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Abstract—We address the challenge faced by service providers
in monitoring Quality of Experience (QoE) related metrics
for WebRTC-based audiovisual communication services. By ex-
tracting features from various application-layer performance
statistics, we explore the potential of using machine learning
(ML) models to estimate perceivable quality impairments and
to identify root causes. We argue that such performance-related
data can be valuable and informative from a QoE assessment
point of view, by allowing to identify the party/parties in a call
that is/are experiencing quality impairments, and to trace the
origins and causes of the problem. The paper includes case studies
of multi-party videoconferencing that are established in a labora-
tory environment and exposed to various network disturbances
and CPU limitations. Our results show that perceivable quality
impairments in terms of video blockiness and audio distortions
may be estimated with a high level of accuracy, thus proving the
potential of exploiting ML models for automated QoE-driven
monitoring and estimation of WebRTC performance.

Index Terms—Quality of Experience (QoE), WebRTC, machine
learning, video-blockiness, audio distortion

I. INTRODUCTION

Despite the availability of numerous applications that offer
audiovisual communication services, strict low-latency and
high volume requirements continue to impose challenges in
meeting end user Quality of Experience demands. While
commercial proprietary video conferencing solutions have a
limited reach, solutions based on the Web Real-Time Commu-
nications (WebRTC) standards and APIs (https://webrtc.org)
are increasingly gaining momentum and enabling browser-to-
browser real-time communication with built-in real-time audio
and video functions [1]. This is reflected in the adoption
of numerous free of charge applications, such as Google
Hangouts, Facebook Messenger, appear.in, etc., which can be
used in different contexts (e.g., business vs. leisure).

From a Quality of Experience (QoE) point of view, end
users may experience different types of technical problems,
going hand in hand with different types of impairments (e.g.,
video freezes, bad audio, no audio) during a conversation,
which may hinder the degree and nature of interaction between
different parties involved. Such circumstances may also trigger

affective responses (e.g., user frustration, stress, etc.), cognitive
complexities and communication problems (e.g., misunder-
standings between parties in the call) and behavioural reactions
(either instantaneously, e.g., by switching off video, reconnect-
ing, etc., or over time, e.g., by not re-using the application
after a number of problematic sessions). For application and
service providers, it is of crucial importance to monitor service
quality and identify root causes of perceived impairments, so
as to provide the basis for potential problem mitigation and
QoE control (e.g., dynamic service adaptation in light of the
number of parties, devices used, network connections, etc.).

In this paper, we focus on exploring the usefulness of
machine learning (ML) in the context of WebRTC performance
estimation and root cause analysis from a service provider per-
spective. Previous work [2], [3] has investigated the usefulness
and limitations of the WebRTC performance statistics gathered
by Google Chrome for QoE studies. We now go one step
further and aim to predict the occurrence of perceivable quality
impairments for the user and to identify root causes underlying
these impairments by using WebRTC performance statistics as
input features for ML-based classifiers. We here limit the scope
to two particular types of perceivable impairments, namely
video blockiness and audio distortion, and to well-interpretable
results and findings gathered through the use of a research
version of the WebRTC application appear.in.

The paper is organized as follows: In Section II, we give
a brief overview of relevant previous work addressing QoE
monitoring for WebRTC, and in particular the use of ML-
based models. Section III describes the data collection and
feature extraction, followed by a case study in Section IV.
Finally, Section V concludes the paper and shares a number
of lessons learned and directions for future work.

II. BACKGROUND AND RELATED WORK

To date, a number of papers have addressed the issue of
how to monitor WebRTC performance, both from a QoS
and QoE perspective. In practice, and often complementary



to the collection of user feedback, providers rely on ob-
jective performance monitoring tools to estimate perceived
quality degradations, using QoE models as a basis. Data
may be collected at different levels, including network-level
QoS measurements (e.g., packet loss, delay, jitter), as well
as application-level measurements (e.g., audio/video bitrate,
resolution, and framerate). Quality estimations may rely on
analytical QoE models (e.g., derived using regression analy-
sis), or on other ML-based approaches to tackle underlying
relationships.

Garcia et al. [4] present a general methodology and tool
for black-box testing of WebRTC applications and services.
A WebRTC application is run in a containerized cloud envi-
ronment, where various end-to-end tests are run, and QoS and
QoE indicators are captured. While such a testing framework
could be used to further explore the QoS-to-QoE mapping, this
is not explicitly addressed by the authors. In their subsequent
work, Garcia et al. [5] discuss a set of measurable factors
to estimate the QoE of a WebRTC application, namely call
establishment time, end-to-end delay, audio quality, video
quality, and audiovisual quality.

Focusing on the impact of network performance, Jansen
et al. [6] investigate the effects of latency, packet loss, and
bandwidth on the performance of WebRTC-based videocon-
ferencing in both synthetic and real wired and wireless envi-
ronments. In particular, they focus on the impact of the Google
Congestion Control (GCC) algorithm, utilized by WebRTC
to provide congestion control for real-time communications
over UDP. Addressing multi-party WebRTC calls in a mobile
context, Vucic and Skorin-Kapov [7] further study the impact
of packet loss and GCC on perceived audio quality, video
quality, and overall QoE.

In a generic approach, Spetebroot et al. [8] aim to predict
expected voice and/or video quality of various target appli-
cations (e.g., Skype) based on the analysis of performance at
the device and network level, without actually requiring the
target application to be running. For such purposes, different
ML models relating measurable performance to QoE metrics
are needed for different target applications.

The question arises as to what measurable data may be uti-
lized (and how) for the purpose of detecting QoE-related met-
rics for WebRTC-based audiovisual communication services.
To that extent, De Moor et al. [9] report on a subjective study
aimed to explore the usefulness of different types of data (self-
report data, peripheral physiological data, and application-level
performance statistics) in providing indications of users QoE
and affective state in the context of WebRTC. Sulema et al.
[10] set up WebRTC video streams in a mobile broadband
network, and utilize the open access MONROE platform
providing access to hundreds of nodes connected to different
operators across Europe. The authors analyzed collected QoS
measurements, and further used a combination of subjective
tests and ML-based models to assess overall QoE. However,
details on the ML-based models are missing.

Further looking to relate measurable QoS metrics to QoE,
Yan et al. [11] conduct measurements in a WiFi network and

build an ML model to infer whether QoE is acceptable or not
in the next time window based on current QoS metrics (in-
cluding Round-Trip Time, Link Quality, and Received Signal
Strength Indicator (RSSI)). As a proxy measure for QoE, they
rely on detecting video freezing events.

While previous papers have studied various approaches in
monitoring WebRTC QoE-related metrics, in this paper we
provide novel insights in terms of utilizing WebRTC applica-
tion performance statistics exposed by the WebRTC API to
estimate video blockiness, audio distortions, and to identify
root causes of problems. A number of tests are performed
under various emulated network conditions, and results show
the usefulness of utilizing ML-based models in WebRTC
performance estimation. We cast the problem as a supervised
discrete classification problem, as described in further detail
in the following section. Decision trees are shown to provide
an intuitive understanding of underlying relationships.

III. METHODOLOGY

A. Overview

As introduced earlier, with this paper we aim to explore
whether and how machine learning may be useful for gaining
insight into potential QoE-related issues in the context of
WebRTC. More specifically, we collected different types of
data related to the use of a research version of the WebRTC-
based application called appear.in.
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Fig. 1: Overview of laboratory setup and test procedure

Figure 1 provides a high-level overview of the general set-up
and procedure that are applied in this paper. The gathered data
consisted of application-level WebRTC performance statistics
and audio/video recordings collected during multiple two- and
three-party audiovisual calls. Data from two- and three-party
video calls was collected under different CPU limitations and



network impairments, using the WebRTC testbed described
in [12]. Previous work [2], [3] has provided insights into the
usefulness (and limitations) of WebRTC performance statistics
gathered by Google Chrome and in the root causes of tech-
nical impairments that are perceivable (e.g., visually and/or
auditory) by users. The work presented in this paper goes a
step further and applies ML algorithms to the gathered datasets
in order to estimate video blockiness, audio distortions, and
to identify root causes of problems. Before turning to the
more detailed description of the different steps as indicated
in Figure 1, namely data collection, data preparation, model
training and evaluation of the obtained model, we briefly
discuss the WebRTC testbed used to run different test scenarios
and collect the corresponding data.

The WebRTC testbed used in this work consists of a
research version of the WebRTC-based application called
appear.in [13], a network emulator, and a controller. The
testbed provides video conferencing service by appear.in in a
controlled environment. The lower part of Figure 1 illustrates
a simplified version of the testbed with a 3-party setup. It is
important to note that calls are established in a peer-to-peer
manner. The network emulator relies on NetEm to control
network conditions, introducing (i) bandwidth throttling; (ii)
delay and delay variation (jitter); (iii) packet loss and packet
burst losses, hereafter referred to as mean lost burst size
(mlbs).

B. Data collection

In this sub-section, we briefly explain which type of data are
collected and elaborate on the used test profiles and generated
datasets.

1) WebRTC performance statistics: In WebRTC, media
specific (video, audio, screen sharing) streams are transmitted
over a peer-connection using Real-time Transport Protocol
(RTP) over UDP. On the other hand, non-media data types
are transmitted using Stream Control Transmission Protocol
(SCTP) encapsulated in Datagram Transport Layer Security
(DTLS) over UDP. A connection is assigned a unique identity,
SSRC ID, defined as a track. A track is a media specific data
channel between two peers (browsers).

Figure 2 shows a three-party WebRTC video conference
call. Between each pair of peers, four tracks are exchanged
(two video and two audio), each of which is identified by a
unique SSRC ID. The SSRC ID links the three parties in a 3
Peer Connections, including 6 audio tracks (3 for sending and
3 for receiving) and 6 video tracks (3 for sending and 3 for
receiving)1.

The World Wide Web Consortium (W3C) has specified
W3C WebRTC statistics [14], by defining objects that allow
access to the statistical information about a real-time peer
connection (RTCPeerConnection). The statistics can be clas-
sified with respect to codec used, certificate used, transport
protocol used, and contains counters, such as number of peer
connections.

1In appear.in screen sharing is possible and activating this will create 6
additional video tracks

Fig. 2: A three-party video conference call opens twelve tracks

In the testbed described in [12], we collect WebRTC statis-
tics using Google Chrome webrtc-internals (chrome://webrtc-
internals), which enables observation of the performance of
the WebRTC connections locally in the browser. The statistics
are collected per browser. Despite all the challenges, previous
work has demonstrated the potential of using these statistics
to study QoE aspects of WebRTC services [2], [3].

Other performance measurement tools (such as Wireshark
and even probing nodes) are complementary to WebRTC API
statistics and may be used to trace network aspects like packet
delay, jitter, and bandwidth, while network performance mea-
surements can be used for QoE troubleshooting and network
diagnosis.

2) Audio and video recordings and coding of the material:
The transmitted audio and video contents of each individual
participant are recorded on both sending and receiving ends
using SimpleScreenRecorder (on Linux). This allows us to
replay the session and analyse the recordings. The audiovisual
recordings contained the following impairments: video block-
iness, video freeze, jerkiness, flickering, delay in audio-video
synchronisation, no audio, audio distortion. In this paper, we
focus as mentioned on video blockiness and audio distortion,
and the audiovisual recordings for each conversation were
inspected and annotated from the perspective of each party
in the different calls. In the context of this study, 55 audio
and video recordings were inspected and annotated.

We define blockiness as the appearance of a block structure
in a video, either due to lossy compression and block-based
coding schemes [15], or transmission errors, such as the loss of
(or loss within) a reference video frame [16]. As the thresholds
between the different levels are fuzzy and cannot be precisely
determined in manual annotations, we applied a two level
categorisation of the blockiness: acceptable (i.e., no or very
low blockiness) and not acceptable (i.e., high blockiness). No
appropriate tool for automated annotation was found, so the
annotation was done manually by two independent coders.
They identified perceivable impairments (with a time gran-
ularity of 1 second) and annotated them. For future and up-
scaled studies however, automated annotation solutions need to
be developed. After having coded the material independently,
the annotations from both coders were manually compared
and integrated. For a number of cases where the annotations



TABLE I: Experiment scenarios and selected values for network
impairments and CPU limitations.

Scenario Parameter Values Profile

S1 – – G

S2, S3 plr (mlbs) 10% (1.5 or 3) V
S4, S5 plr (mlbs) 20% (1.5 or 3) V

S6, S7 delay (jitter) 500 (300 or 500)ms AV

S8, S9, S10 cpu 55%, 60% or 70% A

diverged, the recording was checked again by both coders and
discussed in order to reach an agreement.

3) Test profiles and generated datasets: The datasets were
collected from twenty-five WebRTC-based multi-party video
conversations, including twenty 2-party calls and five 3-party
calls, each with a call duration between 4 and 5 minutes. The
conversations took place in a controlled lab environment and
under different technical conditions. The conversation partners
were located in separate rooms with not identical, but very
similar dimensions, lighting and background conditions. In
total, three rooms were used and equipped with identical
desktop computers.

More specifically, by means of the WebRTC testbed, we
consider a number of different call scenarios. These are (i) no
impairments, (ii) realistic technical impairments, e.g., packet
losses, packet delays, and CPU limitations.

Table I provides an overview of the experiment scenarios
and the selected values for the introduced network impair-
ments, as well as the CPU limitations. Each of these scenarios
leads to different types and gradations of perceivable quality
impairments at the user side (e.g., video blockiness, video
freezes, bad audio). Hereafter, we refer to the produced audio
and video qualities as “profile”. For the work presented in this
paper, we used the following four types of profiles:
G: Good conditions (S1) - no perceivable distortion,
V: Video distortion (S2 - S5) - video distortion only,
A: Audio distortion (S8 - S10) - audio distortion only,

AV: Audio and video distortion (S6, S7) - both audio and
video distortion.

It is worth mentioning that we ran a series of real-life calls
(around 50 calls with different call duration, ranging from 4
minutes to 45 minutes) in which we focused on two- and three-
party video conferencing using the appear.in application. Par-
ties involved in these calls experienced various network condi-
tions. The collected WebRTC performance statistics are used
as a reference and further evaluated in order to gain a better
understanding of real-life network impairments. Throughout
the calls where parties have bad network conditions (e.g., week
spots of WLAN connectivity), we observed severe packet
losses, ranging from 0% to 35% (with few spikes going above
50% over time intervals of length 10 seconds), and a high-
delay spiking up to nearly 1250 ms. These observations were
used as a reference for selecting values for the introduced
network impairments in our experimental scenarios. Therefore,

we reproduced calls in which parties would experience good
or poor network conditions (i.e., with many critical phases of
heavy audiovisual quality degradation).

C. Preparing the data for analysis using machine learning

Before the training phase and application of machine learn-
ing algorithms could start (as visualised in Figure 1), the data
had to be prepared and pre-processed. This phase consisted of
two main tasks, (i) pre-processing of blockiness and audio
distortion annotations, and (ii) pre-processing of WebRTC
statistics.

The collected data was prepared as input for the WEKA
tool [17], a java library containing implementations of all
ML algorithms tested in this paper. The WebRTC statistics
and the coded material were transformed to a format fitting
the WEKA tool (i.e., one file per peer connection and per
impairment type, classified into the respective categories). This
file contains, the WebRTC statistics that were described in
Section III-B1, and the coded material (i.e., video blockiness,
audio distortion and root causes). It is worth noting that,
the WebRTC statistics (e.g., Bucket delay, Bitrate, Encoding,
Frame rate, the Frame Scale (scale of the video Frame size,
where Frame size is equal to Frame width × Frame height),
Packet loss ratio, Nack messages, etc.) are collected/computed
over a time scale of 1 second. Furthermore, the coded materials
are classified (with a time scale of 1 second) into the respective
categories: (i) acceptable level of blockiness and unacceptable
level of blockiness when we deal with video blockiness; (ii) no
audio distortion and audio distortion when we deal with audio
distortion; (iii) and good conditions, network impairments and
CPU limitations for root causes classifications.

D. Training a model

For the training step, a training set (See Figure 3) from
seventeen conversations was used. More specifically, the log
files were recorded from fourteen 2-party calls and three 3-
party call. These conversations were conducted using scenarios
S1 to S10. The training set is used to build the decision trees
for video blockiness, root causes and audio distortion shown
in Figures 6, 7 and 8.

Fig. 3: Number of data samples used in training the ML models.

On the other hand, we have selected six widely-used ML
algorithms, namely C4.5 decision tree learner, RandomFor-
est that operates by constructing a multitude of decision
trees, standard probabilistic NaiveBayes classifier, sequential
minimal optimization algorithm for support vector regression



(SMO), k-nearest-neighbors classifier (IBk) and Bagging. For
more details, please refer to [17]. For each of the six tested al-
gorithms, models were built by using a tenfold cross-validation
scheme. This scheme splits randomly the dataset into 10
subsets in which the class is represented in approximately the
same proportions as in the full dataset. Then it uses nine of
the subsets to train the model and the last one to cross-validate
the model on. This learning procedure is repeated a total of
10 times for all the combinations of the subset. Finally, the
results of the cross-validation scheme are averaged to yield an
overall estimation of model’s performance.

E. Feature Selection

In our work, we use various feature selection methods to
extract the most useful features to train on among existing
webrtc-internals features. The selected features are:
Bucket delay: “bweforvideo-googBucketDelay” – The bucket
delay is defined as “... the time since the oldest queued packet
was enqueued” [18].
Encoding: “send-googEncodeUsagePercent” – The average
encode time (in millisecond) divided by the average time
difference between incoming captured frames [18].
Frame scale: “send-googFrameHeightSent” and “send-
googFrameWidthSent” – The height and the width of the
video frame in pixels.
Frame rate: “send-googFrameRateSent” – The rate at which
consecutive frames are displayed in an animated display.
Nacks: “send-googNacksReceived” – The cumulative number
of received negative-acknowledgements (nack) messages.
Nack packets are received by the sender and sent by the
receiver using RTCP, as defined further in [19].
Packets lost: “send-packetsLost” – The cumulative number
of packets lost.
Input level: “send-audioInputLevel” – The audio input level.
Output level: “recv-audioOutputLevel” – The audio output
level.
Jitter: “send-googJitterReceived” – The jitter.
Jitter buffer: “recv-googJitterBufferMs” – The jitter buffer.
Bitrate: “Conn audio bitsReceivedPerSecond” – The
received audio bitrate.
ERLE: “send-googEchoCancellationReturnLossEnhancement”
– The echo Cancellation Return Loss Enhancement.
EC delay: “send-googEchoCancellationEchoDelayMedian” –
The echo Cancellation delay.

F. Evaluating the model

To strengthen the performance analysis (e.g., test the sta-
bility, prevent overfitting, generalize the results, etc.), we use
the models trained from the training set and test them using
a test set (see Figure 4) that contains logs (never been used
in training) from five 2-party calls two 3-party calls using the
following scenarios: S1, S3, S5, S7, S8, S9 and S10. The later
scenarios correspond to all four different profiles.

The following test set is used for the performance analysis
of the decision trees for video blockiness, root causes and
audio distortion shown in Figures 6, 7 and 8.

Fig. 4: Number of data samples used in testing the ML models.

IV. CASE STUDY

In this section we discuss the ML modeling results, impli-
cations and interpretations. Actually, the WebRTC statistics
capture the joint impact of network impairments and the
Google Congestion Control (GCC) algorithm included in the
Google Chrome browser and implemented in the WebRTC
project [20], [21]. The GCC algorithm is specifically de-
signed to target real-time streams such as telephony and
video conferencing [22], [23], [24], thereby trying to fully
utilize the bottleneck link while keeping queuing delay small
[24]. According to [20], [21], the GCC algorithm implements
both a delay-based and a loss-based controller, which is
run on the sender side in response to feedback from the
receiver. Considering the specific case of packet loss that we
use in our case studies, we note that when a threshold of
10% packet loss is detected by the sender, GCC performs
a new bandwidth estimate and subsequently invokes stream
adaptation, including bitrate, resolution, and finally framerate
adaptation. The interested reader is referred to [20], [21] and
[24] for further details regarding GCC. In the sequel, we will
see the impacts of network impairments, GCC algorithm and
user perceivable quality metrics (such as video blockiness
and audio distortion) in the ML models. Although various
types of ML classifiers were trained and found to provide
comparable results (e.g., Random Forest, NaiveBayes, SMO,
k-nearest-neighbors, Bagging), these results are not included
due to space limitations. We include only results obtained
with the C4.5 decision tree2 as they are easily interpreted 3

It is also worth noting that, the data was randomly split into
training and test data. More specifically, around 70% (i.e., 18
conversations) of the data were used for training the ML model
and the remaining data (7 conversations) was used for testing
the performance of the ML model. In this work, we limited
the size of the dataset to 25 conversations (55 recordings –
nearly 4 hours of recordings) since obtaining additional data
samples (conversations) and annotating the perceivable quality
impairments is a time-consuming task.

2The following tuning is used for the C4.5 decision tree: batch size
(100); confidence threshold for pruning (0.25); minimum number of instances
permissible at a leaf (25); size of the pruning set (3); pruning is performed
(True); subtree raising operation when pruning (True); use of Laplace (False);
and use of MDL correction (True).

3Training and test data: https://github.com/doreidammar/webrtc-statistics.
git



(a) Impairment profile (b) Bitrate (c) Encoding (d) Bucket delay

(e) Frame scale (f) Frame rate (g) Nack messages (h) Packet loss ratio

Fig. 5: A selection of collected metrics on one client over time, corresponding to profile V and scenario S2. A packet loss ratio of 10%
is introduced after 30s, lasts for 3 min, followed by 30s of no impairments. Phases with no, low, and high degree of video blockiness are
highlighted in white, yellow, and blue, respectively. The white and yellow areas combined correspond to what we refer to as acceptable
blockiness, while the blue areas correspond to unacceptable blockiness.
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Fig. 6: Decision tree for acceptability in terms of blockiness.
Green percentages indicate the overall share of correct classifications
(“trues”), red percentages the overall share of incorrect classifications
(“falses”) through the corresponding rule.

A. Results and Observations

Figure 6 shows the decision tree for the acceptability in
terms of blockiness obtained through the training phase, with
the following confusion matrix:

predicted class

Acceptable Not acceptable

ac
tu

al
cl

as
s Acceptable

Not acceptable

[
59.85% 3.49%
4.40% 32.25%

]

The high accuracy of the classification is seen from the
diagonal dominance (59.85 + 32.25 = 92.10%), with mis-
classifications less than 5 % of each kind.

The major decision criterion, at the root of the tree in
Figure 6, is the frame scale subject to adaptation by the GCC
algorithm. We observe: (i) Frame scales of more than 1/2
(240p) are indicated as acceptable in terms of blockiness,
which applies to almost half of all cases, with an almost
negligible misclassification ratio. Taking the actions of the
GCC into account, large frame scales imply good network con-
ditions. (ii) Frame scales of less than 1/4 (120p) are deemed
to be not acceptable in terms of blockiness, which applies to
almost 24 % of the cases, again with a small misclassification
ratio. (iii) For frame scales in-between the above cases (i.e.
videos of 180p and 240p), the bucket delay plays a key role,
but even other parameters increase in relevance. In case of zero
bucket delay, a frame rate of more than 24 fps indicates an
(in terms of blockiness) acceptable quality (applies to 10.7 %
and misclassifies in 2.76 % of the cases). (iv) The majority of
the remaining cases are deemed not to be acceptable in terms
of blockiness. These observations are in line with Figure 5,
in particular with subfigure 5e. The factor two between the
stimuli-related frame scale threshold values 1/4 and 1/2 aligns
with the Weber-Fechner Law [25].

We now turn our attention to the decision tree for root
causes for blockiness and origins of performance issues, see
Figure 7, with diagonal-dominant confusion matrix:

predicted class

Good cond. Network imp. CPU limit.

ac
tu

al
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s Good conditions

Network impairments

CPU limitations

 30.82% 0.41% 1.12%
2.60% 32.18% 0.00%
0.32% 0.02% 32.52%
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Fig. 7: Decision tree for root causes. Green percentages indicate
the overall share of correct classifications (“trues”), red percentages
the overall share of incorrect classifications (“falses”) through the
corresponding rule.

We observe the following: (i) Good conditions are mainly
indicated for vanishing packet loss, the nominal frame rate, and
good encoding performance. (ii) CPU limitations are indicated
for vanishing packet loss, a sub-nominal frame rate together
with a high encoding value, pointing at sub-optimal yet good-
enough delivery on network level. (iii) Network impairments
are mainly observed in combination with non-vanishing packet
loss, and to a small extent for low frame rates in combination
with a low encoding value, all pointing at delivery issues.

Finally, we take a look at the decision tree for audio
distortions, shown in Figure 8, with confusion matrix:
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Fig. 8: Decision tree for audio distortion. Green percentages indicate
the overall share of correct classifications (“trues”), red percentages
the overall share of incorrect classifications (“falses”) through the
corresponding rule. The dominating distortions are marked with an
asterisk ?.

TABLE II: Comparison of accuracy, precision, recall and F-score pro-
vided by the C4.5 algorithm, for acceptability in terms of blockiness
and related, root causes, as well as for audio distortions.

2-level of blockiness – 2 classes: Acceptable | Not acceptable

Training set

Accuracy 0.921
Precision 0.932 | 0.902

Recall 0.945 | 0.880
F-score 0.938 | 0.891

Test set

Accuracy 0.976
Precision 0.991 | 0.940

Recall 0.975 | 0.978
F-score 0.983 | 0.959

Root causes – 3 classes: Good conditions | Network impairments | CPU limitations

Training set

Accuracy 0.955
Precision 0.913 | 0.987 | 0.967

Recall 0.953 | 0.925 | 0.990
F-score 0.933 | 0.955 | 0.978

Test set

Accuracy 0.961
Precision 0.955 | 0.989 | 0.921

Recall 0.938 | 0.963 | 0.993
F-score 0.946 | 0.976 | 0.962

Audio distortions – 2 classes: No audio distortion | Audio distortion

Training set

Accuracy 0.829
Precision 0.822 | 0.856

Recall 0.951 | 0.586
F-score 0.881 | 0.696

Test set

Accuracy 0.828
Precision 0.864 | 0.680

Recall 0.918 | 0.545
F-score 0.990 | 0.605

predicted class

No audio distortion Audio distortion
ac

tu
al

cl
as

s No audio distortion

Audio distortion

[
63.40% 3.30%
13.77% 19.53%

]
Indeed, the three top-most prominent conditions for audio
distortions (marked with an asterisk ? in the figure) come along
with high input level, limited jitter, and either high output
level or high received bit rate – or with jitter and jitter buffer
mismatch in combination with a high output level. Obviously,
high intensities bring about larger risks and sensitivities for
audible distortions.

B. Classification Performance and Discussion

Table II shows the classification performance. With P as be
the number of true positives, P̄ the number of false positives,
N the number of true negatives, and N̄ the number of false
negatives, respectively, we obtain the accuracy α = (P +
N)/(P + P̄ + N + N̄), the precision π = P/(P + P̄ ), the
recall ρ = P/(P + N̄) and the F-score φ = 2πρ/(π+ ρ). We
observe that acceptability of blockiness and in particular the
root causes yield high prediction performance values. In case
of the audio distortions, the audio distortion prediction could
be improved.

Indeed, the WebRTC statistics and the related decision trees
reflect the behaviour of the service close to the user. The
decision trees capture the combination of the control actions
and of the underlying network and CPU problems (as far as
they are handed through the stack, such as losses) that are of
relevance to the user. Some technical problems are transformed
into control actions on much larger time scales, that are well-
perceivable by the users and nicely reflected in the decision
trees, such as the role of the frame scale, cf. figures 6 and 5e.



V. CONCLUSIONS

In this paper, we explored the usefulness of machine learn-
ing to predict perceivable quality impairments and to identify
the corresponding root causes in the context of a WebRTC-
based, multi-party videoconferencing service. We focused
specifically on the detection and estimation of audio distortion,
video blockiness, and related root causes of performance issues
by applying machine learning algorithms to a range of features
extracted from WebRTC performance statistics. Despite the
limitations of the current dataset, the results are promising
and show that in most cases, a high level of accuracy can
be achieved. With a large amount of statistics being collected
during WebRTC calls, in particular in the case of multi-party
calls, our approach enhances existing measurements with data
analytics to provide deeper insight into user perceived service
quality, which goes beyond the limited insights into QoE issues
provided by network probes.

Take-aways from our work are as follows: (1) We demon-
strated the potential of applying ML for identifying WebRTC
performance issues and their origins. (2) We provide service
providers/developers, having access to the aforementioned
WebRTC API via the client browser and opportunities to adapt
service delivery and coding parameters, with a tool to monitor
and improve QoE. (3) Those service providers/developers will
be able to track customer satisfaction, identify root causes of
problems, and benchmark their networks against competitors.

In our ongoing and future work, the proposed approach
will be extended towards a more comprehensive view by (i)
running additional subjective studies (e.g., considering a larger
number of parties, asymmetric call conditions); (ii) including
additional features (e.g., extracted from physiological signals
from the user, or data from network probes); (iii) using
further ML algorithms and related hyper parameters; (iv)
automated annotation approaches; and (v) considering a more
complete spectrum of realistic and perceivable audio and video
impairments, as well as their simultaneous impact, which calls
for an extension of the current models and the development
of multi-dimensional models.
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