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Abstract—We propose an empirical method for identifying low
damped modes and corresponding mode shapes using frequency
measurements from a Wide Area Monitoring System. The
method consists of two main steps: Firstly, Complex Principal
Component Analysis is used in combination with the Hilbert
Transform and Empirical Mode Decomposition to provide es-
timates of modes and mode shapes. The estimates are stored
as multidimensional points. Secondly, the points are grouped
using a clustering algorithm, and new averaged estimates of
modes and mode shapes are computed as the centroids of the
clusters. Applying the method on data resulting from a non-linear
power system simulator yields estimates of dominant modes and
corresponding mode shapes that are similar to those resulting
from modal analysis of the linearized system model. Encouraged
by the results, the method is further tested with real PMU
data at transmission grid level. Initial results indicate that the
performance of the proposed method is promising.

Index Terms—Complex Principal Component Analysis, Hilbert
Transform, Empirical Mode Decomposition, mode shapes, ob-
servability, k-Means, clustering

I. INTRODUCTION

Power system operators are facing the increasingly evident
challenge of operating the grid securely during complex,
uncertain and rapidly changing generation and demand. This
challenge can and must be met by providing the operators with
better tools for monitoring and control of the grid. In this paper
we focus on the monitoring part and how the operators can
improve their situational awareness and gain better knowledge
about stability properties and dynamic phenomena occurring
in the grid.

Worldwide, Phasor Meaurement Units (PMUs) are being
installed within transmission grids at increasingly faster rates.
It is expected that the information from PMUs will replace
the current remote terminal units (RTUs) as source of voltage
and current measurements to SCADA/EMS systems. This will
change the way operators can monitor the system state. First of
all, Wide Area Monitoring Systems opens new possibilities for
getting fast and precise information about system dynamics.
While WAMS have been in use many places for offline
studies and fault analysis, the development of applications
for online use has not yet matured. One reason for this may
be that it takes time for operators to get used to and take
advantage of the new technology. Research is therefore needed
in order to develop applications that are readily accepted and
understood by the operators. This paper aims to contribute to
that development.

The method proposed in this paper takes advantage of
the high number of frequency (or potentially voltage angle)
measurements available in the transmission grid in order
to extract precise information about low damped oscillatory
modes and their observability.

Multiple empirical methods for estimating information
about modes have been proposed in the litterature. In [1],
Prony analysis is used to extract frequencies and damping
ratios from measured oscillations. This method, however, does
not provide information about mode shapes. In [2], a method
for estimating modes and mode shapes using various mode
decomposition techniques and Power Spectral Density analysis
is proposed. In [3], a Bayesian approach is proposed for
monitoring of electromechanical modes.

The proposed method is based on using Principal Compo-
nent Analysis (PCA) and k-Means clustering for estimating
modes and corresponding mode shapes from PMU frequency
measurements. The method consists of two main parts: In
Part I, the oscillatory behavior measured in a number of
measurements is decomposed into a few main oscillatory
components using a variant of Complex Principal Component
Analysis (CPCA). The decomposition allows the oscillatory
behavior to be reduced to a set of parameters, which can
be stored in the form of a multidimensional point, referred
to as an observation. Finally, in Part II of the method, the
observations from Part I are clustered using the k-Means
algorithm, to determine which of the observations to include
when computing averaged modes and mode shapes.

CPCA is well described in [4], where it is aimed at
extracting dynamic patterns in geophysical data sets. Variants
of CPCA has been applied to power system analysis in [5]–[7].
The implementation used in this paper is slightly different, but
functions in much the same way. An important contribution
from this paper is the addition of the additional layer, referred
to as Part II of the method, where the information provided
by CPCA is processed further into more easily understandable
information, i.e. by filtering and clustering observations and
computing averaged quantities.

Compared with many other methods for estimation of
modes, the proposed method differs in that it does not assume
an underlying linear model. Oscillations are observed when
they happen, and the output of the method is simply the
average of the oscillations happening most frequently/with the
highest intensity.

We present and describe the necessary background theory
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in section II, and describe the proposed method in section III.
Application examples on simulated as well as real PMU data
are presented in section IV. Finally, discussion and conclusions
are given in sections V and VI.

II. BACKGROUND THEORY

This section provides a short introduction to modal analysis,
and presents theory on the most important tools used by the
proposed method.

A. Modal Analysis

Modal analysis of power systems provides useful knowledge
of the system dynamics, and can be used for multiple purposes,
including assessment of small signal stability, and design and
tuning of power oscillation dampers [8].

Fundamental to modal analysis of power systems is the
linearization of the dynamic equations of the system. The state
space form, assumed familiar to the reader, is given as follows
[9]:

∆ẋ = A∆x + B∆u (1)

Through eigendecomposition of the system matrix A, the
dynamic modes of the system are determined from the eigen-
values, and the observability of the modes (mode shapes) are
contained within the elements of the right eigenvectors. It can
be shown that the response of the system can be written

∆x(t) =

n∑
j=1

Φjcje
λjt (2)

where

Φj = right eigenvector j of system matrix
cj = magnitude of excitation of the jth mode
λj = eigenvalue j of system matrix
n = order of the system

The element Φij of Φj describes the amplitude and phase
with which mode j appears in state ∆xi.

When performing modal analysis analytically, difficulties
arise when modelling large systems due to insufficient knowl-
edge of the system topology, component characteristics and
controller tuning. Therefore, methods are developed for online
identification of electromechanical modes that are based on
measurements only. However, whether the methods are model
based utilizing a state estimator or purely based on measure-
ments, the concept of modes is inherently related to linear
theory. Power systems, however, are nonlinear by nature and
what appears as critical modes may change rapidly during a
disturbance or any changes in operation.

B. Principal Component Analysis

Principal Component Analysis (PCA, sometimes referred to
as Empirical Orthogonal Functions) is a powerful dimension-
ality reduction technique, which allows the variance in a set of
time series to be decomposed into a few orthogonal Principal
Components (PCs) that explain the main share of the variance.

A brief introduction of the method is given below, based on
the thorough description of the method given in [10].

Assuming we have M measurement series, each containing
N samples, assembled in a M ×N matrix as follows:

X =


x1

x2

...
xM

 =


x1(t1) x1(t2) · · · x1(tN )
x2(t1) x2(t2) · · · x2(tN )

...
. . .

xM (t1) xM (t2) xM (tN )

 (3)

Here, the notation xi(tk) denotes the value of series i at
time tk. We assume that each of the series has zero mean
(if this is not the case, the mean is subtracted prior to the
analysis).

We want to transform the correlated series x1,x2 . . .xM
into the uncorrelated series s1, s2 . . . sM using the the linear
transformation

S =


s1
s2
...

sM

 = UTX (4)

To find the matrix U, we start by establishing the correlation
matrix of X:

C =
1

1−N
XXT ⇒ (1−N) C = XXT (5)

Similarly, the covariance matrix of S is given by

(1−N) Λ =SST

=UTX
(
UTX

)T
=UTXXTU

=UTCU

(6)

Since we want the series S to be uncorrelated, we want the
matrix Λ to have non-zero elements only along the diagonal.
Thus, we want to choose the matrix U such that C is
diagonalized. The diagonalization is carried out by perform-
ing an eigendecomposition of C, where the eigenvalues and
eigenvectors are given by

Cuj = λjuj , j = 1 . . .M (7)

The relative magnitudes of the eigenvalues describe how
much variance the corresponding PC explains. The eigenval-
ues are sorted based on magnitude in descending order and
collected in the eigenvalue matrix Λ, and the eigenvectors are
collected as column vectors in the transformation matrix U
in the same order. Finally, this gives us the M uncorrelated
series S, which can be referred to as the Scores of the PCs.
If the input series X are highly correlated, then we can
represent a high share of the variance using only a low number
MPC << M of the first PCs.



We can also invert the transformation in (4). Since it can
be shown that U is an orthonormal matrix [10], the inverse of
the matrix U is simply the transpose of the matrix:

X = (UT )−1S = US

⇒ xi =

M∑
j=1

uijsj ≈
MPC∑
j=1

uijsj
(8)

From the above relation we can state that PC j appears in
measurement i with a magnitude given by the coefficient uij .

C. Complex Principal Component Analysis

One limitation with conventional PCA is that a travelling
wave, occuring in multiple measurements with different phase,
can not be captured by only one PC. However, an extended
version of PCA, often referred to as Complex Principal Com-
ponent Analysis (CPCA), is better suited for this purpose. The
method, described in detail in [4], uses the same equations as
conventional PCA presented above, but some additional steps
are required prior to the analysis.

CPCA is, in short, the same equations as presented above
applied to complex time series, where the real part of the
series is the input series, and the complex part is generated by
applying the Hilbert Transform. To get sensible results when
using the Hilbert Transform, it is important to make sure that
the signal to be transformed contains only one frequency, and
that any non-oscillatory trends are subtracted. This can be
achieved using Empirical Mode Decomposition (EMD), or by
applying PCA in two layers, discussed further in section II-D.

The Hilbert Transform is also strongly influenced by end
effects [4]. When taking the transform of a measured series,
this often results in very high values at the beginning and end
of the series. To avoid that this influences consecutive steps
in the algorithm, roughly 10 % of the series should be tapered
in each end [4] after taking the Hilbert Transform.

After applying the necessary pre-processing to ensure a
well-posed Hilbert Transform, the complex series can be
written on the form

yi = xi + jH (xi) (9)

where H(·) denotes the Hilbert Transform, and xi is the real
input series (with zero mean).

The complex series are collected in a matrix,

Y =


y1

y2

...
yM

 (10)

The complex covariance matrix is given by

(1−N) C̃ = YYH (11)

where the superscript (·)H denotes conjugate transpose (not to
be confused with the Hilbert Transform). Diagonalizing results

in real eigenvalues [4] and complex eigenvectors. Analogously
to (8), we have

Y = (VH)−1Z = VZ

⇒ yi =

M∑
j=1

vijzj ≈
MCPC∑
j=1

vijzj
(12)

where V is the matrix of complex eigenvectors vi, with
elements vij , and Z contains the Scores of the CPCs zj as
column vectors. The complex components of the eigenvectors
describe the amplitude and phase of the contribution of each of
the CPCs to each of the measurements. Here, the correlation
matrix is Hermitian [4], the matrix V is unitary, and thus its
inverse is the conjugate transpose.

D. Two-layer combination of PCA and CPCA

Applying the Hilbert Transform requires the input signal
to have only one frequency, and that any non-oscillatory
trends are subtracted. This can be achieved by using EMD
to decompose the input signal into Intrinsic Mode Functions
(IMFs) and a Residual [7]. The Hilbert Transform can then be
applied to the IMFs, before CPCA is applied on the resulting
complex series.

An alternative to using EMD for decomposition into IMFs,
is to apply a to a two-layer structure of PCA: In the first layer
conventional PCA is applied on the input series, resulting in
a number of PCs. In the second layer, the PCs from the first
layer are detrended by subtracting the residual from EMD, the
Hilbert Transform is applied, before finally CPCA is applied.
Thus, EMD is used only for computing the non-oscillatory
residual, not for decomposition into IMFs. Detrending by
EMD is described in [11].

In equations we can write, for the first layer (where PCA
is applied),

S = UTX (13)

The scores from the first layer are detrended (i.e. the residual
computed using EMD is subtracted),

S′ = S−R (14)

the Hilbert Transform is applied,

Y = S′ + jH (S′) (15)

(Here, H(S′) denotes series-wise application of the Hilbert
Transform, similarly as in (9). Also, although not shown with
equations here, in a practical implementation roughly 10 %
should be tapered in each end at this stage, to limit end effects.)

This gives the complex series which constitutes the input of
the second layer (where CPCA is applied),

Z = VHY = VH (S′ + jH(S′)) (16)



Combining the above equations, we can write

X = US

= U (S′ + R)

= U (Re (Y) + R)

= U (Re (VZ) + R)

(17)

Neglecting the residual and defining the matrix W = UV,
we get

X = Re (UVZ) = Re (WZ) (18)

Finally, we can write

xi =

M∑
j=1

wijzj ≈
MCPC∑
j=1

wijzj (19)

This gives the contribution of the CPC zj , to the measure-
ment xi as the coefficient wij , i.e. element (i, j) of the matrix
W.

Note that if no components are discarded in either of the
layers, then the matrices U, V and W will be M × M -
matrices. If components are discarded, such that only MPC

components are kept from the first layer and MCPC from the
second layer, U, V and W will be of dimension M ×MPC ,
MPC ×MCPC and M ×MCPC , respectively.

Comparing modal analysis with CPCA as described, we see
that the coefficients wij in (19) become very similar to the
observability phasors φij in (2). Thus, if the decomposition
successfully produces CPCs with frequency and damping
similar to that of the modes of the system, then the coefficients
wij can be considered estimates of observability mode shapes.

E. k-Means Clustering

Clustering, in general, refers to the task of dividing a set of
observations into groups, such that observations belonging to
the same group are relatively similar, while the observations
belonging to different groups are relatively different [12]. In
the proposed method, clustering is used to determine which
mode estimates, or observations, are similar enough to be
included when computing averages of different modes and
mode shapes. The k-Means clustering algorithm is widely used
due to its computational simplicity. However, the method is
prone to noise [13], and requires the number of clusters to be
determined before the clustering.

To determine the number of clusters, a simple approach
is to carry out the clustering multiple times with a range of
different numbers of clusters, and then determining the most
optimal solution by assessing some measure of the ”goodness”
of each clustering. The Silhouette index can be adopted for this
purpose. For a thorough description of the k-Means algorithm
and formal definitions of the silhouette index, the interested
reader is referred to [13].

F. Exponential fitting by Linear Regression

Linear regression can be used for estimating the decay rate
of an exponentially decaying series. We would like to describe
the data Yi measured at Xi using the exponential function

Yi = αeβXi + ε, where ε is the error in the estimate. The
parameters α and β are estimated by taking the logarithm
of the values Yi in the series, and then using Simple Linear
Regression to find the linear relationsship between Xi and
ln(Yi). Expressions for α and β are given in [14].

Once we know the parameters, we can compute the average
squared error by R = 1

N

∑N
i=1

(
αeβXi − Yi

)2
.

III. PROPOSED METHOD

The two main parts of the proposed method are described
in detail below; in short, the purpose of the first part of
the method is to provide numerous estimates of modes using
dimensionality reduction techniques, while in the second part
averaged estimates of modes and mode shapes are com-
puted using clustering. We assume M frequency measurement
streams from which we want to extract information about
modes and mode shapes.

Part I - Mode estimation

The first part of the method acts on a sliding time window
containing N samples (for each of the M series). The length
of the sliding window should be sufficiently long to capture
low frequency oscillations, i.e. in the range 5− 10 s.

For each time window, we would like to decompose the
oscillatory behaviour into a number of components, and find
the amplitude and phase with which this behaviour happens in
each measurement. Each time window is analyzed according
to the following sequence:

1) The two-layer combination of PCA and CPCA, descibed
in section II-D, is applied to the M ×N matrix of input
series:

a) Each of the time series are normalized such as to
have zero mean.

b) PCA is applied,
c) The scores are detrended,
d) The Hilbert Transform is applied, and 10% of the

ends of the resulting complex series are tapered
e) CPCA is applied.

2) The frequency and decay rate of the resulting CPCs are
estimated. The frequency is computed using the built-
in MATLAB-function meanfreq(). The decay rate is
computed using exponential regression on the absolute
value of the CPCs (Abs(zi) =

√
Re(zi)2 + Im(zi)2),

described in II-F.
3) To limit the amount of uninteresting observations and

noise in the clustering, only the estimates with a fre-
quency between 0.1 Hz and 2 Hz (in the range of
electromechanical oscillations) and a regression error
below 4 · 10−3, computed as described in section II-F,
are used in the further analysis. The CPCs passing
this criterion, along with the corresponding coefficients
describing the amplitude and phase of their presence in
the measurements, are expected to be relatively good
estimates of modes and mode shapes.



4) Each of the accepted CPCs are rotated such that the
largest coefficient, corresponding to the longest observ-
ability phasor in the mode shape, is at 0°.

5) Finally, each mode estimate and the corresponding mode
shape is stored as a 2M + 2-dimensional point on the
form

p = [f, σ,Re(G1), Im(G1),Re(G2), Im(G2)...

...Re(GM ), Im(GM )]
(20)

where
f = frequency
σ = decay rate
Re(·) = real part
Im(·) = imaginary part
Gi = observability phasor for measurement i

Once we have the mode estimates, it does not matter from
which CPCs they were derived. Assuming that CPC j fulfilled
the criterions in step 3, then the observability phasor of
measurement i would be given by the coefficient wij in (19),
i.e., we have Gi = wij . In the following, the stored points
on the form (20) are referred to as ”observations”, to avoid
confusion with the final, averaged mode estimates resulting
from Part II, which are referred to as ”mode estimates”.

Step 3 in the sequence above is included to filter out bad
observations, due to the k-Means algorithm being suscepti-
ble to noise. If a CPC resulting from the two-layer PCA-
decomposition successfully captures a mode, then the absolute
value of the CPC should decay (or grow) exponentially.
Applying regression as described in section II-F gives an
estimate of the decay rate of the mode, along with the average
error in the estimate. A large error implies that the CPC does
not decay or grow exponentially, and therefore is probably
not a good estimate of one of the modes of the system. The
threshold value of 4 · 10−3 is found empirically, resulting
in reasonable balance between acceptance and rejection of
observations.

Part II - Computing mode averages
The PCA-decomposition in Part I is able to produce snap-

shots of modes and mode shapes, but with some uncertainty.
To digest the numerous observations and provide more reliable
estimates, we would like to compute averaged modes- and
mode shapes.

To determine which of the observations to include when
averaging each mode, we apply a clustering algorithm: Ob-
servations that are similar are be grouped together, and the
different groups/clusters are assumed to be associated with
different modes. The averaged mode shapes are then computed
as the centroids of the clusters.

Assuming we have Q point estimates resulting from Part I,
these can be organized in a Q× (2M + 2)-matrix:

P =


p1

p2

...
pQ

 =


f σ Re(G1) . . . Im(GM )
f σ Re(G1) . . . Im(GM )
...
f σ Re(G1) . . . Im(GM )

 (21)
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Fig. 1. Short circuits with clearing time 20ms at four different locations are
simulated in the Kundur Two Area System using DigSILENT PowerFactory,
resulting in the time series shown in the upper plot. The lower plot shows
where in time the observations contributing to the different mode estimates
are detected. The same colors are used in Figs. 2 to 4 to indicate the cluster
division.

Clustering of the points is carried out using the k-Means
algorithm as described in II-E: The data is clustered multiple
times with different numbers of clusters (for instance 1 to 10
clusters), and the final clustering is chosen to be the one with
the highest silhouette index.

Finally, the averaged modes are derived from the centroids
of the clusters.

IV. APPLICATION

The method is tested on simulated data from The Kundur
Two Area System, performed in DigSILENT PowerFactory,
and on PMU data recorded during an oscillatory event in
the Nordic Power System. In the case with simulated data,
the analysed time series has very high modal content and no
ambient noise, and should be regarded as a demonstrational
example. The case with PMU data contains ambient noise, and
demonstrates the applicability of the method to measurements
from a real system.

A. Simulated data from the Kundur Two Area System

This system is widely used for studying local and interarea
modes. The system parameters are described in [9], but the
model is modified according to the following: Generators
1 & 2 emulate hydro power plants, with governor model
HYGOV, inertia constants H = 10 s and synchronous reac-
tances Xd = 1.2 & Xq = 0.9. Generators 3 & 4 emulate
thermal power plants, with governor model TGOV1. All gen-
erators are equipped with the excitation system model SEXS.
Finally, the load flow is modified, in order to achieve lower
damping of the interarea mode, such that Generators 1, 2, 3
and 4 produce 600 MW, 500 MW, 801 MW and 900 MW,
respectively. Other parameters are as described in [9].

Short circuits with a clearing time of 20 ms are applied sub-
sequently near each of the four generators, with 20 s between
each short circuit. The resulting frequencies (measured at the
generator buses), are shown in Fig. 1.
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Fig. 2. The two histograms indicate the number of observations on the y-
axis, and the frequency (upper plot) and decay rate (lower plot) on the x-axis,
where the colors indicate the share of each column belonging to each cluster.
The same colors as in Fig. 1 to indicate the cluster division.

Figs. 2 and 3 show histograms resulting from Part I of
the method, indicating the number of observations with a
given frequency, damping and observability phasor for each
generator. Considering the histogram for frequency in Fig.
2, we see that higher densities of observations form around
frequencies 0.3, 0.5 and 0.7 Hz.

Part II of the method performs the clustering of the densely
populated areas, and results in 7 clusters. The lower plot in
Fig. 1 shows the time instants where observations assigned to
the different clusters are obtained.

The coloring of the columns of the histograms indicate the
share of the observations being assigned to different clusters,
for instance, most of the ≈ 0.5 Hz-observations are assigned
to the cluster shown in blue, and most of the ≈ 0.7 Hz-
observations are assigned to the cluster shown in red, and so
on. The same colors are used in the lower part of Fig. 1 and
Figs. 2 to 4 to indicate the clustering division. Considering
the observations around 0.5 Hz in Fig. 2, shown in blue,
we can study Fig. 3 to find that in these observations, the
observability phasors for generators 1 & 2 (shown in the two
upper plots) in average appear to have a real part around -0.4,
and an imaginary part of about zero. For generators 3 & 4, the
corresponding real and imaginary parts appear to be situated
around 0.7 and zero. This indicates that this is an interarea
mode, where generators 1 & 2 are swinging against generators
3 & 4. Considering the lower plot in Fig. 2, the decay rate of
the same mode appears to be less accurately estimated due to
the high variance compared to the other histograms, but the
average appears to be around 0.3 1/s.

Once the clustering is performed, we know which obser-
vations to include when averaging each mode. The averaged
modes from three of the clusters are shown in the upper part
Fig. 4. For comparison, the corresponding modes computed
using modal analysis in DigSILENT PowerFactory are
shown below, indicating that the method is capable of provid-

Fig. 3. The plots above show 2D histograms indicating the number of
occurences (z-axis) of real and imaginary parts (x and y-axis) of the ob-
servability phasors of the four generators (first plot = Generator 1, second
plot = Generator 2, and so on.). The colors indicate the share of each column
belonging to each cluster. The same colors as in Figs. 1 and 2 are used to
indicate the cluster division.

ing accurate estimates of system modes. The most significant
deviation is the decay rate of the third mode shown, where the
proposed method produces an estimate of −0.37 1/s, while
modal analysis gives the value −0.939 1/s. Note that this
mode is nevertheless very well damped, and that it is a mode
associated with turbine governors. The method is thus not
limited to identification of electromechanical modes.

As mentioned, the method results in 7 clusters, representing
7 averaged modes, whereof three are shown in 4. By compar-
ing with results from modal analysis, it is found that two of



Mode estimate 1

 f=0.466 Hz, =-0.301 1/s

Mode estimate 3

 f=0.68 Hz, =-0.241 1/s

Mode estimate 4

 f=0.269 Hz, =-0.368 1/s

Mode 19,

 f=0.446 Hz, =-0.295 1/s

Mode 16,

 f=0.664 Hz, =-0.211 1/s

Mode 26,

 f=0.26 Hz, =-0.939 1/s

Fig. 4. The three upper mode shapes result from applying the method to
simulated time series from the Kundur Two Area System, while the lower
three mode shapes are computed using modal analysis on a linearized model
of the same system. In the colored captions of the upper three mode shapes,
the same colors as in Figs. 1 to 3 are used to indicate the cluster division.
For the phasors in all the mode shapes, the colors and line types correspond
to those of the time series in Fig. 1.
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Fig. 5. This map shows the approximate locations of the eight PMUs
recording the oscillations shown in Figs. 6 and 7. The appearance of the
markers correspond to the colors and line types of the time series in Figs. 6,
7 and the phasors in Fig. 8.

the averaged mode estimates, number 6 and 7, do not resemble
any of the modes from modal analysis.

Further, it is found that mode estimate 2 and 3 are very
similar, except that the mode shape is rotated 180°, which is
probably due to the mode shapes from Part I being rotated
such that the longest observability phasor lies at 0°. Due to
some inaccuracy in the CPCA decomposition, the next longest
observability phasor will in some estimates appear the longest,
thus flipping the whole mode shape around. The same is the
case for estimates 1 and 5, the averaged mode shapes are very
similar, but appear at different angular positions.
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Fig. 6. The PMU measurements in the upper plot show oscillations following
an event, recorded at 8 different locations. The lower plot shows where in time
the observations contributing to the different mode estimates are detected,
similarly as for the case with the Kundur Two Area System in Fig. 1.
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Fig. 7. A zoomed view of the original time series are shown. From the period
of almost sustained oscillations we see that the method is able to correctly
identify the locations with highest oscillations and the phase shift between
the various locations. The sampling frequency is 10Hz in this case, which is
lower than what can be achieved with most PMUs.

B. PMU measurements from oscillatory event

The recorded PMU data is shown in the upper part of Fig.
6. Applying the method yields the three mode shapes shown
in Fig. 8. Studying Fig. 7, which shows a zoomed view at the
beginning of the oscillatory period, we see that the oscillations
are most prominent in the two signals shown in green and
yellow, corresponding to locations S and SW1 in Fig. 5.
These locations are oscillating roughly in phase. Considering
locations SW2 and SE, the amplitudes of the oscillations are
a bit lower, and the respective phase shifts are about 135° to
the left, and 90° to the right. Mode Estimate 1 fits well with
this description, indicating that the method is able to produce

Mode estimate 1

 f=0.987 Hz, =0.023 1/s

Mode estimate 2

 f=1.014 Hz, =-0.087 1/s

Mode estimate 3

 f=1.109 Hz, =-0.001 1/s

Fig. 8. In the colored captions, the same colors as in Fig. 6 are used to
indicate the cluster division, while for the phasors, the colors and line types
correspond to those of the markers indicating PMU positions in Fig. 5, and
those of the time series in Figs. 6 and 7.



a reasonable estimate of the mode and corresponding mode
shape.

From the lower plot in Fig. 6, it can be seen that the
observations from which Mode estimate 1 is computed, are
captured shortly after the oscillations started, Mode estimate 2
was captured shortly after that, and and finally Mode estimate
3 was captured at the end of the period with oscillations. The
three mode shapes are similar, but in particular the angle of
the phasor corresponding to location SE in Fig. 5 (shown with
dashed, red lines) changes during the course of the oscillations.
Also, the frequencies of Estimates 2 and 3 are a bit higher
than the first. This could indicate that some remedial action
was taken to mitigate the oscillations.

V. DISCUSSION

The above results are promising; first and foremost, the
method is able to produce relatively accurate estimates of
modes of the power system.

The results from the case with PMU data reveals a potential
benefit of the described empirical approach, namely that the
method could facilitate tracking of how modes change during
a period. In the presented case, the oscillatory mode and
the corresponding mode shape appears to change slightly
during the course of the oscillations. This is information that
would be difficult to obtain using modal analysis, which could
potentially contribute to increased situational awareness.

When applying the method to the Kundur Two Area system,
two of the resulting mode estimates are copies of other
estimates, appearing at different angular positions. This is
caused by the way the observations are stored, i.e. with the
longest observability phasor at 0°. This could be avoided in
a post processing step, checking if any of the mode estimates
are replicates of each other, or by storing the observations in
a format that is independent of the angle of the mode shape.

Further testing needs to be done to improve the method,
and facilitate development into a form that is useful for grid
operators. Imaginably, the dynamics decomposition in Part
I would run continuously, analyzing numerous PMU data
streams on the go, while the clustering in Part II could be
performed on a longer-term moving window, for instance of
lengths on the scale of minutes or hours. This would provide
operators with continuously updated information on the power
system modes, which could in turn be taken into account when
designing future wide area control applications.

For the implementation, there is a large potential for im-
provement. Other input quantities than the frequency could be
tested as input to the method, for instance the voltage angle.
Further, in Part I of the method, the criterion for determining
whether observations should be included in the clustering
part could take many forms. If a clustering algorithm less
susceptible to noise was used, the criterion could be less
strict, or even be omitted. Other variants of the dynamics
decomposition could also be tested, for instance as described
in [7], where EMD is used to decompose the input signals
into IMFs rather than the two-layer combination of PCA and
CPCA implemented here.

An important next step in the further development of the
method will be to compare it with other methods serving the
same purpose, for instance those described in [2] and [3],
which could give an indication of the relative performance of
the method in terms of accuracy and speed. Other important
aspects that must be explored include testing on larger grids
(with more measurements) and sensitivity to noise.

VI. CONCLUSION

Testing on simulated data and recorded PMU data indicates
that the presented method could be a useful tool for digesting
numerous PMU measurements into useful knowledge of the
system, in the form of information about the oscillatory modes
and their mode shapes. The main conclusion is that the
method is feasible, and shows promising result on measured
and simulated data. Further work is required to improve the
different constituents of the method, including the dynamics
decomposition using CPCA, the filtering/handling of noise/bad
observations and the clustering part. Additionally, the method
must be compared with other similar methods, and further
testing on measured data will be necessary to verify the
robustness and efficiency of the method for online use.
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