔,𝑖𝑖 to calculate the drift 
GPM. 

Furthermore, two additional factors ensure that this process is robust. Firstly, as shown in Table 3, 𝜐𝜐𝑔𝑔,𝚤𝚤���� 
is highly correlated with 𝜐𝜐�𝑔𝑔,𝑖𝑖, even at large filter sizes. Therefore, a very good approximation of the 
drift GPM could be obtained even if 𝜐𝜐�𝑔𝑔,𝑖𝑖 was used in Equation 20. Secondly, because of the very strong 
correlation between the drift velocity and the filtered slip velocity, the drift velocity can be predicted 
to a high degree of precision using the 3-marker closure model derived later in this section. This is in 
contrast to the adjusted slip velocity, which is much more difficult to predict precisely, as will be shown 
in section 3.2. It can also be seen that the correlation between observed values and model predictions 
for the drift velocity increases at large filter sizes, when the correlation between the drift velocity and 
the filtered slip velocity is even stronger. As a result of these two factors and the iterative procedure 
followed, the estimate of  𝜐𝜐𝑔𝑔,𝚤𝚤���� used to calculate the drift GPM will always be very accurate. 

Table 3 – Coefficient of determination (𝑹𝑹𝟐𝟐) for the correlation of 𝝊𝝊�𝒈𝒈,𝒊𝒊 and 𝝊𝝊�𝒈𝒈,𝒊𝒊 as observed in the resolved simulations, as well 
as for the correlation between observed values and model predictions (using the 3-marker closure) for the drift velocity, 𝝊𝝊𝒅𝒅,𝒊𝒊. 
Results are shown for two filter sizes.  

∆�𝒇𝒇 

Correlation between 𝝊𝝊�𝒈𝒈,𝐢𝐢 and 𝝊𝝊�𝒈𝒈,𝒊𝒊 
Correlation between observed and predicted 

values for 𝝊𝝊𝒅𝒅,𝒊𝒊 

Lateral 
direction 

Vertical 
direction Lateral direction Vertical direction 

1.93 0.9991 0.9990 0.8481 0.8712 

18.1 0.9973 0.9931 0.9865 0.9920 

3.2 A priori analysis 
The three filtered drag force closures that were proposed in section 3.1 are evaluated in this section 
by comparing the model predictions based on these closures to the observed values in the periodic 
resolved fTFM simulations used to derive the closures. A larger value of the coefficient of 
determination, 𝑅𝑅2, means that the closure explains more of the variance in the data directly and less 
of the variance is averaged out during the binning process. It can therefore be expected that a closure 
that can achieve a higher 𝑅𝑅2 in such an a priori analysis should also perform better in coarse grid 
simulations that are significantly different from the conditions under which the closures were derived. 
It can be noted that an 𝑅𝑅2 value of 1 means a perfect correlation between observed and modelled 
values, whereas a value of 0 corresponds to replacing the model predictions with the mean of the 
observed values. 

Figure 6 summarises the results when comparing the observations and predictions for samples in the 
resolved simulation data as a function of the dimensionless filter size. It can be noted that the grid 
sizes used in the a posteriori  analyses in section 3.3 correspond to dimensionless filter sizes of ∆�𝑓𝑓=
2.06 (10 mm grid cells), ∆�𝑓𝑓= 4.12 (20 mm grid cells) and ∆�𝑓𝑓= 8.23 (40 mm grid cells), respectively, 
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assuming that the filter size is set equal to the grid size. Results are shown for the 1-marker, 2-marker 
and 3-marker closures presented in this study. Additionally, an isotropic 2-marker closure (Cloete et 
al., 2018a) is also included for perspective. It was previously reported (Cloete et al., 2018a) that, as can 
be seen in Figure 6, such an isotropic closure completely fails in the lateral direction and also performs 
worse than the anisotropic 2-marker closure in the vertical direction. 

Regarding the anisotropic closures, it is observed that the model predictions are significantly improved 
as the number of markers in the anisotropic closure is increased. In the lateral direction, there is a 
substantial improvement at all filter sizes when increasing from 2 to 3 markers, whereas the 
improvement when going from 1 to 2 markers reduces at large filter sizes. For the vertical direction, 
the improvement with increasing number of markers generally reduces at large filter sizes. It is 
interesting to note that the simple 1-marker anisotropic closure outperforms the 2-marker isotropic 
closure even in the vertical direction. Considering that the vertical direction data was used to derive 
the isotropic closure, this result provides clear evidence to the benefits of closing the filtered drag force 
based on the drift velocity formulation (while also considering an anisotropic gravitational contribution 
to the drift velocity). 

 

Figure 6 – The coefficient of determination as a function of the dimensionless filter size for the lateral and vertical direction 
and for four different closures developed for the filtered drag force. 

It was previously argued (Cloete et al., 2018a) that the gravitational contribution to the drift velocity 
appears relatively easy to model. This explains the substantially higher 𝑅𝑅2 values in the vertical 
direction, where a mean positive filtered drag force contribution is observed, compared to the lateral 
direction, where no such mean contribution is present. In the lateral direction, positive and negative 
filtered drag forces will tend to cancel out each other at large filter sizes. This results in generally small 
filtered drag forces with limited variance in the sample data. Consequently, model deviations of a 
similar magnitude to those in the y-direction will result in small 𝑅𝑅2-values. The hypothesis about the 
gravitational contribution also offers an explanation for the increasing 𝑅𝑅2 values with increasing filter 
size in the vertical direction when larger filter sizes are considered, since the relative magnitude of the 
gravitational contribution increases at large filter sizes (Cloete et al., 2018a).  

Finally, the gravitational contribution can also help to explain the trend in Figure 6 that increasing the 
number of markers does not improve the predictions in the vertical direction when large filter sizes 
are considered. This is because the closure for the gravitational contribution is only a function of the 
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filter size and the filtered solids volume fraction (see Equation 14, Equation 18 and Equation 24) and 
its relative importance increases with increasing filter size. Increasing the number of markers in the 
closure therefore does not improve the prediction of the gravitational contribution, which is dominant 
in the vertical direction at large filter sizes. This is especially evident when going from 2 to 3 markers, 
since the flow gradients tend to be small at the largest filter sizes, resulting in a negligible effect of the 
drift GPM as a marker compared to the gravitational contribution. However, in the lateral direction, 
where no gravitational contribution is present, the drift GPM in the 3-marker closure still has a 
significant positive effect at larger filter sizes, considering the generally small filtered drag forces in the 
lateral direction, as described earlier. 

In conclusion, it can be noted that the predictive capability of the anisotropic closures significantly 
increases with increasing markers considered, with the 3-marker model also offering a clear 
improvement compared to the simpler anisotropic closures, especially at smaller filter sizes. However, 
from section 3.1.3, it is also clear that including the gradient contribution to the adjusted slip velocity 
closure substantially complicates the derivation process, as well as the resulting closure expression. 
The verification exercises in section 3.3 will therefore further evaluate whether the more complex 3-
marker drag closure results in any practical improvements in coarse grid simulations. 

3.3 A posteriori analysis 
This section will assess the performance of the anisotropic filtered drag force closures at different 
levels of complexity based on their performance in coarse grid simulations of bubbling, turbulent and 
core-annular fluidization. Again, and for perspective, an isotropic 2-marker closure is also evaluated, 
since an earlier study (Cloete et al., 2018a) compared the 2-marker isotropic and anisotropic closures 
only for bubbling fluidization.  

It can be noted that the filter-to-grid-size ratio employed in the closures was optimised for each 
combination of fTFM closures investigated to predict the bed expansion to within 2% of the resolved 
TFM prediction for the bubbling case and on the 10 mm grid. All the other simulations for a specific 
closure combination were then run with the same filter-to-grid-size ratio to evaluate the grid 
dependency and the generality of the closures. A summary of the different cases and the filter-to-grid-
size ratios used for each case is shown in Table 4. A case with no fTFM closures was included for each 
of the three fluidization regimes considered to illustrate the importance of fTFM closures. 

Table 4 – A summary of the combinations of closures considered in the verification study, as well as the filter/grid ratio that 
was determined to be optimal for each case on the 10 mm grid. 

Case Adjusted slip 
velocity 

Non-linearity correction 
factor 

Meso-scale interphase 
force 

Filter/grid 
ratio 

1 
Anisotropic 2-

marker 
Isotropic 2-marker Anisotropic 2-marker 1.0 

2 None None None Not applicable 

3 As part of an isotropic drag correction factor 1.9 

4 
Anisotropic 1-

marker 
Isotropic 2-marker Anisotropic 2-marker 1.0 

5 
Anisotropic 3-

marker 
Isotropic 2-marker Anisotropic 2-marker 1.8 
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The approach of specifying different filter-to-grid-size ratios for different closures is justified based on 
our finding that the optimal filter-to-grid-size ratio in coarse-grid simulations is significantly influenced 
by the closure formulation and the choice of markers. Using a single filter-to-grid-size ratio for all cases 
would therefore arbitrarily disadvantage some closures, while favouring others. To ensure a fair 
comparison, the optimal filter-to-grid-size ratio is determined for each closure and the performance 
of a specific closure is evaluated based on its grid-independence and generality when using this optimal 
filter-to-grid-size ratio. As an example, the isotropic drag closure requires a larger filter-to-grid-size 
ratio to compensate for overpredicted lateral drag forces (Cloete et al., 2018a). The 3-marker closure, 
where the drift GPM relies on gradients, also needs a large filter-to-grid-size ratio due to more diffuse 
solids structures (and therefore smaller gradients on average) in the coarse-grid simulations than in 
the filtered resolved simulation data used to the derive the closures. Since small drift GPM values will 
decrease the drag correction, the gradient-based 3-marker closure requires a larger filter-to-grid-size 
ratio to compensate for this effect (the interested reader can find more information in Chapter 5 of 
the thesis of Cloete (2018)). 

3.3.1 Bubbling case 
Figure 7 evaluates the performance of the fTFM with various closures in the bubbling case. In each 
panel, the case with the 2-marker anisotropic closure proposed in our previous study (Cloete et al., 
2018a) and the resolved TFM results are shown as reference. Figure 7.a shows the importance of the 
fTFM closures, whereas Figure 7.b shows that the 2-marker isotropic closure tends to predict 
increasing bed expansion with increasing grid size. On the contrary, all three anisotropic closures show 
excellent grid independence in the bubbling case when considering bed expansion. An advantage of 
the 3-marker closure is unveiled on the coarsest grid (i.e., 40 mm, see Figure 7.d): this closure appears 
to successfully predict the smooth transition of the mean solids fraction near the interface, for which 
all other closures show oscillations. We note in passing that an earlier study (Cloete et al., 2017b) also 
verified the 3-marker anisotropic closure for bubbling fluidization in a partially-periodic domain. In this 
scenario, the 3-marker closure, in combination with a closure for the filtered reaction rate, also 
performed well in predicting reactive behaviour on a coarse grid. 
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Figure 7 – Comparison of the time- and horizontally-averaged solids volume fraction as a function of the bed height for the 2-
marker anisotropic closure (Case 1) with a) a case with no fTFM closures (Case 2), b) the 2-marker isotropic closure (Case 3), 
c) the 1-marker anisotropic closure (Case 4) and d) the 3-marker anisotropic closure (Case 5) for bubbling fluidization.  

From the results in Figure 7, it is clear that the lateral drag plays an important role in the bubbling case. 
This can be confirmed by looking at an animation of the solids volume fraction contour plot of the 
resolved TFM simulation in the left panel of Video 1: it can be clearly seen that there are periods of 
significant horizontal movement of the gas bubbles. Comparing the two fTFM simulations on a 10 mm 
grid in Video 1, it is clear that the isotropic drag closure leads to a much stronger formation of lateral 
flow at the bottom of the bed, which extends almost completely to the left wall for most of the 
duration of the simulation. This behaviour does not match the fine-grid simulation well and is a 
consequence of the earlier finding that isotropic drag closures will substantially overpredict the drag 
in lateral directions (Cloete et al., 2018a). On the other hand, the anisotropic drag closure predicts 
behaviour of the lateral flow near the bottom of the bed that is more similar to that in the fine-grid 
TFM simulations:  the lateral solids motion near the bottom of the bed is weaker and tends to fluctuate 
more.   

It can further be noted that isotropic drag closures will increasingly overpredict the lateral drag with 
larger filter sizes (Cloete et al., 2018a). Therefore, since the filter-to-grid-size ratio was tuned for the 
isotropic drag closure to give the correct bed expansion on a 10 mm grid, this closure model cannot 
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compensate for the increasingly overpredicted lateral drag at larger grid sizes. This appears to 
indirectly lead to an increase of the overall vertical drag experienced by the solids with increasing grid 
size, since gas bubbles will tend to meander less. This explanation supports the observed grid 
dependency of the bed expansion when using the isotropic drag closure for bubbling beds (see Figure 
7.b). 

 

Video 1 – Animations of the solids volume fraction comparing the resolved TFM (left panel) to the fTFM with an anisotropic 2-
marker drag closure (centre panel) and the fTFM with an isotropic 2-marker drag closure (right panel) on a 10 mm grid for the 
bubbling case. Blue corresponds to a solids volume fraction of 0 and red to a solids volume fraction of 0.6. 

3.3.2 Turbulent case 
Figure 8 evaluates the different fTFM formulations in the turbulent case. A prominent feature of the 
resolved TFM data is the relatively uniform bed density between heights of about 0.1 m and 0.4 m, 
followed by a gradual transition to a very dilute bed above a height of 0.7 m. From Figure 8.a, it can be 
seen that the anisotropic 2-marker closure is unable to predict this feature and instead predicts a 
steady decrease in solids volume fraction with increasing height. However, the overall bed expansion 
is only overpredicted slightly. Additionally, moderate grid dependency of the results can be seen for 
the 2-marker closure, with the bed expansion decreasing with increasing grid size. Nonetheless, the 
prediction remains reasonably good, especially when considering the case with no sub-grid modelling 
(Figure 8.a) for perspective. 
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Figure 8 – Comparison of the time- and horizontally-averaged solids volume fraction as a function of the bed height for the 2-
marker anisotropic closure (Case 1) with a) a case with no fTFM closures (Case 2), b) the 2-marker isotropic closure (Case 3), 
c) the 1-marker anisotropic closure (Case 4) and d) the 3-marker anisotropic closure (Case 5) for turbulent fluidization.  

The isotropic 2-marker closure (Figure 8.b) shows the opposite behaviour to the anisotropic 2-marker 
closure. On the 10 mm grid, the bed expansion is significantly underpredicted, which can be explained 
as follows: in the bubbling case, the filter-to-grid-size ratio had to be increased to correctly predict the 
bed expansion, thereby artificially lowering the drag predicted by this closure, also in the vertical 
direction. However, in the turbulent case, lateral drag is less important than in the bubbling case. 
Consequently, the large filter-to-grid-size ratio now reduces the vertical drag too much, resulting in an 
underpredicted bed expansion of the isotropic closure on the 10 mm grid. As for grid dependence, the 
isotropic closure still shows the same trend as in the bubbling case, with increasing bed expansion 
observed with increasing grid size. 

Considering the anisotropic 1-marker closures in Figure 8.c, it can be seen that this closure generally 
overpredicts the bed expansion in this case. A tentative explanation is that clustering is strongly 
affected by solids motion in turbulent beds, making it necessary to account for a typical velocity scale 
(and hence a second marker such as the filtered slip velocity) in addition to the filtered solids volume 
fraction. The performance of the 1-marker closure is comparable to that of the 2-marker closure, which 
overpredicts the bed density in the bottom of the bed in this case. 
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The 3-marker closure (see Figure 8.d), on the contrary, performs somewhat better than the other 
anisotropic closures in the turbulent case, since it manages to capture the region of uniform bed 
density around a height of 0.2 m, at least to some degree. However, it predicts the same slight 
overexpansion of the bed as the 2-marker closure. Grid independence is good from 10 mm to 20 mm 
for the 3-marker closure. However, the bed expansion significantly decreases when going to 40 mm, 
although it still captures the uniform volume fraction region better than the 2-marker closure. In 
general, it can therefore be concluded that increasing the number of markers in the anisotropic filtered 
drag force closure leads to some improvement to the coarse-grid simulations predictions in the 
turbulent case.  

The behaviour in the turbulent case is qualitatively shown in Video 2. The fTFM simulations are shown 
on the 10 mm grid, where all the closures should be most accurate since the least amount of sub-grid 
modelling is required. For the resolved TFM, it can be seen that, in the bottom half of the bed, relatively 
dense clusters rise in the centre, whereas lower density clusters are generally falling in the top half. 
These clusters tend to collide in the middle of the bed, which seems to be the cause of the relatively 
sudden change in mean volume fraction observed in Figure 8. In general, the anisotropic closures have 
some difficulty capturing this behaviour. However, the results in Figure 8, and a careful evaluation of 
Video 2, tentatively indicates an improvement of the prediction with increasing closure complexity of 
the anisotropic closure. Finally, the isotropic 2-marker closure clearly overpredicts the holdup in the 
bottom of the bed, which is likely partly due to the large filter-to-grid ratio required in the bubbling 
case for this closure. The animation reveals an additional reason for this behaviour of the isotropic 
closure: in the bottom of the bed, the overpredicted lateral drag force causes clusters to move in the 
lateral direction, and to rapidly collide with each other, or with the walls. We speculate that this 
mechanism leads to the formation of unrealistically large and dense clusters that are more difficult to 
convey upwards with the fluidizing gas. 

 

Video 2 – Animations of the solids volume fraction comparing the resolved TFM with fTFM simulations on a 10 mm grid in the 
turbulent case. From the left to right the panels show: the resolved TFM, the 1-marker anisotropic closure, the 2-marker 
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anisotropic closure, the 3-marker anisotropic closure and the 2-marker isotropic closure. Blue corresponds to a solids volume 
fraction of 0 and red to a solids volume fraction of 0.6. 

3.3.3 Core-annular case 
From Figure 9.a, it can be seen that the anisotropic 2-marker closure performs quite well in the core-
annular case, with good predictions at the very bottom and upper parts of the bed. Only a slightly too 
dense region between a height of 0.1 m and 0.4 m is predicted. However, the 40 mm grid generally 
underpredicts the solids holdup in the bed. In contrast, the isotropic 2-marker closure (Figure 9.b) 
greatly overpredicts the solids holdup in general. Similar to the turbulent case, this is due to the large 
filter-to-grid-size ratio required for this closure to match resolved TFM data of bed expansion for the 
bubbling case (where the horizontal drag played a significant role). Since the core-annular domain is 
narrower than the turbulent domain, the horizontal drag becomes even less influential. Consequently, 
this leads to the conclusion that the excessively large filter-to-grid-size ratio (that is rooted in the 
bubbling case results) causes an extreme underprediction of the drag by the isotropic closure.  

 

Figure 9 – Comparison of the time- and horizontally-averaged solids volume fraction as a function of the bed height for the 2-
marker anisotropic closure (Case 1) with a) a case with no fTFM closures (Case 2), b) the 2-marker isotropic closure (Case 3), 
c) the 1-marker anisotropic closure (Case 4) and d) the 3-marker anisotropic closure (Case 5) for fluidization in the core-annular 
regime.  
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Surprisingly, the 1-marker anisotropic closure (Figure 9.c) shows nearly an exact match to the resolved 
TFM data in the 10 mm case. However, this might be coincidental, since the 1-marker model 
significantly overpredicts the drag in the turbulent case and at the other two grid sizes for the core-
annular case. Although the prediction of the 3-marker anisotropic closure (see Figure 9.d) is reasonable 
for the 10 mm and 20 mm cases, it still shows an overprediction of the bed density in the lower part 
of the bed (for the 10 mm grid, this overprediction of the 3-marker closure is slightly larger than that 
of the 2-marker closure). Furthermore, the 3-marker closure features a significant grid dependency 
when going from 10 mm to 20 mm. Also, the solids holdup is strongly underpredicted in the 40 mm 
case. It therefore appears that, contrary to the turbulent case, the 3-marker anisotropic closure 
actually performs somewhat worse than the anisotropic 2-marker closure in the core-annular regime 
of fluidization. 

Therefore, considering all three verification cases, a clear improvement of the 3-marker closure over 
the 2-marker closure cannot be seen. This is possibly related to the results of the a priori analysis in 
section 3.2, which showed that for the large filter sizes considered here (keeping in mind that a filter-
to-grid-size ratio of 1.8 is employed for the 3-marker closure), adding the drift GPM as a third marker 
did not significantly affect the predictive capability of the closure in the vertical direction. This is likely 
related to the fact that the flow gradients become small at large filter sizes, meaning that the effect of 
the GPM becomes small compared to that of the gravitational contribution in the vertical direction.  

A qualitative comparison of the resolved TFM to the fTFM with different drag closures on the 10 mm 
grid is shown in Video 3. The resolved TFM shows that, as solids accumulate near the ports located at 
the walls near the gas inlet, the gas rising in the centre shears off solids clusters. These clusters are 
then swept upwards and are dispersed. The gas then pushes some of the solids towards the walls, 
where particles accumulate and fall down. This behaviour is reasonably captured by the anisotropic 
closures, but the amount of solids accumulating at the walls in the lower part of the bed increases as 
the complexity of the anisotropic drag closure increases, leading to an overprediction of the solids 
holdup in the lower region of the bed. The reason for this is unclear, since the a priori analysis in section 
3.2 shows that the predictive capability of the fTFM should increase with an increasing number of 
markers in the filtered drag force closure. Relative to the anisotropic closures, Video 3 shows that the 
isotropic closure predicts much too large and dense solids clusters in the coarse-grid simulations of the 
core-annular case near the bottom of the bed. This is due to the underprediction of the drag caused 
by the large grid-to-filter-size ratio required to match fine-grid simulations in the bubbling regime.  



27 
 

 

Video 3 – Animations of the solids volume fraction comparing the resolved TFM to fTFM simulations on a 10 mm grid in the 
core-annular case. From the left to right the panels show: the resolved TFM, the 1-marker anisotropic closure, the 2-marker 
anisotropic closure, the 3-marker anisotropic closure and the 2-marker isotropic closure. Blue corresponds to a solids volume 
fraction of 0 and red to a solids volume fraction of 0.6. 

Finally, Video 4 shows the effect of the grid size on the behaviour of the fTFM in the core-annular case 
when using the anisotropic 2-marker closure for the filtered drag force. Increasing grid size clearly 
affects the predicted mechanism by which solids are removed near the ports, since the clusters that 
are sheared off can no longer be resolved on the larger grid sizes. This has an especially large effect 
when considering the 40 mm grid, where all the fTFM closures show a large drop in solids holdup in 
Figure 9. On this grid, dense solids clusters, which are more difficult to fluidize, can no longer be directly 
predicted by the fTFM. It can be noted that the grid size of 40 mm is the same as the width of the inlet 
ports for the solids and that only 6 cells span the width of the domain. Much of the grid dependency 
observed for the core-annular case can therefore be attributed to the grid size becoming too large to 
resolve important macroscopic flow features. It may therefore be deduced that the macroscopic flow 
features will put a limit on the maximum grid size that may be used for a specific case, regardless of 
the quality of the fTFM closures that are used. It may also be speculated that the fact that the grid is 
too coarse to resolve macroscopic flow effects introduces uncertainty in the comparisons of the 
present study and may be the reason why improved performance of the 3-marker closure over the 2-
marker closure cannot be established in the a posteriori analysis, despite the a priori analysis showing 
that minor improvements may be expected. 
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Video 4 - Animations of the solids volume fraction showing the grid dependence of the fTFM simulations in the core-annular 
case with the 2-marker anisotropic closure for the filtered drag force. From the left to right the panels show: the resolved TFM, 
the fTFM on a 10 mm grid, the fTFM on a 20 mm grid and the fTFM on a 40 mm grid. Blue corresponds to a solids volume 
fraction of 0 and red to a solids volume fraction of 0.6. 

4 Conclusions and recommendations  
In the present study, anisotropic closures of increasing complexity were derived for the filtered drag 
force, which is generally considered as the most important closure in fTFMs.  Significant improvements 
with increasing closure complexity were difficult to distinguish with certainty in the a posteriori 
analysis, except for a minor tendency of the simplest 1-marker closure to overestimate the drag in fast 
and dilute flows. In contrast, an isotropic closure from a previous study (Cloete et al., 2018a) showed 
substantially more grid dependence in the bubbling case and much poorer generality over all the cases. 
This is due to the tendency of isotropic filtered drag force closures to drastically overpredict the filtered 
drag force in the lateral direction, as discussed in a previous study (Cloete et al., 2018a). These findings 
are in line with the a priori study, which showed relatively small improvements when increasing the 
complexity of anisotropic drag closures, compared to clear benefits when going from an isotropic 
closure to an anisotropic closure. 



29 
 

The results of this study therefore suggest that it is essential to account for anisotropy when 
considering drag closures for fTFMs intended for use on very coarse grids. It should be noted that the 
quantitative importance of the anisotropy observed in the drag correction from 2D simulations 
presented here may be different in 3D, since gas would more easily slip around solids clusters. Future 
work is therefore recommended to investigate this by validating the anisotropic drag closure 
presented here against 3D experimental data and by considering filtered data from fine-grid 3D TFM 
simulations. 

Despite this uncertainty, the results of the present paper yield an important conclusion by verifying 
closures of varying complexity in 2D: that it is critical that fTFM closures account for important physical 
effects, such as anisotropy, but that extremely complex closures may not be necessary. It is therefore 
recommended that future research should aim to find, and include, such physical effects that are 
missing from current fTFM closures. Theoretical considerations, similar to the work of Schneiderbauer 
(2017) may be important to assist in this process.  

Two further findings from the present study have important implications for future fTFM studies. 
Firstly, it appears that even larger resolved simulations than those afforded by 2D simulations in the 
present study are required for detailed verification of fTFM closures at large filter sizes. This is since 
uncertainty is introduced when the coarse-grid simulations cannot resolve important macro-scale flow 
features such as concentrated solids injections and solids circulation patterns. Such large simulation 
domains would be especially problematic for 3D simulations, considering that the 2D simulations of 
the present study already required 1-2 months of simulation time on 256 HPC cores each, and 3D 
simulations would require 2-4 orders of magnitude more computational time.  

The second important finding is that the optimal filter-to-grid-size ratio for a specific fTFM depends on 
the formulation of closures and the chosen markers. This implies that in a posteriori tests, the optimal 
filter-to-grid-size ratio should be determined for a specific fTFM to be tested, in order to ensure a fair 
comparison between different model formulations. This finding also introduces uncertainty in the use 
of the fTFM, for example when closures for different filtered quantities use different marker types. 
Further research is suggested to better understand this topic. 

Finally, despite the good performance reported here, considering the very large grid cells and wide 
range of fluidization conditions considered in the verification, several shortcomings of the approach 
followed in this study can be noted. In the present study, a functional fitting approach was employed, 
as common in the fTFM literature (Gao et al., 2018; Igci et al., 2008; Sarkar et al., 2016; Schneiderbauer 
and Pirker, 2014). In such an approach, correlations, based on several markers (independent variables), 
are fitted to filtered quantities obtained from resolved TFM simulations. This study reveals two 
challenges of using this approach: 1) additional independent variables may be added without leading 
to substantial improvements in a posteriori tests and 2) a large number of model coefficients may have 
to be tuned in such closures. Another challenge, although not specifically addressed in the present 
study, is concerned with accounting for different fluid and particle properties in the closures. Literature 
(Schneiderbauer and Pirker, 2016) indicates that the scalings that are commonly used in fTFM closures 
to account for different fluid/particle configurations may not be very accurate. However, this topic has 
received relatively little attention, mainly due to the complexity of including data from many different 
particle/fluid configurations in the functional fitting process. 

Stronger use of theoretical arguments in the development of fTFM closures, e.g. algebraic closures for 
sub-grid quantities based on transport equations (Schneiderbauer, 2017) or dynamic adaption 
procedures (Ozel et al., 2013; Ozel et al., 2017; Parmentier et al., 2012), may help to address the 
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challenges that have been listed. These possibilities will be explored in future studies to further 
strengthen the fTFM developed here. 
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6 List of Acronyms and Symbols 
Acronym definitions: 

CFD  Computational Fluid Dynamics 

EMMS Energy-minimization Multi-scale 

fTFM Filtered Two-fluid Model 

GPM Gradient Product Marker 

KTGF Kinetic Theory of Granular Flow 

TFM Two Fluid Model 

UDF User-defined function 

Main Symbol definitions: 

𝐶𝐶𝑁𝑁𝑁𝑁   Non-linearity correction factor 

𝑑𝑑𝑝𝑝 Particle diameter (m) 

𝑔⃗𝑔 Gravity vector (m/s2) 

𝐾𝐾𝑔𝑔𝑔𝑔 Interphase momentum exchange 
coefficient (kg/(m3.s)) 

𝑘𝑘𝛩𝛩𝑠𝑠  Granular temperature diffusion 
coefficient (kg/(m.s)) 

𝑝𝑝 Pressure (Pa) 

𝑡𝑡 Time (s) 

𝑣𝑣𝑡𝑡 Particle terminal velocity (m/s) 

𝛼𝛼 Volume fraction 

𝜙𝜙𝑔𝑔𝑔𝑔 Interphase energy transfer (W/m3) 

𝛾𝛾𝛩𝛩𝑠𝑠  Dissipation rate (W/m3) 

Μ Gradient product marker (m-2) 

𝜇𝜇 Dynamic viscosity (kg/(m.s)) 

𝜌𝜌 Density (kg/m3) 

𝜏𝜏̅̅ Stress tensor (Pa) 

𝜐𝜐 Velocity (m/s) 

𝛥𝛥𝑓𝑓 Filter size (m) 

𝛩𝛩 Granular temperature (m2/s2) 

Sub- and superscript definitions: 

𝑎𝑎𝑎𝑎𝑎𝑎 Adjusted slip  

𝑑𝑑 Drift 

𝑓𝑓𝑓𝑓𝑓𝑓 Filter 

𝑔𝑔 Gas 

ℎ𝑜𝑜𝑜𝑜 Homogenous 

𝑘𝑘 Generic phase 

𝑖𝑖 Coordinate index 

𝑠𝑠 Solid 

Operator definitions 

|𝑥𝑥| Absolute values 

𝑥̅𝑥 Algebraic volume average 

𝑥𝑥′, 𝑥𝑥′′ Fluctuation from mean 

𝑥𝑥� Non-dimensionalized value 

𝑥𝑥� Phase-weighted volume average 

𝑥𝑥∗ Scaled value 

𝑥⃗𝑥 Vector quantity 

https://www.sigma2.no/
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7 Appendix 
The derivation of the new definition of the drift velocity presented in section 3.1.3 is detailed in this 
section, starting with the definition of the filtered drag force. 

𝐾𝐾𝑔𝑔𝑔𝑔(𝜐𝜐𝑔𝑔,𝚤𝚤 − 𝜐𝜐𝑠𝑠,𝚤𝚤)������������������� 

=
𝐾𝐾𝑔𝑔𝑔𝑔
𝛼𝛼𝑠𝑠

(𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤 − 𝛼𝛼𝑠𝑠𝜐𝜐𝑠𝑠,𝚤𝚤)
�������������������������

 

= 𝐶𝐶1𝐾𝐾𝑔𝑔𝑔𝑔����� (𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤−𝛼𝛼𝑠𝑠𝜐𝜐𝑠𝑠,𝚤𝚤������������������)
𝛼𝛼�𝑠𝑠

      𝐶𝐶1 =
𝐾𝐾𝑔𝑔𝑔𝑔
𝛼𝛼𝑠𝑠

�𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤−𝛼𝛼𝑠𝑠𝜐𝜐𝑠𝑠,𝚤𝚤�
��������������������������

𝐾𝐾𝑔𝑔𝑔𝑔������𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤−𝛼𝛼𝑠𝑠𝜐𝜐𝑠𝑠,𝚤𝚤����������������������
𝛼𝛼�𝑠𝑠

 

= 𝐶𝐶1𝐶𝐶2𝐾𝐾gs,hom
(𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤−𝛼𝛼𝑠𝑠𝜐𝜐𝑠𝑠,𝚤𝚤������������������)

𝛼𝛼�𝑠𝑠
      𝐶𝐶2 = 𝐾𝐾𝑔𝑔𝑔𝑔�����

𝐾𝐾gs,hom
 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤��������
𝛼𝛼�𝑠𝑠

− 𝛼𝛼𝑠𝑠𝜐𝜐𝑠𝑠,𝚤𝚤
𝛼𝛼�𝑠𝑠
������)    𝐶𝐶𝑁𝑁𝑁𝑁 = 𝐶𝐶1𝐶𝐶2 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(
𝛼𝛼𝑠𝑠𝜐𝜐𝑔𝑔,𝚤𝚤�������
𝛼𝛼�𝑠𝑠

− 𝜐𝜐�𝑠𝑠,𝑖𝑖) 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(
(1 − 𝛼𝛼𝑔𝑔)𝜐𝜐𝑔𝑔,𝚤𝚤���������������

𝛼𝛼�𝑠𝑠
− 𝜐𝜐�𝑠𝑠,𝑖𝑖) 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(
𝜐̅𝜐𝑔𝑔,𝑖𝑖 − 𝛼𝛼𝑔𝑔𝜐𝜐𝑔𝑔,𝚤𝚤��������

𝛼𝛼�𝑠𝑠
− 𝜐𝜐�𝑠𝑠,𝑖𝑖) 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(
𝜐̅𝜐𝑔𝑔,𝑖𝑖

𝛼𝛼�𝑠𝑠
−
𝛼𝛼�𝑔𝑔𝜐𝜐�𝑔𝑔,𝑖𝑖

𝛼𝛼�𝑠𝑠
− 𝜐𝜐�𝑠𝑠,𝑖𝑖) 

We now consider: 

𝜐𝜐�𝑔𝑔,𝑖𝑖 =
𝛼𝛼𝑔𝑔𝜐𝜐𝑔𝑔,𝚤𝚤��������
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=
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Which leads to: 
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𝛼𝛼𝑔𝑔′ 𝜐𝜐𝑔𝑔,𝚤𝚤
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Then, 
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𝜐̅𝜐𝑔𝑔,𝑖𝑖

𝛼𝛼�𝑠𝑠
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= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(
𝜐𝜐�𝑔𝑔,𝑖𝑖 − 𝛼𝛼𝑔𝑔′ 𝜐𝜐𝑔𝑔,𝚤𝚤

′�������� 𝛼𝛼�𝑔𝑔�
𝛼𝛼�𝑠𝑠

−
𝛼𝛼�𝑔𝑔𝜐𝜐�𝑔𝑔,𝑖𝑖

𝛼𝛼�𝑠𝑠
− 𝜐𝜐�𝑠𝑠,𝑖𝑖) 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(
(1 − 𝛼𝛼�𝑔𝑔)𝜐𝜐�𝑔𝑔,𝑖𝑖

𝛼𝛼�𝑠𝑠
−
𝛼𝛼𝑔𝑔′ 𝜐𝜐𝑔𝑔,𝚤𝚤

′��������

𝛼𝛼�𝑠𝑠𝛼𝛼�𝑔𝑔
− 𝜐𝜐�𝑠𝑠,𝑖𝑖) 

= 𝐶𝐶𝑁𝑁𝑁𝑁𝐾𝐾gs,hom(𝜐𝜐�𝑔𝑔,𝑖𝑖 − 𝜐𝜐�𝑠𝑠,𝑖𝑖 −
𝛼𝛼𝑔𝑔′ 𝜐𝜐𝑔𝑔,𝚤𝚤

′��������

𝛼𝛼�𝑠𝑠𝛼𝛼�𝑔𝑔
) 
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Therefore, 

𝜐𝜐𝑑𝑑,𝑖𝑖 =
𝛼𝛼𝑔𝑔′ 𝜐𝜐𝑔𝑔,𝚤𝚤

′��������

𝛼𝛼�𝑠𝑠𝛼𝛼�𝑔𝑔
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