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‘All parts of the body which have a function, if used in 
moderation and exercised in labours in which each is 
accustomed, become thereby healthy, well-developed, 
and age more slowly, but if unused and left idle they 
become quickly liable to disease, defective in growth, 
and age more quickly’ 
 
Hippocrates, 460 BC-370 BC 

 

 

 

 

 

 

 

 

 

 



Hjertemuskelcellefunksjon og kalsiumhåndtering i dyremodeller med 
medfødt og ervervet maksimalt oksygenopptak 
 
Hjerte-karsykdommer er i dag årsaken til flest dødsfall i Europa. Selv om det er kjent at et 
høyt maksimalt oksygenopptak kan virke beskyttende mot hjerte-karsykdom både hos friske 
og de med økt risiko, vil studier av de underliggende mekanismene bidra med verdifull 
informasjon til utvikling av fremtidige retningslinjer for behandling og forebygging av hjerte-
karsykdom. Maksimalt oksygenopptak er hos de fleste av oss avhengig av hjertets slagvolum 
som igjen bestemmes av hjertemuskelcellenes kontraksjonsevne. For at hjertemuskelcellene 
skal kunne kontrahere kraftig er kalsiumhåndteringen i cellene avgjørende. Ett av de 
proteinene som er med bidrar til å styre dette er kalsium/ kalmodulin avhengig protein kinase 
II (CaMKII). CaMKII aktiviteten øker når hjertefrekvensen øker og det ser ut til at den økte 
aktiviteten er viktig for treningsresponsen i hjertemuskelcellene, mens hos hjertesvikt er det 
motsatt og den økte aktiviteten fører til funksjonsnedsettelse.  
 
De overordnede formålene med denne doktorgradsavhandlingen var å undersøke betydningen 
av et høyt medfødt oksygenopptak på hjertets remodellering etter infarkt, eventuelle 
forskjeller i treningsrelaterte tilpasninger i hjertemuskelceller fra rotter med ulik medfødt evne 
til å respondere på trening og om CaMKII er nødvendig for treningsrelaterte forbedringer i 
maksimalt oksygenopptak, hjertemuskelcellens kontraksjon og kalsiumhåndtering.  
 
Resultatene viste at rotter med høyt og rotter med lavt medfødt maksimalt oksygenopptak fikk 
like stor remodellering av hjerte og funksjonsnedsettelse etter infarkt, men at et høyt 
utgangspunkt fungerte som en ”buffer” på funksjonsnedsettelsen. Videre fant vi at høy 
intensitets aerobe intervaller ikke forbedret maksimalt oksygenopptak, 
hjertemuskelcellefunksjon eller kalsiumhåndtering i rotter med lav medfødt respons til 
trening. Dette indikerer at mangel på plastisitet i hjertet bidro til å hindre treningsrespons på 
maksimalt oksygenopptak. Det siste studiet viste at i friske mus er CaMKII nødvendig for å 
opprettholde kalsiumhomeostase i hjertemuskelcellene og for å oppnå optimal treningsrespons 
på hjertemuskelcellehypertrofi, funksjon og kalsiumhåndtering. Men paradoksalt nok førte 
CaMKII inhibering allikevel til en større økning i maksimalt oksygenopptak. 
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PREFACE 

The thesis is based on the three papers listed below, referred to by their roman numerals 

throughout the document. The studies of this thesis were carried out at the Department of 

Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and 

Technology during the years 2008-2011. 

 

Paper I 

Morten A. Høydal, Guri Kaurstad, Natale Rolim, Anne Berit Johnsen, Marcia N. Alves, Jose 

Bianco, Luiz Bozi, Lauren G. Koch, Steven L. Britton, Tomas O. Stølen, Godfrey L. Smith, 

and Ulrik Wisløff. High inborn aerobic capacity does not counteract deterioration of cardiac 

function and calcium handling after myocardial infarction. Submitted. 

 

Paper II 

Guri Kaurstad, Tomas O. Stølen, Jose Bianco, Luiz Bozi, Ragnhild Røsbjørgen, Anja Bye, 

and Ulrik Wisløff. Aerobic exercise response is dependent of cardiac plasticity. 

 

Paper III 

Guri Kaurstad, Marcia N. Alves, Ole J. Kemi, Natale Rolim, Morten A. Høydal, Helene 

Wisløff, Tomas O. Stølen, and Ulrik Wisløff. Chronic CaMKII inhibition blunts the cardiac 

contractile response to exercise training. Eur J Appl Physiol. 2012;112(2):579-588. 
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DEFINITIONS 

 

Aerobic fitness: The ability of the circulatory and respiratory system to supply oxygen during 

sustained physical activity. 

  

Cardiovascular disease: A disease of the heart and/or blood vessels. 

 

Calcium handling: The handling of calcium fluxes in the cardiomyocyte leading to the 

transient changes in intracellular calcium concentration during contraction and relaxation of 

the cardiomyocyte. 

 

Contractile function: The intrinsic capacity of the myocardium/cardiomyocyte to contract, 

independent of changes in pre- or after load, or other “external factors”. 

 

Ejection fraction: The fraction of blood pumped out of the left ventricle with each stroke 

(stroke volume/ left ventricle end-diastolic volume). 

 

Excitation- contraction coupling: The process from electrical excitation of the myocyte to 

contraction of the heart. 

 

Fractional shortening: The decrease in cardiomyocyte length from end-diastole to end-

systole divided by end-diastolic length. 

 

Heart failure: The hearts inability to generate adequate pumping of blood to the peripheral 

organs in order to meet their metabolic demand.  

 

Maximal oxygen uptake: The highest oxygen uptake that can be achieved by an individual 

during exercise with dynamic use of a large muscle mass; considered as the best indication of 

cardio respiratory capacity. 

 

Myofilament calcium sensitivity: The myofilament contractile response to a given amount 

of activating calcium in the cardiomyocyte. 
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Ventricular remodelling: Most commonly refers to changes in the hearts size, shape and/or 

function following myocardial infarction. 
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FREQUENTLY USED ABBREVIATIONS 

 

Ca2+:   calcium 

CaMKII:  calcium/calmodulin-dependent protein kinase II 

CVD:  cardiovascular disease 

ECC:   excitation- contraction coupling 

HCR:  high capacity runners 

HRT:  high responder training 

Hz:   hertz 

LCR:   low capacity runners 

LRT:   low responder training 

LTCC:  L-type calcium channel 

LV:   left ventricle 

MI:   myocardial infarction 

NCX:   sodium/calcium - exchanger 

PLB:   phospholamban 

PKA:   protein kinase A 

RyR2:   ryanodine receptor type 2 

SERCA-2a:  sarcoplasmic reticulum calcium ATPase 

SR:   sarcoplasmic reticulum 

T-tubules:  transverse tubules 

VO2max:  maximal oxygen uptake 
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BACKGROUND  

As early as the 1970s low aerobic fitness was recognized as a significant prognostic marker in 

patients with cardiovascular disease (CVD) (1). Since then substantial evidence has confirmed 

that aerobic fitness is a major independent predictor of morbidity and mortality (2-15) in both 

asymptomatic (3,16-18) and symptomatic men and women (9,13,19-22). Physical activity is 

also associated with reductions in CVD risk factors (10,14,23,24), however, aerobic fitness is 

shown to be the strongest predictor (6,17,21,25,26). For instance, Lee et al (17) recently 

reported that being fit but less active resulted in higher protection against mortality compared 

to being unfit and more active.  

 

Considering the importance of aerobic fitness in health and longevity, studying the underlying 

mechanisms of aerobic fitness may provide valuable information for developing future 

guidelines for CVD prevention and treatment. 

 

Maximal oxygen uptake 

Maximal oxygen uptake (VO2max) is considered the single best indicator and golden standard 

measure of aerobic fitness. VO2max was defined by Hill and Lupton (27) in 1923 as “the 

oxygen intake during an exercise intensity at which actual oxygen intake reaches a maximum 

beyond which no increase in effort can raise it”, and is a precise measure of whole-body 

capacity to transport and utilize oxygen during severe dynamic exercise with large muscle 

mass (28-30). VO2max is a physiological characteristic, expressed by the Fick equation: 

 

VO2max  = (HR · SV) · a-vO2 difference, 
 

where HR indicates heart rate, SV indicates stroke volume, and a-vO2 indicates arterio-venous 

oxygen difference (31). Stroke volume is the major determinant of improvements in cardiac 

output and therefore VO2max, as maximal heart rate remains unchanged or slightly decreased 

after long-term exercise training (32,33). 

 

According to Hills postulate, VO2max is limited by the cardiorespiratory systems’ capacity for 

oxygen transport to the working muscle mass, thus, VO2max is supply limited (27). This 

allegation has raised numerous disputes ever since, however today there seems to be a general 



 13

consensus of the original paradigm by Hill for healthy individuals. This is evidenced by the 

much larger capacity for oxygen extraction and utilization in the peripheral muscles compared 

to the central oxygen transport capacity in healthy individuals (31,34-37). However, some 

patients and untrained humans seem to be demand limited, making VO2max dependent on 

“peripheral factors” (37).  

 

VO2max as a predictor of health 

VO2max reflects several important prognostic markers for CVD. These markers include cardiac 

function, pulmonary function, endothelial function, oxygen-carrying capacity and utilization, 

and the autonomic nervous system (5,18), together this markers makes VO2max a valuable 

prognostic evaluator for morbidity and mortality (3,5,18). Recent studies suggest that holding 

a moderate to high VO2max prevents development of several life-style related diseases 

(6,17,38). Rats artificially bread for high and low capacity running (HCR and LCR) has 

provided proof for this concept. LCR rats have higher scores on CVD risk factors that 

constitute the metabolic syndrome (39) and also decreased longevity (24 vs. 32 months, 

respectively) compared to HCR rats (40). However, in humans even a small increase in 

VO2max of 1 metabolic equivalent (3.5 ml-1 · kg-1 · min-1) is sufficient to elicit substantial 

improvements in cardiovascular health and reductions in risk factors (6,41), whereas a 

decrease in VO2max of 5 ml-1 · kg-1 · min-1 corresponds to almost 56% higher prevalence of 

CVD risk factor clustering (42). Moreover, Aspenes et al (42) recently reported a VO2max 

threshold level of 44 ml-1 · kg-1 · min-1 in men and 35 ml-1 · kg-1 · min-1 in women, whereupon 

values below the threshold was associated with an unfavourable CVD risk profile. However, a 

association between VO2max and conventional CVD risk factors were still present in subjects 

above the threshold and those considered being fit (42).  

 

Factors influencing VO2max  

Intrinsic and acquired elements of VO2max 

Inherited components cause large variations in intrinsic and acquired (exercise response) 

VO2max among individuals (43-47). In healthy individuals VO2max has a heritability of ~50% 

even when data are adjusted for age, sex, body mass and body composition (44,48). VO2max 

response to exercise training also has a heritability of ~50% when adjusted for the parameters 
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mentioned above (45,49). Still, different combinations of genes appear to determine intrinsic 

VO2max (48,50,51) and exercise responsiveness (43,45,46,49,51), although, some studies have 

suggested the contrary (52,53). However, among the 720 healthy participants in the large 

HERITAGE Family Study, age, gender, race, and baseline VO2max combined contributed to 

only 11% of the variance in VO2max exercise response after 20 weeks of exercise training 

(45,46). Moreover, variations in VO2max response to standardized exercise programs has been 

shown to range from no gain to a doubling of VO2max, regardless of baseline values (43,46). 

Thus, the idea that more exercise produces greater response is not always true, even though 

exercise training is considered the main principal for improvements in VO2max (43,45,49,54). 

 

Although genetic components are known to determine a large portion of both intrinsic and 

acquired VO2max (50,55), the majority of studies on exercise training focus on mean effects 

and group results, ignoring the individual variability and the significance of these. Recently, 

some studies have focused on targeting genomic predictors of VO2max response to exercise for 

the purpose of genotyping human exercise responsiveness to promote genotype-tailored 

interventions to prevent and treat life-style related diseases in low responders (54,56). This is 

an important contribution; however, some basic physiological questions still remain. For 

example it is acknowledged that VO2max level is more related to morbidity and mortality than 

general physical activity, but the effect of intrinsic VO2max on cardioprotection is currently 

unknown. In addition, it is known that there are large individual differences in VO2max 

response to standardized exercise programs, but the cardiac mechanisms underlying exercise 

response have not been investigated despite the strong association between cardiac function 

and VO2max. 

 

Exercise training to improve VO2max  

Exercise training regimes have been extensively studied to determine the duration, intensity 

and frequency that provide the most optimal results on performance and health. High intensity 

interval training has been increasingly acknowledged to produce larger aerobic and 

cardiovascular improvements in both healthy individuals (57,58), patients with CVD and 

metabolic syndrome (22,23,59-61) compared to moderate intensity exercise. However, health 

recommendations of exercise intensity still vary from 40% to 90% of VO2max (62).  
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The basic principle of increasing VO2max through high intensity interval training was 

established in the early 1970s (63-65), and is physiologically based on the fact that, especially 

in endurance trained subjects, stroke volume does not plateau but rather increase up to 

intensities close to VO2max (28,32,37,66). Cardiac adaptations to high intensity exercise in 

healthy individuals include physiological hypertrophy of the heart, increased cardiac output 

due to improved systolic emptying rate, and enhanced diastolic filling, providing increased 

oxygen transport to the working muscles (14,58,67). High intensity exercise training (85-90% 

of VO2max) is bound to be performed as interval training as lactic acid starts accumulating 

after a few minutes, eventually resulting in fatigue of the skeletal muscles. Using intermittent 

active recovery periods at 50-60% of VO2max accumulated lactic acid is effectively removed 

and exercise intensity can be maintained for the remaining interval periods (68). Hence, the 

optimal interval duration to improve VO2max is suggested to be 3-5 minute intervals with 

active recovery periods in between (28,69).  

 

Myocardial infarction, cardiac function and VO2max  

Myocardial infarction (MI) is a common form of CVD. MI reduces oxygen supply to the 

cardiomyocytes, which in turn results in reduced stroke volume and insufficient oxygen 

supply to peripheral tissue. These MI-induced changes in cardiac and peripheral function also 

cause a reduction in VO2max. MI is most often caused by atherosclerotic plaque formation in 

one or more major coronary arteries, resulting in occlusion of the arteries. The subsequent 

ischemia results in MI which causes apoptosis if perfusion is not restored (70). The 

endocardium dies faster than the epicardium, as it is more vulnerable to energy-starvation, and 

the extent of MI is determined mainly upon how distal the occlusion occurs (71). MI induces 

ventricular remodelling that involves changes in ventricular structure, shape, and size, such as 

myocardial wall thinning, expansion of the infarcted area, and left ventricle (LV) chamber 

dilatation (72,73). These progressive changes contribute to the overall process of chamber 

enlargement due to pathological hypertrophy with elongation and widening of 

cardiomyocytes. The extent of remodelling is directly proportional to infarct size (74). 

Reduced LV contractile function after MI causes decreased systolic blood pressure and 

increased LV end-diastolic pressure, leading to a rightward-shift of the diastolic pressure-

volume relationship and subsequent reduced VO2max (73,75).  
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Cellular mechanisms of alterations in VO2max  

Although cardiomyocytes only account for ~20% of the total cardiac cell population they 

account for 70-90% of the myocardial mass (33,76), and have been widely used to study the 

cellular basis of ventricular function. Exercise-induced improvements in VO2max partly derive 

from alterations in cardiomyocyte function (77) as cardiomyocyte dimension, contractility and 

calcium (Ca2+) handling are associated with whole-body VO2max (69,77-80). 

 

Cardiomyocyte hypertrophy 

Chronic endurance exercise training is often associated with functional and morphological 

changes in the heart such as physiological hypertrophy, a beneficial mechanical adaptation 

that contributes to increased stroke volume in response to increased demands (81). 

Physiological hypertrophy involves proportional eccentric (elongation) and concentric 

(widening) cardiomyocyte growth, LV chamber enlargement and proportional change in wall 

thickness and mass (82-84). The magnitude of hypertrophy appears to be intensity-dependent 

as high intensity interval training is known to induce larger hypertrophic response than 

moderate intensity training (67,69,85). The Insulin-like Growth Factor 1 (IGF1)/Akt pathway 

has been proposed as the significant signalling pathway in physiological hypertrophy, 

demonstrated by complete absence of exercise-induced hypertrophy when the IGF1/Akt 

signalling cascade was disrupted (86,87). Physiological hypertrophy regresses when exercise 

training is terminated (77).  

 

Pathological hypertrophy is initially a compensatory response to chronic overload that 

normalizes wall stress and permits normal cardiac function. Pathological remodelling occurs 

after cardiac injury including myocardial infarction, pressure overload, inflammatory disease 

and volume overload that increase the mechanical stretch placed on the cardiomyocytes (88). 

The extent of hypertrophy after MI is related to the magnitude of initial damage to the 

myocardium, infarct healing, and ventricular wall stress (89). The most significant pathways 

for pathological hypertrophy include activation MAPK-kinases and several fetal gene 

programs, and release autocrine and paracrine humoral factors such as; angiotensin II, 

endothelin 1 and IGF1 (for detailed review see Bernardo et al (88)) (90). In time, pathological 

hypertrophy becomes detrimental, associated with contractile dysfunction, increased 

interstitial fibrosis, apoptosis (cell death), and potentially dilation of the hypertrophied heart 

that may ultimately lead to heart failure (91). During the transition from compensatory 



 17

hypertrophy to decompensation, increased activation of calcineurin and Ca2+/calmodulin 

dependent protein kinase II (CaMKII) is prominent features that may cause arrhythmic events 

(92-97). Nuclear CaMKII (together with PKD) can activate myocyte enhancer factor 2 

(MEF2) and cause hypertrophy (98,99). The significance of CaMKII in pathological 

hypertrophy is demonstrated by the reduced remodelling during pressure overload in CaMKII 

inhibited mice (97,100). Moreover, exercise training has been shown to attenuate cellular 

hypertrophy in failing cardiomyocytes from post MI rats (79,101). Preliminary data suggest 

that exercise reduce cardiomyocyte volume in an intensity dependent manner (unpublished 

work). However, the cellular mechanisms for exercise-induced attenuation of pathological 

hypertrophy remain unclear. 

 

Cardiomyocyte contractile function 

Improved systolic and diastolic functions of the heart are central features associated with 

regular exercise training (32,33). Exercise-induced adaptations in cardiomyocyte function 

provide the cellular rationale for improved stroke volume with enhanced ejection of blood at 

systole and improved relaxation and filling rate during diastole. A widely held hypothesis is 

that exercise-induced alterations in cardiomyocyte contractile function are intensity-

dependent (69,77,79,80,102-104). This hypothesis is supported by Kemi et al (69) who 

reported larger effect on cardiomyocyte contractile function after high intensity exercise (85-

90% of VO2max) compared to moderate intensity exercise (65-70% of VO2max). There are also 

a few studies that report unaltered cardiomyocyte contractile function after exercise training 

(105,106). However, this discrepancy is most likely explained by differences in exercise 

intensity. 

 

Cardiomyocytes from failing hearts have reduced contraction and slowed relaxation compared 

to healthy cardiomyocytes. This contractile dysfunction in failing ventricles is caused by a 

combined effect of abnormal loading in vivo (107) and intrinsic properties of the 

cardiomyocytes (108). In rats, exercise training has been demonstrated to restore 

cardiomyocyte contractility from failing hearts to levels comparable to sham-operated rats, 

both after high intensity aerobic interval training and high intensity sprint training (79,109). 
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Cardiomyocyte Ca2+ handling  

Ca2+ handling in healthy cardiomyocytes 

Cardiomyocyte contractile function is closely related to Ca2+ handling (108,110) and 

contraction can be changed either by altering amplitude or duration of Ca2+ transients or 

altering myofilament Ca2+ sensitivity (110). The process from electrical excitation of the 

myocyte to cardiomyocyte contraction, excitation-contraction coupling (ECC) (Figure 1), is 

mainly regulated by Ca2+ (110,111). Depolarization of the sarcolemma and the transverse (T-) 

tubules during action potential cause Ca2+ entry through the voltage-dependent L-type Ca2+ 

channels (LTCC). In addition a small amount of Ca2+ enters the cell through the Na+/Ca2+ 

exchanger (NCX) in reverse mode (112). These Ca2+ currents activates the ryanodine receptor 

type 2  (RyR2) and triggers the release of larger amounts of Ca2+ from the sarcoplasmic 

reticulum (SR) through RyR2, termed Ca2+ induced Ca2+ release. This raises the cytosolic 

Ca2+ concentration, and Ca2+ binds to troponin C activating the myofilaments leading to the 

cardiomyocyte contraction (systole).  

 

 
Figure 1. Ca2+ cycling during excitation- contraction coupling. Inset; the time course of an action potential (AP), 
Ca2+ transient ([Ca]i) and contraction. NCX, Na+/Ca2+ exchange; ATP, ATPase; PLB, phospholamban; SR, 
sarcoplasmic reticulum. Reprinted by permission from Macmillian Publishers Ltd: Nature (110), copyright 2002. 
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Relaxation (diastole) occurs when the cytosolic Ca2+ is removed (110,113,114). To maintain 

Ca2+ homeostasis the same amount of Ca2+ that entered the cell must also be removed out of 

the cell. Ca2+ is transported back to the SR by the SR Ca2+ ATPase (SERCA-2a), or is 

extruded across the sarcolemma by the NCX. A small amount of Ca2+ is also removed by the 

sarcolemmal Ca2+ ATPase (PMCA) and the mitochondrial Ca2+ uniport (110).  

 

CaMKII is a key mediator fine-tuning ECC that has drawn a lot of attention the recent years 

(111,115,116). CaMKII is a serine-threonine kinase that is activated by increased intracellular 

Ca2+ and is expressed abundantly in the heart (For detailed review, see (111,115,117)) 

(115,116). There are four different CaMKII isoformes (α, β, γ, δ), with the δ isoform 

predominant in the heart (115,117-119). CaMKII becomes autophosphorylated at threonine 

(Thr)287 and by oxidation of a pair of methionines 281/282 at the regulatory domain. When 

CaMKII is autophosphorylated it remains active after Ca2+/calmodulin has dissociated from 

its binding region. Once in the autophosphorylated state, dephosphorylation by protein 

phosphatases and reversed oxidation by methionine sulfoxide reductase A is necessary for 

complete inactivation (111). By phosphorylation of several Ca2+ handling proteins in the 

cardiomyocyte, including the LTCC, RyR2 and phospholamban (PLB) on the SERCA-2a, 

CaMKII can regulate/dysregulate Ca2+ cycling in health and disease (Figure 2) (111,115,116).  

 

                                                       
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Effects of CaMKII on excitation-contraction coupling. CaMKII phosphorylates several Ca2+ handling 
proteins, including phospholamban (PLB), possibly SR Ca2+ ATPase (SERCA), SR Ca2+ release channels (RyR), 
L-type Ca2+ channels (ICa), Na+ channels and K+ channels. Maier LS & Bers DM 2007 (111), by permission of 
Oxford University Press.  
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Ca2+ handling in healthy exercise-trained cardiomyocytes 

Exercise training is generally proven to enhance Ca2+ handling, in conjunction with 

improvements in cardiomyocyte contractility. Kemi et al (69) observed an association 

between faster contraction-relaxation rates that corresponded with faster Ca2+ rise and decay 

of twitch transients in exercised cardiomyocytes. Several possible mechanisms have been 

suggested to explain the increased rate of rise in Ca2+ transients after exercise training, 

including a more effective coupling between LTCC and RyR2 Ca2+ release (106), and greater 

Ca2+ entry across the plasma membrane due to prolonged action potentials (121). The faster 

diastolic Ca2+ decay is at least partly explained by improved SERCA-2a activity through 

increased SERCA-2a levels and increased SERCA-2a/PLB ratio after exercise training 

(79,80,103,122). This contributes to increased relaxation and improves contraction by 

facilitating SR Ca2+ uptake, making more Ca2+ available for the next contraction (33,103,110). 

Furthermore, when the inhibition of SERCA-2a by phosphorylation of the PLB by protein 

kinase A (PKA) or CaMKII is relived SERCA-2a can increase its activity two- to threefold 

(123-126). The importance of exercise-induced increase in CaMKII activity is currently 

unknown and might be an indirect effect of increased intracellular Ca2+ cycling (103,127). 

Moreover, the exercise-induced increase in myofilament Ca2+ sensitivity in cardiomyocytes 

that enhances Ca2+ handling and thus cardiomyocyte contractility (79,80,103), might be 

related to increased CaMKII activity. Interestingly, acute CaMKII inhibition after an exercise 

training intervention has been found to substantially blunt the exercise-induced improvements 

in cardiomyocyte inotropy and lusitropy (103). This indicates that CaMKII is potentially 

necessary for exercise-induced adaptations in cardiomyocytes. Despite these findings, there 

exists no further literature to support this hypothesis, and whether the outcome of regular 

exercise training is dependent on CaMKII activation is currently not known. 

 

Ca2+ handling in failing cardiomyocytes 

Alternations in normal cardiomyocyte Ca2+ handling are associated with contractile 

dysfunction (128,129), increased propensity for cardiac arrhythmias and sudden cardiac death 

in failing cardiomyocytes (96,108,128,130-135). Abnormal Ca2+ handling is caused by 

defective Ca2+ handling by sarcolemma and/or SR channel proteins, and include prolonged 

Ca2+ transients, depressed SR Ca2+ content and/or SR Ca2+ release and reduced SERCA-2a 

activity (128,130-132,136-138). Recent studies have shown that CaMKII has a functionally 

effect on myocardial pathology (139-141). CaMKII expression and activity is increased in 
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failing hearts (142,143) promoting dysregulation of Ca2+ homeostasis and disruption of ECC 

(97,117,119,143-146), playing an important role in arrhythmogenesis (94,96,143,147).  

 

Increased diastolic SR Ca2+ leak is a common feature in failing cardiomyocytes 

(143,148,149). Spontaneous Ca2+ release from RyR2 cause delayed after-depolarization that 

give rise to a transient inward Ca2+ current during the diastolic period (150), increasing the 

propensity for cardiac arrhythmias and sudden cardiac death (108,130,151). Chronic 

hyperphosphorylation of RyR2 by PKA (149) and CaMKII (152-154) cause increased 

diastolic SR Ca2+ leak via RyR2 by increasing RyR2 Ca2+ sensitivity and open probability 

(143,152,155,156). Combined with effects of depressed SERCA-2a activity (143), and 

increased NCX activity (132,157,158) diastolic SR Ca2+ leak reduces SR Ca2+ load, thereby 

reducing Ca2+ transient amplitude in failing cardiomyocytes (132). Due to the crucial role for 

CaMKII activity on diastolic SR Ca2+ leak (143,152,153,155) inhibition of CaMKII may 

serve as a therapeutic prevention of heart failure progression (95,97).  

 

Ca2+ handling in exercise-trained failing cardiomyocytes 

Exercise training produces several positive effects on a failing heart (22,58,79,159,160). 

These effects include decreased diastolic Ca2+ levels, increased systolic Ca2+ release and 

normalization of β–adrenergic response, myofilament Ca2+ sensitivity, faster rise and decay of 

intracellular Ca2+ transient, and increased SERCA-2a expression (22,33,58,79,161-163). 

Studies on animal models with pathologically increased CaMKII activity report a reduction in 

CaMKII activity after exercise training, associated with improved cardiomyocyte function 

linked to increased SERCA-2a activity and reduced SR Ca2+ leak through RyR2 (104,127). 

Interestingly, CaMKII inhibition restores Ca2+ homeostasis, normalizes ECC function and 

reduces myocardial pathological remodelling by improving a complicated mixture of CaMKII 

regulated pathways, somewhat similar to the effect of exercise training 

(94,95,97,119,139,147,148,164-172). However, the effect of combining pharmacological 

CaMKII inhibition and exercise training has not been explored.  

 

Transverse-tubule network 

T-tubules in mammalian ventricle myocytes are invaginations of the plasma membrane along 

the Z-line regions along the longitudinal axis forming a complex network that facilitates 
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coordinated contractions and efficient ECC with uniform depolarization across the whole cell 

(173,174). Important proteins for ECC such as LTCC and NCX are concentrated at the T-

tubules, while RyR2 and SERCA-2a are located in close proximity at the junctional SR (174). 

Local Ca2+ signalling complexes, called couplons, are present at the junction between 

sarcolemma (both T-tubules and surface) and the SR (110). There is ~20,000 couplons in the 

cardiomyocyte whereupon each couplon consist of 10-25 LTCCs and 100-200 RyR2s (175). 

All couplons are under local control, and activated by action potentials and subsequent inward 

Ca2+ currents (175). Synchronous contraction of the cell requires simultaneous stimulation of 

all couplons. 

 

T-tubules become disorganized and reduced in density in CVD (176,177) causing disruption 

of the ECC with reduced Ca2+ release synchrony (104,177). The structural remodelling of T-

tubules starts at the LV and penetrates to the right ventricle as disease progresses (176). The 

reduced T-tubule density might reflect a differential organization in relation to additional 

sarcomeres caused by pathological hypertrophy or a true loss of T-tubules in the given area. 

However, a recent study indicated that T-tubule density may be independent of cell size as 

exercise-induced physiological hypertrophy did not reduce relative T-tubule density (160). 

Moreover, high intensity exercise training has been demonstrated to partly restore T-tubule 

density and T-tubule function after cardiac remodelling following cardiomyopathy and MI 

(104,160), supporting the idea that T-tubules have a degree of plasticity (177).  
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AIM OF THE THESIS AND HYPOTHESIS 

The overall aims of the thesis were 1) to determine the role of intrinsic VO2max upon cardiac 

remodelling after MI and 2) to determine exercise-induced adaptations in cardiomyocytes 

from rats with different in-born ability to respond to endurance training, 3) to determine 

whether CaMKII is important in defining the exercise-induced improvements in VO2max, 

cardiomyocyte contractile function and Ca2+ handling.  

 

We hypothesized that; 

1) the higher aerobic capacity in HCR rats would yield a cardioprotective effect after MI 

compared to the LCR rats that already have established risk for CVD. 

2) high intensity exercise training would improve VO2max, cardiomyocyte contractility 

and Ca2+ handling and induce cardiac hypertrophy in high responder rats (HRT) but 

not in low responder rats (LRT). 

3) chronic CaMKII inhibition would abolish the normal cardiac exercise response for 

VO2max and cardiomyocyte function. 

 

The specific aims of the individual papers were: 

Paper I:  Determine the role of intrinsic VO2max on cardiac contractile function and Ca2+ 

handling in LCR vs. HCR rats after induction of MI by ligation of the left 

anterior descending coronary artery. 

 

Paper II:  Determine the exercise response on VO2max, cardiomyocyte dimensions, 

function and Ca2+ handling in the HRT/LRT model after a high intensity 

interval training program.   
 

Paper III: Determine the effect of chronic CaMKII inhibition upon VO2max and 

cardiomyocyte function during the course of an exercise training program in 

healthy mice. 
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METHODOLOGICAL CONSIDERATIONS 

The following section contains considerations about the main methodologies used in the 

different studies that are included in this thesis. Detailed method descriptions are presented in 

the original papers. 

 

Animal models 

In-dept studies of cardiomyocyte function in experimental settings require use of animal 

models. In the present studies we chose to use rat and mice models that are supposed to mimic 

human physiology. All in-vivo interventions were done during the animals’ dark cycle, as 

rodents are normally active at night. The experiments were approved by the Norwegian 

Council for Animal Research, which was in accordance with Guide for the Care and Use of 

Laboratory Animals (National Institutes of Health Publication No. 85-23, revised 1996).  

 

Artificial selection of rats 

Two rat models have been established by artificial two-way, selective breeding for high and 

low capacity runners (HCR/LCR) (55,178), and for high and low responders to training 

(HRT/LRT) (51). The initial hypothesis for these rat models was that functional alleles at 

multiple interacting loci affecting intrinsic properties would be enriched or fixed between the 

extreme ends of selection within each animal model. Both rat models are derived from 

genetically heterogeneous rats obtained from the National Institute of Health, USA, (N:NIH 

stock). To maintain the heterogeneous genetic lines a rotational mating paradigm has been 

used that minimizes inbreeding (1.25% per generation) (178). In comparison to inbred strains, 

outbred selected lines maintain genetic complexity (179). Finally, HCR/ LCR and HRT/ LRT 

lines may serve as reciprocal controls for unknown environmental changes due to the 

concurrent breeding of each line in both rat models.  

 

High and low capacity runners (HCR/LCR) 

In paper I we examined the effect of intrinsic VO2max on cardiac remodelling after MI. For 

this purpose we used female HCR and LCR rats from the 22nd generation, described in detail 

elsewhere (178). In brief, rats were selected for breeding based on their intrinsic treadmill 

running capacity. The HCR rats represents a ~400% higher inborn maximal running distance 
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and a ~30% higher inborn VO2max than the LCR rats (Figure 3A & B). As a consequence of 

selecting purely upon running capacity this model gave LCR rats that had a high-risk 

cardiovascular profile (39,180,181). These data obtained from a contrasting heterogeneous 

model system provide strong evidence that genetic segregation for aerobic exercise capacity 

can be linked with cardiovascular disease and is useful for deeper mechanistic exploration.  
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Figure 3. Intrinsic running capacity measured as maximal running distance (A) and as VO2max (B) in high 
capacity runners (HCR) and low capacity runners (LCR), data presented as mean values ± SD. 
 

High and low responders to training (HRT/LRT) 

Female rats from the 7th generation of artificial selection for high or low response to training 

were included for experiments on cardiac exercise response and from the 9th generation for 

experiments on cardiac protein expression and histochemistry in paper II. In contrast to 

HCR/LCR, the HRT/LRT rat model is based on selection for extreme ends of response to 

exercise training measured as change in maximal treadmill running distance after 24 days of 

modest treadmill exercise training (Figure 4) (51). The exercise program resembled the 

general guidelines prescribed for man (moderate brisk walking or jogging for 30 minutes, 3 

times a week) to make sure that all rats were able to complete the entire program independent 

of strain or sex (55). The six highest and six lowest responding rats of each sex was selected 

to mate for the next generation. Over generations these rats have developed contrasting 

phenotypes and gene networks providing a powerful tool to determine mechanisms of 

response to exercise training. 
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Figure 4. Relative gain in running distance as response to exercise training in high responders to training (HRT) 
and low responders to training (LRT), data presented as mean values ± SD. 
 

Chronic CaMKII inhibition in mice 

To examine the impact of CaMKII on normal function and exercise-induced alterations in the 

heart we chronically inhibited CaMKII in C57 BL/6J mice (Møllegaard Breeding Center, 

Lille Skensved, Denmark) in paper III. CaMKII inhibition was obtained by use of the potent, 

selective and cell-permeable KN-93 (2-[N-(2-Hydroxyethyl)-N-(4-methoxybenzenesulfonyl)] 

amino-N-(4-chlorocinnamyl) –N-methylbenzylamine; Alexis-Biochemical, Enzo Life 

Science, PA). KN-93 was first generated as a synthesized methoxybenzenesulfonamide 

compound in the early 1990s, and has been widely used to study CaMKII ever since. KN-93 

inhibits CaMKII by competing for the calmodulin binding site on the regulatory domain 

(182). The dosage administered in paper III was based on previous studies which reported a 

dose-dependent effect of KN-93 on CaMKII inhibition (97,167). Daily injections of 10 

µmol/kg KN-93 have been reported to produce similar effect on LV contraction 

measurements as the genetically CaMKII-inhibited AC3:I mice (97,147).  

 

Potential non-specific effects of KN-93 have been noticed, such as acting as CaMKII-

independent ion channel antagonists, and affecting glucose-induced and forskolin-stimulated 

insulin release. Most important for our study were the potential inhibitory effects on the 

LTCC (167,183,184). We did not control for this side effect, but Sossalla et al (165) have 

controlled for the effect of KN-93 on LTCC against autocamtide-2 related inhibitory peptide 

(AIP) effects and found no change in LTCC current. Moreover, studies reporting LTCC 

inhibition were acute cell experiments, and other studies applying KN-93 injections in vivo 

have not reported any specific side effects (97,147). KN-93 was diluted in dimethyl sulfoxide 

(DMSO; C2H6OS; Sigma-Aldrich, St. Louis, MO), which also has minor concentration-
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dependent adverse effects (185). These side effects were minimized by administering small 

dosages of DMSO in paper III (0.04- 0.05 mL per injection). To control for potential side 

effects of DMSO sham mice were injected with the same amount of DMSO. Therefore, it is 

unlikely that DMSO influenced the observed differences between the groups. Urine sticks 

were used to test for glucose in the urine; there were no indications of such in any of the 

groups. These results suggest that KN-93 did not affect glucose-induced insulin release in the 

present study. After euthanasia mice were sent for pathological examinations of the vital 

organs at the Norwegian Veterinary Institute, Oslo, Norway to control for side effects of 

chronic KN-93 injections on aerobic fitness and cardiac function. All vital organs (including 

hearts) were examined to exclude that any major side effects had influenced the results. In 

brief, necropsy was performed on 17 of the animals, specimens from heart, liver, kidney, 

spleen, intestine and brain were fixed in 4 % neutral buffered formaldehyde and processed 

routinely for light microscopy. Sections were cut at 5 µm and stained with hematoxylin and 

eosin. The pathologist made no observations that would have altered aerobic fitness (except 

from discomfort from injections) or cardiac function. To minimize potentially negative effects 

of the injections on exercise performance, injections were administered after the exercise 

session. 

 

Experimental interventions 

Exercise training program 

To optimize the effect of exercise training, high intensity aerobic interval training was 

performed on rats and mice in paper II and III. Animals were trained 5 days/week for 6 

weeks, running uphill (25˚) on a treadmill. Training sessions consisted of a 10-minute warm 

up at 50-60% of VO2max, whereupon exercise then alternated between 4-minute intervals and 

2-minute active breaks at 85-90% and 50-60% of VO2max, respectively, for 90 minutes in 

paper II and 60 minutes in paper III. VO2max was measured at the beginning of every training 

week to ensure that the desired exercise intensity was obtained and to adjust for exercise-

induced improvements in VO2max and running economy (67,85). Sedentary animals were only 

tested before and after the exercise training period. This model of high intensity aerobic 

interval training was established by Wisløff et al (67), and has been proven efficient for 

inducing cardiovascular adaptations in both clinical and experimental studies 

(22,58,60,69,80,85,104,186,187).  
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Induction of myocardial infarction 

To induce acute MI in paper I, we used ligation of the descending coronary artery through 

thoracotomy. This is a well described and recognised experimental method that provides quite 

reproducible infarct sizes and serves as a rodent simulation of human MI (71,73,188,189). 

Ligation causes an MI in the LV free wall typically characterized by pathological remodelling 

such as increased lumen, dilated LV, thinning of the non-infarcted posterior wall and 

hypertrophy (190). Subsequent depressed contraction, slowed relaxation and impaired Ca2+ 

handling is most pronounced one week after MI is induced, followed by a partial recovery 

towards the fourth week, whereupon it remains unchanged but impaired for several weeks 

(78). Scar formation, as fibroblast proliferation and collagen deposition is completed within 

six weeks, and additional augmentation in ventricular volume will proceed until three months 

even in moderate sized infarctions (20-40% of the LV)(89).  

 

Although the histological evolution and scar formation are comparable in humans and rats 

(71,190), there are some notable limitations to this rat MI model in comparison to human MI. 

Experimental rat MI models and human MI naturally divert in origin (191). MI is usually 

induced in relatively young rats that does not reflect the analogous pathogenesis of coronary 

disease and subsequent MI normally seen in humans, which likely results from symptoms 

evolved over several years due to atherosclerosis, obesity, diabetes or hypertension (189). 

However, rats in paper I were close to one year at MI induction, and LCR rats possessed some 

of the symptoms above, providing a closer association to human MI (39). Moreover, 

variability in induced MI size among rats is inevitable and affects the remodelling process. In 

large MI (>40-50% of LV circumference) symptomatic signs of heart failure will develop 

over time (189,190,192), whereas hypertrophy of surviving myocardium in small MI (<20% 

of LV circumference) may normalize LV wall stress resulting in minimal pathological 

remodelling (192). All experiments were performed after completion of the acute remodelling 

phase. 

 

Experimental protocols  

Testing of maximal oxygen uptake 

Aerobic fitness was measured as VO2max, which represents the upper limit of aerobic exercise 

capacity (28). VO2 increases with power output in dynamic work with large muscle masses up 
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to a level where it reaches a plateau despite increasing workloads. VO2max was assessed 

before, during and after the exercise training period in paper II and III. In paper I VO2max was 

tested prior to cardiomyocyte experiments.  

 

      
Figure 5. Illustration of VO2max testing of mice. 
 

We determined VO2max by uphill (25°) treadmill running until exhaustion in a specialized 

metabolic chamber that allows us to register and control the amount of air volume passing 

through the chamber and analyse the fractions of oxygen and carbon dioxide (Figure 5). The 

use of inclination simplifies the assessment of animals’ VO2max and ensures reaching maximal 

work intensity, since performance is not limited by running speed (67,85). Such a full-body 

exercise taxes the cardiovascular system and VO2 maximally. Tests were started at low-

moderate intensity (0.10 m·sec-1 for mice, and 0.12 m·sec-1 for rats), whereupon running speed 

was increased by approximately 0.03 m·sec-1 every second minute until the animals were not 

able to maintain velocity and VO2 levelled off despite increasing work loads. This method has 

been thoroughly tested, and found reliable on rats and mice (67,85,186). To consider 

differences in body weight, VO2max was expressed in relation to body weight raised to the 

power of 0.75 in paper I and III (193). 

 

Familiarization to the treadmill is essential for exercise training and testing outcomes since it 

reduces stress associated with the treadmill and handling procedures. Prior to VO2max tests and 

exercise training rats and mice were allowed a gentle introduction to the treadmills, where 

they were kept on the treadmill at rest and subsequent low speeds. There is an electrical gird 

at the end of the running lanes giving electrical pulses of 0.2 mA causing discomfort but not 

pain. During the familiarization period this gird was turned off and when applied, animals 
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learned quickly to avoid the electrical gird, and thus, exercise intensity could be carefully 

controlled.  

 

Echocardiography in rats and mice 

Global adaptations on cardiac morphology and work was evaluated by echocardiography on 

animals in paper I and III using a single-element mechanical transducer with a center 

frequency of 30 MHz (Vevo 770, VisualSonics, Toronto, Canada) and digital ultrasonic 

system. Echocardiography is considered a feasible method for obtaining good-quality 

measurements of cardiac morphology and physiology in both rats and mice (192,194-199). 

Echocardiography is also validated for characterization of pathological hypertrophy in hearts 

(79,192), whereas the value in determining exercise-induced physiological hypertrophy has 

been questioned and currently measurements of isolated cell dimension are considered more 

accurate. Body composition and anatomical properties might limit echocardiography 

recording quality, and a future high-resolution echocardiography is necessary to obtain better 

quality measurements of exercise-induced hypertrophy comparable to post-mortem and 

isolated cell dimension measures.  

 

Echocardiography in conscious animals has minimal effect on measurements of cardiac 

function (196,199), however it requires substantial training of animals to minimize stress, and 

is also difficult to practice in rats, due to size. To control for potential cardiodepressive effects 

of anesthesia on echocardiography measurements standardizing the anesthetic protocol is 

essential. We performed echocardiography in self-breathing rats and mice exposed to a 

mixture of isoflurane and oxygen. Isoflurane anesthesia lowers breathing rate in a 

concentration-dependent manner, but the effect on cardiac function is considered to be small, 

and isoflurane is preferred over injectable anesthetics (197,200). During echocardiography, 

respiration and heart rate were closely monitored, and the amount of isoflurane (2%) was kept 

stable for all experiments. It is therefore unlikely that anaesthesia would have influenced the 

observed differences between groups. Following echocardiography, animals awoke almost 

immediately, indicating a light anaesthesia.  
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Cardiomyocyte experiments 

Significant correlation between cardiomyocyte contractile function and in vivo cardiac 

function facilitates the use of isolated cardiomyocytes in studies on cellular mechanisms of 

aerobic fitness and CVD (69,77-80). In the present thesis cardiomyocyte experiments were 

performed in paper I, II and III. 

 

Cardiomyocyte isolation 

Animals were anesthetized with isoflurane and heparinised hearts were rapidly removed and 

placed in an ice-cold perfusion buffer. Different perfusion buffers were used when isolating 

cardiomyocytes from rats and mice as described in detail in the respective papers. This is 

because mice cardiomyocytes are more sensitive to Ca2+ concentrations during the isolation 

process than rat cardiomyocytes. In brief, rat cardiomyocytes were isolated as previously 

described with a modified Krebs- Henseleit Ca2+ free buffer (67,80,201), whereas mice 

cardiomyocytes were isolated in a HEPES-based physiological solution, also previously 

described (202,203). Aorta was connected to an aortic cannula on a standardized Langendorff 

retrograde perfusion system and the hearts were cleaned by perfusion of Krebs buffer in paper 

I and II and Hepes buffer containing ethylene glycol tetra acetic acid (EGTA) in paper III. 

When the hearts were clean the perfusion solution was switched to a Krebs (paper I and II) or 

HEPES-based (paper III) solution (zero Ca2+) containing the enzyme collagenase II 

(Worthington, NJ, USA) and bovine serum albumin (Sigma Aldrich, MO, USA). Collagenase 

breaks down the peptide connections in the collagen, enabling separation of the cells. Hearts 

were removed from the perfusion system before the LV was separated and cut into small 

pieces. The tissue was lightly shaken for 10 minutes and the non-digested tissue filtered out 

by a nylon mesh. Cells were centrifuged at 600 rpm (at 37°) for 30 seconds whereupon the 

supernatant was gently removed and new buffer added. This was repeated two times to 

remove dead cells and to subsequently increase the Ca2+ concentration in the HEPES solution 

stepwise to 1.2 or 1.8 mM. In paper I the infarcted area was removed when the heart was cut 

down from the aorta cannula. Cardiomyocytes in paper I was isolated at least 24 hours after 

the VO2max test, and in paper II and III, cardiomyocytes were isolated 24 hours after the last 

exercise training session to measure the chronic adaptation to exercise training. Our research 

group has over several years developed extensive experience in cardiomyocyte isolation. 

However, we had fewer viable cells before centrifugation from mice hearts in paper III than 

expected. This is a limitation to the cardiomyocyte measurements in paper III. In paper I and 
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II we had up to 75% viable cells before centrifugation in line with previous cardiomyocyte 

isolation experiments in our laboratory, and an average of 10 cells from each animal were 

studied. Viable, rod-shaped cells without visible morphological alterations who responded 

adequately to electrical stimulation were used for experiments, and analyses were based on 

these cells.  

 

Cardiomyocyte contractile function and Ca2+ handling 

Cells attached to coverslips rested for 1 hour in HEPES buffer before loading. 

Cardiomyocytes were loaded with 2 µM Fura-2/AM (Molecular Probes, Eugene, OR, USA) 

in order to measure contractile function and Ca2+ cycling simultaneously. The membrane-

permeable derivative of the ratiometric Ca2+ indicator Fura-2/AM has acetoxymethyl (AM) 

ester attached to it (204). Therefore, cardiomyocytes were left in HEPES buffer for 20 

minutes of de-esterfication after the 30 minutes of Fura-2/AM loading in room temperature 

before experiments were started. During de-esterfication nonspecific cellular esterases 

hydrolyze AM which liberates the Ca2+ sensitive indicator and ensures adequate Fura-2 

loading. To avoid incorrect differences between cells a strict loading procedure was used for 

all experiments. This is especially important for fractional shortening, due to the depressive 

effect of Fura-2/AM on cardiomyocyte shortening. In all three papers rod-shaped cells 

without obvious morphological alterations, responding to electrical stimulation were included 

for cardiomyocyte experiments. During the experimental protocol cardiomyocytes in paper I 

were superfused in 1.8 mM Ca2+ HEPES-based solution, in paper II superfused with 1.2 mM 

Ca2+ HEPES-based solution, whereas cardiomyocytes in paper III were field stimulated in 1.8 

mM Ca2+ HEPES-based solution without perfusion. Higher Ca2+ contents in solutions (1.8 

mM vs. 1.2 mM) increase the electrical stimulated Ca2+ transients. To clarify differences in 

cardiomyocyte function between groups in paper I and III we used experimental solutions 

with higher Ca2+ content, since mice cardiomyocytes and failing cardiomyocytes have 

basically lower Ca2+ transients than healthy rats. All perfusion solution was kept at 37˚C 

during experiments. 

 

Electrical field stimulation of isolated cardiomyocytes is a standard and widely used method 

for studies on contractile function and Ca2+ cycling (39,78-80,129). Cardiomyocytes were 

stimulated with increasing frequencies (1-5 Hertz (Hz) in paper I and III and 1-7 Hz in paper 

II) on an inverted epifluorecence microscope (Nikon TE-2000E, Tokyo, Japan). Attached to 
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the side port of the inverted microscope was a video camera, and velocity of shortening and 

relaxation as well as the magnitude of shortening were analyzed during transients (SarcLen™, 

Ionoptix, Milton, USA), using a special designed software (SarcLen Sarcomere Length 

Acqusition Module). Exercise-induced changes in cardiomyocyte function have previously 

been shown to be most marked at physiological frequencies (69,77). However, most 

experiments, including ours, have been performed at stimulation frequencies ranging from 1-5 

Hz (paper II 1-7 Hz) which is below the physiological range in rats (5-10 Hz) and mice (7-12 

Hz). Furthermore, the reliance on CaMKII activity also increases with increasing stimulation 

frequencies (152). Thus, the effects of CaMKII inhibition on i.e. RyR2 Ca2+ release rate (205) 

and cardiac contractility (165) are greater at higher stimulation frequencies compared to 

lower. This reflects a limitation to our studies that may have underestimated the effect of MI, 

exercise training and CaMKII inhibition on cardiomyocyte contractile function and Ca2+ 

handling.  

 

Intracellular Ca2+ transients was collected by rationing the fluorescence intensities detected at 

510 nm emission wavelength using excitation alternating between 340 and 380 nm 

wavelengths (Optoscan, Cairn Research, Kent, UK), which is the largest dynamic range for 

Ca2+ dependent fluorescence signals. Excitation at 340 nm causes fluorescence emission at 

510 nm to increase with increasing Ca2+ concentrations, whereas excitation at 380 nm 

decreases fluorescence emission by increasing Ca2+ concentrations. Collecting excitation 

through band pass filters of 340 and 380 nm by a 500 Hz rotating optical chopper and using 

the ratio of the fluorescence intensities provide more stable Ca2+ measurements and minimize 

factors such as uneven dye distribution, leakage, photo bleaching, different room light, or 

compartments of Fura-2/AM in the cell (204). In addition to measuring systolic and diastolic 

intracellular Ca2+ levels, we examined the time course of the Ca2+ transient by measuring peak 

systolic Ca2+, time to peak Ca2+, time to 50% of peak Ca2+, and time to 50% Ca2+ decay. 

Diastolic Ca2+ cycling was quantified with the use of rate constants of Ca2+ removal during 

twitch-induced stimulation, sustained caffeine stimulation in physiological solution and 

sustained caffeine stimulation in 0Na+/0Ca2+. In paper I we used these measurements to 

quantify SERCA-2a, NCX and PMCA contribution to Ca2+ removal as previously described 

(206). Total SR Ca2+ content was measured by peak caffeine-induced Ca2+ release. Caffeine 

opens RyR2 completely and totally empties SR Ca2+ content. However, since RyR2 sensitivity 

to Ca2+ might increase after caffeine exposure, we stimulated the cardiomyocytes until normal 
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Ca2+ transients were obtained after each caffeine exposure before proceeding the cell 

experiments (164). 

 

When using animal models as in the papers that constitute this thesis, it is important to note 

that the contribution to cellular Ca2+ removal is different in rats and mice compared to 

humans. In humans SERCA-2a removes 70% of the Ca2+ from cytosol into the SR lumen, 

whereas 92% is removed by SERCA-2a in rats and mice. NCX contributes with 28% Ca2+ 

removal out of the cell in human, and 7%  in rats and mice, leaving about 1% for PMCA and 

mitochondrial Ca2+ uniporter in human, rats and mice (110). 

 

SR Ca2+ leak 

To determine whether diastolic SR Ca2+ leak was increased after MI in paper I we used the 

Ca2+ leak protocol established by Shannon et al (207). After measuring contractile function 

and Ca2+ handling during twitch-induced transients in HEPES 1.8 mM buffer, stimulation was 

ceased and quiescent cardiomyocytes were perfused with 0Na+/0Ca2+ while measuring 

diastolic Ca2+ level for 40 seconds immediately followed by a 0Na+/0Ca2+ diluted caffeine-

induced transient. When Ca2+ levels were close to baseline caffeine perfusion was replaced by 

HEPES perfusion and cardiomyocytes were stimulated at 1 Hz until stable Ca2+ transients was 

restored (approximately 20 seconds). Subsequently, perfusion was switched to tetracaine 

solution, whereupon diastolic Ca2+ level were measured for another 40 seconds. This was also 

followed by a 0Na+/0Ca2+ diluted caffeine-induced transient. The quantitative difference in 

diastolic Ca2+ level between the 0Na+/0Ca2+ and tetracaine solution represents the absolute SR 

Ca2+ leak, since 0Na+/0Ca2+ block the NCX Ca2+ influx and efflux and tetracaine blocks Ca2+ 

movement across RyR2 (Figure 6). Diastolic SR Ca2+ leak was presented in relation to total 

SR Ca2+ content.  
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Figure 6. Illustration of Ca2+ transients and the diastolic SR Ca2+ leak protocol. 
 

To examine the impact of PKA and CaMKII on RyR2 diastolic Ca2+ leakage, acute PKA and 

CaMKII inhibition were induced in paper I by pre-incubation of PKA inhibitor (H-89; 3 µM, 

Sigma Aldrich, MO, USA) and the potent and selective CaMKII inhibitor AIP (1 µM, Sigma 

Aldrich, MO, USA) (208). Pre-incubation of cardiomyocytes with either H-89 or AIP was 

started 1 hour prior to experiments. Experiments were conducted within 30 minutes after the 

incubation period, to avoid potential washout of AIP/H-89 by the perfusion system. Like most 

chemical compounds H-89 and AIP have non-specific side effects, which need consideration. 

Murray (209) have observed effects of H-89 on MAPK and Ca2+ signalling, however, we used 

a lower concentration of H-89 to avoid similar off target reactions. A former study has also 

shown effects of H-89 on PLB phosphorylation and SERCA-2a activity, but this cannot be 

attributed simply as a side effect (104). AIP, on the other hand, has been shown to effect 

RyR2 phosphorylation and therefore SR Ca2+ leak (104), however this is in regard with its 

inhibitory effect. Although caution should be made when interpreting data from these 

inhibitors, they provide us with valuable information about the effect of PKA and CaMKII.  

 

T-tubule density and synchrony of Ca2+ release 

Dense and intact T-tubule network throughout the cardiomyocyte is essential for rapid and 

synchronous Ca2+ release. In paper I and II T-tubule density and Ca2+ release synchrony were 

measured on a Pascal (510 LSM, Zeiss, Jena, Germany) confocal microscope with a pinhole 

of 1 airy unit giving a z-resolution < 1 µm. The membrane specific Di-8-ANEPPS (10 µM, 

Molecular Probes, Eugene, OR, USA) was used for T-tubule visualization and Fluo-3/AM (10 

µM, Molecular Probes, Eugene, OR, USA) for Ca2+ release synchrony measurements. Fluo-

3/AM is in comparison to Fura-2/AM more suitable for measuring quick changes of Ca2+, due 
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to faster binding/ dissociation from Ca2+, but is more sensitive to bleaching and 

compartmentalization. Similar to Fura-2/AM, Fluo-3/AM also contains acetoxymethyl ester, 

and likewise requires a 20 minutes de-esterfication after loading prior to experiments.  

 

A                                                                            B 

 
Figure 7. Confocal image of T-tubule structure, membrane specific stained with di-8-ANEPPS (A), and line 
scan image of Ca2+ release, where the yellow line indicate electrical stimuli (B) in ventricular cardiomyocytes. 
 

T-tubules were stained and visualized in LV cardiomyocytes in paper I and II (Figure 7A). T-

tubules density normalized to cell size, captured from the middle of the cell, was obtained 

from 5 images per cell. During analysis the pixels stained with the dye were counted relative 

to the total number of pixels, when pixels associated with the non-T-tubular sarcolemma were 

removed. Analysis of Ca2+ release synchrony in paper I was based on 1-3 Ca2+ transients per 

cell, where line scan of each Ca2+ transient was divided into ~25 equal strips (~4µm) and time 

from stimulation to 50% Ca2+ release was measured for each strip (Figure 7B). Standard 

deviation of these measurements was considered Ca2+ release synchrony across the cell.  

 

Cell dimension 

Measuring cardiomyocyte dimension in isolated cells has been proven sensitive enough to 

establish differences in cellular morphology after exercise training (69). In paper I, II and III 

we measured cardiomyocyte dimension on a Nikon Eclipse E400 Microscope with a DSFil 

camera (Nikon NIS- Elements Basic Research Version 3.00 software, Nikon Instruments Inc., 

New York, USA). Cell length and width were detected by photographing a large number of 

cells, whereupon approximately 100- 150 random cells per rat or mice were included for 

measurements. Cell volume was calculated by cell length · cell width · 0.00759 (210). Only 

viable undamaged rod-shaped cells were selected for measurements of cell dimensions. 

 

  
Time    
(ms) 
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Molecular analysis 

Immunohistology 

Apoptosis and fibrosis were assessed in paraffin-embedded LV tissue sections in paper II to 

investigate possible pathological alterations affecting Ca2+ handling and intrinsic exercise 

responsiveness. Apoptosis was assessed using the CardioTACS™ In Situ Apoptosis Detection 

Kit (Trevigen, Gaithersburg, MD, USA) which detects DNA fragmentation. Evaluation and 

quantification are often prone to error, thus to avoid false results we generated positive 

controls for both LRT and HRT. To enable evaluation of fibrosis we used hematoxylin-

erythrosin-saffron (HES) staining, as saffron stains the connective tissue. In both cases thin 

slices of tissue (4 µm) were cut and mounted on a glass microscope slide to be examined with 

light microscopy. Staining provides contrast to the tissue in addition to highlighting specific 

parts of interest. 

 

Assessment of apoptosis in myocardial tissue by detection of nuclear DNA fragmentation is a 

semi-quantitative and widely accepted method. In contrast to necrosis, apoptosis regulates cell 

death in a controlled process without inflammatory response (70,84). Thus, apoptosis 

generates no or little histological trace making it harder to detect (84). A disadvantage of this 

method is that some necrotic cells might appear as apoptosis positive (211), however this has 

not affected our study as the results were undoubtedly negative. 

 

Western immunoblotting 

To determine expression of selected proteins related to Ca2+ handling in LV tissue 

homogenate we used immunoblotting (Western analysis) in paper I and II. Western 

immunoblotting is a semi-quantitative method that allows detection of specific proteins within 

a tissue homogenate, only limited by availability of the specific antibody (212). We used 

western blot for detection of total and phosphorylated CaMKII (Pierce, Rockford, USA) and 

SERCA-2a expression (Badrilla, Leeds, UK), performed according to previously described 

methodology (213). In brief, gel electrophoresis was applied to separate proteins by their 

molecular weight. The sodium dodecyl sulphate (SDS) – polyacrylamide gel electrophoresis 

(PAGE) disc was loaded with molecular samples and submerged into a buffer where the 

electrical current was provided. The electrical current causes the molecules to migrate through 

the acrylamide mesh of the gel towards the positively charged electrode. Proteins are 
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separated according to size because smaller proteins migrate faster than the larger proteins 

through the mesh. After the electrophoresis separation, proteins were moved from within the 

gel to a nitrocellulose membrane by electro transfer. Ponceau S dye was used to monitor the 

effectiveness and uniformity of the protein transfer. Before probing, the membrane was 

subjected to blocking to avoid interaction between the membrane and the specific antibody. 

This procedure reduces “noise” and provides a more clear result. The membrane was then 

probed with a specific antibody of the desired proteins, washed and exposed to another 

antibody. Several perioxidase-conjugated secondary antibodies bound to one primary 

antibody and enhance the signal detected by autoradiography. ImageJ software (National 

Institutes of Health; USA) performed the quantification analysis of blots. Thus, the protocol 

contains many steps, and good reliable results depend on flawless performance of all steps. 

Limitations of the method include the time consumption in addition to being a mainly 

qualitative assay. 

 

Statistics 

Data are presented as mean ± SD. SPSS version 16 (SPSS Inc., Chicago, Illinois, USA) was 

employed for statistical analysis. Before the analysis all data were checked for normal 

distribution. Data was analysed by one-way ANOVA with LSD or Bonferroni post hoc test, 

independent samples T-test or Mann-Whitney U when appropriate. Determination of absolute 

effect of MI between HCR and LCR in paper I was analysed using mean differences with 

standard errors in a t-test. Pre to post test values in paper II were analysed by repeated 

measures ANOVA. In paper III, we used Paired Samples T-test to identify statistical 

differences from pre to post tests. P<0.05 was considered statistically significant. 
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SUMMARY OF RESULTS 

 

Paper I  High inborn aerobic capacity does not counteract deterioration of cardiac 

function and calcium handling after myocardial infarction  

 

1. There were no significant difference in the deterioration of VO2max between HCR and 

LCR after MI (20% and 36%, respectively). VO2max was similar in HCR-MI and LCR 

sham. 

2. MI depressed in vivo LV fractional shortening by 49% (P<0.01) in HCR and 62% 

(P<0.01) in LCR and ejection fraction measured by echocardiography by 46% 

(P<0.01) and 50% (P<0.01), respectively. Group differences were not statistically 

significant. 

3. MI induced pathological hypertrophy to the same extent in both HCR and LCR rats. 

4. The effect of MI was greater in HCR compared to LCR rats on cardiomyocyte 

fractional shortening (39% vs. 34%, P<0.01), Ca2+ transient amplitude (37% vs. 20%, 

P<0.05) and time to 50% re-lengthening (83% vs. 24%, P<0.05). SR Ca2+ content 

decreased by 20% (P<0.01) in both MI groups (group difference, P<0.01). 

5. Diastolic Ca2+ handling was impaired after MI, reflected by decreased SERCA-2a 

Ca2+ removal (group difference, P<0.05) and increased NCX Ca2+ removal (group 

difference, P<0.05) from cytosol. 

6. HCR-MI was closer to a healthy profile (i.e. HCR sham) than LCR-MI on 

cardiomyocyte contractile measurements, and not significantly different from LCR 

sham. 

7. SR Ca2+ leak increased by 177% (P<0.01) in HCR and 67% (P<0.01) in LCR after MI 

(group difference, P<0.05). Acute CaMKII inhibition abolished the SR Ca2+ leak in 

both MI groups. 

8. Phosphorylated CaMKII relative to total CaMKII assessed by western blot protein 

analysis showed no significant difference between groups. 
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Paper II  Aerobic exercise response is dependent of cardiac plasticity  

 

1. VO2max was similar in HRT and LRT rats at baseline. 

2. High intensity interval training increased VO2max with 39% (P<0.001) in HRT rats 

whereas VO2max was unaltered in LRT rats. 

3. LV weight was 8% (P<0.01) lower and cardiomyocytes 32% (P<0.05) wider and 6% 

(P<0.05) shorter in LRT compared to HRT at baseline, indicating a pathology-like cell 

dimension probably caused by concentric hypertrophy. The morphological difference 

between HRT and LRT at baseline was not reflected by apoptosis or fibrosis detection. 

4. High intensity interval training reduced LV weight (4%, P<0.05), and cell length (5%, 

P<0.05) and cell volume (10%, P<0.05) in LRT, whereas it induced physiological 

hypertrophy associated with increased LV weight (9%, P<0.01), cell length (7%, 

P<0.01), cell width (9%, P<0.05) and cell volume (15%, P<0.001) in HRT. 

5. Before the exercise training intervention there was no difference between HRT and 

LRT rats on cardiomyocyte contractility and Ca2+ handling parameters. 

6. LRT did not improve on any of the measured parameters for cardiomyocyte 

contractility or Ca2+ handling after exercise training. In contrast, exercise training 

induced improvements on all measured parameters for cardiomyocyte contractility and 

Ca2+ handling in HRT. 

7. T-tubule density was lower in LRT compared to HRT (P<0.01) at baseline and after 

exercise training. Exercise training tended to increase T-tubule density in HRT 

(P=0.07). 

8. Total CaMKII and ratio phosphorylated CaMKII in relation to total expression of 

CaMKII was not different between HRT and LRT at baseline.  
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Paper III  Chronic CaMKII inhibition blunts the cardiac contractile response to  

exercise training 

 

1. Chronic CaMKII inhibition with KN-93 treatment did not affect VO2max, cardiac 

function measured with echocardiography or cardiomyocyte size in untrained KN-93 

treated mice. 

2. High intensity interval training increased VO2max with 8% (P<0.05) in sham treated 

mice, whereas KN-93 treated mice increased VO2max with 22% (P<0.01, group 

difference, P<0.01). 

3. In vivo fractional shortening improved by 28% (P=0.02) with exercise training in 

sham mice, whereas no change was observed in KN-93 treated mice. 

4. Exercise training induced physiological hypertrophy that increased cardiomyocyte 

length and width by 13% (P<0.05) and 30% (P<0.05) in sham, and by 8% (P<0.05) 

and 14% (P<0.05) in KN-93 mice, respectively. The physiological hypertrophy in 

cardiomyocyte length and width was significantly greater in sham compared to KN-93 

mice (group difference, P<0.05). 

5. Chronic CaMKII inhibition increased cardiomyocyte time to 50% re-lengthening with 

25% (P<0.05), increased Ca2+ transient decay time with 16% (P<0.05) and reduced 

Ca2+ transient amplitude with 20% (P<0.05) in sedentary mice. These reductions in 

cardiomyocyte function were normalized by exercise training in KN-93 treated mice. 

6. Cardiomyocyte fractional shortening was increased by 63% (P<0.01) in sham mice 

whereas it was increased by 18% (P<0.05) in KN-93 mice.  
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DISCUSSION 

The present thesis shows that 1) inborn VO2max do not provide cardioprotection from the 

deteriorating effects of MI on VO2max and cardiomyocyte function, 2) low training response 

measured as VO2max was associated with lack of cardiomyocyte adaptation to exercise 

training and 3) CaMKII was not required for exercise-induced increase in VO2max in healthy 

mice but seems to be important to obtain optimal exercise response on cardiomyocyte 

function.  

 

Inborn VO2max and cardiac remodelling after MI (paper I) 

Inborn VO2max and cardioprotection 

Several studies report that hearts from exercise-trained individuals are partly protected against 

cardiac injuries such as ischemia-reperfusion and acute MI (214-219). However, the effect of 

inborn exercise capacity on cardiac remodelling after MI has not been investigated. LCR rats 

have an increased risk of ventricular arrhythmias (220) and are predisposed for CVD with 

accumulation of cardiovascular risk factors including hypertension, endothelial dysfunction, 

insulin resistance, impaired glucose tolerance, visceral adiposity, hyperglycemia, 

hypertriglyceridemia, and elevated plasma free fatty acids (39,181). 1 540 cardiac genes are 

differentially expressed between HCR and LCR rats for pathways in cardiac energy substrate, 

growth signalling, contractility and cellular stress potentially triggered by hypoxic conditions 

in LCR rats (221). The LCR rats have decreased expression of inward K+ channels, lower 

energy metabolism and ATP production compared to that observed in the HCR rats, all 

factors associated with failing hearts and CVD (221). It has also been demonstrated that 

higher sensitivity to nitric oxide inhibition in LCR rats is affecting cardiomyocyte function 

(181). Recent reviews indicate that mechanisms for cardioprotection are related to exercise-

dependent induction of heat shock proteins, increase in cardiac antioxidant capacity, 

expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in 

coronary arteries, changes in nitric oxide production, adaptational changes in cardiac 

mitochondria, increased autophagy, and improved function of sarcolemmal and/or 

mitochondrial ATP-sensitive K+ channels (222-224). Based on these previous findings, we 

hypothesized that LCR rats would suffer a greater depression in VO2max after MI than HRT 

rats. However, MI reduced VO2max to the same extent in both HCR and LCR rats. The 

reduced VO2max caused by MI corresponded with changes in cardiac function, cardiomyocyte 
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contractility and Ca2+ handling, in line with other studies demonstrating a relation between 

cardiomyocyte function and VO2max  (32,69,77,80,225).  

 

Although VO2max level is provided to be closely related to health outcome (3,16,26,42,226) 

and aerobic fitness level is considered more important for survival than physical activity level 

(17,19,25) this study (paper I) suggests that high inherited VO2max per se is not sufficient to 

provide cardioprotection against cardiac remodelling and loss of cardiac function in HCR 

compared to LCR rats after MI. This is in consensus with previous studies demonstrating an 

absence of exercise-induced cardioprotection after cessation of exercise training (227,228). 

However, high inborn VO2max appears to serve as a buffer capacity reducing the loss in 

absolute VO2max level after MI (paper I). We did not intend to investigate longevity and 

prognosis, however, previous reports indicate that maintaining a high VO2max after MI 

improves prognosis (3,5,7,226,229), as health risks are highest at low VO2max levels and 

decrease with higher VO2max levels (6,7,40,42). Indeed, a recent paper demonstrated that the 

LCR rats had a 28- 45% shorter lifespan compared to the HCR rats (40). 

 

Echocardiography of cardiac function and dimension 

MI reduced fractional shortening in HCR and LCR rats compared to their sham littermates. 

This is in line with previous MI studies in rats (79,89,192,230,231) and indicates that the 

current MI-model induces systolic dysfunction. Systolic dysfunction caused by the MI was 

confirmed by reduced positive dP/dt and ejection fraction in HCR and LCR rats. The similar 

decline in ejection fraction in HCR and LCR after MI might be explained by similar MI size. 

Decreased ejection fraction after MI can be caused by reduced contractile function due to 

myocardial damage or sustained ischemia and/or be a result of LV dilation due to infarct 

expansion or stretching of the scar (232). MI significantly increased both LV end-systolic 

diameter (LVESD) and LV end-diastolic diameter (LVEDD) in HCR-MI and LVESD in 

LCR-MI, indicating increased chamber dilatation and reduced myocardial contraction both 

consistent with the observed decrease in ejection fraction. LVEDD tended to increase also in 

LCR-MI but did not reach the statistical cut-off (P=0.06). 

 

Despite equal relative effect of MI on cardiac function, the healthier inborn cardiac phenotype 

in HCR rats resulted in better absolute LV function after the MI compared to LCR rats. 

Although the HCR are not protected against pathological remodelling after the MI compared 
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to the LCR, their higher initial cardiac function serve as a buffer capacity reducing the loss in 

cardiac function. Studies with prior exercise training demonstrate smaller MI-induced 

pathological remodelling in exercise-trained individuals (214,215,227,233). Thus, exercise 

training appears to be necessary to obtain cardioprotection from pathological remodelling 

after MI. 

 

Cardiomyocyte pathological hypertrophy  

Cardiomyocyte dimensions were similar in HCR and LCR sham rats at baseline. This is in 

contrast to previous studies in the HCR/LCR model, demonstrating a mild pathological 

concentric hypertrophy in LCR rats compared to HCR rats (39,160,221,234). Following MI, 

HCR and LCR rats underwent similar pathological hypertrophy, shown by increased 

cardiomyocyte length and width. This is in line with the ventricular remodelling previously 

reported to follow MI (89,231).  

 

Echocardiography measurements in HCR-MI and LCR-MI indicated chamber dilatation 

which is normally caused by volume overload due to impaired cardiac pump capacity after 

MI, leading to eccentric hypertrophy (elongation of cardiomyocytes) (235). Moreover, both 

HCR and LCR rats decreased length/width ratio after MI (P<0.05 and P<0.01, respectively, 

Figure 8), indicating that pressure overload may also have occurred. Concentric hypertrophy 

is often associated with pressure overload (74), and is characterized by assembly of 

contractile protein units in parallel (84,93,235,236).  
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Figure 8. Cardiomyocyte length/width ratio (paper I), presented as mean ± SD. * P<0.05, different from HCR 
sham; ** P<0.01 different from HCR sham and LCR sham; ## P<0.01 different from HCR sham. 
 

Ventricular remodelling after MI has been described as a mix of volume and pressure 

overload where stretched and dilated infarcted tissue increases LV volume with a combined 
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volume and pressure load on non-infarcted areas (237). Concentric hypertrophy has also been 

found to progress into eccentric hypertrophy and to promote dilation after long-term pressure 

overload (93). However, experiments in paper I was performed within 3 months after the MI 

and therefore future studies are needed to examine the development of hypertrophy over an 

extended period of time in the HCR and LCR rats. Of the potential mechanisms involved in 

the hypertrophic response, extracellular signal-regulated kinase (ERK1/2) signalling was 

recently found to promote concentric growth and prevent eccentric growth (235), which may 

contribute to explain the decrease in length/width ratio after MI in HCR and LCR rats. 

Moreover, calcineurin and CaMKII is also activated by pressure overload (156) and appears 

to be strictly cardiomyopathic (92,95,98). Inhibition of either calcineurin or CaMKII is 

suggested to reduce pathological hypertrophy and secondary pathological effects after 

pressure overload (92,95,139). However, western blot analysis showed no difference in total 

CaMKII expression or phosphorylation level at baseline or after MI between HCR and LCR. 

 

Cardiomyocyte contractile function 

We found depressed cardiomyocyte fractional shortening and slowed re-lengthening in HCR 

and LCR rats after MI, in line with other MI rat models (75,78,79,217,238). The relative 

effect of MI on contraction and re-lengthening was greater in HCR compared to LCR. 

However, cardiomyocyte contractile function in HCR-MI was not different from LCR sham, 

supporting the beneficial effect of high inborn VO2max as a buffer capacity to reduce the 

deteriorating effects of MI. Similar to our observations in rats, reduced contraction and 

relaxation have been observed in isolated cardiomyocytes from human heart failure (239). 

Whether a high initial VO2max may help preserve the cardiomyocyte function after MI in 

humans as in HCR rats is currently unknown.  

 

A slightly more pronounced concentric than eccentric growth, indicated by the reduced 

length/width ratio, were observed in HCR and LCR cardiomyocytes after MI. This may have 

contributed to reduce the cardiomyocyte function, as concentric growth is known to produce a 

greater depression of cell contractile function than eccentric growth (240). However, the 

cellular basis for these changes in cardiomyocyte contractile function in our study needs 

further investigation, but may be partly linked to changes in intracellular Ca2+ handling as 

discussed below. 
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Cardiomyocyte Ca2+ handling 

The reduction we observed in cardiomyocyte contractile function after MI was associated 

with impaired Ca2+ handling in both HCR and LCR MI rats compared to respective shams. 

However, Ca2+ handling was similar in HCR-MI and LCR sham and better compared to LCR-

MI, indicating a beneficial buffer effect of high initial VO2max also on deterioration of Ca2+ 

handling after MI. The well-known MI-induced defects in Ca2+ handling are attributed to 

alterations in SERCA-2a function, NCX function and PLB expression among other factors 

(93,132,238,241). We observed a reduction in SR Ca2+ content in HCR and LCR after MI 

(paper I), in consensus with previous MI studies (132,238), which was caused by decreased 

SERCA-2a function, reducing Ca2+ reuptake into the SR 108,230. In line with previous studies 

(157,241-243), we also found that NCX activity increased after MI, compensating for the 

reduced SERCA-2a function and contributing to maintain diastolic Ca2+ levels by facilitating 

Ca2+ extrusion over the sarcolemma. These alterations caused an unfavourable situation where 

Ca2+ available for release from SR was reduced resulting in significantly decreased Ca2+ 

transient amplitude in HCR-MI. Such abnormalities in Ca2+ cycling lead to reduction in Ca2+ 

amplitude (150), which we observed in HCR-MI but not in LCR-MI (paper I). Previous 

reports on Ca2+ amplitude after MI have been inconsistent varying from unchanged (244,245), 

increased (79,246) to decreased (78,129,243,247), although the latter is most common. This is 

most likely due to differences in MI-induction methods, MI size, animal model and time after 

MI. The reason for the discrepancy between MI groups in our study is unclear, but may be 

explained by the significantly larger decrease in SERCA-2a function and Ca2+ transient 

amplitude in HCR compared to LCR. However, it is also possible that the pre-existing low 

systolic Ca2+ level in LCR rats blunt further deterioration after MI. The severe reduction in 

fractional cardiomyocyte shortening despite a modest decrease (HCR-MI), or unchanged 

(LCR-MI) systolic Ca2+ level indicate a depression in myofilament Ca2+ sensitivity. This 

hypothesis is supported by other studies showing that depressed myofilament Ca2+ sensitivity 

lead to reduction in contractile function after MI (79,248,249). However, the cellular basis for 

these changes in our study needs further investigation. 

 

Diastolic SR Ca2+ leak 

We observed increased diastolic SR Ca2+ leak in MI rats and LCR sham compared to HCR 

sham (paper I). Acute CaMKII inhibition with AIP in cardiomyocytes reduced the SR Ca2+ 

leak via RyR2 in MI rats and LCR sham towards levels observed in HCR sham (3% SR Ca2+ 
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leak). In contrast, acute PKA inhibition with H-89 did not affect the SR Ca2+ leak in either MI 

rats or LCR sham at all. These data suggest that CaMKII activity, and not PKA, was 

responsible for the increased diastolic SR Ca2+ leak in MI rats and LCR sham in our study. 

Although PKA has been suggested  as a therapeutic target to reduce SR Ca2+ leak (250,251), 

it is controversial  and most studies have observed CaMKII-dependent SR Ca2+ leak in failing 

cardiomyocytes (94,95,143,148,152,164,252). Cellular evidence that CaMKII is involved in 

SR Ca2+ leak is based on observations of enhanced SR Ca2+ leak in CaMKII over-expressing 

myocytes (155,253), enhanced SR Ca2+ leak by CaMKII-dependent phosphorylation of RyR2 

in heart failure (143) and reduced SR Ca2+ leak with CaMKII inhibition (96,97,140,165). 

About 50% of heart failure patients die of sudden cardiac death caused by ventricular 

arrhythmias (254,255) and a large fraction of these arrhythmias are attributed to spontaneous 

Ca2+ release (96,110,157,172). Therefore, prevention of diastolic SR Ca2+ leak with CaMKII 

inhibition is a potentially life-saving treatment hindering Ca2+ waves and lethal arrhythmias as 

well as facilitating SR Ca2+ load to maintain force of contractions (155,165,175,256).  

 

Adaptations to exercise training in high and low responder rats and chronic 

CaMKII inhibited mice  

Exercise training is a useful and important tool to prevent and mend CVD and other life-style 

related diseases (6,7,11,22,60). However, inborn characteristics, environmental factors and 

pharmacological treatment may influence the nature of exercise response and must therefore 

be considered. We found that inborn exercise response determined VO2max after exercise 

training in paper II and that chronic CaMKII inhibition with KN-93 treatment in paper III 

surprisingly improved VO2max exercise response compared to sham mice that performed the 

same training regimen. The difference in VO2max did not occur until after the exercise training 

period in either the HRT/LRT rat model or the CaMKII inhibited/sham mice model. Hence, 

baseline VO2max was not associated with VO2max exercise response in paper II and III, as 

supported by others (43,46,54). The potential mechanisms for differences in VO2max exercise 

response in our studies are discussed below. 

 

High intensity interval training did not improve VO2max in LRT rats 

Despite being proven effective in providing robust cardiovascular adaptations by numerous 

studies (22,58,59,63,69,257), high intensity interval training did not increase VO2max in LRT 
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rats (paper II). In contrast, HRT rats increased VO2max significantly by 39% (paper II). Thus, 

the HRT/LRT model reflects the higher and lower ends in the reported range of VO2max 

exercise response (-5% to +50%) observed in humans (43,45-47,52,53,258), although 

comparing exercise load in rats and humans are complicated. The exercise-induced VO2max 

improvements in HRT rats in paper II were explained by physiological hypertrophy and 

improved cardiomyocyte contractility and Ca2+ handling, as described in previous studies 

(67,77,80,181). In addition, peripheral factors, not measured in the present study, may further 

have contributed to the discrepancy in VO2max exercise response between HRT and LRT rats. 

However, the lack of VO2max exercise response in LRT rats was at least partly explained by 

the lack of cardiac adaptations to exercise training.  

 

Although LRT rats did not improve VO2max in response to exercise training we cannot 

exclude that they improved other physiological parameters. However, this was beyond the 

scope of the current study, as there are thousands of biochemical adaptations to exercise 

training (259). Indeed, low responders to VO2max have been reported to improve other health 

related variables (47) and to increase VO2max by use of other methods than endurance training, 

e.g. resistance training (260), supporting the idea that complete “non-responders” to exercise 

training do not exist. Therefore, exercise training for health purposes should be encouraged 

also in low responders to VO2max.  

 

Chronic CaMKII inhibition enhanced VO2max exercise response 

KN-93 treated mice increased VO2max significantly more than sham mice (22% vs. 8%, 

respectively) after high intensity interval training (paper III). This finding was in contrast to 

our hypothesis based on previous reports of exercise-induced up-regulation of CaMKII 

activity in healthy individuals (103,127). The greater VO2max improvement in KN-93 treated 

mice compared to sham mice was reflected by similar results on maximal running speed. 

There is a lack of studies investigating the effects of CaMKII on continued exercise training. 

However, acute studies of CaMKII inhibition on skeletal muscles have reported that KN-93 or 

KN-62 (another specific CaMKII inhibitor) injections do not impair exercise performance or 

decrease skeletal muscle contractile force (261,262). However, further investigation is needed 

to determine the effects of chronic CaMKII inhibition on peripheral factors such as skeletal 

muscles and their contribution to alterations in VO2max after exercise training. The observed 

VO2max level in our study is slightly lower than previous studies on female mice (85,186). The 
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reason for this is unclear, although it might be due to mice strain or possible abdominal 

discomfort from daily injections of KN-93 and DMSO.  

 

Echocardiography of cardiac function in CaMKII inhibited mice 

CaMKII inhibition with KN-93 did not alter cardiac function compared to sham littermates, 

which is in line with a study on genetic CaMKII inhibition (97). However, exercise training 

increased fractional shortening in sham mice, but not in KN-93 treated mice. Stroke volume 

was not significantly increased in either exercise group, but the absolute improvement after 

exercise was greater in KN-93 treated mice. This may presumably be due to a slightly higher 

LVEDD and LV mass. However, these indications were not supported by cardiomyocyte size 

or function measurements. 

 

We found no echocardiography indices of physiological hypertrophy in contrast to 

measurements of isolated cardiomyocyte size. However, absolute change in size associated 

with physiological hypertrophy in rodents are rather small, and echocardiography is 

considered less sensitive in measuring physiological hypertrophy compared to measuring 

cardiomyocyte size or LV weight (69,79,85). 

 

Pathological-like hypertrophy in LRT cardiomyocytes 

Characterization of cardiac function in untrained HRT and LRT (paper II) revealed a 

pathological-like hypertrophy of cardiomyocytes in LRT, paradoxically with reduced LV 

weight. Interestingly, cardiomyocytes were shorter (6%) but wider (32%) in the LRT 

compared to HRT, as previously observed in the LCR and HCR (160), respectively, which is 

typical for concentric hypertrophy (93). Concentric hypertrophy is usually accompanied by 

apoptosis and increased fibrosis (84,93), which is mostly prominent at the detrimental late-

phase remodelling associated with pathological hypertrophy (131,236). Although apoptosis 

would be suitable to explain the reduced LV weight in LRT, neither apoptosis nor fibrosis 

were present in LRT LV tissue at the time of sacrificing, suggesting a congenital nature of the 

hypertrophy possibly without other signs of pathology.  

 

Although the underlying molecular mechanisms responsible for pathological hypertrophy are 

not completely clear, several signalling pathways have been suggested to influence on the 
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continuum of states in cardiac plasticity (70,263). Consistent with our observations in LRT 

rats, ERK1/2 activation may occur without signs of pathology and favour concentric 

hypertrophy (263). Moreover, we observed a trend for higher ratio of phosphorylated CaMKII 

in untrained LRT compared to HRT. Increased CaMKII phosphorylation affects calcineurin 

(264), activates hypertrophic pathways including MEF2 and NFAT (139,140) and is 

considered a central molecule in the pathological response mechanisms of the heart (156). 

CaMKII over-expression contribute to development of cardiac hypertrophy (156) whereas 

CaMKII inhibition reduces pathological hypertrophy (97,156,265). However, whether the 

CaMKII phosphorylation level contributed to the observed hypertrophy in LRT rats warrants 

further investigation. 

 

Cardiomyocyte hypertrophy with exercise training 

Exercise training increased LV cardiomyocyte dimensions in HRT rats (paper II) and sham 

mice (paper III) which corresponds with previous exercise studies in female rats (67,69,80) 

and mice (85), respectively. The increased dimensions are most likely a result of the 

hypertrophic stimuli induced by high intensity interval training (67,69,77,80,85). In contrast, 

LRT rats (paper II) experienced a further decrease in LV weight, probably due to the 

reduction in cell length. Distinct signalling pathways mediate physiological and pathological 

hypertrophy (266), and whether the response to exercise training in LRT is compensatory or a 

result of negative response to exercise is currently unknown. CaMKII inhibition with KN-93 

(paper III) blunted the exercise-induced physiological hypertrophy, and exercise-trained KN-

93 treated mice gained only half the increase in cardiomyocyte size compared to exercise-

trained sham mice. This is quite paradoxical considering the close association between 

cardiomyocyte dimension and VO2max reported in previous studies (77,181). Thus, our results 

indicate that CaMKII is necessary to yield optimal exercise response on physiological 

hypertrophy even though its exact role in physiological hypertrophy is still unknown. 

 

Although not studied in the current thesis, IGF-1 is involved in most biological processes 

promoting physiological hypertrophy (267), and the IGF-1/Akt1 pathway is considered the 

main signalling pathway for physiological hypertrophy (86,87,268,269). The necessity of 

IGF-1/Akt1 activation in physiological hypertrophy is evidenced in experimental models 

where disruption of the IGF-1/Akt1 pathway leads to virtually no sign of physiological 

hypertrophy in response to exercise training (86,87). Disruption or deficiency in the IGF-
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1/Akt1 pathway is a potential mechanism sufficient to explain the lack of cardiac exercise 

response in the LRT rats. Moreover, CaMKII inhibition with KN-93 has been shown to cause 

withdrawal of Akt (270), making it a potential mechanism to explain the blunted exercise 

response on physiological hypertrophy in KN-93 treated cardiomyocytes.  

 

Cardiomyocyte contractile function  

Cardiomyocyte contraction and relaxation was similar in sedentary HRT and LRT rats (paper 

II), and cardiomyocyte relaxation was reduced in mice receiving daily KN-93 injections 

(paper III). Exercise training is known to increase cardiomyocyte contractility measured as 

fractional shortening in both rats (77,79,80) and mice (33,69,80,85,103,106) as we observed 

in exercise-trained HRT rats, sham mice and KN-93 treated mice. However, KN-93 

administration in mice during the exercise intervention blunted the improvement on fractional 

shortening compared to sham treated mice (18% vs. 63% improvement, respectively). This is 

in consensus with a previous study by Kemi et al (103), which reported that acute CaMKII 

inhibition substantially blunted the exercise-induced improvements in cardiomyocyte 

contractility. These results and ours (paper III) indicate that CaMKII activity is important in 

maintaining normal cardiomyocyte function and achieving full benefits of exercise training. 

However, the more the merrier does not apply to CaMKII activity level as mice with elevated 

CaMKII activity may possess heart failure (104).  

 

Exercise-induced improvement on relaxation rates is a consistent finding following high 

intensity interval training (33,69,79,80). We observed that high intensity interval training 

shortened time to re-lengthening in HRT rats, sham mice and KN-93 treated mice. The 

prolonged time to re-lengthening in mice treated with KN-93 was normalized by exercise 

training. The relative effect of exercise training on time to re-lengthening was similar in both 

exercise-trained sham and KN-93 treated mice. Previous reports on contraction rates are not 

as consistent as relaxation rates and faster contraction rates have been reported in some 

(69,77) but not all studies (79,80). In paper II we observed faster contraction rates in HRT 

after exercise training. Cardiomyocyte contractile function is largely dependent on Ca2+ 

handling properties, and exercise training is known to increase speed of Ca2+ cycling, leading 

to a more rapid contraction and relaxation of the cardiomyocyte (80). This will be discussed 

in detail in the section below. 
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LRT rats did not improve on either of the contractile properties after exercise training. The 

underlying molecular mechanisms for lack of cardiac exercise response in LRT rats are 

currently unknown. However, Akt1 deficient mice also lack exercise response on cardiac 

function (86,271), as seen in LRT cardiomyocytes. Furthermore, Akt is found to enhance 

contractile function and modulate protein levels of several major Ca2+ regulatory proteins 

including SERCA-2a, PLB, NCX and RyR2 (268), making Akt an intriguing target for future 

studies of cardiac exercise response in the HRT/LRT model.  

 

Cardiomyocyte Ca2+ handling 

High intensity exercise training is known to improve cardiomyocyte Ca2+ handling 

(67,79,103,122), which is consistent with observations in HRT rats in paper II and mice in 

paper III. In contrast, LRT rats (paper II) did not improve any of the measured parameters of 

Ca2+ handling after exercise training.  

 

There is a discrepancy among studies on alterations in Ca2+ transient amplitude after exercise 

training in healthy individuals (79,80,225). However, exercise-trained HRT rats, sham and 

KN-93 treated mice increased Ca2+ transient amplitude significantly. This has been observed 

in studies with exercise training in cardiomyocytes with pre-existing low Ca2+ transient 

amplitude due to CaMKII over-expression (unpublished work), heart failure (unpublished 

work) or diabetic cardiomyopathy (104). The increased Ca2+ transient amplitude in HRT rats 

may be explained by the increased SR Ca2+ load, providing more Ca2+ available for Ca2+ 

release, and in part provide the increased fractional shortening of the cardiomyocyte. In paper 

III sham treated mice improved Ca2+ transient amplitude significantly more than KN-93 

treated mice. The difference in exercise-induced improvements in Ca2+ transient amplitude 

between sham and KN-93 treated mice may in part be explained by the pre-elevated systolic 

and diastolic Ca2+ levels in KN-93 treated mice. This increased systolic and diastolic Ca2+ 

levels caused by KN-93 administration suggest increased Ca2+ influx and/or decreased Ca2+ 

efflux, that may explain the blunted improvement in Ca2+ transient amplitude and fractional 

shortening in KN-93 treated mice (70).  

 

For cardiomyocyte relaxation, Ca2+ must be removed from the cytosol. In line with other 

studies (79,80), exercise training decreased time to 50% Ca2+ decay in HRT rats and both 

sham and KN-93 treated mice. KN-93 treatment prolonged Ca2+ decay time in sedentary 
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mice, but as with cardiomyocyte re-lengthening, this was normalized with exercise training. 

The faster Ca2+ decay in exercise-trained HRT rats, KN-93 treated and sham treated mice 

might at least partly be explained by increased levels of SERCA-2a and NCX. This would 

facilitate diastolic Ca2+ reuptake into SR and Ca2+ removal over the sarcolemma, respectively, 

which has previously been shown in exercise studies (33,79,80,103). This is supported by the 

increased SR Ca2+ load in HRT rats and decreased diastolic Ca2+ level in sham treated mice. 

In KN-93 treated mice diastolic Ca2+ level was unaltered. However, the faster Ca2+ decay in 

exercise-trained KN-93 treated mice did not increase the Ca2+ amplitude as much as in the 

sham treated mice, indicating that SERCA-2a activity is blunted by CaMKII inhibition, as 

shown by others (205,272).  

 

Changes in Ca2+ handling, but unaltered fractional shortening, in the sedentary KN-93 might 

indicate altered myofilament Ca2+ sensitivity through reduced myosin binding protein C, 

which may lead to decreased rate of force development regardless of intracellular Ca2+ levels 

(273). Ca2+ sensitivity is known to adapt to exercise training with a leftward shift in the 

tension-pCa2+ relationship, indicating faster shortening, greater contraction and higher force 

output at every contraction (102). In fact, improvement in Ca2+ sensitivity is considered a 

major cause of exercise-induced improvements in cardiomyocyte contractility (33,79,162).  

 

The observed reduction in Ca2+ handling caused by CaMKII inhibition in our study were 

probably due to the combined actions of several CaMKII phosphorylated targets of the ECC 

(111). Whether these negative alterations in Ca2+ handling after chronic CaMKII inhibition 

would have developed into dysfunctional Ca2+ handling over an extended period of time is 

currently unknown and needs further investigation. Depressed cardiac function that may lead 

to pathological hypertrophy and heart failure due to sustained CaMKII inhibition have been 

shown by others (272,274), whereas some report stable cardiac phenotypes in transgenic 

CaMKII inhibited mice (97). Why there is a discrepancy between studies with sustained 

CaMKII inhibition is not known, but it may in part be explained by differences in CaMKII 

inhibition methods, sites and specificity. 
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CONCLUSIONS 

1. High intrinsic (inborn) VO2max do not provide cardioprotection from the detrimental 

effects of MI as relative cardiac remodelling and reduction in cardiomyocyte function 

was similar among HCR and LCR rats. 

2. High inborn VO2max may serve as a buffer capacity, maintaining higher absolute 

values on VO2max and cardiac function measurements after ischemic remodelling when 

compared to rats with low intrinsic VO2max. 

3. Baseline VO2max and cardiomyocyte function was not associated with inborn exercise 

response in the HRT/LRT rats. 

4. High intensity interval training increased VO2max in HRT rats, sham and KN-93 

treated mice, but not in LRT rats. 

5. Cardiomyocyte function failed to adapt to exercise training in LRT rats, indicating that 

the lack of cardiac plasticity attenuates VO2max exercise response.  

6. CaMKII seems important for maintenance of Ca2+ homeostasis as KN-93 treatment 

negatively affected Ca2+ removal evidenced by elevated intracellular Ca2+ levels and 

prolonged time to re-lengthening and time to Ca2+ decay. 

7. Exercise-trained KN-93 treated mice increased VO2max more than twice as much as 

sham mice, indicating that CaMKII is not necessary for VO2max improvement with 

exercise training. 

8. Exercise-induced improvements on cardiomyocyte size and contractile function were 

blunted by KN-93 treatment, suggesting that CaMKII is essential for optimal exercise 

adaptations in cardiomyocytes. 
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Abstract Activation of the multifunctional Ca2?/cal-

modulin-dependent protein kinase II (CaMKII) plays a

critical role modulating cardiac function in both health and

disease. Here, we determined the effect of chronic CaMKII

inhibition during an exercise training program in healthy

mice. CaMKII was inhibited by KN-93 injections. Mice

were randomized to the following groups: sham sedentary,

sham exercise, KN-93 sedentary, and KN-93 exercise.

Cardiorespiratory function was evaluated by ergospirome-

try during treadmill running, echocardiography, and car-

diomyocyte fractional shortening and calcium handling.

The results revealed that KN-93 alone had no effect on

exercise capacity or fractional shortening. In sham animals,

exercise training increased maximal oxygen uptake by 8%

(p \ 0.05) compared to a 22% (p \ 0.05) increase after

exercise in KN-93 treated mice (group difference

p \ 0.01). In contrast, in vivo fractional shortening eval-

uated by echocardiography improved after exercise in

sham animals only: from 25 to 32% (p \ 0.02). In inactive

mice, KN-93 reduced rates of diastolic cardiomyocyte re-

lengthening (by 25%, p \ 0.05) as well as Ca2? transient

decay (by 16%, p \ 0.05), whereas no such effect was

observed after exercise training. KN-93 blunted exercise

training response on cardiomyocyte fractional shortening

(63% sham vs. 18% KN-93; p \ 0.01 and p \ 0.05,

respectively). These effects could not be solely explained

by the Ca2? transient amplitude, as KN-93 reduced it by

20% (p \ 0.05) and response to exercise training was equal

(64% sham and 47% KN-93; both p \ 0.01). We con-

cluded that chronic CaMKII inhibition increased time to

50% re-lengthening which were recovered by exercise

training, but paradoxically led to a greater increase in

maximal oxygen uptake compared to sham mice. Thus, the

effect of chronic CaMKII inhibition is multifaceted and of

a complex nature.

Keywords Aerobic interval training � KN-93 � Exercise

training and cardiac function � CaMKII inhibition in

healthy mice

Introduction

The ubiquitous and multifunctional Ca2?/calmodulin-

dependent protein kinase II (CaMKII) regulates a number

of intracellular processes related to cellular contractility
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and nuclear gene expression, thereby controlling the pump

function and growth of the heart. Some of the specific

targets include the L-type Ca2? channel, the sarcoplasmic

reticulum (SR) Ca2? release channel (ryanodine receptor 2,

RyR2), phospholamban (PLB), Na? and K? channels

making CaMKII a prominent regulator of excitation–con-

traction coupling (Couchonnal and Anderson 2008; Hash-

ambhoy et al. 2010; Maier et al. 2007; Maier and Bers

2002). Furthermore, CaMKII can regulate nuclear gene

expression on class II histone deacetylase (HDAC), which

increases myocyte-enhanced factor 2 (Mef2)-regulated

transcription (Erickson and Anderson 2008; Maier and

Bers 2002, 2007; Maier et al. 2007; Sag et al. 2009).

However, the functional consequences of CaMKII activa-

tion are still unclear, since heart failure is associated with

increased CaMKII (Anderson 2005; Anderson et al. 1998;

Couchonnal and Anderson 2008; Khoo et al. 2006; Vila-

Petroff et al. 2007; Zhang et al. 2005); in fact, CaMKII

may constitute a molecular switch between cardiac

hypertrophy and failure (Zhang et al. 2005), and CaMKII

activation may also precede arrhythmic events and con-

tractile dysfunction, mainly because of its effect on the

RyR2 (Anderson 2005; Ling et al. 2009; van Oort et al.

2010). On the other hand, improved contractile function

after aerobic interval exercise training also associates with

activated CaMKII, but in this scenario, the main effect is

on the SR Ca2? uptake due to phosphorylation of PLB.

Interestingly, in mice with type-2 diabetes with chronically

increased cardiac CaMKII and reduced cardiomyocyte

contractile function and Ca2? handling, aerobic interval

exercise training resulted in reduced levels of CaMKII and

improved cardiomyocyte contractile function and Ca2?

handling (Stolen et al. 2009). Recent studies have shown

that CaMKII negatively regulates calcineurin activity

(Khoo et al. 2006; MacDonnell et al. 2009), which in turn

regulates mitochondrial respiration, and further compli-

cates the role of CaMKII (Jiang et al. 2010; Wang et al.

2011).

The exact role of CaMKII activation in the heart

remains unclear, as it associates with dysfunction, failure,

and propensity for arrhythmias, but also with increased

function under different circumstances such as exercise

training. Based on the potential clinical value of chronic

CaMKII inhibition (Khoo et al. 2006; Sag et al. 2009;

Zhang et al. 2005) and the beneficial effect of exercise

training on delaying cardiac dysfunction and correcting

function after onset of heart disease (Stolen et al. 2009;

Wisloff et al. 2002, 2007; Adams et al. 2005; Erbs et al.

2010; Mezzani et al. 2008; Hambrecht et al. 2000;

Anderson et al. 1998; Kemi et al. 2007; Zhang et al. 2005)

two scenarios that may mutually oppose each other,

determining the effect of chronic CaMKII inhibition on the

response to exercise training would be of considerable

interest. Therefore, we aimed to study the effect of chronic

CaMKII inhibition during the course of an exercise training

program in healthy mice. We hypothesized that chronic

CaMKII inhibition would abolish the normal exercise

training response in the hearts.

Materials and methods

Mice and CaMKII inhibition

Eighteen female C57 BL/6J mice (Møllegaard Breeding

Center, Lille Skensved, Denmark) 18–20 g, 8 weeks of age

at inclusion were randomized into four groups: (1) sham

control sedentary, (2) sham control exercise training, (3)

KN-93 sedentary, and (4) KN-93 exercise training. KN-93

(2-[N-(2-hydroxyethyl)-N-(4 methoxybenzenesulfonyl)]

amino-N-(4-chlorocinnamyl)-N-methylbenzylamine; Alexis-

Biochemical, Enzo Life Science, PA, USA) diluted in

dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO,

USA, 2 mg KN-93/1 mL DMSO, 10 lmol/kg (Zhang et al.

2005)) was intraperitoneally injected daily after the exer-

cise training session (for those that exercise trained),

throughout the experimental period. In a previous study,

Zhang et al. (2005) observed dose-dependent CaMKII

inhibition by KN-93, in which daily injections of 10 lmol/

kg KN-93 produced similar effect on left ventricular con-

traction measurements as the genetically CaMKII-inhibited

AC3:I mice (Zhang et al. 2005; Khoo et al. 2006). Sham

control mice received similar amounts of DMSO daily. The

Norwegian council for Animal Research approved the

study, which was in accordance with the Guide for the

Care and Use of Laboratory Animals (National Institutes of

Health Publications No. 85–23, revised 1996).

Exercise training

Exercise training was performed as aerobic interval train-

ing for 6 weeks, 5 days/week, on an inclined (25�) tread-

mill, each session starting with a 10-min warm-up at

50–60% of maximal oxygen uptake (VO2max), whereupon

exercise then alternated between 4- and 2-min intervals at

85–90 and 50–60% of VO2max, respectively for 60 min.

VO2max was assessed during a treadmill running test to

exhaustion in a metabolic chamber. After a warm-up period

of about 10 min, treadmill band velocity was increased by

0.03 m/s for every second minute until mice were not able

to maintain the treadmill velocity (Hoydal et al. 2007;

Kemi et al. 2002). To maintain the exercise intensity

throughout the experimental period, VO2max was tested at

the beginning of each week in addition to pre- and post-

tests. This exercise protocol has previously been proven

efficient for inducing exercise and cardiovascular
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adaptations in both the clinical and experimental studies

(Tjonna et al. 2008; Hoydal et al. 2007; Kemi et al. 2002,

2005; Wisloff et al. 2001; Stolen et al. 2009).

Echocardiography

High-resolution echocardiography (Vevo 770, VisualSon-

ics, Toronto, Canada) using a single-element mechanical

transducer with a center frequency of 30 MHz was per-

formed on self-breathing mice exposed to a mixture of 2%

isoflurane and 98% oxygen. A two-dimensional long-axis

view was used to visualize both ventricles, the ascending

aorta, and the right ventricular outflow tract by placing the

ultrasound transducer on the left parasternal position,

whereas a short-axis view was used to visualize systolic and

diastolic movement of both ventricles by placing the trans-

ducer horizontally above the heart. Left ventricular end-

diastolic diameter (LVEDD), left ventricular end-systolic

diameter (LVESD), interventricular septum (IVST) and

posterior wall thickness (PWT) were recorded with M-mode

echocardiography, which allowed calculation of the frac-

tional shortening (% = [(LVEDD - LVESD)/LVEDD] 9

[100]) as an index of systolic left ventricular function.

The following equation was used to calculate LV

mass (mg) = [(LVEDD ? IVST ? PWT)3 - LVEDD3] 9

1.055, where 1.055 (mg/mm3) is the density of myocardium.

IVST and PWT were measured at end diastole.

Cardiomyocyte isolation, contractile function, Ca2?

measurements and cell size

Left ventricular cardiomyocytes were isolated as previ-

ously described using a Hepes-based solution (Mitra and

Morad 1981; Guatimosim et al. 2001). Exercised hearts

were excised 24 h after the last exercise session. A mixture

of 3–4% isoflurane and 96–97% oxygen were used to

anesthetize the mice, whereupon the heart was heparinized

and removed. Until it was connected to the aortic cannula

on a standard Langendorff retrograde perfusion system, the

hearts were kept on ice cold Hepes solution. The hearts

were cleaned with a Hepes solution containing EGTA

(Sigma-Aldrich Corp., Missouri, USA) before the perfu-

sion was switched to Hepes solution with collagenase

(Worthington, Lakewood, USA), and perfusion was con-

tinued for approximately 10 min (3.5 ml/min). After the

hearts were taken down, left ventricles were carefully cut

off and gently shaken for 2 min before the non-digested

tissue was filtered out (nylon mesh, 250 lm). Further, cells

were stepwise exposed to increasing Ca2? levels (initially

0.05 mM). The isolated cells were centrifuged (30 s,

600 rpm) before solution was switched to 1.2 mM Hepes-

based solution. Fura-2/AM-loaded (2 lmol/l, Molecular

Probes, Eugene, OR, USA) cardiomyocytes were field

stimulated by bipolar electrical pulse at 1 Hz, on an

inverted epifluorescence microscope (Nikon TE-2000E,

Tokyo, Japan), whereupon cell shortening was recorded by

video-based myocyte sarcomere spacing (SarcLenTM,

IonOptix, Milton, MA, USA) and intracellular Ca2? con-

centration was measured by fluorescence after excitation

by alternating 340 and 380 nm wavelengths (F340/380 ratio)

(Optoscan, Cairn Research, Kent, UK). Cells with a clear

visual intracellular structure that were able to follow

stimulation frequency were included for the experiment.

The total number of cardiomyocytes included for all

analysis in the different groups was: sham sedentary 8,

sham exercise 20, KN-93 sedentary 5, and in KN-93

exercise 9. During the stimulation protocol, cells were kept

in 1.2 mM Ca2? HEPES-based solution at 37�C. Cell size

was measured with Nikon Eclipse E400 Microscope with a

DSFil camera (Nikon NIS-Elements Basic Research Ver-

sion 3.00 software, Nikon Instruments Inc., Melville, NY,

USA). Cardiomyocyte size was measured on 80–120

cardiomyocytes per group.

Statistics

A one-way ANOVA with LSD post hoc test was used to

detect significant differences between groups. For within-

group differences from pre- to post-test, a paired sample

T test was used. Statistical significance level was set to

p \ 0.05.

Results

VO2max and exercise capacity

In sedentary mice, daily intraperitoneal injections of the

CaMKII-selective inhibitor KN-93 did not affect VO2max,

running speed at VO2max, or body mass (Fig. 1). However,

while chronic CaMKII inhibition had no effect in sedentary

mice, it did affect the response to exercise training. Whereas

exercise training increased VO2max by 8% (p \ 0.05) in

sham, the effect was 22% (p \ 0.01) in KN-93 mice after

the exercise training period (magnitude of response differ-

ence p \ 0.01, Fig. 1a). KN-93 tended to suppress the

growth in body mass (Fig. 1c), which made it necessary to

normalize VO2max according to correct scaling procedures,

which involves the correct normalization of a physiological

variable (here VO2max) to a body dimension (here body

mass). It is well established that cardiorespiratory capacity

in lighter individuals will be overestimated compared to

heavier ones when VO2max is expressed in direct relation to

body mass (i.e., ml/kg/min) and that VO2max should be

expressed with body mass raised to the power of 0.75 (i.e.,

ml/kg0.75/min) when comparing individuals that differ in
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body mass (Taylor et al. 1981). Hence, VO2max was divided

by body mass raised to the power of 0.75 as an exponent in

the present study in order not to overestimate the effect of

KN-93 on VO2max. In line with a larger increase in VO2max

after exercise training in KN-93 mice, we observed that

running speed at VO2max also increased twice as much

compared to that observed in sham mice 32% (p \ 0.01),

and 61% (p \ 0.01) in KN-93 mice.

Cardiac remodeling

KN-93 injections did not significantly change LVEDD,

LVESD, PWT, or IVST (Table 1). However, there was a

trend for decreased LV mass, and LVEDD in sedentary

KN-93 treated mice compared to sham sedentary.

Also, CaMKII inhibition by KN-93 injections did not

affect cardiomyocyte size in sedentary mice, measured as

cell length and width in isolated cardiomyocytes, but it did

blunt the exercise training-induced hypertrophy of the

cardiomyocytes. Exercise-induced cardiomyocyte hyper-

trophy was observed in both sham and KN-93 mice, but the

effect was larger in sham mice. Exercise training increased

cardiomyocyte length and width by 13% (p \ 0.05) and

30% (p \ 0.05) in sham mice, and by 8% (p \ 0.05) and

14% (p \ 0.05) in KN-93 mice, respectively (group dif-

ferences p \ 0.05, Fig. 2a, b). Thus, the cardiomyocyte

hypertrophy response to exercise in KN-93 mice was

approximately half of that in sham mice.

Fig. 1 Values of VO2max (a),
maximal aerobic running speed

(b), and body mass (c), before

and after the exercise training

intervention (pre- and post-

tests), presented as mean

values ± SD. *p \ 0.05 versus

sedentary; **p \ 0.01 versus

sedentary; ##p \ 0.01 versus

sham exercise; §p \ 0.05 versus

pre-test

Table 1 Two-dimensional echocardiography measurements

Sham KN-93

Sedentary Exercise Sedentary Exercise

n 6 4 4 4

Echocardiography

HR

(beats/min)

441 ± 21.3 450 ± 36.2 478 ± 18.0 447 ± 36.4

SV

(ll/min)

23.7 ± 4.0 25.2 ± 1.4 20.2 ± 5.7 25.4 ± 6.0

CO

(ml/min)

10.4 ± 1.8 11.3 ± 1.4 9.7 ± 2.7 11.3 ± 2.3

LVEDD

(mm)

3.7 ± 0.2 3.7 ± 0.2 3.5 ± 0.3 3.8 ± 0.2

LVESD

(mm)

2.8 ± 0.3 2.5 ± 0.3 2.6 ± 0.2 2.7 ± 0.1

LV mass

(mg)

96 ± 11.7 94 ± 8.7 85 ± 23.5 99 ± 23.0

FS (%) 25 ± 4.5 32 ± 5.2* 28 ± 3.2 30 ± 1.6

PWT

(mm)

0.69 ± 0.07 0.7 ± 0.09 0.75 ± 0.09 0.7 ± 0.11

IVST

(mm)

0.74 ± 0.06 0.66 ± 0.14 0.7 ± 0.12 0.68 ± 0.06

Data are presented as mean values ± SD

HR heart rate, SV stroke volume, CO cardiac output, LVEDD left ven-

tricular end-diastolic dimension, LVESD left ventricular end-systolic

dimension, FS fractional shortening, PWT posterior wall thickness, IVST

intraventricular septal thickness

* p \ 0.05 versus sedentary
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Cardiac contractile function

According to the measurements of in vivo cardiac function

with echocardiography, KN-93 injections did not signifi-

cantly affect heart rate, stroke volume (SV), cardiac output

or fractional shortening (Table 1; Fig. 3). In contrast to

VO2max and exercise capacity, left ventricular fractional

shortening improved from 25 to 32% after exercise training

in sham mice (28% training response, p \ 0.02). Cardiac

contractile function is largely dependent on Ca2? handling

properties. Systolic Ca2? and diastolic Ca2? level were

significantly increased by KN-93 injections (Fig. 4a, b,

p \ 0.01). Only sham exercise increased systolic Ca2?

levels (Fig. 4a, p \ 0.05), and decreased diastolic Ca2?

level (Fig. 4b, p \ 0.01).

Chronic CaMKII inhibition by KN-93 injections

induced a reduction of the cardiomyocyte ability to re-

lengthen (25% increased time to 50% re-lengthening;

Fig. 4c, p \ 0.05) after twitch contractions. This was at

least partly explained by the 16% increase in the Ca2?

transient decay time (Fig. 4d, p \ 0.05). Exercise training

normalized cardiomyocyte re-lengthening and Ca2? tran-

sient decay times to levels comparable to sedentary sham

mice, and the response to exercise training was not dif-

ferent between sham and KN-93 mice. In particular,

exercise training decreased the re-lengthening time by 12%

(p \ 0.05) and 16% (p \ 0.05) in sham and KN-93 mice,

respectively, which was linked to comparable exercise

training-induced changes in the Ca2? transient decay times

(Fig. 4c, d).

In contrast to the above, the observed effects of KN-93

and exercise training on cardiomyocyte fractional short-

ening (amplitude of the contraction) and the associated

Ca2? transient amplitude showed a more complex nature.

First, KN-93 reduced the Ca2? transient amplitude by 20%

(Fig. 4e, p \ 0.05), but this did not translate into a com-

parable reduction in the fractional shortening, as no effect

was observed. Second, fractional shortening improved by

exercise training, but the response was blunted in KN-93

mice compared to sham mice. Exercise training in sham

mice increased fractional shortening by 63% (p \ 0.01),

but only by 18% (p \ 0.05) in KN-93 mice (magnitude of

response difference p \ 0.05, Fig. 4f). This could not be

solely explained by changes to the Ca2? transient ampli-

tude, as the exercise training response did not differ

between sham and KN-93 mice; sham increased by 64%

(p \ 0.01), and KN-93 by 47% (p \ 0.01) in response to

exercise training (Fig. 4e). Table 2 provides an overview

of the effects of CaMKII inhibition on whole-body and

cardiac, and cardiomyocyte exercise training response.

Discussion

Given that (1) experimental trials (Anderson 2005; Zhang

et al. 2005; Grimm and Brown 2010) have raised the

possibility that systemic CaMKII inhibition may be a via-

ble and effective strategy for the treatment of heart disease,

and (2) exercise training in both experimental (Rose et al.

2007; Wisloff et al. 2002; Stolen et al. 2009) and clinical

Fig. 2 Isolated cardiomyocyte dimension; cell length (a), and cell width (b), presented as mean values ± SD. *p \ 0.05 versus sedentary;
#p \ 0.05 versus KN-93 exercise

Fig. 3 In vivo LV fractional shortening, presented as mean val-

ues ± SD. *p \ 0.05 versus sedentary
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(Adams et al. 2005; Erbs et al. 2010; Hambrecht et al.

2000; Mezzani et al. 2008; Wisloff et al. 2007) trials show

improved heart function in similar scenarios of heart dis-

ease, we aimed to test the potential value of combining

those strategies; first in normal healthy mice. The reasoning

for the latter is that exercise training and CaMKII also

interact in the heart, as the inotropic effects of exercise

training are at least partly modulated by an exercise

training-induced increase in CaMKII activity (Kemi et al.

2007). This complicates the combination scenario as

CaMKII seems to act as a two edged sword. In fact,

CaMKII contributes to decompensate pathologic hyper-

trophy to heart failure, mainly by its action on the RyR2 to

increase SR Ca2? leak (Sag et al. 2009; Ling et al. 2009).

Thus, the possibility arises that chronic CaMKII inhibition

and exercise training may oppose each other, though it

remains to be studied.

As such, this is the first study to introduce the combi-

nation of chronic CaMKII inhibition by daily KN-93

injections and aerobic interval exercise training. The main

finding was that chronic CaMKII inhibition blunted several

Fig. 4 Cardiomyocyte systolic

Ca2? level (a), diastolic Ca2?

level (b), time to 50% diastolic

re-lengthening (c), Ca2?

transient decay time (d),

intracellular Ca2? transient

amplitude (e), and fractional

shortening (f), presented as

mean values ± SD. *p \ 0.05

versus sedentary; **p \ 0.01

versus sedentary; #p \ 0.05

versus KN-93 exercise;
##p \ 0.01 versus KN-93

exercise; §p \ 0.05 versus sham

sedentary; §§p \ 0.01 versus

sham sedentary

Table 2 Comparison of effects of CaMKII inhibition on exercise

training response

Variable Sham

exercise

KN-93

exercise

Aerobic exercise capacity

VO2max : ::

Echocardiography

LV fractional shortening : $
Cardiomyocyte Ca2? handling

Systolic Ca2? : :

Diastolic Ca2? ; $
Fractional shortening :: :

Ca2? transient amplitude : :

Time to 50% re-lengthening ; ;

Time to 50% Ca2? decay ; ;

Cardiomyocyte dimension

Cell length :: :

Cell width :: :

:, indicates value increase; ;, value decrease; $, value remain

unchanged; 1 or 2 arrows, indicate size of exercise-induced response
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aspects of the response patterns of cardiomyocyte contrac-

tility, and intracellular Ca2? handling to exercise training,

but it did not fully prevent such adaptations. Moreover,

CaMKII inhibition also enhanced exercise training-induced

improvements on VO2max and aerobic exercise capacity,

whereas it did not affect either of them in sedentary mice.

Mechanisms of exercise training-induced adaptation

The present study provides several mechanistic clues as to

the response to exercise training. First, it shows that while

CaMKII activation contributes to the cardiac improve-

ments after exercise training (Kemi et al. 2007), other

mechanisms must also contribute, as CaMKII inhibition

only partly blunted the exercise response. Whether those

mechanisms naturally co-exist or occur to compensate for

the loss of CaMKII activation remains unknown.

Second, the finding that VO2max and exercise capacity

responded more to exercise training in the presence of the

chronic CaMKII inhibition compared to the absence

thereof indicates that CaMKII also may negatively regulate

exercise adaptation in peripheral organs. While this

requires further investigation, it is plausible all the while it

is ubiquitous and exists in most, if not all, cellular systems

(Hudmon and Schulman 2002; Chin 2004).

Third, the opposite effects of exercise training on VO2max

and exercise capacity on the one side, and cardiac inotropy

and hypertrophy on the other side in the face of CaMKII

inhibition highlights that other organs are important in

determining VO2max (Bassett and Howley 2000; Coffey and

Hawley 2007). In particular, chronic exercise training

elicits resistance to muscle fatigue through metabolic

responses including mitochondrial biogenesis, increased

oxidative capacity, and alterations in gene and protein

expression that ultimately leads to phenotype changes that

support endurance-type activity (Rose et al. 2007; Benziane

et al. 2008; Chin 2004; Coffey and Hawley 2007; Bassett

and Howley 2000). The exact mechanism of this rather

surprising observation is not known; however, the interac-

tion between CaMKII and calcineurin is a possible candi-

date. CaMKII modulation of calcineurin signaling is

released by CaMKII inhibition. Calcineruin modulates

exercise-induced skeletal muscle phenotypes and enhances

exercise capacity through increase in mitochondrial oxida-

tive function and energy substrate storage in skeletal mus-

cles (Wang et al. 2011; Jiang et al. 2010). This should be

elucidated in future studies.

Cardiac contractile capacity, Ca2? handling,

and CaMKII

Both in vivo and cellular fractional shortening were unaf-

fected by KN-93-induced inhibition of CaMKII in

sedentary mice, whereas the expected training-induced

increase in both whole-heart and cellular fractional short-

ening was blunted by the chronic KN-93 treatment. How-

ever, chronic CaMKII inhibition did reduce the rate of

diastolic cellular relaxation in sedentary mice, which was

explained by slower intracellular Ca2? removal (longer

time to 50% Ca2? transient decay) and higher systolic

Ca2? levels. Exercise training normalized Ca2? removal

times, and in contrast to fractional shortening, the effect

was not blunted by CaMKII inhibition. These results are in

accordance with Kemi et al. (2007), who found that acute

pre-incubation, with AIP (comparable CaMKII inhibitor)

in isolated cardiomyocytes also blunted the exercise

training-induced improvements in cellular contractility.

Together, these results suggest that CaMKII at least partly

modulates the exercise training-induced improvements in

cardiac contractility, excitation–contraction coupling, and

intracellular Ca2? handling (Kemi et al. 2007; Stolen et al.

2009). The accumulated evidence also suggests that this

modulation occurs via targeting of several loci of excita-

tion–contraction coupling and Ca2? handling (Stolen et al.

2009). Indeed, fractional shortening is dependent on both

SR Ca2? release and myofilaments Ca2? sensitivity, where

the latter may explain the dissociation between fractional

shortening and the intracellular Ca2? transient amplitude in

the present study, as shown directly by others after exercise

training (de Waard et al. 2007; Diffee et al. 2001). How-

ever, in our experiments we used unloaded myocytes where

tension development and basal sarcomere length were not

considered.

Current results together with the previous studies

(Anderson 2005; Anderson et al. 1998; Couchonnal and

Anderson 2008; Erickson and Anderson 2008; Kemi et al.

2007; Khoo et al. 2006; Maier and Bers 2002; Maier et al.

2007; Sag et al. 2009; Vila-Petroff et al. 2007; Zhang

et al. 2005) suggest that CaMKII is a versatile kinase that

may shift cardiac function into different and also opposite

phenotypes. In healthy mice, it appears that a controlled

increase in the CaMKII activity increases cardiac con-

traction (Kemi et al. 2007); that CaMKII inhibition reduces

cardiac contraction, and that these effects mainly occur

because CaMKII inhibition reduces SR Ca2? uptake via

SERCA2a. Therefore, it is also possible that the depression

of cardiomyocyte contractile parameters by chronic

CaMKII inhibition observed here might have progressed to

a global dysfunction and a failure if CaMKII inhibition was

continued. As such, maintained CaMKII seems to be

important for normal cardiomyocyte function in healthy

mice. In contrast, the cardiac dysfunction that also has been

linked to increased CaMKII activity (Ai et al. 2005;

Couchonnal and Anderson 2008; Maier et al. 2007; Zhang

and Brown 2004) has mainly been attributed to hypersen-

sitization of the RyR2 to luminal Ca2? with subsequent
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diastolic SR Ca2? leak and a shift of Ca2? out of the cell; a

scenario that may lead to contractile dysfunction and

increased propensity for arrhythmic events (Sag et al. 2009;

Ai et al. 2005; Grimm and Brown 2010; Khoo et al. 2006;

Ling et al. 2009; Stolen et al. 2009; Wu et al. 2002), in

which CaMKII inhibition or reduction would become

particularly beneficial (Kemi et al. 2007; Laurita and

Rosenbaum 2008; Li et al. 2006; Vila-Petroff et al. 2007;

Yang et al. 2006; Zhang et al. 2005). In a recent modula-

tion study, Hashambhoy et al. (2010) report that inhibition

of CaMKII phosphorylation of the L-type Ca2? channel

rather than the RyR2 is more effective in modulating dia-

stolic RyR2 flux. Thus, a pharmacological approach of

CaMKII inhibition in the heart should also target the

L-type Ca2? channel in order to prevent or treat cardiac

dysfunction and disease. Whether this will be feasible

remains to be investigated. KN-93 inhibits CaMKII by

competing for the calmodulin binding site, and has been

widely used to implicate roles of CaMKII in Ca2? handling

(Sumi et al. 1991). KN-93 is not heart-specific and is

known to have other actions than CaMKII inhibition

(Anderson et al. 1998; Gao et al. 2006). Previous studies

have observed that KN-93 might inhibit L-type Ca2? cur-

rent independent of CaMKII (Anderson et al. 1998; Gao

et al. 2006). This negative effect of KN-93 on intracellular

Ca2? levels are balanced by inhibition of voltage-depen-

dent potassium currents which enhance Ca2? entry via

L-type Ca2? channel (Anderson et al. 1998; Rezazadeh

et al. 2006; Ledoux et al. 1999). The lack of organ speci-

ficity of KN-93 is a limitation of this study, and interpre-

tations should be considered with caution. We did,

however, control for non-cardiac side effects of chronic

KN-93 injections by the pathological examinations of the

vital organs after euthanasia in mice.

Physiological hypertrophy

Echocardiography measurements observed a trend for

decreased LV mass in sedentary KN-93 treated mice,

which was normalized by exercise-induced hypertrophy,

and cardiomyocyte length and width increased significantly

less in KN-93-treated mice compared to sham-treated mice.

These results are somewhat similar to the observations of

Zhang et al. (2005), with myocardial infarction as the

physiological stressor, who reported that cardiomyocyte

transverse cross-sectional area and heart weight were

comparably smaller after genetic inhibition of CaMKII

than in control cardiomyocytes. Furthermore, Ramirez

et al. (1997) reported that pre-treatment with KN-93

blocked hypertrophic responses to the hypertrophy devel-

oped by pressure overload or endothelin-1 (Zhang et al.

2004; Zhu et al. 2000). Our observation suggests that

CaMKII may also modulate cardiomyocyte growth in

response to exercise training (physiological hypertrophy)

and not only in response to the pathologic conditions.

Conclusion

This study indicates the importance of maintaining normal

CaMKII activity in cardiomyocytes of healthy individuals,

also because it positively modulates inotropic/lusitropic

responses to exercise training. However, targeting CaMKII

by selective inhibitors has recently been suggested to cor-

rect cardiac dysfunction and prevent decompensation and

progression of heart disease; a clinical scenario that also is

targeted by exercise training. This study indicates that a

combination strategy of CaMKII inhibition and exercise

training may be feasible for the purpose of attenuating

heart disease, although this does present a complex sce-

nario that may also reduce some of the beneficial effects of

exercise training, especially if CaMKII inhibitors cannot be

closely tuned into localized subcellular targets that mainly

cause the cardiac dysfunction.

Limitations

The small molecule inhibitor KN-93 has potential non-

specific effects other than CaMKII inhibition which were

not controlled for; this is a limitation of the present study.

The pathological examinations were done to rule out

effects on the results from any of the other vital organs due

to KN-93 or DMSO injections.
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PHYSIOLOGICAL, PATHOLOGICAL AND TUMOURIGENIC ASPECTS 
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