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Abstract— We propose a method to detect icing of the
airfoil of a fixed-wing Unmanned Aerial Vehicle by using an
aerodynamic coefficient estimator and ambient temperature
and humidity sensors. The estimator uses the information
provided by a standard autopilot sensor suite consisting of an
IMU, GNSS and a pitot-static tube to estimate lift coefficients
as well as steady and turbulent wind velocities. These sensor
inputs are fused within an Extended Kalman Filter using
frequency separation and kinematic, aerodynamic and wind
models while avoiding the need for prior knowledge about the
aircraft. Ambient temperature and humidity sensors are used
to assess environmental conditions and if icing is suspected, a
trigger signal to the estimator and the autopilot is generated.
This signal is used to adjust the anticipated uncertainties of
the estimated coefficients and, if permitted by the flight control
system, to initialize a small altitude change in order to excite
the estimator. Simulation results show that this method is able
to separate clearly between iced and non-iced cases and can
be used to significantly enhance the detection performance
compared to only using temperature and humidity based
information.

I. INTRODUCTION

Icing on the wings, propellers, sensors and control surfaces
is a major threat to aviation. The build up of ice on the
wings can lower the lift and increase the drag significantly.
Icing of propellers, sensors, control surfaces and engines
can impede their use. The effects of icing and its detection
has been studied extensively for manned aviation since the
1940s and is still an active research topic today [6], [S], [9],
[13], [11] and has influenced the design of manned aircraft
significantly.

Also for unmanned aerial vehicles (UAVs) icing is a serious
issue when flying in cold and humid environments. Meteo-
rological studies [3], [4] show that supercooled large drops,
which cause inflight icing, appear regularly over large parts
of North America, Europe and Asia. These also appear at
low altitudes, where small UAVs are typically operated.
The increased drag can lead to a lower energy efficiency
and lower the range of the UAV significantly. The decreased
lift can cause the autopilot of the UAV to fly at higher
angle of attack which in combination with the lower stall
angle can result in a high safety risk or in the worst case
to a crash of the UAV [12]. These effects of icing can limit
UAV operations or prevent them completely, since the typical
mitigation for small UAVs is simply to avoid icing.

A general problem when detecting icing on small UAVs is
the limited availability of sensor data and a lower level of re-

dundancy compared to manned aircraft. This is due to stricter
restrictions concerning size, weight and costs. Previous work
therefore focused on icing detection using accurate models of
the aircraft dynamics and detecting the changes induced by
icing [7], [14], [18]. However in practice for low cost small
UAVs it might be difficult to obtain the model parameters to
use these methods since these parameters might change from
one mission to the other depending on the used payload or
due to individual differences in UAV configurations within
a fleet of supposedly equal UAVs. Other work [16] required
the knowledge of the angle of attack during the flight,
which requires the installation of either a multi-hole probe
or vanes on the fuselage or trailing edge of the airfoils, or
an estimation strategy.

This paper presents a novel approach to icing detection by
only using a standard sensor suite, consisting of an inertial
measurement unit (IMU), measurements of a global navi-
gation satellite system (GNSS), a pitot-static tube, as well
as temperature and humidity sensors. Additionally simple
kinematic relationships, a linearized aerodynamic model, and
a wind model are used. The needed aerodynamic parameters
for these models are estimated online and no prior knowl-
edge of the UAV is needed. By detecting changes in these
parameters, airfoil icing can be assessed.

A. Effects of Icing on Aircraft Aerodynamics

Since airfoil design for UAV follows the same principles

as in manned aviation it is reasonable to assume that these
airfoils are affected by icing in a similar way. A challenge
when applying results from wind tunnel tests for manned
aviation to scenarios with small fixed wing UAVs is that
the wind velocity profiles used in the wind tunnel test are
adjusted to the cruising speeds of the regarded aircraft. The
airspeed, which affect the ice accretion significantly, is much
lower for the small unmanned aircrafts and might result in
different ice types and shapes.
Ratvasky et.al. [13] describe inflight icing as a consequence
of flying through clouds containing super-cooled liquid
droplets which hit the surface of the aircraft. Depending on
atmospheric environment parameters, the flight condition, the
geometry of the aircraft and time in icing conditions the ice
can accumulate in different shapes which affect the flight per-
formance differently. The atmospheric environment around
the aircraft is commonly described by three parameters:



o Liquid Water Content (LWC): a measure of the amount
of liquid water in a unit volume of space.

e Median Volumetric Diameter (MVD): describes spec-
trum of the volume of the incoming droplets, where the
50 % of droplets have a smaller volume and 50 % have
a larger volume

o Static Temperature (75): the ambient air temperature.

A study by Bragg et.al. [5] shows how these parameters
result in different kinds of icing and how these affect the
aerodynamic parameters of the UAV. The four different
described icing types are ”Streamwise”, "Horn”, ”Spanwise
Ridge” and "Roughness”. Depending on the type of icing the
maximum lift, the stall angle and the linear lift coefficient
are reduced. Parasite drag can be increased by over 400%.
The Reynolds number of the regarded subscale airfoil is one
order of magnitude higher than the Reynolds number of small
UAVs studied in this paper. [8] shows that similar effects of
icing can be observed at low Reynolds numbers typical for
small UAVs.

B. Contribution of the Paper

This paper builds up on [19] which presents a method to

estimate wind velocities and aerodynamic coefficients using a
standard sensor suite consisting of an IMU, a GNSS receiver
and a pitot-static tube. In simulations it was shown that
the proposed estimator after an initialization phase provides
accurate estimates of the aerodynamic coefficients and the
wind velocities. Using these, estimates of the angle of attack,
the sideslip angle and the airspeed can be calculated.
In [19] it was assumed that the aerodynamic coefficients are
constant. The main contribution of this paper is to apply
the estimator to the case where this assumption does not
hold, namely in icing conditions. This can be achieved by
increasing the anticipated uncertainties within the estimator
and triggering an altitude change, when icing is suspected
based on the measured ambient temperature and humidity.
This results in an icing detection architecture which is able to
discriminate between icing and non-icing conditions without
the need of prior knowledge about the aircraft or additional
sensors other than the standard autopilot sensor suite and a
temperature and humidity sensor.

II. ICING DETECTION ARCHITECTURE

The ice detection architecture is designed to detect changes
in the lift coefficients of the airfoil. Maximum lift and stall
angle are typically significantly influenced by icing. However
since it is undesirable to get into stall conditions during flight
it is challenging to detect changes within these parameters.
One approach might be to estimate the drag coefficient,
which changes significantly during icing [5], using the pitot-
static tube and the accelerometer measurements. However
this is challenging since these variables are dependent on the
engine thrust and control surface deflections and their respec-
tive parameters, which are usually not accurately measured
and also influenced by icing.

On the other side [5], [8] also shows that the lift coefficient
increases less with increasing angle of attack when affected
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Fig. 1: Icing detection structure

by icing. In a lift force model this is described by the linear
lift coefficient Cp, . The change in Cy, ,, appears already at
low angles of attack («)) and can be detected without risking
wing stall of the aircraft.

Figure 1 shows the proposed structure of the icing detector.
The aircraft is affected by its environment, where some of
the major influences are wind and ice. A temperature and
humidity sensor is used to assess the current environmental
conditions. If these exceed a threshold, icing is suspected and
a trigger signal is send to the autopilot, which steers the UAV,
and to an aerodynamic coefficient estimator. The trigger
signal is used to adjust the estimated uncertainties within
the estimator to the current conditions and to the autopilot
for necessary excitation of the estimation, if admissible from
the flight management system.

III. AERODYNAMIC COEFFICIENT ESTIMATOR

The used aerodynamic coefficient estimator was first pre-
sented in [19]. It uses kinematic and aerodynamic relation-
ships as well as a wind model to estimate wind veloci-
ties and aerodynamic coefficients from the pitot-static tube,
accelerometers and velocities over ground measured by a
Global Navigation Satellite System (GNSS). Additionally
an estimate of the rotation matrix from navigation to body
frame R is needed from an Attitude and Heading Reference
System (AHRS). As an estimator the Extended Kalman Filter
(EKF) [15] is used. An overview on the structure of the
estimator is shown in Figure 2. The estimation will be shortly
described, and for a more detailed description see [19].

A. Aerodynamic Model

The estimator uses a simplified model of the aerodynamics
in the z-direction of the body frame:

f» =a, — gcos(8) cos(9) (1)
= KV} (Cro+aClLa) )

where a, is the z-accelerometer measurement and f, is the
aerodynamic acceleration in z-direction, g is the gravitation
constant and 6, ¢ are the pitch and roll angle. K = % is a
constant factor consisting of the air density p, the wing area
S and the mass of the aircraft m. C'p o is the constant lift
coefficient and C'y, , is the linear lift coefficient. We assume
that accelerometer biases are estimated in the AHRS so that
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a, is bias-free. This model neglects the influence of forces
induced by drag, the pitch rate and the elevator deflection,
which are typically at least 1 orders of magnitude smaller
than the influence of the lift force at small angles of attack.
V, is the airspeed and « is the angle of attack which are

defined as:
b
a=tan~* <w;) 3)
UT‘
Vo = vyl “)
Here v8 = (ulvbw?)T is the velocity of the aircraft relative

to the surrounding airmass decomposed in body frame which
is given by the wind triangle:
v) = v’ — R)v}, (5)

v’ = Rbo" (6)

Where v" = (u,v,w) is the velocity over ground and v,
is the local wind velocity over ground, decomposed in NED
frame. In (5)-(6) the variables u%, v™ and R? are given, the
wind velocity v], needs to be estimated in order to obtain the
full vector v?. This is important for small UAVs since the
wind speed may be of similar magnitude as the airspeed. This
model of the aerodynamics in z-direction is simplified and

neglects the effects of drag on the body z-acceleration and
linearizes the underlying trigonometric functions. However,
for small angles of attack and non-stall conditions the model
errors induced by this simplifications are small and do not
degrade the estimation performance.

B. Wind Model

In the following we use a time-discrete model where
k denotes the current time index and Az, the difference
between x;, and x,_;. We assume the wind velocity v
to have two parts. A low-frequent steady part v, and a
high-frequent turbulent part v* which are governed by the
following discrete dynamics: [2, pp.55].

A’ugk ~0 (8)
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The dynamic equations for the turbulent wind velocity (9)
are known as the Dryden wind model [1]. The spatial
wavelengths L, are given by:

hy
(0.177 + 0.000823 - hy)1-2
Ly = hi

Lu,k = Lv,k =

(10)
(1)

where hy is the current altitude above ground. The random
white noise amplitudes are given by:

0.1
(0.177 4 0.000823 - hy, )04
ow=01-Vy,q

=Vua (12)

Ou,k = Ou,k

13)

where V,, ¢ is the wind speed measured 6 meters above
ground.

C. Estimation Setup

Because of the non-linear nature of the model, an Ex-
tended Kalman Filter (EKF) is used as an estimator. The
states to be estimated are the steady and the turbulent wind
velocities decomposed in NED frame, the two lift coefficients
and a scaling factor governing pitot-static tube calibration,
(cf. (19)):
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The state transition matrix for the prediction step of the EKF
are given by:

Tpjp—1 =F(Tp—1jk-1)

% 11 4+[0 0 0 Avgpq 0 0 0]
(15)
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V, is a low-frequency version of V, which is only dependent
on the velocity over ground v, and the steady wind velocity
v7 and independent of the turbulent wind velocity v.

Vo = ||v* — Rbv?|| (17)

The underlying assumption made in (16) is that, when
predicting the turbulent wind velocity, the airspeed, and thous
the response of the Dryden low pass filter, can be regarded as
independent of the turbulent wind velocity. Measurements for
correcting the state vector are the aerodynamic acceleration
in z-direction in body frame f, and the longitudinal velocity

over ground decomposed in body frame u®.

o — [fi} _ {az - gCOSgG) cos(qb)} e (18)
U )
where g is the local gravity of Earth, 6,¢ are the pitch
and roll angles and v is some measurement noise. The time
varying measurement function is given by:
—sz(CL +CL )
h — a 0 a
@) = | s o £ 0
di =[1 0 0 (19)

The first measurement equation in (19) uses the aerodynamic
model (2) to estimate the aerodynamic coefficients and the
wind velocities via V, and a. Here V, is used to interpret
fast changes in the acceleration f, as to be induced by
changes in the angle of attack «, which has higher fre-
quency components, and not by changes in the airspeed due
to turbulence. This assumption provides different gradients
when differentiating (19) with respect to v} and v and
therefore allows separate observation of these states. The
second measurement equation utilizes the wind triangle (5)
to relate the measurements of the velocity over ground to the
relative longitudinal velocity «]"* measured by the pitot-static
tube. This is similar to the method described in [10].

D. Handling Uncertainty in Icing Conditions

In an EKF the uncertainty of the state estimate is estimated
by the covariance matrix estimate P, which is initialized
with a matrix Py. The uncertainty from process noise and
modeling errors is described by a covariance matrix ¢) which
is defined as:
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where the a; are tuning parameters. In [19] it was shown in
simulations that attitude changes are necessary during filter
initialization to achieve good estimates of the aerodynamic
coefficients and from time to time afterwards to avoid drift of
the estimates. This is true for the case when the coefficients
Cro and Cp . are constant. In this case the covariance
parameters associated with these coefficients can be chosen
to low values in order to lower the need for corrections
during the estimation. However as has been discussed in
section I-A, in icing conditions these coefficients are likely to
change during the flight. Choosing larger values of the tuning
parameters ac,, , and ac, , would require a high frequency
of attitude changes to monitor the coefficients. To avoid this,
the information of the temperature and humidity sensors
are used. If the ambient temperature is below a certain
threshold 7,;; and the humidity is above a threshold H,,;;
the covariance associated with the change in lift coefficients
within the estimator is increased by setting the elements
covariance matrix P corresponding to the coefficients to
predefined values. Simultaneously a small altitude change 6h
is commanded to the autopilot which if permitted results in
a change in pitch angle. The instant rise in estimated uncer-
tainty ensures a fast detection of changes in the aerodynamic
parameters while minimizing additional maneuvering. This
procedure would have to be repeated if icing conditions are
suspected to change.

IV. SIMULATION SETUP
A. UAV simulation

All simulations were performed using a simulation of the
X8 flying wing and a simulated autopilot. The simulator
and the autopilot are based on Beard and McLain [2, Chap.
4 and 6] and implemented in Matlab / Simulink. In the
aircraft simulation a more complex non-linear model of
the aerodynamics is used (for details see [2, pp.44]). The
aerodynamic forces are thus given by:

1_|_e—1V[(o¢—ozo) +€M(a+a0)

¢= (1+ e Ma—a0)) (1 4 eM(atao)) @n
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where M and «p are positive constants, ¢ is the mean
aerodynamic chord of the wing, ¢ is the pitch-rate and J.
is the elevator deflection and Cp 4,Crs.,Cpq,Cp,s. are



their respective lift and drag coefficients.

Wind velocity is simulated following Beard and McLain [2,
pp-55] as the sum of a steady and a turbulent wind velocity
component, where the turbulence is generated by passing
white noise through a low pass filter. The filter is designed
in the way described in section III-B according to the Dryden
model. The steady wind velocity and the wind velocity at 6m
above ground, used for the turbulence generation, were set
to 6m/s, the wind direction was set to 90°.

B. Simulation of Icing

Icing is simulated using the results from wind tunnel tests
discussed in section I-A. In [8] icing was simulated in a
wind tunnel on swept wing models with Reynolds numbers
between 3-10° and 7.8-10°. The X8 flying wing regarded in
this paper has a Reynolds number of 4.5 - 10° and therefore
we are assuming that icing effects the X8 similarly. During a
period of 100s the linear lift coefficient C'y , is reduced by
20% and o by 20%. This results in a reduction of C, yax
by 22% and of the stall angle by 2.9°. Figure 3 shows
the simulated lift coefficient for different angles of attack
in the iced and non-iced case. In the same period the drag
coefficient is increased by 200%.
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Fig. 3: Lift coefficient vs. angle of attack for iced and non-
iced case

C. Tuning and Initial Conditions

The initial condition for the state vector estimate was set
to:

zo=[0 000000 1 1"

27
The inital condition for the state covariance matrix was set
to:

Py = diag [1072 1072 107* 107° 107° 28)
1075 107° 107' 107% |

The tuning parameters of the process noise covariance matrix
Q were set to:

a=1[10"7 1077 107! 5.10* 510
2-10° 107% 1071 107'% ]

Notice that the tuning parameter for Cr ., was set to a
low value to achieve quick convergence after the covariance

(29)

reset and a small drift when the coefficient is constant. The
covariance matrix of the measurement noise was chosen to:

10
R_{o 0.6}

This covariance matrix is important in tuning the EKF. It
quantifies the expected uncertainties in the measurement
equation induced by noise in the sensors and errors within the
attitude estimation. The measurement noise v, which disturbs
the GNSS and the accelerometer measurements, is modeled
as band limited white noise with the following standard

variances: o4
10~tm?/s
o, =

(30)

1073m?2/s? GD
Additionally the pitot-tube measurement is affected by band
limited white noise with a variance of 0.1m?/s%. It was
assumed in the simulation that the AHRS system supplies
the estimator with accurate attitude angles with negligible
noise levels.

D. Simulated Scenario

We simulate a takeoff and some loitering, which is of-

ten performed in UAV missions by the safety pilot before
handing control over to the autopilot. These are important
for convergence of the estimator. The commanded altitude
is 150m and the commanded course angle is 60°. The UAV
performs one circle per minute during the initial period.
At time 300s the icing starts and the model coefficients
change linearly within 100s to their icing values. At time
400s the trigger signal is set which leads to a reset of the
covariance matrix. The new values are

PCL.O = P(7’7) = 10_5
PCL,Q = P(&g) =10"3

(32)
(33)

Since no change in Cf is expected a lower covariance
value is chosen to reduce the estimated uncertainty within
the C, o estimate. Simultaneously an altitude change of 20m
for 50s is commanded. Later the UAV changes altitude again
to 250m and course 20° at two different time instants. At
the altitude changes during icing the climb rate is limited so
that the angle of attack stays well below the stall angle. The
input signals can be seen in Figure 4 and Figure 5.

V. SIMULATION RESULTS
A. Aerodynamic Coefficient Estimates

Figure 6 shows the estimates of the lift coefficients
and their true values over time. Both coefficients converge
quickly to an interval relatively close to their true values after
takeoff. When icing occurs their is first no significant change
within the lift coefficients. After the covariance reset the
('« estimate converges quickly close to the new reference
values in icing. Afterwards some parameter drift occurs
which is due to the increased uncertainty. The altitude and
course changes at 600s cause additional excitations of the
estimator which decrease the uncertainty and compensate
the drift somewhat. The drift in Cp , also results in a
drift in C'p o which compensates the error induced into the
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measurement equation (19). For comparison Figure 7 shows
the estimate of (', in the same scenario without icing.
This shows that the here proposed icing detector is able to
separate clearly between the iced and non-iced case.

Note that a change in pitch angle is necessary to gain
information on the wind velocity in down direction, this
enables the estimator to distinguish between changes in wind
velocity and changes in lift coefficients. This means that
for a continuous monitoring of wing icing the covariance
reset followed by a change in pitch angle has to be repeated
periodically when environmental conditions suggest icing
(i.e. humidity increase when flying through clouds). A way
to overcome the necessity of these attitude changes might
be the installation of a second pitot-static tube in the aircraft
pointing downwards or upwards, what makes it possible to
measure the relative velocity in down direction directly.

B. Airspeed and Angle of Attack Estimates

Figure 8 shows the estimate of the airspeed during the
icing detection. The estimator is able to provide a reliable
airspeed estimate during the whole flight. The increased
airspeed at 400s and 600s is caused by the altitude changes.
Notably the estimation also performs well at that instance.
Equation (2) can be used to calculate « using the airspeed
estimate as well as the aerodynamic coefficient estimates and
the z-acceleration. Figure 9 shows the resulting o estimate.
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This estimate is performing well during most of the flight.
During the time between 7" = 300s and 7" = 400s when the
icing is not yet detected the « is less accurate due to a not
adapted C7, , estimate. However it is performing well during
the altitude changes where higher and lower angles of attack
occur (T" = 400s and T' = 600s) and the lift coefficients are
estimated correctly again. This could be used to assess flight
performance and safety during icing conditions. Additionally
this information could be used to limit the allowed flight
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envelope, in particular climb rate of the autopilot in order to
reduce the risk of wing stall.

VI. CONCLUSION

This paper studies the application of an aerodynamic lift
coefficient estimator to the problem of detecting in-flight
icing of small fixed wing UAVs. In addition to a standard
autopilot suite it uses sensors for temperature and humidity
which sends a trigger signal to the estimator if icing is
suspected. This enables a partial covariance matrix reset,
which suggests an increased uncertainty in the linear lift
coefficient estimate. Simultaneously an altitude change is
performed which excites the estimator and leads to a quick
convergence of the estimate to its true value.

If icing has occurred the value of the linear lift coefficient
will be lower than in non-icing conditions and thous can
be used as a valuable icing indicator for a deicing system [17]
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