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4.1 Introduction 

 
Mathematical tasks or sequences of tasks are, we may assume, designed to embody 

mathematical knowledge in ways that are accessible to students and to improve 

students’ mathematical thinking. However, if we look beyond the intentions of those 

who design and select tasks and focus on the impact of students’ perceptions of 

tasks on their mathematical learning, some important questions are raised. One of 

the aims of this chapter is to gain insights into students’ perspectives about the 

meanings and purposes of mathematical tasks and to better understand how appro- 

priate task design might help to minimize the gap between teacher intentions and 

student mathematical activity. 

The title of the chapter is deliberately ambiguous; we attempt both to explore 

accounts of how students understand the meaning and purpose of the mathematical 

activity they undertake and to discuss how task design might take account of what we 

know about these perspectives. In Sect. 4.2 we explore research that indicates ways 

in which the perceptions of students may differ from the intentions of teachers and 

task designers and attempt to articulate more clearly the nature of those differences. 

Such research raises both theoretical and methodological challenges concerning how 

an observer can appreciate the student’s point of view. In Sect. 4.3 we explore ways 

 

 

 

 

 

 

 



 

  

in which task design that takes account of students’ responses might reduce the 

discrepancies between the intentions of designers and/or teachers and students’ 

perceptions of their activity and achievements. Finally, in Sect. 4.4 we raise some 

questions for further research. 

 

 

4.2 Articulating the Gap Between Teachers’ Intentions 

and Students’ Perceptions and Responses 

4.2.1 Students’ Responses to Word Problems 

 
One area in which research has focused on learners’ perspectives is the common 

practice of setting mathematical tasks within “everyday” contexts. The use of con- 

textualized word problems has a long history and indeed is so deeply embedded in 

school mathematics that such problems have become stereotypical of the experience 

of learning, and perhaps more significantly being assessed in, mathematics. Contexts 

are often used by teachers or designers in order to make learning easier by giving 

meaning to mathematical ideas and showing their usefulness. However, there is an 

ambiguity in the use of word problems, as they are also traditionally used in assess- 

ment, which suggests they are seen as more challenging than straightforward calcu- 

lations; the lack of attention sometimes paid to the realism of the contexts chosen 

suggests that meaning and usefulness are lower priorities than the mathematical 

content (Ainley, 2012). In this section we try to understand the difficulties that arise 

when students are dealing with word problems; in Sect. 4.2.2 we return to the ques- 

tion of “meaning”. 

Research about learners’ perceptions of the use of contexts in mathematical 

tasks has suggested that these can differ considerably from the intentions of 

those who designed them (Cooper & Dunne, 2000). Although designers may 

choose contexts to offer real-world models to think with or to illustrate the use- 

fulness of mathematical concepts in real life, pedagogic practice may lead stu- 

dents to adopt “tricks” to bypass the contextual elements (e.g., Gerofsky, 1996; 

Verschaffel, Greer, & Torbeyns, 2006) or fail to appreciate the extent to which 

everyday knowledge is intended to be utilized in the mathematical task (Cooper 

& Dunne, 2000). Thus, despite the intentions of task designers, the use of con- 

texts can serve to distract attention from the mathematics ideas. Tasks or task  

sequences which draw on real-world contexts, but which do not reflect the pur- 

poses for which mathematics is used in the real world, may be perceived by 

students as evidence of the gap between school mathematics and relevance to 

their everyday lives. 

Although the peculiar conventions of word problems as a genre have been 

explored (Gerofsky, 1996) and the relative cognitive challenges posed by different 

styles and formats of problems extensively researched (e.g., Csikos, Szitànyi, & 

Kelemen, 2012; Patkin & Gazit, 2011), the pedagogic value of such problems is 



 

  

rarely questioned (Ainley, 2012). Much of the research in this field has demonstrated 

a considerable gap between the intentions of the teacher (or the task designer) and 

the activity of pupils. Many studies (e.g., Hershkovitz & Nesher, 1999; Verschaffel, 

2002) have revealed that the strategies used by pupils (and sometimes encouraged 

by teachers) to answer word problems successfully involve ignoring the context in 

which the problem has been set. They involve identifying key features of the prob- 

lem, particularly the numbers and words such as altogether which signal the opera- 

tion, and moving as quickly as possible to a numerical calculation; the story context 

of the problem is seen as a distraction. Gerofsky (1996) paraphrases this approach 

as follows: 

I am to ignore … any story elements of this problem, use the math we have just learned to 

transform … [it]… into correct arithmetic or algebraic form, solve the problem to find one 

correct answer…. (p. 39) 

This problem-solving strategy, using a “translation” of key words into arithmetic 

operations (Hegarty, Mayer, & Monk, 1995) can be highly effective in terms of 

obtaining correct answers and achieving good test scores, even though it may bypass 

the intentions of the teacher by failing to give consideration to either the mathemati- 

cal structure of the problem or the context. 

It is unsurprising that pupils “perceive school word problems as artificial, routine- 

based tasks which are unrelated to the real world” (Verschaffel et al., 2006, p. 60), 

particularly given the lack of attention given to realistic content by some writers of 

word problems (Gerofsky, 1996). Pupils’ recognition of this lack of realism is dem- 

onstrated vividly in studies which have engaged pupils in creating their own prob- 

lems, where the examples include inappropriate uses of decimals (for specifying 

numbers of sweets) or ownership of unrealistic numbers of items, such as household 

irons (Pimm, 1987). 

Verschaffel (2002) argues that this tendency to disregard everyday knowledge 

arises from pupils’ experience of the culture and practice of mathematics class-  

rooms. A more nuanced view is presented in a wide ranging study by Cooper and 

Dunne (2000) which provides evidence of a difficulty some children, and particu- 

larly those from lower socioeconomic groups, have in understanding the implicit 

rules of the mathematics classroom. They report observations of pupils who 

approached solving word problems by drawing on aspects of their everyday knowl- 

edge in ways which were not intended by the teacher or task designer. For example, 

when given a problem designed to be solved using simultaneous equations, set in 

the context of buying drinks and popcorn at the cinema, some pupils used the actual 

price that they have recently paid for a canned drink rather than using information 

given in the problem to work it out. 

It appears that the use of problems which contextualize mathematics in “real- 

world” situations may serve to extend rather than to reduce the gap between 

teachers’ intentions and students’ responses. We now introduce two concepts which 

offer a model of the classroom context with the potential to shed light on the reasons 

for this gap. 



 

  

4.2.2 The Student’s Situation 

 
In this section, we turn to the question of the “meaning” which can be constructed 

by the students in the situations that they encounter at school. We thus discuss the 

conditions in which it might be useful to use a material or “real” context. When the 

teacher is planning a task or managing this task during a lesson, he/she has some 

specific objectives; he/she knows more or less in advance what the goals are. In 

contrast, students try to adjust to what they perceive as the teacher’s objectives. 

In order to better understand what the point of view of the students is, two con- 

cepts seem useful within the framework of the Theory of Didactical Situations in 

mathematics (Brousseau, 1997; Brousseau, Brousseau, & Warfield, 2014). Didactic 

contract points to the implicit interpretations that have been shared between stu- 

dents and teachers about a specific type of task or knowledge (see Chap. 2). Milieu 

refers to what the student is actually dealing with: concrete objects and elementary 

mathematical objects. The student’s situation, and hence their understanding of the 

task, is based on these two aspects (see Barquero & Bosch, 2015). 

One may think that all this is quite straightforward; the teacher sets the contract 

and the student’s milieu, and thus he/she makes his/her intention clear for the stu- 

dents. But it is not so simple! The didactic contract is mostly implicit and its features 

are never really fully decided by a teacher. Pupils become aware of some recurrent 

aspects relative to mathematical tasks, and these regular features evolve into some 

kind of implicit rules. The situation described by Cooper and Dunne in relation to 

contextualized problems might be seen as an example. The implicit contract adopted 

by the teacher or the task designer is that the real-world context provides a frame 

within which the mathematical problem is given meaning. It is not important that 

this context is genuinely realistic in its details (such as the actual prices of items) 

because it is the mathematics that is really important. Many pupils will derive from 

this the rule described by Gerofsky (1996) (see Sect. 4.2.1), and indeed this may be 

reinforced by aspects of pedagogy. However, others may not recognize the implicit 

didactic contract and focus attention on the context rather than the mathematics. 

Often teachers are not aware of these “rules”, particularly when they are not 
mathematically correct. For instance, pupils may think that all equations always 
have a unique solution, because all the equations they have solved previously did 

have only one solution (e.g., ax + b = 0; a ≠0). Thus, the didactic contract is at the 

core of implicit understandings between pupils and teachers and also plays a part in 

some gaps of understanding between teachers and pupils. 

Other important differences in points of view may be generated by the milieu of 

the task itself. The teacher, when he/she plans a task, has her teaching goal in view, 

whereas the student has only the milieu and the contract in order to understand what 

the task really is about. One important point is that the milieu is never only material, 

even when pupils work with objects. For instance, in infant school a teacher may 

show a picture with three identical toy bears and ask: “how many bears are in the 

picture?” and a pupil may say “mine is different”. This seems not to be relevant for 

the task, because for the teacher, the bears are not interesting in themselves and only 

their quantity is interesting. But for this pupil, bears are the important things and the 



 

  

quantity is not relevant since they are all the same! This kind of gap may originate 

from the fact that “how many” was only related to the contract “when the teacher 

says how many you have to count and say the last number”. How many does not 

trigger any feedback from the situation; only the teacher and some of the more 

advanced pupils know if the answer is correct or not. There is no reason inherent in 

the task for wanting to know how many bears there are. In contrast, if the question 

was “put in a basket the exact quantity of caps needed to give one cap to each bear”, 

counting the bears now has a purpose. The interest of the pupil may be on the bears, 

but even if she is distracted by the context, she might realize that in order to give the 

exact quantity of caps and make the distribution of the caps she has to do something, 

to develop a strategy. One of these strategies is to count the bears and count the caps 

until the last number pronounced is the same in both. In this case, the activity of 

counting is not only a response to the contract but prompted by the existence of 

feedback from the milieu. Thus, the design of the task itself creates the possibility 

for students and teachers to have the same interpretation of the task. 

We can now turn back to the question of “meaning”, using the example of the 

bears. Often teachers use contexts which are emotionally important for young pupils 

because they want to trigger their interest, and sometimes this is wrongly under- 

stood as the way to give “meaning”. As we mentioned in Sect. 4.2.1, this may lead 

to serious misunderstanding. But material objects are necessary in order to build 

tasks which allow students to try their own procedures. Brousseau (1997) describes 

the milieu as the non-intentional part of the situation; objects have no intention, but 

they have properties which may give feedback if the situation is built to permit this 

feedback. That is how we analyze the difference between “how many bears?” and 

“put the exact quantity of caps in order to give one cap to each bear”. In the first situ- 

ation, if the pupil does not know how to count or gives the wrong number, the 

teacher has to tell her that this is not the right number (or asks other pupils to do so). 

To give an explanation, the teacher has to count the bears, that is, to do the action in 

place of the child herself. In the second situation, if the pupil has put the wrong 

number of caps in her basket, she will realize that this is so when she is allowed to 

try the caps on. This feedback is given by the milieu, it cannot be confused with a 

moral judgment, as right or wrong are sometimes considered. The role of the teacher 

is thus completely different: he/she can interact with the student in order to prompt 

her to try another solution or to explain what she thinks might be the problem. The 

student can play the same “game” again and learn from this replay. 

We now use the notions of contract and milieu to shed light on the development 

of our main questions. 

 

 

4.2.3 When Student’s Milieu and Teacher’s Planned 

Milieu Are Not the Same: An Example 

 
Different interpretations of the classroom situation by students have been discussed 

in Sect. 4.2.1 in the context of word problems, where a “real-world” interpretation 

of the problem by some students may lead to different views of what is required in 



 

  

the same task. In this section, we develop an example of the same phenomenon of 

misunderstanding which does not originate from a word problem. This analysis 

(Comiti, Grenier, & Margolinas, 1995) has triggered a lot of French research about 

similar phenomena. 

The question “is −1 the square of a number?” was part of a set of ten preliminary 

questions during the first lesson of a module on square roots for 15-year-old stu- 

dents. The (very experienced and competent) teacher expected no major difficulty 

for the students in answering this question. 

The path of reasoning by the students, which was anticipated by the teacher, was: 

• Try some possible candidates: +1, −1 calculate the square and obtain +1. 

• Connect this fact to the known rule: minus by minus is plus. 

• Answer: it is not possible, there is no number of which the square is −1. 

Thus, the teacher was quite surprised when Michael told her that he had a 

solution, which was “the negative square”. Because she didn’t understand fully 

what Michael had in mind, she asked him to go to the blackboard. Michael wrote 

thus: 
 

- (1)
2   

=-1 
 

She was even more surprised when a lot of students declared that they agreed with 

Michael. In her expected view of the whole lesson, unexpected phenomena had 

occurred and the planned progression did not go smoothly. 

Our analysis, which was based on the structure of the milieu (Brousseau, 1986, 

1990; Margolinas & Steinbring, 1994), offers a way to understand Michael’s situa- 

tion. Like every student, Michael was introduced to whole numbers in close rela- 

tionship to their written form; “2” and “two” were in this sense the same thing, 

which means that “2” was not distinguished as a particular notation for the concept 

“two”. This is certainly normal for small integers, when you want children to flu- 

ently link * *, “two stars,” and 2. When decimal and rational numbers were intro- 

duced, Michael might have been told that 2, 2.0, and 4/2 represent the same number, 

but he might have understood that 2 was the result (the “true” result) of 2.0 and 4/2. 

What we want to stress is that Michael might not have had the occasion to differenti- 

ate the number and its written signs. 

If we keep that in mind, we might understand Michael’s answer. We can infer his 

possible reasoning as follows: 

• Write the possible well-formed expressions using the signs: “−”, “1”, “2”, and the 

brackets “()”; you can obtain (−1)2, −(1)2, and −12 (but not, e.g., (−)12 which is 

not well formed) 

• Calculate the result and see if some expressions are equal to −1. You find two 

expressions: −(1)2 and −12 which are the same if you consider that the brackets 

in the case of (1) are not useful 

• Tell the teacher your answer 



 

  

The objects of Michael’s reasoning are not numbers but signs. The milieu 

Michael interacts with is totally different from the milieu which was anticipated by 

the teacher. Furthermore, this milieu is more familiar to other students who agree 

with him. 

During the following part of the lesson, the students resisted the teacher’s tenta- 

tive attempts to reestablish the lesson on the basis she needed. For instance, one of 

the following questions was “is it possible for two different numbers to have the 

same square?”; 4 and −4 are proposed but some students considered these numbers 

as opposites but not different. If you refer to notation and not numbers, this is not so 

strange, for instance, “lion” and “Lion” are the same words, even if their writing is 

slightly different, which will be taken into account in certain circumstances (e.g., if 

the word “lion” is at the beginning of a sentence). 

Furthermore, at the end of the lesson, the teacher asked the students to write the 

following sentences: 

• a2 is the square of a. 

• a2 is the square of –a. 

The students contradicted the teacher and asked for some brackets to be added in 

the last sentence: 

• a2 is the square of (−a). 

We interpret the students’ response as follows: if you consider “the square” as 

“the sign 2” and apply this rule in writing, the teacher’s second statement should be 

−a2 is the square of −a, and since they know that a2 is not equal to –a2, the students 

want the teacher to add the brackets, giving (−a)2 as the square, which they believe 

is equal to a2. 

This case shows that it is difficult to define “a task”. In fact, if the teacher had 

phrased her question differently, for instance, if the question had been “is it possible 

to multiply a number by itself and obtain the result −1?” the absence of any refer- 

ence to the written signs for a square number might not have triggered the same 

misunderstanding. For the teacher, both questions are the same mathematical ques- 

tion because she considers numbers as theoretical objects, but for Michael and other 

students, these questions are not the same. 

This case was the first description of a phenomenon which has been named as a 

situation’s bifurcation (Margolinas, 2005) and investigated by different French and 

francophone researchers (e.g., Bloch, 1999; Clivaz, 2012). In this case study, we 

show that prior knowledge (and not only a lack of prior knowledge), when it is not 

what the teacher is expecting, can lead to a deep epistemological misunderstanding 

between student and teacher. But another phenomenon is interesting here, which is 

related to teacher’s knowledge. In fact the task, which was considered very straight- 

forward for the teacher, is ambiguous if you take into account students’ knowledge 

about numbers. In this sense the task is ambiguous, but this could have been a won- 

derful occasion for the teacher to explain to the students what a square is (multipli- 

cation of a number by itself) and to open a mathematical discussion about writing 

and numbers. In a sense, this task might be considered as an example of a missed 



 

  

learning opportunity (Bikner-Ahsbahs & Janßen, 2013, pp. 156–157) and a missed 

emergent task. The conditions described for a successful emergent task are that: 

The teacher must: 

• Have mathematical knowledge that extends the content of the lesson. 

• Show interest in the students’ learning processes. 

• Be open for unusual ways on the part of the students. She must be willing to 

abstain from the planned course (Bikner-Ahsbahs & Janßen, 2013, p. 160). 

In our observation of the “square of minus one” case, the teacher really showed 

interest in the students’ learning processes and was open to deviate from the planned 

course (in fact the first part of the lesson took much longer than she had expected, 

and she accepted that), but she did not know that students of this level might confuse 

number and written signs. Thus, what she lacked was not exactly “mathematical 

knowledge” but “mathematical knowledge for teaching” (Ball, Hill, & Bass, 2005; 

Ball, Thames, & Phelps, 2008). 

We link this with our previous discussions, because word problems might appear 

as a particular case of a more general phenomenon, which takes into account stu- 

dents’ previous knowledge about the situation. When everyday knowledge is 

engaged, as it may be in the case of word problems, the risk of different interpreta- 

tions of the problem is certainly higher, which might explain why this kind of phe- 

nomenon has been documented more frequently in “real-life”-based problems. Thus, 

the student’s perspective changes the very definition of task. 

 

 

4.2.4 Influence of the Didactical Contract 

on the Definition of Task 

 
What we call a task has different possible definitions (see Chap. 2). Speaking solely 

about a task is a reduction of what the actual involvement of student and teacher 

implies, which is dealing with a situation which comprises a milieu and a contract. 

The situation which has been set up according to a particular design is constantly 

changing during class interaction: “the actions of teacher and student are mutually 

informing during the performance of a task” (Clarke & Mesiti, 2013, p. 173). 

We have seen earlier that the way pupils interpret the milieu of the task can 

engage some pupils in a totally unexpected situation. If we now consider the 

contract, an exercise which seems to be a very straightforward task might instead 

develop into a completely open task depending on the contract. Clarke and Mesiti 

(ibid., p. 178) offer an example from their observation in a Japanese school, in 

which “the seemingly simple  pair  of  simultaneous  equations  5x + 2y = 9  and 

5x + 3y = 1 engaged the class for a 50-min lesson” (ibid., p. 178). Discussing the 

lesson, the teacher emphasized prompting students’ reflections on “what solving 

equations is all about” (ibid., p. 178) and not only on the actual result. Clarke and 

Mesiti argue for a focus on “well-taught” mathematics rather than “good tasks”, 

taking into account the way students may involve themselves in mathematical tasks 



 

  

and the way mathematical tasks are employed in order to maximize students’ voice 

and agency (ibid, p. 181). 

Moreover, tasks cannot be dissociated from the ways of working. As Coles and 

Brown (2013) claim: “In any task, as well as learning some mathematics, students 

are learning about what learning mathematics is like in this classroom; for us, the 

choice to use any task cannot be dissociated from a choice about ways of working” 

(p. 184). 

The didactical contract being mostly implicit, it is not mainly shaped by what the 

teacher says explicitly but by what the teacher regularly encourages in the class- 

room. The implicit nature of the didactical contract implies that explanations from 

the teacher are not sufficient to generate a change of contract. 

For instance, Johnson (2013) designed a sequence of four tasks for 7th grade 

pre-algebra students by adapting the well-known bottle problem developed by Swan 

(Swan, 1985). “Given the context of a bottle filling with liquid being dispensed into 

the bottle at a constant rate and a picture of a bottle, the bottle problem requires 

students to sketch a graph of the changing height of the liquid as a function of the 

changing volume” (Johnson, 2013, p. 212). To adapt this basic task, Johnson first 

reversed the activity by providing a graph and asking students to sketch the appro- 

priate bottle and later by providing a computer environment which linked dynamic 

sketches of filling shapes to graphs as in Fig. 4.1. 

The dynamic sketches were intended to foster students’ consideration of relation- 

ships between covarying quantities. “The task sequence is designed to support stu- 

dents’ progression in using nonnumerical quantitative reasoning to coordinate 

covarying quantities” (ibid., p. 213). 

However, the importance of calculation during a mathematics lesson, acquired 

during previous schooling, might have been too strong for some students: 

The responses of two students, Navarro and Myra (who participated in different interview 

pairs), provide insight into the kind of difficulty students might have. When Navarro and 

Myra were presented with the filling triangle task, both of them attempted to determine 

 

 

Fig. 4.1 Different sketches used by Johnson (Johnson, 2013, p. 213). (a) Filling rectangle sketch. 

(b) Filling triangle sketch 



 

  

amounts of area. Even after prompting to not worry about making calculations, Navarro’s 

persistence in trying to calculate amounts of area made it seem as if he depended on calcu- 

lating amounts of areas to make such predictions. Unlike Navarro, after my prompt to not 

worry about how to calculate the area, Myra smiled and exclaimed “Oh, I get you now!” 

When I asked her to explain, she said “the area is getting bigger, but how much it increases 

is getting smaller.” By no longer attempting to determine amounts of area, Myra was able 

to describe variation in how the area was increasing. (ibid., pp. 217–218) 

The prompting to not worry about calculation proved sufficient to trigger another 

kind of reasoning from Myra, but was not sufficient to trigger the same response 

from Navarro. 

More generally, given that the epistemological choices which have been made 

throughout the mathematics curriculum are generally built on deductive theory, it 

may be difficult, not only for students but also for teachers, to interpret a way of 

dealing with mathematics based on the modeling aspect of mathematics (Job & 

Schneider, 2013). This is particularly problematic when it is not possible for stu- 

dents to understand the deductive aspects of some mathematical knowledge at the 

beginning of their studies, which is the case in particular for calculus in high 

school. 

These reflections lead to the consideration of extreme complexity in what a task 

is when we consider how the student might understand the task within a didactical 

contract. It also challenges researchers’ analysis when their observations are too 

rapid; if they are not aware of the prevalent contract in the class, they might not 

understand fully the task-student-teacher interactions. 

 

 

4.2.5 Student’s Perception of the Meaning and Purpose 

of the Task 

 
The way in which a student perceives the meaning and purpose of a task will have 

an impact on the aspects of the task he/she focuses on and the activity he/she under- 

takes in response to it. As has already been discussed in previous sections, the stu- 

dent’s perception of the purpose of the task may be rather different from that of the 

teacher or the task designer. In the example in Sect. 4.2.2, although the teacher had 

designed a task about counting, the child saw the purpose of the task as talking 

about bears. We also see differences in the ways in which the meaning of a task may 

be interpreted by students and by teachers. Cooper and Dunne (2000) report stu- 

dents misinterpreting the role of everyday context within tasks, and thus failing to 

see the purpose as being about mathematical content. Further, given the same task, 

in the same classroom, within the same didactical contract, students may have dif- 

ferent interpretations of the meaning of the task depending on their previous knowl- 

edge and experience, as illustrated in the case study in Sect. 4.2.3, and what they 

think is important for them when attending a mathematics course. 

Accessing students’ perceptions poses considerable methodological challenges. 

Gardner (2013, p. 194) uses a phenomenological approach to categorizing students’ 



 

  

Table 4.1 Outcome space for conceptions of statistics (Gardner, 2013, pp. 194–195) 

Conception 1: Statistics as facts or algorithms 

Definition Statistics is a class in which one states terms, evaluates expressions and 

formulas, solves equations, and makes and describes graphs 

Approach Write and study examples or facts the teacher presents, memorize 

formulas and procedures, manipulate a calculator, solve problems the way 

they are done in class 

Capabilities Do well on a statistics test, remember formulas and facts after a long 

period of time 

Conception 2: Concepts about and procedures for handling data 

Definition Statistics is the study of contextualized techniques for collecting, 

representing, and analyzing data 

Approach Write or state a contextual interpretation of graphs and numerical 

summaries, execute procedures with and without technology, relate 

personal experience and knowledge to statistical concepts, determine the 

appropriate statistical method for a given scenario 

Capabilities Explain or teach statistics to another person, read and understand statistics 

in media, use technology, know when it is appropriate to use a particular 

procedure or method 

Conception 3: Summarize, estimate, infer, and predict 

Definition Statistics is the study of processes used to estimate population attributes 

and to generalize or predict trends 

Approach Use multiple approaches; utilize technology to differentiate or discover 

trends; recognize when data need to be collected; explain assumptions, 

procedures, and results to others; assess the reliability of results; provide 

support for conclusions drawn or estimates made 

Capabilities Write or present a detailed analysis of an inference, estimate, or 

prediction that includes an assessment of assumptions, interpret statistical 

output from software, appreciate the practicality of statistics 

Conception 4: Adapting, restructuring, changing viewpoint 

Definition Statistics is a way to acquire knowledge about a population and illuminate 

trends to improve the quality of life, inform decisions, and change one’s 

outlook of the world. It also comes with the responsibility to use and 

monitor ethical practices 

Approach Adapt to the variable nature of statistics, question the ethical treatment of 

subjects in studies involving humans or animals, employ the highest 

ethical standards and design principles, disseminate results of studies to 

illuminate attributes and inform decisions 

Capabilities Devise a plan of action to change policies or perceptions based on reliable 

study results, redefine one’s understanding of statistics as new processes 

are learned, formulate theories, restructure one’s view of the world 

 

 
written responses, which she argues communicate their perceptions of the task’s 

purpose. This approach is based on the determination of different possible concep- 

tions about the chosen subject, in this case statistics (Table 4.1): 

Data were collected from one section of a graduate course in data analysis and probability 

for preservice and inservice teachers. The task in Fig. 4.2 is an item from the course mid- 

semester examination. The item assessed the student’s performance level on analyzing and 

reporting summarized data. (Gardner, 2013, p. 196) 



 

  

 

 
 

Fig. 4.2 Assessment task on descriptive statistics (Gardner, 2013, p. 196. Copyright Gardner 2007) 

 

 

Gardner interprets the responses of three students as communicating their 

interpretation of the purpose of the task. 

For one student, Anna, the purpose of the task might be described as “to deter- 

mine whether she can recall facts about statistical summaries” (Gardner, 2013, 

p. 195). For another student, Byron, it might be described as “a means for him to 

communicate his understanding of concepts about data” (Gardner, 2013, p. 196). 

For a third one, Charles, the purpose was “a means for him to demonstrate his abil- 

ity to summarize data and support the conclusion drawn” (Gardner, 2013, p. 197). 

Thus, in response to the same task, students not only answer differently but may be 

engaging in quite different kinds of activity. 

 

 

4.3 Taking Account of Student Perspectives: How Task 

Design Might Reduce the Gap 

 
In this section, we turn to the second interpretation of our chapter title and consider 

approaches to task design which might take account of the issues discussed in the 

previous section, concerning the gap which may arise between teachers’ (and task 

designers’) intentions and the responses of students. A theme which threads through 

this section is the challenge in moving beyond the idea that successful completion 

of a task is the end point and a valid proxy for mathematical learning. A number of the 



 

  

studies we refer to draw on the work of Brousseau (1997) who described a pattern 

of interactions in which pupils draw on indications from the teacher’s behavior, and 

other aspects of the situation, to find out what is required to complete a given task, and 

the teacher accepts this as evidence of learning. For example, Strømskag Måsøval 

(2013, 2015) describes a teacher posing easier and easier questions to students who 

were struggling to understand the requirements of a task, leading to completely dif- 

ferent knowledge. This has been called the Topaze Effect by Brousseau (Brousseau, 

1982) and funneling by Bauersfeld (1995) and reported widely (e.g., Mason, 2002). 

In the process of funneling questions toward simple answers, it is not always clear 

whether it is the teacher’s desire for an answer or the students’ lack of response that 

leads the process. Some authors (e.g., Wood, 1998) contrast this with focusing 

which is a deliberate interactive act by the teacher. 

 

 

4.3.1 Students’ Expectations 

 
As we discussed in Sect. 4.2, a gap may occur between the intentions of the teacher 

and the perceptions of the students when the milieu can be interpreted in several 

ways and/or the didactic contract is disturbed, that is, when students have expecta- 

tions which are not aligned to the teacher’s expectations or intentions. In Sect. 4.2.3, 

we discussed an example in which students’ previous learning led them to over- 

generalize in a way that the teacher had not anticipated. Deciding when it is, or is not, 

appropriate to generalize a mathematical idea can be challenging for students, and 

this may be a source of disconnection between teachers’ and students’ 

expectations. 

Rote learning and algorithmic reasoning are very common at the core of the 

didactic contract, leading students to expect that this is the response that will be 

required. This poses a challenge for teachers who want to focus on developing cre- 

ative reasoning. 

Lithner et al. (2013) report a study concerned with introducing creative mathe- 

matical reasoning (see also Jonsson, Norqvist, Liljekvist, & Lithner, 2014). Despite 

carefully designed tasks, the students’ expectation was that an algorithm would be 

provided. They also describe a typical response to the frustrations expressed by 

students in this situation in which “the teacher lets the teaching act collapse” (ibid., 

p. 225), taking back the responsibility for the students’ work by simplifying aspects 

of the task. 

A similar phenomenon is reported by Calleja (2013), in an action research study 

which also aimed to move students toward more open problem solving. Calleja 

describes an interview with a student who frequently asked for help. The student com- 

mented that Calleja (as her teacher) responded in ways that made it easier for her to 

complete the tasks. Calleja reflects that he “evidently avoided the student’s frustration 

and speeded up the task completion” (ibid., p. 169), but at the expense of the deeper 

understanding, the tasks had been designed to support. Similar responses are reported 

in other studies which address student perspectives in relation to task design. 



 

  

In selecting or designing tasks, it can be challenging for teachers to take account 

of students’ expectations which differ from their own, and have the potential to 

present real obstacles to learning. Strømskag Måsøval (2013, p. 235) describes a 

rather confused conversation between a teacher and a group of students about a 

particular diagram in a numerical investigation designed by the teacher. 
 

 

 
 

 
 

 
 

 
 

  (a) If this shape were part of a sequence of shapes, 

what would the next one look like? 
 

 
 

 
 

 
 

 
 

 (b) What kinds of figurate numbers do you find in the 

bright and the dark areas and in the shape as a whole?  

 
 

 
 

 
 

 
 

 
(c) Express what the shape tells you about these 

numbers in terms of a mathematical statement. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

Paul [is] insecure about what the teacher asks for; he wonders whether it is only the 

first element or it is the sequence of elements they are supposed to consider: 

598. Paul: If we are supposed to see the connection, it is only this very shape we shall 

look at now? [Draws a curve with his pencil around the element given in the task.] 

It is not the next shapes we have made [points at the succeeding elements drawn 

in his notebook when he says “next”]? 

599. Teacher: You may well look at it as it stands there [Pause 1–3 s] uh [Pause 1–3 s] 

[indecipherable] 

600. Paul: Not further, ok. 

The teacher’s response in turn 599 I interpret as confirming that it is satisfac- 

tory that the students look at the element given in the task (a 5 × 5 square) as a 

basis for finding answers to Tasks 4b and 4c. It is plausible that the teacher takes 

this stance as a consequence of seeing the 5 × 5 square as a generic example. […] 

These general properties are however not addressed in the classroom situa- 

tion. The teacher does not express to the students that he uses the 5 × 5 square in 

the sense of a generic example, nor does he use the term “generic”. What I inter- 

pret as the teacher’s implicit utilization of a generic example contributes to 

vagueness in the discourse: The stance taken by the teacher about the sufficiency 

of looking at one element of the shape pattern (genericity of the 5 × 5 square) is 

consistent with the formulation [of the following tasks], a correspondence which 

may be expected since the task is designed by the same teacher. Application of 

singular number in the noun “the shape” indicates that the shape presented in the 

task is seen as generic: 

What kinds of figurate numbers do you find in the bright and the dark areas, and in the 

shape as a whole? [Task 4b, emphasis added] Express what the shape tells you about 

these numbers in terms of a mathematical statement. [Task 4c, emphasis added] 

(Strømskag Måsøval (2013, p. 235) 

The teacher’s intention, which was interpreted by Strømskag Måsøval as to offer 

a single diagram as a generic example, was not apparent to the students. This leads 



 

  

to the students being unaware of the teacher’s aim for the task. Mason and Pimm 

(1984) describe this process as an inherent implicit feature of a didactical situation; 

if the teacher offers an example, the learner is supposed to appreciate the general, 

and if the teacher offers a generality, the learner is supposed to be able to apply it to 

examples. Strømskag Måsøval exemplifies this phenomenon, suggesting that the 

teacher’s focus on the mathematical content of the task, and his familiarity with the 

subject matter, led him to pay insufficient attention to the wording of the task, which 

also required students to “express what the shape tells you about these numbers in 

terms of a mathematical statement” (Strømskag Måsøval, 2013, p. 233), without any 

clear explanation about what “mathematical statement” may mean. Acknowledging 

the difficulties which may be presented when students’ expectations lead them to 

look for algorithmic solutions rather than engaging in more open problem solving, 

a number of studies have developed task design approaches in deliberate contrast to 

traditional formats. Savard, Polotskaia, Frieman, and Gervais (2013) set out design 

principles for tasks which aim to promote holistic reasoning about mathematical 

structures. In particular, they state that “The task should not contain any explicit and 

immediate questions that could be answered by finding one particular number […] 

However the task should include an intriguing element” (ibid., p. 272). 

The example they present, designed for young children, shares many of the features 

of a traditional word problem, consisting of simple statements about the numbers of 

marbles three boys say that they own. However, the statements offered are incompat- 

ible, and the challenge of the task is to provide an argument for which statement is 

incorrect: 

This is an example of a text proposed to students. 

Peter, Gabriel and Daniel are playing marbles. Peter says, “I have 5 marbles.” Gabriel 

says, “I have 8 marbles.” Daniel says, “Peter has 4 marbles less than Gabriel.” 

We introduce this text as a strange situation or as a situation where one of the persons 

made a mistake. Students are invited to explain why the text is unrealistic and how it can be 

corrected considering different quantities involved. (ibid., p. 273) 

This situation is thus not one in which the students have to act in order to get the 

right feedback from the milieu, but a validation situation (Brousseau, 1997; 

Brousseau et al., 2014) where the students exchange arguments which can be tested 

through the milieu (in this case through the manipulation of marbles). Reviewing 

the outcomes of the study, Savard et al. (2013) comment on the progress made by 

the children in solving problems which required holistic analysis and also on the 

challenges for teachers in resisting the pressure to revert to more traditional formats 

with a single “answer”. 

One response to the problem of mismatch between students’ expectations and the 

teacher’s intentions may be for the teacher to state more explicitly the kinds of 

behaviors that are expected in response to the task. But there is a tension here: if the 

teacher’s aim is for students to develop creative, flexible, and independent mathemat- 

ical thinking, specifying particular desirable behaviors may be counterproductive. 

Coles and Brown (2013) capture this tension by saying that “the more the desired 

behaviors in students are specified, the less these behaviours are likely to emanate 

from the students’ own awareness” (p. 184). Drawing on theoretical perspectives 



 

  

 

 
 

Fig. 4.3 Two contrasting examples (Coles & Brown, 2013, p. 187) 

 
 

from enactivism and the development of mathematical thinking, Coles and Brown 

describe and exemplify design principles which underpin an approach to helping 

students develop patterns of thinking over an extended period: 

These shapes [See Fig. 4.3] are ‘two contrasting examples’ […]. With this image on the 

board, the teacher asks students, ‘what is the same and what is different’ […]. (ibid., p.187) 

Coles and Brown’s description encompasses both the reflective task design, 

which teachers and task designers undertake in planning for teaching, and emergent 

design which takes place “in the moment” in the classroom, in response to the 

activity of students. Research addressing student perspectives in task design focuses 

on both of these forms of design, which we discuss in the next two sections. 

 

 

4.3.2 Reflective Task Design 

 
In this section, we discuss research studies focusing on ways to take account of 

student perspectives in task design which takes place in a reflective space away from 

the classroom (see also Chap. 9). In these studies, the design may be led by research- 

ers, task designers, teacher educators, or teachers and often by a team combining 

individuals with different or dual roles (e.g., Coles & Brown, 2013; Lin & Tsai, 

2013; Radonich & Yoon, 2013). Many of these studies draw explicitly or implicitly 

on the methodology of design-based research (Design-Based Research Collaborative, 

2003), in which each iteration of task design is based on conjectures drawn from the 

analysis of student responses (Calleja, 2013; Lithner et al., 2013). 

The development of hypothetical learning trajectories (Simon, 1995) or thought 

experiments in which the designer anticipates student learning is an important tool 

in such design (see Chap. 2 of this volume). Calleja (2013) and Palhares, Vieira, and 

Gimenez (2013) report on studies in which a priori analysis of the mathematical 

knowledge is involved, and students’ likely responses are used to develop sequences 

of tasks. Palhares et al., however, conclude that “[c]ognitive analysis seems not to 



 

  

be enough to decide about ordering [of tasks]” (p. 247), in this case of tasks designed 

to promote algebraic thinking in young students. They found that students who 

started with a set of sequential tasks seemed to be more capable of establishing 

distant generalization than a group who started with structural tasks, and to retain 

their performance more. Therefore, they highlight the need for further cycles of design 

development in the light of the children’s responses in order to improve  the 

design of task sequences rather than single tasks. 

A common theme in studies about reflective task design is the use of aspects of 

design to direct students’ attention to certain mathematical features, particularly in 

situations in which previous research has indicated students’ tendencies to respond 

in other, less productive, ways. A simple change in a mathematical question can 

make a big difference in the cognitive demand for the students. For instance, 

Sullivan and Lilburn (2004) argue that you can transform a straightforward and 

closed question, like “731–256 = ?”, into what they consider a good question: 

“Arrange the digits so that the difference is between 100 and 200” (ibid., p. 4). Thus, 

the transformed task is now less about the procedure of subtraction and more about 

estimation. There are (at least) 6 possible answers without moving digits from one 

number to the other in the initial question. The revised question emphasizes the 

point that a small change in the question can prompt quite different thinking from 

the students. 

Another example is given by Johnson (2013) who describes the principles she 

used in the design of a sequence of covariation tasks. In previous studies (Johnson, 

2012a, 2012b), she had found that students tended to focus on change in variables 

as though they were independent, and so she included the use of an animation with 

prompt questions such as “what changes and what stays the same?” and the require- 

ment for students to predict characteristics of graphs and other representations in 

order to focus their attention on relationships rather than the results of calculations 

(Johnson, 2013, p. 214). In Chap. 3 of this volume, further ways in which teachers 

can adapt cognitive demand are described, particularly focusing on moving learners 

toward appreciating generalities rather than following procedures (Knott, Olson, 

Adams, & Ely, 2013). 

The use of a nonstandard version of a familiar task is also at the center of Lin and 

Tsai’s (2013) study which aimed to develop conjecturing by primary school students: 

The task designed by the teacher was to ask students to make a conjecture and verify 

whether it is true. The statement is that “In any two figures, if the area of one figure is bigger 

than the other, then the perimeter of the figure is greater than the other, too. Do you agree? 

Why? Show your work on the grid paper.” The task for conjecturing is initiated from a false 

statement. (ibid., p. 252) 

Here, the use of a false conjecture about the relationship between the area and 

perimeter of a pair of figures was used to focus students’ attention on the ways in 

which conjectures can be explored and tested rather than on the calculation of spe- 

cific values. 

Coles and Brown (2013) highlight the importance of focusing students’ attention 

on making distinctions and include the use of two contrasting examples, with prompt 



 

  

questions similar to those used by Johnson, and the introduction of appropriate 

mathematical language and notation to record the distinctions identified by stu- 

dents, within their list of task design principles. The starting point for one of the 

examples they offer, also concerning area and perimeter, is shown earlier in Fig. 4.3. 

Pupils are asked to consider what is the same and what is different about the rect- 

angles. When attention is focused on the area of the rectangles, pupils notice that in 

one rectangle the values of the area and the perimeter are the same. This is desig- 

nated as an equable shape, providing pupils with a new distinction with which to 

work in their exploration. The rationale for this approach is not based specifically 

on evidence of difficulties arising in the study of area and perimeter but rather on the 

enactivist approach which equates learning with the ability to act differently based 

on changing perceptions of distinctions in a particular sphere of action (Maturana & 

Varela, 1987). Coles and Brown offer the metaphor of a wine taster to illustrate this 

view. As the wine taster’s palate develops to make finer distinctions, he/she is able 

to act differently on the basis of this perception. 

Potential negative consequences of the unintentional direction of students’ atten- 

tion are identified by Calleja (2013) in his discussion of one iteration of a task 

sequence, designed on the basis of hypothetical learning trajectories. He notes that 

the activity of some students appears to have been influenced by the title assigned to 

a task (Investigate Pythagoras’ Theorem), which may have focused their attention 

on a limited range of mathematical content. This leads him to speculate that a more 

open title (Investigate Right-Angled Triangles) may encourage a more open 

approach, and, incidentally, avoid discouraging those who are as yet unfamiliar with 

Pythagoras. 

A somewhat different perspective on the direction of students’ attention through 

task design is at the heart of a design framework developed by Ainley and Pratt 

(Ainley, 2008; Ainley, Pratt, & Hansen, 2006) which also relies on detailed analysis 

of mathematical content to develop learning trajectories. This analysis focuses on 

the utility of mathematical ideas, that is, how and why the ideas are useful. They 

argue that understanding utility is a key component of mathematical thinking which 

is often overlooked. For example, teaching about measures of average may include 

both the procedures needed to calculate the mean and median and conceptual explo- 

ration of the nature of the measures, but fail to address how and why such measures 

can be used in solving problems. In order to create opportunities to experience the 

utility of mathematical ideas, and to focus students’ attention on the power of using 

them, Ainley and Pratt design tasks which have a clear and immediate purpose for 

students within the context of the lesson. This might be designing a product, such as 

an efficient paper spinner or a computer-based model to generate data, or solving an 

engaging problem, in which the mathematical idea (i.e., the teacher’s intended con- 

tent for the task) is used in a meaningful way. This design framework offers a way 

in which the teacher’s intentions (including a focus on the utility of the mathemati- 

cal content) can be aligned with the students’ activity, which is driven by the pur- 

poseful nature of the task, even though the two elements of purpose and utility 

remain quite distinct. 



 

  

4.3.3 Emergent Task Design 

 
An area of research which is complementary to the studies of reflective task design 

discussed in the previous section concerns the ways in which teachers develop tasks 

during the flow of classroom activity, in response to the actions of students. Bikner- 

Ahsbahs and Janßen (2013) use the term emergent tasks to refer specifically to situ- 

ations in which “the teacher conceives the mathematical potential of a learning 

opportunity and translates it into a task” (p. 154) in such a way that students’ inter- 

est is maintained. To understand how to build on students’ questions in order to 

create emergent tasks in the moment is challenging for teachers, and in this section 

we discuss studies which both explore emergent task design and consider how 

teachers’ skills can be developed. 

Bikner-Ahsbahs and Janßen (2013) build on previous research into the creation 

of interest-dense situations in mathematics lessons, that is, situations in which 

learners are deeply engaged with mathematical questions, developing successively 

deeper meanings and coming to see the importance of a mathematical object 

(Bikner-Ahsbahs, 2003). They explore how teachers exploit such situations by 

aligning emergent tasks to what they perceived as the students’ epistemic needs. 

The challenge for the teacher is, therefore, to understand a mathematical problem 

students have encountered within the interest-dense situation and to translate it into 

a task for the class: 

Previous to the scene presented here the students had worked on the question how to divide 

a round licorice stick evenly among three persons. […] 

149. Rahel: yes Mister Kramer once more a stupid question, how does one GET the central 

point how did they GET that because that is so small. 

150. S: that is just 

151. T: that’s another problem right. that’s a practical problem (..) oh no, how does one even 

find the central point in such a small circle right’ (.) exactly. those are questions’ 

152. Anji: a very small compass right’ 

153. T: yes one can find out with the compass, only when one is just drawing the circle’ one 

has the central point. but when one has the circle already right’ 

154. Rahel: yes 

155. L: that’s exactly what geometry works with. 

156. Rahel: I know that 

157. L: there are possibilities to find out a-n-d you can puzzle at home maybe someone 

finds a possibility’ 

[…] the teacher probably notices already that the missing central point poses an addi- 

tional problem and wants to postpone it to an exercise. But the students insist on an immedi- 

ate clarification by asking “but how” (can we exercise that). Rahel reacts by naming the 

difficulty in dividing the circle without knowing the central point (149). She grasps the 

epistemic gap and thus sees the mathematical structure. Now the teacher summarizes the 

two problems: How does one even find the central point in such a small circle? Commenting 

“those are questions” he documents wonder about the deep involvement of the students that 

he tries to take up. (ibid., p.158) 

From observations and analysis of occasions on which teachers are, or are not, 

able to identify suitable situations and develop emergent tasks, Bikner-Ahsbahs 



 

  

and Janßen identify the three requirements for the teacher to meet this challenge 

successfully (previous noted in Sect. 4.2.3): sufficient mathematical knowledge   

to extend the content of the lesson, a genuine interest in students’ learning, and a 

willingness to deviate from the planned lesson to follow unexpected directions in 

students’ activity. 

Emergent task design can build flexibly and effectively on student responses to 

support their engagement with mathematical thinking, but makes considerable 

demands on the teacher’s ability to act “in the moment”. It is, of course, not clearly 

separated from the more reflective design discussed in the previous section, but 

involves adaptation and adjustment of an initial task during the progress of a lesson. 

This performance of a task (Clarke & Mesiti, 2013) is shaped by interactions 

between the teacher and students but guided by the teacher’s intentions. Presenting 

evidence from three lessons which form part of a wider international study, Clarke 

and Mesiti draw attention to the extended time and attention given to relatively 

straightforward mathematical tasks by teachers in Japan and China who construct 

their lessons around opportunities for students to discuss and report their reasoning. 

Clarke and Mesiti do not address the question of how teachers develop these skills, 

but this issue is made explicit by Coles and Brown (2013) in their discussion of the 

development of generic design principles within a school. These principles are used 

in reflective task design undertaken collaboratively among colleagues and, thus, 

come to inform the more spontaneous actions in the classroom: “Creating opportu- 

nities for students to make distinctions within mathematics can also become a habit 

for teachers and a normal way of both planning activity and informing decisions in 

the classroom” (Coles & Brown, 2013, pp. 191–192). Coles and Brown illustrate 

this through analysis of an example of emergent design in a lesson about area and 

perimeter (see Sect. 4.3.1). 

In addition to the challenge for teachers, there is a potential threat to the coher- 

ence of the curriculum itself within emergent tasks. This difficulty might lead to 

very different didactical contracts in the class during the completion of these tasks. 

One contract includes covering curriculum; the knowledge to be learned is therefore 

determined in advance or at least has to be compatible with the curriculum and the 

coherent epistemological foundation of the knowledge. However, the mathematical 

content of emergent tasks, which follow the students’ responses and offer an oppor- 

tunity for students to engage in rich mathematical activity, may be less predictable. 

 

 

4.3.4 Open Tasks: Voice and Agency 

 
Underpinning much of the research we have discussed in this chapter is the recogni- 

tion not just of the importance of accounting for student perspectives in task design, 

in order to reduce the gap between the intentions of teachers and the activity of stu- 

dents, but also of the significant role of student agency and voice in the development 



 

  

of mathematical thinking. In this respect, our approach contrasts strongly with some 

other perspectives on learning in which the student is positioned as a rather passive 

recipient of information that is then processed into mathematical meaning. For 

example, cognitive load theory (e.g., Sweller, 1994) characterizes tasks according to 

the number of variables that learners have to manipulate in order to be successful 

and analyzes those that are essential for completion and those that are extraneous. 

The implication for design could be that only essential variables should be given, to 

simplify the load. This idea has to undergo considerable expansion to include the 

development of mathematical thinking, and students’ capabilities in mathematizing 

situations, so that load has to include variables that, while not being essential in a 

mathematical sense, are germane to the situation. 

Within the Theory of Didactical Situations, which positions the student as 

actively mathematizing, agency has been modeled through the concept of adidacti- 

cal situations. This concept derives from the idea that in ordinary life, in non-didac- 

tical situations (e.g., trying to float in the water in a swimming pool), we acquire 

some implicit knowledge in the interaction with the milieu. This kind of knowledge 

is directly useful (you float or not) and meaningful in the situation. The idea of 

Brousseau was to study a sort of image of these non-didactical situations, which he 

named adidactical, designed to allow the acquisition of predetermined knowledge. 

Thanks to this design, the student is offered the possibility of trying her own proce- 

dure in order to succeed in dealing with the adidactical situation and to encounter 

the determined knowledge in a situation that becomes meaningful for the student. 

Therefore, Brousseau’s idea is clearly inserted within a contract where the knowl- 

edge to be learned is entirely determined in advance and where the a priori analysis, 

which includes the careful study of the hypothetical learning trajectory, is the basis 

of the design. The epistemological aspects of this kind of design are crucial; the 

study of the knowledge and the situation in which this knowledge is useful is at the 

core of anticipating learning through adidactical situations. 

Design approaches that aim to encourage student agency may vary considerably. 

Clarke and Mesiti (2013) describe lessons which start from relatively closed tasks 

but which are developed and extended around students’ responses. The develop- 

ment of reasoning and argument may be stimulated by presenting students with 

situations which contain faulty mathematical statements or conjectures (Lin & Tsai, 

2013, Savard et al., 2013). The design principles described by Coles and Brown 

(2013) start from offering a closed task, which is then developed through inviting 

students to focus on distinctions. Bikner-Ahsbahs and Janßen (2013) base their 

account of an example of an emergent task on the (apparently simple) initial task of 

dividing a strip of paper into three equal pieces—an open-ended task intended to 

initiate discussion about fractions. Other studies have focused on the use of more 

open, contextualized tasks in order to encourage and value students’ independent 

creative activity. 

In a design-based research study, Calleja (2013) developed a design framework 

which included structured, semi-structured, and unstructured (open) tasks in order to 

support students to move from the experience of traditional teaching to progressively 



 

  

become familiar with “the social experiences of mathematical inquiry, discussion 

and communication” (p. 166). This framework acknowledges both the importance of 

student agency and the challenge that this may present to their expectations. 

Radonich and Yoon (2013) utilize a design framework based on model-eliciting 

activities (Lesh, Hoover, & Kelly, 1993), in which real-world problems are pre- 

sented to students as a stimulus for mathematical modeling. The work of Lesh and 

his colleagues has generated many examples of this kind of work, as has the Realistic 

Mathematics Education tradition (see de Lange, 2015). The example offered by 

Radonich and Yoon is particularly interesting: 

The problem begins with a comic that tells how the Renaissance artist, Giotto, gained the 

pope’s attention by drawing a perfect freehand circle […]. After reading the comic, students 

are asked to draw their own freehand circles and choose the best among them. Next, they 

watch a short YouTube video of a mathematics teacher who professes to be the world’s 

freehand circle drawing champion and appears to draw a perfect freehand circle. 

[…] Students then meet the problem statement, which introduces them to a client, 

Bonnie, who is holding a circle drawing competition at the local Pancake House. The stu- 

dents are asked to work in teams of three to develop a method for ranking circle attempts 

from most circular to the least circular, which Bonnie can use to judge the circle drawing 

attempts on the night of the competition. Students are asked to test their method on some 

examples of circle attempts […], but their method must also work for any circle attempt that 

could be drawn on the night of the competition. The student teams write their final method 

in the form of a letter to Bonnie. (ibid., p. 261) 

Although clearly located in the mathematical topic of circle properties, the open- 

ness of the task allows for students to develop and justify a wide range of models, 

which may draw on different theorems, challenging the expectation that there will 

be a single correct approach. The main focus of the project that Radonich and Yoon 

report is, however, not the initial performance of the task, but how the teacher might 

effectively build on the wide range of activity students have engaged in to ensure 

some curriculum coherence. Their approach involves presenting back to the class an 

example of the work from a group of students carefully chosen to present a good, 

but incomplete, model. The challenge for the class is then to test and improve this 

model, allowing the teacher to focus on reinforcing particular mathematical content. 

The use of students’ work in this context is a deliberate challenge to students’ 

expectations that teacher-presented ideas are better than their own, but Radonich 

and Yoon acknowledge the potential sensitivities in doing this, emphasizing that 

“effort will be required to create a culture where discussing student work is a natural 

and safe part of the teaching and learning process” (p. 266). 

 

 

4.4 Conclusion: Some Topics for Future Research 

 
In this chapter, we have attempted to both account for the gap which can open up 

between the intentions of teachers and task designers and the experiences of stu- 

dents tackling mathematical tasks and to reflect research which attempts to 



 

  

minimize this gap through innovative task design. What is revealed is a complex 

picture, which we believe is relatively under-researched. Although some evidence is 

presented within this chapter, there is relatively little research which addresses 

directly the ways in which students perceive the meaning and purpose of tasks. 

Most studies that do address this issue do so by inferring students’ perceptions from 

their actions. There is a need for further research which uses alternative methods to 

understand student perspectives more fully, particularly in the context of innovative 

task design. We suggest that the areas for further research in aspects of task design 

identified elsewhere in this volume might also be enhanced by a parallel study of 

student perspectives. 

In our chapter, we have highlighted the importance of the context (in particular 

the contract) in the different impacts that similar tasks might have on students. 

Word problems have been thoroughly investigated because these kinds of tasks, 

which are often linked to “real-world” contexts, are more susceptible to alternative 

interpretations from the students. This has contributed to deep interrogations of the 

validity of such kinds of tasks. However, the intention of any tasks which include 

some “real” setting might be wrongly understood, and even tasks which are only 

mathematical tasks are not immune to misunderstanding. It seems thus very 

important to collect more data and to develop analysis which is focused on the effect 

of the contract on the variability of student’s understanding of the tasks (see Sarrazy, 

2002 for an example of such a study). This topic might be very interesting to develop 

in intercultural research, because the kinds of contracts that develop in different 

countries might be different and thus reveal the nature of the contract itself. 

Research in mathematics education has often been developed without any spe- 

cial interest in the differential effect of the tasks on students: who is benefiting from 

a certain kind of task and who is not? Qualitative methodology has been reported in 

our chapter, which helps us to understand that students might interpret tasks very 

differently. However, it would be useful if this question were to be addressed in 

quantitative methodology-based research. The statistical analysis needed to com- 

pare the progress of different students has to be specific and some has already been 

developed in some publications (e.g., Sarrazy & Chopin, 2010). 

More generally, particularly helpful might be research that addresses the ques- 

tion: are some tasks more robust than others? The robustness of tasks might be 

intended as resistant to changes from the teacher but also understandable and useful 

for all the students. 

Of course, the student’s perspective, which is the purpose of this chapter, cannot 

be detached from the teacher’s ability to develop and implement “good tasks” or 

“good teaching”. We suggest that emergent tasks (Bikner-Ahsbahs & Janßen, 2013) 

might be developed into a general concept. In fact, interest-dense tasks might 

emerge from a lot of tasks; it is not yet clear if this is mostly due to the intrinsic 

quality of the initial task or due to efficient mathematical knowledge for teaching or 

both. The ability of teachers to observe students’ procedures and to develop the task 

accordingly might need special attention. 
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