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Bruk av olfaktoriske ensheathing celler, MRI og biomaterialer i transplantasjonsmediert 

reparasjon av CNS skader 

Den beskrevne studien har brukt en interdisiplinær tilnærming for å evaluere transplantasjons mediert 

CNS reparasjon i en skademodell av synsnerven. Ved å integrere forskjellige MRI metoder har vi 

analysert olfaktoriske ensheathing celler’s (OEC) evne til å integrere og overleve in vivo i vår 

skademodell.  Cellenes evne til å modulere regenerasjonen av den skadede synsnerven er også 

dokumentert ultrastrukturelt med elektronmikroskopi (EM). Studien har også omfattet in vitro analyser 

av interaksjonen mellom OEC og modifiserte biopolymerer i 2-og 3-dimensjonale matriser.  

Den spesifikke målsetningen med denne studien har vært: (a) Utvikle protokoller for effektiv merkning 

av OEC med mikron store jern partikler; (b) Kombinere cellulær MRI og mangan-forsterket MRI 

(MEMRI) for spatiotemporal monitorering av intravitreal (ivit) og intra-optisk nerve (iON)

transplantasjon av OEC; (c) Studere celleimplantatenes evne til å promotere regenerasjon av 

synsbane aksoner etter skade i synsnerven både (i) longitudinelt in vivo med MRI og (ii) 

ultrastrukturelt med transmisjons elektron mikroskopi (TEM); (d) Produsere og teste modifiserte 

alginat strukturer som plattformer for kontrollert frigjøring av mangan (Mn2+) brukt som 

kontrastmiddel ved MEMRI; (e) Utvikle arginin-glycin-aspartat (RGD)-peptid alginater og karakterisere 

interaksjonen med OEC dyrket på disse modifiserte aliginat matrisene. 

I avhandlingen presenteres gjennomføringen av disse målene og belyser potensialet av å integrere 

MRI, biomateraler og celleterapeutiske teknologier i studier av transplantasjons-mediert reparasjon av 

skader i CNS.  
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Ithaka gave you the marvellous journey. 
Without her you would not have set out. 

She has nothing left to give you now. 
 

And if you find her poor, Ithaka won’t have deceived you. 
Wise as you will have become, so full of experience,  

you will have understood by then what these Ithakas mean. 
 

Constantine P Cavafy (1863-1933) 
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1. Introduction
 

1.1. CNS damage and repair 

 

Damage to the central nervous system (CNS) as a result of trauma or neurodegenerative 

disease, such as Parkinson’s, Alzheimer’s, and Huntington’s disease, multiple sclerosis (MS), and 

amyotrophic lateral sclerosis (ALS), constitutes one of the major causes of morbidity and 

mortality in the human population today, with serious implications for the quality of life of 

millions of people and significant associated socio-economic costs. Yet despite intense research 

effort from translational neuroscientists and clinicians over several decades, CNS regeneration 

after injury still remains elusive. 

 

Research progress over the last decades, has questioned the old dogma of an immutable CNS, 

which, unlike the peripheral nervous system (PNS), lacks the ability to regenerate once 

development has been completed [1]. This dogma is best expressed in the words of the 

pioneering Spanish neuroscientist Santiago Ramón y Cajal:  ‘… the functional specialisation of 

the brain imposed on neurones two great lacunae; proliferative inability and irreversibility of 

intraprotoplasmic differentiation. It is for this reason that, once the development was ended, 

the founts of growth and regeneration of axons and dendrites dried up irrevocably. In adult 

centres the nerve paths are something fixed, ended, immutable. Everything may die, nothing 

may be regenerated’.  However, as Ramón y Cajal himself observed, ‘the incapability of 

regeneration is not a fatally irresistible law, but a secondary outcome of a physical or chemical 

environment unfavourable for the growth of the sprouts’ [1].  This led to the hypothesis that 

CNS axon regeneration should be possible provided that there is a permissive environment 

supporting growth, demonstrated, for the first time, as the intrinsic regenerative capacity of 

axotomised CNS neurons to regrow their axons in the presence of peripheral nerve grafts (PNG) 

[1-4].   

 

These early experiments in the 1980s signified a new era in neuroscience research, 

underpinned by the effort to elucidate the mechanisms of CNS damage and repair and to 

develop appropriate therapeutic interventions aimed at CNS regeneration, with the ultimate 

goal of achieving neuroanatomical restitution and re-establishment of lost synaptic connections.  

It is, nonetheless, the immense complexity of CNS degeneration and regeneration mechanisms 

that renders the development of effective regenerative approaches highly challenging. 
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1.1.1. CNS lesion pathology and axon growth inhibition 

Insult to the CNS results in loss of neurons and/or damaged neuronal axons and the 

consequent disruption of neuronal circuits, leading to neurological deficits which are permanent 

and irreversible.   

 

Neuronal cell death is due to either necrosis, or apoptosis [5-11]. Necrotic cell death occurs as a 

result of anoxia or mechanical damage to the cell membrane, causing severe disruption of 

metabolic mechanisms and cellular homeostasis [8]. On the other hand, neuronal cell death due 

to apoptosis is genetically programmed cell death precipitated, in the case of CNS lesions, by 

extracellular events, such as withdrawal of trophic support, free-radical damage and DNA 

damage [8, 12]. During apoptosis, the cell membrane initially remains intact, while cellular 

components start being digested inside the cell. As the apoptotic cycle progresses, the cell 

membrane  becomes convoluted and cellular fragments separated and subsequently ingested 

by macrophages and other scavenger cells [8, 13]. Excitotoxicity, metabolic imbalance, 

oxidative stress, and calcium influx are events that, depending on the type of CNS lesion, may 

induce cell death via either apoptotic or necrotic mechanisms [14, 15]. Such events are 

determined by intricate molecular mechanisms and affect specific ligands and receptors and 

intracellular and extracellular signalling cascades, with major implications for synaptic 

connectivity and neurotransmission.   

 

The vast majority of CNS lesions invariably affect neuronal axons, whose length of extension 

(i.e. up to 1m) from their somata, makes them highly vulnerable to insult [16].  Following 

axotomy, the distal segment of the injured axon gradually degenerates and becomes 

demyelinated, a process known as Wallerian degeneration [16]. Depending on the distance of 

the lesion from the cell body, axotomy may lead to retrograde neuronal death via either 

apoptotic or necrotic mechanisms, with rapid necrotic death occurring when the neuronal axon 

is damaged close to the soma. Additionally, anterograde cell death as a result of apoptosis may 

occur in target neurons, with which the axotomised neurons form synapses [16]. In all cases, 

trophic support from/to axotomised neurons is disrupted and eventually lost, leading to 

neuronal death [16].  On a molecular level, axotomy induces the upregulation and down-

regulation of a host of different genes, including (i), transcription factors, such as c-jun, jun D, 

Krox-24; (ii), growth-associated proteins, i.e. GAP-43; (iii), cytoskeletal proteins, such as F 

actin; (iv), growth factor receptors and growth factors, including the tyrosine kinase (trk) family 

of receptors for brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), nerve growth 

factor (NGF), and its low affinity receptor, p75NTR; (v), cytokines, including interleukins (i.e. IL-

2



6, IL1 ), and tumour necrosis factor (i.e. TNF ); as well as (vi), the myelin-associated inhibitors 

NogoA, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp) 

[16-25].   

 

Apart from mechanical damage to axons at the lesion site, with subsequent disruption of the 

neuronal circuitry and gradual degeneration of the affected neurons, CNS lesion pathology is 

further complicated by a cascade of secondary cellular and molecular events which evolve up to 

several weeks after the injury. These include an inflammatory response with microglia 

activation, as well as macroglia responses, characterised by reactive astrocytosis, infiltration by 

oligodendrocyte precursors (OPCs), and the formation of the glial scar [26-34] (Figure 1.1).  

 

 

 

Figure 1.1 – Pathological features of CNS injury. Illustration showing process of demyelination, 
reactive astrocytosis, and glial scar formation after CNS axotomy. 
 

Microglia are immune-competent cells intrinsic to the adult CNS [35]. In response to CNS injury, 

resident microglia within the CNS parenchyma, become activated and are recruited to the lesion 

site within minutes, followed in the next few days by proliferation of macrophages and 

lymphocytes [16, 34-36].  Additionally, in injuries that damage blood vessels and result in 

extensive haemorrhage, there is massive macrophage infiltration from the blood, as well as 

some neutrophil recruitment, which, however, is limited given that the -chemokines involved in 

the recruitment of leukocytes are absent in the CNS [16, 32, 35, 37].  Microglia assume 
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phagocytic  and macrophage-type roles in response to the presence of cellular and myelin 

debris, however, as a result of the fact that microglia/macrophage populations in the injured 

CNS are much smaller than in the PNS, clearance of such debris in the CNS is significantly 

slower [16, 32].  Furthermore, activated microglia accumulate around the cell body of injured 

axons whose input synapses have withdrawn, and remain there for several weeks [34].  When 

the microglia subsequently retract, they are replaced by astrocytes, which become interposed 

with the neuronal terminals and cell body, effectively blocking re-innervation [16, 34].  

 

Mechanical disruption of the lesion microenvironment inadvertently results in astrocytic death 

[38]. Moreover, in response to injury, surviving astrocytes in the lesion area become reactive, 

leading to a series of biochemical changes, including elevated levels of glial fibrillary acidic 

protein (GFAP), cytoskeletal changes and upregulation of nestin and vimentin production,  as 

well as changes in the levels of cytokines, proteases and protease inhibitors, cell surface matrix 

and other molecules [29, 39-45].  In the event of injury that penetrates the meninges, 

interactions between reactive astrocytes and invading meningeal cells affect the process of 

gliosis and the re-formation of the glia limitans, in which meningeal cells form a layer around 

the inside of the injury, preventing molecular diffusion [29, 46-48].  The resulting tissue, 

described as the ‘glial scar’, is densely packed with hypertrophic astrocytes with interdigitating 

processes [16], extracellular matrix (ECM), and gap and tight junctions [16, 32]. In addition to 

astrocytes, macroglia responses to CNS injury include the recruitment of oligodendrocyte 

precursors to the lesion. OPCs express growth inhibitory molecule NG2 as well as other 

chondroitin sulphate proteoglycans (CSPGs). A host of CSPGs, including tenascin-R, tenascin-C, 

neurocan, versican, brevican, and phosphacan are also expressed in the ECM, as well as in 

reactive astrocytes and neurons at the lesion site [16, 32, 49-66]. As a result, intricate 

interactions between cellular and molecular constituents of the injury microenvironment pose a 

physical and chemical barrier to regenerating CNS axons and migrating myelinating cells.   

 

In addition to the extrinsic factors described above, a major complicating factor in CNS axon 

growth after injury is the upregulation of a host of axon growth inhibitory molecules of the 

semaphorin (Sema), ephrin, and netrin families and their respective receptors [50, 67-74].  

These ligands and receptors are axon guidance molecules that regulate pathfinding and 

chemotaxis and mediate synapse selection during development [50, 67].  Interestingly, in the 

adult CNS, the same ligands and receptors are implicated in mediating plasticity and stabilising 

synaptic connections [50].  Upregulation of expression of inhibitory ligands and receptors in 

reactive glia and fibroblasts in the lesion microenvironment triggers downstream signalling 

cascades in the Rho family of small GTPases, including RhoA, Cdc42, and Rac1, which regulate 
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the actin cytoskeleton, change the motility of outgrowing neurons, and thus arrest neurite 

outgrowth by inducing growth cone repulsion or collapse [50, 75, 76]. Finally, intrinsic factors 

such as reduced plasticity associated with neuronal maturity, as well as changes in 

evolutionarily conserved molecular mechanisms, for example, the PTEN-dependent inactivation 

of the mTOR pathway that promotes axon extension in CNS neurons, greatly impinge on the 

capacity of the adult CNS to regenerate after injury [77-81].   

1.1.2. CNS recovery: mechanisms and strategies 

Ability to promote CNS recovery after injury is contingent on a multitude of factors, including 

the nature, extent and location of the insult, as well as the time elapsed between the insult and 

the therapeutic intervention [80].  At the early stages after injury, damaged CNS neurons enter 

a programme of abortive regeneration [81-83]. The degree of spontaneous axonal sprouting in 

these cases is dependent on neuronal cell subtype and maturity, while neurite outgrowth is 

often aberrant, extends over short distances and, consequently, lacks the ability to promote 

axon regeneration towards correct synaptic targets distal to the lesion [81, 82]. Furthermore, 

collateral sprouting from the terminals of intact neurons, or the proximal segment of injured 

mature CNS axons is marginal and thus unlikely to effectuate repair of neuronal circuits via 

compensatory routes [81].   

 

As discussed earlier, the regenerative failure of CNS axons can be attributed to interplay 

between intrinsic and extrinsic factors. Hence, therapeutic strategies may target either 

endogenous or exogenous constituents of CNS lesion sequelae or, alternatively, involve 

combinatorial approaches addressing both. Such strategies must be able to meet a number of 

challenges, mainly: (i), stimulate robust neurite outgrowth, (ii), circumvent the chemical and 

physical barriers posed by the non-permissive CNS neuropil to promote sustained growth cone 

advance through it, and (iii), achieve restitution of lost synaptic connections with functional 

outcome.  

 

One approach to CNS recovery is limiting neuronal cell death by adopting neuroprotective 

strategies which aim to reduce excitotoxicity, metabolic imbalance, and oxidative stress after 

injury [14]. Such approaches may include pharmacological modulation of calcium influx using 

NMDA antagonists/calcium blockers, administration of free-radical scavenging agents, 

promotion of cellular metabolic activity, and use of anti-apoptotic and anti-inflammatory 

treatments [14, 84-93]. The latter aim to limit secondary damage by preventing extensive 

cavitation and gliosis. It  is noteworthy, however,  that in certain circumstances, inflammation 
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may actually exert a neuroprotective effect on lesioned CNS neurons, as demonstrated by 

increased neurite outgrowth induced by lens injury and zymosan injections after visual pathway 

lesion [94-98]. 

 

In addition to the above, infusion with neurotrophic factors, including BDNF, NT, glial cell line-

derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), fibroblast growth factor 

(FGF), transforming growth factor (i.e. TGF ), and neurturin, may prevent axonal death and/or 

promote anatomical and biochemical plasticity in target CNS neurons [97-108]. Another 

approach is overcoming the inhibitory nature of the lesion microenvironment. This may be 

effectuated by modulation of the molecular and/or cellular components of axon growth 

inhibition. Examples include the use of neurotrophic factors, antibodies/recombinant protein 

treatments, and gene therapy to neutralise/modulate the expression of CSPGs [109-114], 

myelin-associated inhibitors [115-121], and axon guidance molecules [122-124], and to 

influence specific signalling cascades and signal transduction mechanisms [79, 122, 125-131].  

 

Such interventions have varying degrees of success, but overall fail to achieve significant or 

sustainable functional outcomes. Furthermore, the complexity of CNS lesion pathology and body 

of experimental evidence strongly suggest that better results are to be derived by applying 

combinatorial approaches, rather than individual treatments [81, 132-135].  Furthermore, while 

some treatments yield promising results, they may not be clinically applicable. One such 

example is conditioning lesion of the peripheral branch of dorsal root ganglia (DRG) in the form 

of sciatic nerve injury, prior to spinal cord or dorsal column lesioning, to promote regeneration 

of centrally ascending afferent fibres [136-139].   

 

1.1.3. Transplant-mediated CNS repair 

One of the underlying assumptions in many CNS repair strategies is that regeneration may be 

achieved by recapitulation of normal neuronal development, i.e. that CNS neurons may be 

induced to switch to genetic programmes characterised by enhanced plasticity and regenerative 

capacity [140]. Thus the success of neuroprotection, neuronal replacement, stimulation of 

axonal sprouting and synaptogenesis, myelination, as well as de novo neurogenesis may be 

contingent on recapitulation of the relevant developmental mechanisms. Treatment of CNS 

lesions utilising tissue and cell transplants largely reflects this rationale.   

 

As it was mentioned at the beginning of Section 1, the old dogma suggesting that the mature 

CNS is characterised by complete lack of regenerative capacity was challenged for the first time 
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when Aguayo and colleagues demonstrated that large numbers of lesioned dorsal root ganglia 

(DRG) and spinal cord neurons are able to extend axons into peripheral nerve (PN) segments 

engrafted into the injured rat spinal cord [1-4]. In later experiments, Aguayo and colleagues 

showed that intra-optic nerve (iON) PNG promote robust retinal ganglion cell (RGC) axon 

regeneration and re-innervation of the superior colliculus after visual pathway lesion in the adult 

rat [141, 142]. Similarly, Berry and colleagues demonstrated that intravitreal (ivit) PNG 

promotes RGC axon regeneration through the rat optic chiasm and into the optic tract [143, 

144].  Additionally, a number of other studies demonstrated the neuroprotective and 

myelinating effects of Schwann cell-containing PNG alone, or in combination with other 

strategies, such as administration of neurotrophins and chondroitinase ABC [145-155]. The 

main limitation in such approaches, though, is that regenerating CNS axons growing through 

PNG generally fail to exit the Schwann-cell microenvironment of the graft and make the 

transition into the CNS [156]. In the same manner, regenerating sensory afferents from 

damaged DRG do not cross from the PNS into the CNS, but stop at the dorsal root entry zone 

(DREZ) [156]. Nonetheless, CNS axon regeneration through PNG into the distal spinal cord 

segment with partial restoration of functional recovery has been reported [155]. However, this 

promising outcome is largely attributed to additional manipulation of the non-permissive lesion 

microenvironment with FGF-1, rather than to the PNG alone [155-158]. 

 

Another transplantation strategy utilises foetal tissue for neuronal replacement and 

neuroprotection in experimental spinal cord and brain lesions.  Foetal spinal cord transplants 

have been shown to promote functional recovery and to restore lost supraspinal and 

serotonergic input after spinal cord injury in the adult rat [157, 159, 160]. Again, improved 

effects were achieved in cases when foetal transplantation was combined with other strategies, 

including administration of BDNF, and NT-3 [161, 162]. 

 

Apart from transplantation of tissue segments, embryonic stem cells (ESCs), neural stem cells 

(NSCs)/neural progenitor cells (NPCs), and glia are attractive candidates for transplant-

mediated CNS repair. Pluripotent ESCs are characterised by unlimited expandability and 

differentiation capacity [163, 164]. OPCs derived from human ESCs (hESCs) have been used to 

treat spinal cord injury patients in Phase I clinical trials with promising results [165-167]. 

However, the use of hESCs, is fraught with ethical concerns [168-170].  Furthermore, the 

pluripotent character of ESCs harbours the potential for aberrant growth after implantation into 

the host nervous system, resulting in overgrowth and formation of tumours, like teratomas 

[171]. Moreover, the use of ESC allografts carries the inherent risk of transferring viral, 

bacterial, fungal, and prion contaminants from the donor to the host [172, 173]. Finally, the risk 
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of rejection of tissue allografts necessitates the administration of immunosuppressive 

treatments, which may potentially precipitate side-effects and/or complications [173].   

 

Mulipotent NSCs and neural stem cell progenitors (NSPs) are self-renewing mitotically-active 

cells harvested from special CNS locations in which neurogenesis is ongoing throughout adult 

life. These NSC niches include the subventricular zone (SVZ) of the lateral ventricle, and the 

subgranular zone (SGZ) of the hippocampal dentate gyrus [174-179]. Alternatively, NSCs can 

be derived from induced pluripotent stem cells (iPSCs) [180-184].  NSCs/NPCs give rise to cells 

of neural lineage, i.e. neurons, astrocytes, and oligodendrocytes, via asymmetric division [179]. 

These stem cell populations have been utilised to treat neurodegenerative conditions such as 

experimental ALS, Parkinson’s disease, and spinal cord lesions with promising results [185-195]. 

However, for safe translation of NSC-based therapies into the clinics a number of obstacles will 

need to be overcome, including the limited availability and expandability of human NSCs 

(hNSCs), genetic and epigenetic instability, tumorigenic potential, and other unwanted effects 

of NSC transplants, such as allodynias and dyskinesias [140, 157, 196-204]. 

 

1.2. Olfactory ensheathing cells in transplant-mediated CNS repair 

1.2.1.  Olfactory ensheathing cell properties and function 

The observation, in the late 1970s, by Graziadei and Monti Graziadei that neurogenesis in the 

olfactory system continues throughout adult life and that mature olfactory receptor neurons 

(ORN) regenerate their axons and establish functional connections after injury [205-216] 

suggested that olfactory ensheathing cells (OECs), the glia that enwrap olfactory axons [217, 

218], are possible candidate cells in transplant-mediated CNS repair.  

 

OECs are a unique type of glia first identified by Golgi [219] and Blanes [220, 221]. OECs are 

found both in the olfactory epithelium and olfactory bulb (OB) of the primary olfactory system. 

The OECs that are located in the lamina propria of the nasal cavity associate closely with 

afferent receptor bundles of ORN, while intracranially, OECs enfold large numbers of 

contiguous, unmyelinated axons of the first cranial nerve [218, 222-235] (Figure 1.2). 
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Figure 1.2 – OECs enwrap ORN along their trajectory from the PNS into the CNS; BV: blood 
vessel; BG: Bowman gland. 
 

 

During mammalian development, ORN axon pathfinding and elongation in the lamina propria is 

partially attributed to chemotactic and mechanical support provided by OECs [236, 237]. OECs 

facilitate elongation and fasciculation of developing ORN axons by expression of cell adhesion 

and ECM molecules such as NCAM, E-NCAM, L1, collagen IV, galectin-1, and 2-laminin [236-

241]. OECs migrate in tandem with developing ORN axons across the lamina propria and 

provide directional guidance during axon tract formation [236, 237]. Furthermore, p75NTR-

expressing OECs contribute to the formation of the glia limitans of the OB [241, 243], while at 

the ventral olfactory nerve layer (ONL), OECs guide ORN axons towards the olfactory bulb 

glomeruli by differential expression of galectin-1, 2-laminin, and Sema3A [236, 240].  

 

ORN transmit odour signals from the olfactory mucosa to the OB, from where the signals are 

subsequently relayed to the olfactory cortex [244, 245]. It is established that detection and 

response to odours is crucial for the behaviour and survival of many species. This suggests that 

the continual turnover and regeneration of ORN in the primary olfactory system safeguards 

olfactory integrity against noxious stimuli [244]. Damage to the olfactory epithelium (OE) 

stimulates proliferation and differentiation of resident putative stem cells, i.e. horizontal basal 

cells (HBCs) and globose basal cells (GBCs) into ORN, while normal ORN turnover is attributed 
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solely to GBCs [244, 246, 247].  OECs provide distinct guidance cues and facilitate elongation of 

newly generated ORN axons along their trajectory, from the PNS into the CNS and OB, where 

the ORN establish synapses with second order neurons [217, 229, 248-250].  

 

The localization, function and role of OECs in primary olfactory system development, adult 

neurogenesis and regeneration suggested that OECs are indeed stem cells [251]. Despite 

morphological and antigenic plasticity, however, OECs seem to lack pluripotency and ability for 

continuous self-renewal [244]. On the other hand, apparent similarities between OECs, 

Schwann cells, and also astrocytes have led to a degree of discrepancy in the relevant 

literature, with OECs often being identified as Schwann cells or astrocytes, especially in earlier 

publications [235, 251-254].   

 

1.2.2. Comparison of OECs with Schwann cells and astrocytes 

 

OECs display a malleable morphological and molecular phenotype and share many similarities 

with immature non-myelinating Schwann cells, as well as astrocytes both in vitro and in vivo 

[229, 245, 254-261].  Morphologically, OECs appear either spindle-shaped or stellate-shaped, 

closely resembling Schwann cells and astrocytes, respectively [256].  This heterogeneity is also 

reflected in the antigenic expression of OECs. In the early stages after isolation and culture, 

OECs express p75NTR, a molecular marker also expressed by Schwann cells [221, 255]. 

However, in vivo p75NTR expression in both OECs and Schwann cells is low, but becomes 

upregulated in response to ORN and PN injury, respectively [221, 255, 260]. Furthermore, OECs 

expressing p75NTR are spindle-shaped and stain positive for the glial marker O4, but express no 

galactocerebroside (GalC) [255, 260], while stellate-shaped OECs are PSA-NCAM positive [221, 

254, 255, 260].  Moreover, both OECs and Schwann cells express peripheral myelin protein P0 

[261, 262]. This overlap in antigenic expression and morphology makes it difficult to distinguish 

OECs from other glia, especially Schwann cells.  

 

A recent report by Boyd et al [263] claimed that calponin, an actin-binding protein, can be used 

as a marker to unequivocally distinguish OECs from Schwann cells both in vitro and in vivo. 

However, a different study by Ibanez et al [264] challenged this finding as the authors 

concluded that calponin is not expressed by OECs, but rather by fibroblasts and meningeal cells 

in the olfactory mucosa and olfactory bulb, respectively. Tomé et al [265] investigated whether 

the discrepancy in these findings could be attributed to differences in methodology or the 

developmental age of the OECs utilized in the studies [265] and showed that while calponin is 

expressed by subpopulations of connective tissue cells in the neonatal olfactory mucosa, OECs 
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do not express calponin either in vitro or in vivo, irrespective of methodology or developmental 

age [265]. It is, therefore, concluded that calponin is not a specific marker for OECs [265]. 

 

Despite the fact that OECs share common characteristics with other glia, they are a 

developmentally and functionally distinct cell type [248]. The general consensus is that OECs 

originate in the olfactory placode, as opposed to Schwann cells, which originate in the neural 

crest [235, 266]. It was recently claimed, however, that OECs are derived from the neural crest, 

which might potentially enable treatment of human patients by isolating autologous neural crest 

derived stem cells and directing their differentiation into OECs in vitro [267]. Although a shared 

origin between OECs and Schwann cells might explain the many similarities between the two 

types of glia [267], more research might be necessary to confirm and explore these findings.  

 

Irrespective of ontogenic profile, a main distinction between OECs and Schwann cells is the fact 

that they display very different interaction profiles when co-cultured with astrocytes, as 

demonstrated by confrontation assays [268]. OECs intermingle with astrocytes in vitro, unlike 

Schwann cells, which induce boundary formation and a hypertrophic response [221, 268]. 

Similarly, transplanted OECs, not Schwann cells, intermingle with astrocytes in vivo, while 

increased deposition of CSPG by astrocytes is observed in response to Schwann cells only [269-

277]. The exact mechanisms of the interactions of OECs and Schwann cells with astrocytes 

remain to be elucidated, however a number of different molecules, such as CSPG, ephrins, 

FGF2, and N-cadherin, are involved [221, 270-272]. Finally, in vitro assays demonstrated 

distinct interactions of OECs and Schwann cells with meningeal cells [278]. In a manner similar 

to that characterizing interactions with astrocytes, OECs intermingle with meningeal cells, as 

opposed to Schwann cells, which aggregate into clusters [278]. 

 

1.2.3.  OEC transplants as mediators of CNS repair 

 

The distinct interactions of OECs and Schwann cells with astrocytes and meningeal cells are 

highly relevant with regard to the capacity of either glia to promote CNS axon regeneration by 

negotiating the non-permissive chemical and physical boundary of the glial scar. Furthermore, 

the rich antigenic profile and ability of OECs to support continual ORN outgrowth throughout 

adult life render them superior candidates for transplant-mediated CNS repair.  

 

OECs have been transplanted in different spinal cord injury models, including electrolytic and 

photochemical lesions, dorsal column lesions, complete spinal transection, contusion injury, and 

dorsal rhizotomy [277]. Each lesion paradigm is characterized by different cellular, molecular, 
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anatomical and functional sequelae, thus the inherent assumptions in the use of OECs, and also 

the mechanisms that determine transplant-mediated outcomes are quite different in each case 

[248, 277, 279]. OECs have been reported to repair lesion cavities and to promote axon 

regeneration of corticospinal, dorsal column, and monoaminergic neurons [248, 280-284]. 

However, a number of subsequent studies failed to confirm OEC-mediated axon regeneration 

through and beyond the lesion in some of these models [248, 277, 285-291]. Nonetheless, 

combinatorial approaches significantly enhance the regenerative effects of OECs in some of 

these lesions [248]. Examples include long-distance axon regeneration beyond the lesion site 

mediated by (i), transplanted OECs combined with stimulation of neuronal cell body with cAMP 

and injured axons with neurotrophins [292], and (ii), OEC engraftment in combination with 

fibroblasts and biomatrices [293]. Apart from the above, OEC transplantation after dorsal 

rhizotomy promoted entry of DRG axons into the DREZ and dorsal horn of the spinal cord [277, 

294]. Furthermore, Li and colleagues [295] showed regeneration of afferent DRG axons across 

the DREZ. This led to the formulation of the ‘pathway hypothesis’ [295] , which proposes that 

transplanted OECs interact with astrocytic processes to form pathways that bridge CNS lesions, 

thus rendering the lesion microenvironment permissive to axonal growth [277, 295] (Figure 

1.3). However, while modulation of the lesion microenvironment by transplanted OECs after 

dorsal root injury was confirmed by other groups, these investigators did not find evidence of 

axon regeneration [277, 296]. As a result, it has been suggested that OECs promote axon 

regeneration only in cases of homodirectional OEC and sprout-like axon (SLA) migration [277, 

294, 297].  

 

In addition to the above, a number of studies have reported functional recovery promoted by 

OEC transplants in different types of spinal cord lesions [298-304]. For example, OEC 

transplantation after electrolytic corticospinal tract lesion at the upper cervical level in rats 

promoted functional outcome by partially restoring skilled forepaw movement [298] while, after 

spinal cord contusion injury, OEC transplants promoted sparing of supraspinal axons and 

improvement of hindlimb function [304]. Overall, however, OEC-mediated functional outcomes, 

as assessed by behavioural tests, appear to be variable [285, 298, 299, 301, 304-306]. Toft et 

al [303] used electrophysiology for direct measurement of changes in the activity of spinal 

neurons in response to OEC transplantation after injury and found evidence of increased 

synaptic activity in the zone of partial preservation compared to that of corresponding sensory 

afferents in untreated animals [248, 303]. Given that rat motoneurons associated with walking 

retain considerable autonomic activity when disconnected from supraspinal centres [248], the 

findings by Toft et al [303] indicate that the additional functional outcomes observed after OEC 

transplantation involve responses in local neuronal networks at spinal levels below the site of 
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the injury [248]. In addition to promoting functional outcome after spinal cord injury (Figure 

1.4), OECs have been reported to increase the dendritic length of sympathetic preganglionic 

neurons above the injury [307], reduce the duration of autonomic dysreflexia [307], and also 

mitigate neuropathic pain, including tactile allodynia, and thermal hyperalgaesia [308]. 

 

 

 

 

Figure 1.3 – Illustration showing reparative effects of OECs after CNS axotomy. Transplanted 
OECs fill the lesion cavity and modulate the lesion microenvironment through interactions with 
astrocytes, while they promote CNS axon regeneration and remyelination.  
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Figure 1.4 – Illustration showing axon regeneration and functional recovery promoted by 
transplanted OECs. OECs secrete soluble factors, stimulate angiogenesis, and provide trophic 
support to regenerating CNS neurons, leading to re-establishment of lost synaptic connections 
distal to the injury site. 
 

 

The reparative potential of OECs has also been demonstrated in different models of brain 

lesions. OEC showed promising integration and promoted growth of axons in the septal-

hippocampal pathway after fimbria-fornix pathway lesion [309], enhanced neuronal plasticity 

after stroke [310], and restored dopamine innervation and functional deficits in a rat 

Parkinson’s disease model when co-transplanted with ventral mesencephalic cells  [311, 312]. 

Moreover, several in vitro and in vivo studies showed that OECs play an important role in 

neuronal support, survival [313, 314], and differentiation [315-317]. Finally, the synergistic 

effects of OECs and NSCs in mediating CNS axon regeneration and functional recovery have 

been demonstrated in a number of co-transplantation studies [314, 316, 318]. The above 

effects are attributed to secretion of a host of different neurotrophic factors and cell 

adhesion/ECM molecules by OECs, including BDNF, GDNF, N-CAM, claudins, cadherins, and 

catenins [313-318].   

 

Much of the interest in OECs as reparative candidates in CNS lesions stems from their similarity 

with non-myelinating Schwann cells and ability to assume a myelinating phenotype and produce 

peripheral type myelin upon association with large diameter axons [319-325].  As discussed 
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earlier in this chapter, CNS axotomy induces axon and myelin loss as part of the process of 

Wallerian degeneration [16]. Additionally, demyelination occurs as a result of oligodendrocyte 

damage and inflammatory disease, such as MS [320]. Demyelinated axons are characterized by 

impaired conductivity leading to neurological deficits [320]. While remyelination may occur as 

part of a spontaneous regenerative response, the myelin sheaths are not fully restored [326] 

and, in the case of MS and experimental autoimmune encephalomyelitis (EAE), remyelination is 

not robust enough to mediate significant and/or sustainable functional outcomes [320, 326]. 

Thus remyelination mediated by cell transplants aims at neuroprotection, and alleviation of 

functional deficits by restoring myelin sheaths and re-establishing rapid saltatory conduction 

[320, 326].  Although Schwann cell transplants can remyelinate CNS axons, their myelinating 

efficacy is often impaired in the presence of astrocytes [320, 327]. Therefore, the distinct ability 

of OECs to intermingle with astrocytes [268-270, 277] suggested that OECs, rather than 

Schwann cells, should be utilised in the treatment of demyelinating CNS lesions [248, 320]. A 

number of studies have demonstrated remyelination of demyelinated CNS axons promoted by 

OEC transplants in different CNS lesion models [283, 321-324, 328, 334]. However, myelination 

by OECs is indistinguishable from that mediated by Schwann cells [319-325]. Thus, in the 

absence of a specific marker for OECs [264-265], these results should be interpreted with 

caution, especially in cases when Schwann cell invasion into the lesion site cannot be excluded 

[327]. Furthermore, experimental evidence suggests that the myelinating capacity of OECs can 

be enhanced in the presence of non-myelinating cell types, such as meningeal cells [320]. 

 

Finally, a pertinent issue in OEC-mediated CNS repair is the extent to which the therapeutic 

interventions described above are clinically translatable. Barnett et al [332] identified human 

OECs (hOECs) with ability to remyelinate demyelinated axons in a rat spinal cord injury model. 

Other studies have also confirmed the reparative potential of hOEC transplants in experimental 

CNS lesions in terms of promoting remyelination [334] and reducing the volume of the lesion 

cavity [335]. A promising role for hOECs has also emerged from the first clinical applications, 

including a PhaseI/IIa clinical trial [336-338], which demonstrated the feasibility and safety of 

autologous OEC transplantation in paraplegic patients [337, 338]. However, given the small 

numbers of patients involved, these results are considered preliminary and are treated with 

cautious optimism [336-338]. A large scale clinical trial in China has also reported positive 

outcomes of OEC-based therapies in the treatment of human spinal cord injury [339], however, 

an independent observational study challenged these findings as it revealed serious 

inadequacies in terms of application of inclusion-exclusion criteria, correlation of injection sites 

to the level of injury, reporting of complications, correct identification of cell type for 

transplantation, and conformity to international standards pertaining to the safety and efficacy 
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of clinical trials [340]. Moreover, experimental treatment of ALS patients using hOEC transplants 

in Beijing has come under severe criticism given that follow-up of these patients failed to find 

evidence of recovery and also identified serious debilitating side-effects of the treatment [341-

342].  Despite these highly controversial cases, it is widely recognised that OECs hold great 

promise as reparative candidates in transplant-mediated CNS repair. Nevertheless, it is 

generally agreed that further elucidation of the reparative role of OECs in experimental CNS 

injury models is required before safe translation of experimental therapies into the clinics.  
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1.3. OECs in transplant-mediated repair of visual pathway lesion 

1.3.1. The mammalian central visual system 

 

The central visual system is part of the brain and includes the eye, retina, and retinofugal 

projection [343, 344]. RGC neuron somata are located in the retina, while RGC axons exit the 

retina at the optic nerve (ON) head, become myelinated at the lamina cribrosa, and form 

bundles inside the optic nerve (ON) [343, 344] (Figure 1.5). The ON, which is surrounded by 

meninges and cerebrospinal fluid (CSF), passes through the orbit, and optic foramen, into the 

cranial cavity [343, 344]. Immediately rostral to the pituitary gland, the left and right ON 

decussate at the optic chiasm, and form the optic tracts, which subsequently project to the 

lateral geniculate nucleus (LGN), superior colliculus, and midline pretectal area [343, 344] 

(Figure 1.6). Each of these areas mediates visual perception, visually guided movement, and 

pupillary reflexes by relaying information to the neocortex, motor nuclei in the brainstem and 

cord, and brainstem ocular autonomic and motor nuclei, respectively [344]. 

 

 
 

Figure 1.5 – Cross-section of the eye showing key anatomical features.. 
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Figure 1.6 – Illustration showing the mammalian visual pathway. In rodents, 90% of RGC axons 
decussate at the optic chiasm and form the contralateral optic tract.  
 

 

1.3.2. Visual pathway damage and repair 

The rodent visual system is an excellent model for the study of CNS damage and repair, both in 

terms of clinical relevance, and anatomical and biological properties. Loss or impaired function 

of RGC neurons results from direct trauma or ischemia, as well as different types of chronic 

ophthalmic conditions related to diseases such as glaucoma and diabetes [345, 346]. 

Furthermore, various inflammatory and neurodegenerative diseases often present with 

demyelinating ON pathologies, for example, optic neuritis is a common symptom in MS [345]. 

In addition to the above, the special anatomy of the visual pathway, i.e. the exclusively 

centripetal direction of the RGC axon projection, absence of interneurons, and relative 

accessibility of the ON, vitreous body (VB), and retina allow targeted therapeutic interventions 

uncomplicated by inadvertent damage to surrounding neuroanatomical structures [344].  
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RGC can be axotomised at different distances from the cell body by means of intraorbital or 

intracranial ON crush (ONC) or transection [148, 347-349]. The cellular and molecular 

responses to ON injury are characteristic of those observed in other types of CNS lesions [344]. 

Following intraorbital axotomy, rapid apoptotic RGC death commences at 5-7 days post-injury 

(dpl) and results in 85-90% RGC loss by 15-20dpl [344, 350-352].  Concomitantly, a host of 

different factors and signaling cascades undergo dynamic changes, including upregulation of c-

jun [353], CNTF receptor  (CNTFR ) [354], trk receptor [355], BDNF [355], GDNF [356], N-

CAM [357], and GAP-43 [358], as well as transient upregulation of Sema3A [359], and 

downregulation of the netrin family receptors DCC, Unc5H1, and Unc5H2 [345, 360].  The glial 

scar is formed by 8dpl, and subsequently matures and contracts at 8dpl-18dpl [344]. In 

addition to the above, RGC axons at the proximal ON segment respond to the injury by entering 

a programme of abortive regeneration, in which sprouting RGC axons do not cross the lesion 

site and their growth is arrested by 20dpl [344].  

 

Despite the fact that RGC axon regeneration is inhibited in a manner typical of other CNS 

lesions, the rodent ON injury model is one of the few models where robust axon regeneration 

has been achieved after therapeutic intervention [81, 135, 143, 144, 344, 361, 362], including 

activation of inflammatory cytokines [81, 94, 95, 97, 147, 362-364], ivit  PNG [143, 144, 365], 

ivit administration of neurotrophic factors [135], as well as activation of the mTOR pathway 

[77-79, 127, 366]. Such strategies aim to promote RGC survival, stimulate axonal sprouting, 

and disinhibit RGC axon growth by neutralizing inhibitory ligands and signaling cascades, 

including Nogo, NgR1, epidermal growth factor receptor (EGFR), RhoA, and ROCK [344].  

 

As discussed earlier, the glial scar around the injury site presents a physical and chemical 

barrier to regenerating CNS axons. Interestingly, though, in regenerating ON injury models in 

which RGC axons grow beyond the lesion site, anti-scarring treatments may not always be 

necessary [143, 144, 344]. Recruitment of fibrinogen to the lesion in the acute haemorrhagic 

phase of CNS scarring, activates RhoA-mediated inhibition of neurite outgrowth and causes 

growth cone collapse via formation of a fibrinogen/integrin/EGFR complex [344, 367]. TGF  

neutralisation reduces scar deposition and inhibits infiltration by meningeal fibroblasts to the 

lesion site [344], nevertheless, it does not prevent axon growth arrest given that myelin-

associated inhibitors and GSPGs are still secreted by reactive glia [50, 344].  However, as 

demonstrated by Berry et al [143, 144], in regenerating ON lesion models fibrotic scarring is 

significantly reduced, even when fibrinogen influx is not inhibited. This suggested that 

regenerating RGC axon growth cones modulate their microenvironment by secretion of matrix 
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metalloproteinases (MMPs) which, in turn, induces MMP secretion by ON glia [132, 344, 368], 

thus disinhibiting axon growth and blocking migration of meningeal fibroblasts [344, 368]. It 

follows that, as long as a therapeutic strategy can promote robust RGC axon regeneration, 

which can effectively regulate growth inhibition, additional anti-scarring treatments may be 

redundant [344]. 

1.3.3. OECs in visual pathway repair 

 

As discussed earlier, central visual pathway damage and repair are determined by the same 

mechanisms involved in degeneration and regeneration of other types of CNS lesions. As a 

consequence, successful strategies for visual pathway repair should not only address the issue 

of RGC neuron survival, but should also aim to induce RGC axons to enter a rigorous growth 

state, promote their growth through the inhibitory lesion microenvironment, direct them 

towards the right synaptic targets, remyelinate them and, ultimately, restore synaptic function. 

Key attributes of OECs render them particularly interesting in this context. These include: (i), 

secretion (natural and engineered) of a multitude of neurotrophic factors, such as BDNF, GDNF, 

CNTF, and NT4/5 [233, 285, 286, 317, 346]; (ii), superior ability to intermingle with astrocytes 

and meningeal cells and to modulate CSPG expression [268-278]; (iii), production of MMP2 

[370] and expression of cell adhesion and ECM molecules [236-241]; (iv), remyelinating 

capacity [261, 262, 283, 321-324, 328, 334]; and (v), ability not to interfere with retinal target 

recognition [346, 371, 372].  

 

Repair of visual pathway lesions using OEC transplants is an emerging field in neuroscience. As 

a result, there are currently only few studies that have explored the reparative potential of 

OECs after RGC axotomy. Li et al [373] transplanted a mixture of OECs and olfactory nerve 

fibroblasts (ONF) embedded in a matrix into the lesion site of the transected rat ON and 

showed RGC axon growth 10mm into the distal stump. In a later study, the same group 

reported myelination of the damaged ON by Schwann cells, but not by OECs [374].  Wu et al 

[375] showed improved survival of axotomised RGC at 7dpl after intraoptic OEC engraftment, 

however, they did not find evidence of improved RGC survival at 14dpl. Furthermore, Liu et al 

[376] reported long-distance RGC axon regeneration and functional recovery at 8 weeks post-

lesion (wpl) after combined treatment with OECs and human recombinant GDNF. Finally, Plant 

et al [346] transplanted purified OECs transduced with LV-CNTF at 5dpl after ONC injury and 

showed RGC axon growth beyond the lesion site at 7wpl, but found no surviving OECs in the 

ON at the specific time point.  
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While these findings are very important in highlighting the potential and, perhaps, the 

limitations of OECs as mediators of visual pathway repair, it is clear that the relative novelty of 

the specific line of research provides amble opportunity for further investigation for the purpose 

of eliciting key mechanisms of OEC-mediated recovery, optimizing/controlling the viability and 

function of transplanted OECs in situ, and developing therapeutic strategies that can be 

translated into clinical applications for the treatment of different types of CNS lesions in the 

future.  
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1.4. Monitoring transplant-mediated CNS repair by MRI 

A pertinent issue in translational neuroscience is the ability to monitor anatomical, biochemical, 

molecular, and functional changes mediated by therapeutic interventions in a serial, non-

invasive manner.  Magnetic resonance imaging (MRI) is highly-relevant in this context. 

 

1.4.1. Manganese-enhanced MRI (MEMRI) 

MEMRI utilises the paramagnetic properties of manganese ions (Mn2+), which cause a strong 

attenuation in the T1 spin-lattice relaxation time constant of water protons and thus produce 

positive contrast in areas where Mn2+ are accumulated when T1-weighted imaging is applied 

[377-379]. Furthermore, MEMRI utilises the fact that Mn2+ enter excitable cells through L-type 

voltage-gated Ca2+ channels [380, 381], as well as other Ca2+ transport routes, including the 

Na2+/ Ca2+ exchanger, the Na+/ Mg2+ antiporter, and the active Ca2+ uniporter in mitochondria 

[382, 383]. Upon entry into the cell, Mn2+ are sequestered in the endoplasmic reticulum and 

subsequently transported along axonal microtubules to the synaptic cleft, where they are 

released and taken up by the next neuron, traversing the post-synaptic membrane through 

voltage-gated Ca2+ channels [378, 384, 385].  

 

As a result of the above properties, Mn is an excellent contrast agent in translational 

neuroimaging rendering MEMRI a powerful, versatile tool for non-invasive in vivo imaging of 

brain cytoarchitecture and activity and for tracing axonal projections in studies of neuronal 

connectivity [386, 387]. Hence, MEMRI has been used for mapping the mature and developing 

brain in rodents and non-human primates [388-395], while activation-induced MEMRI (AIM-

MRI) has been applied in a number of studies as a technique for imaging activity in the brain 

[396-405]. In addition to the above, utilisation of Mn2+ as an in vivo neuronal tract tracer 

enables application of the MEMRI technique for imaging the visual, olfactory, auditory, and 

somatosensory pathways in a variety of species [384, 385, 406-415].   

 

For the purpose of such studies, aqueous solutions of MnCl2 are administered systemically or 

directly into the vicinity where the target neuronal population resides. After administration to 

neuronal somata, Mn2+ are transynapticaly relayed to the specific neuronal circuit via kinesin-

mediated anterograde transport mechanisms [416]. However, MEMRI may also exploit dynein-

mediated retrograde axonal transport of Mn2+ [416, 417]. Although the exact Mn2+ transport 
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mechanisms require further elucidation, it is established that Mn2+ movement within neurons is 

via active transport, rather than passive diffusion [407]. 

 

1.4.2. MEMRI of the visual pathway 

Given its neuroanatomical features, the central visual system constitutes an excellent model for 

MEMRI application. Mn2+ uptake by RGC is effected by ivit  MnCl2 injection. Upon entry into RGC 

somata, Mn2+ are anterogradely transported within RGC axon microtubules, transynapticaly 

relayed to tertiary neurons at the LGN, and subsequently to the primary visual cortex, thus 

enabling visualisation of the entire normal visual projection [407, 408, 413, 418-420].  

Importantly, MEMRI also enables longitudinal in vivo monitoring of damaged and regenerating 

RGC axons [406, 408, 421-423], as well as studies of comparative physiology between 

regenerating and non-regenerating species [424], and is thus a powerful tool for assessing the 

efficacy of therapeutic intervention strategies, including transplant-mediated repair, in 

experimental models.   

 

One of the main caveats in such investigations, however, is the risk of Mn2+-induced toxicity as 

a result of repeated/high doses of MnCl2 [425]. Thuen et al [407] demonstrated that ivit doses 

of 150-300nmol MnCl2 are safe, yield optimal RGC axon enhancement, while they may also have 

a neuroprotective effect on RGC neurons. Furthermore, Olsen et al [419] showed that RGC 

axon contrast enhancement is contingent on prolonged availability of ivit Mn2+ for uptake by 

RGC neurons, rather than high dosage of MnCl2. This suggested that manipulations, for 

example by use of biomaterials, which enable controlled release of ivit Mn2+ should achieve the 

dual purpose of optimising contrast enhancement and minimising the risk of Mn2+-induced 

cytotoxicity. Alternatively, fractionated doses of MnCl2 [426, 427] or dendritic manganese 

chelates [428] may be viable options, however, their utility in the visual system model remains 

to be tested.  Considering that MEMRI is unlikely to be used for monitoring axon regeneration in 

human patients receiving regenerative treatments, it is envisaged that the knowledge acquired 

from modifications of the MEMRI technique in the rat visual system, will enable the 

development of clinically applicable derivatives, which circumvent the issue of Mn2+-induced 

cytotoxicity.  
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1.4.3. Non-invasive in vivo imaging of cell transplants 

Of central importance in studies of transplant-mediated repair is the ability to verify the location 

of transplanted cells, resolve their integration with host tissues, and monitor their 

temporospatial migration non-invasively in vivo. An array of technologies is currently available 

for such investigations, including optical, acoustical, and nuclear imaging, as well as MRI [429, 

430]. Each method has advantages and disadvantages. For example, bioluminescence imaging 

enables in vivo tracking of transplanted cells and direct correlation between bioluminescent 

signal strength and number of live cells in the tissue, thus providing information about cell 

survival post-transplantation [429, 431, 432]. However, signal loss as a result of increasing 

tissue depth is a major limitation of the technique [429]. Cell graft rejection can also be imaged 

by ultrasound using, for example, phospholipid-based, perfluorobutane-filled microbubbles 

targeted to intracellular adhesion molecule-1 (ICAM-1), a marker for endothelial inflammatory 

cells, as demonstrated in a cardiac transplantation model [429, 433]. Nonetheless, this method 

does not allow quantification of transplanted cell death and is further limited by the fact that 

the ultrasound technique can only be applied to relatively small regions of interest, rather than 

for whole body imaging [429]. Nuclear imaging, including positron emission tomography (PET) 

and single-photon emission computed tomography (SPECT), allows imaging functional effects 

[434] and biodistribution of transplanted cells [429, 434-436]. While simultaneous detection of 

two probes for parallel assessment of cell graft function and host-tissue integration is possible 

using dual pinhole SPECT, the scope of this technique is confounded by the short temporal 

resolution of exogenous labels [429, 437, 438]. Moreover, potential radiotoxic, dilution, and 

leakage effects of radioligands on live tissues need to be thoroughly investigated [429]. 

 

1.4.4. Imaging cell transplants by MRI 

Due to its superior spatial resolution, MRI is one the most widely applied technologies for non-

invasive in vivo monitoring of transplanted cells. Visualisation of transplanted cells by MRI 

requires labelling of the cells with intracellular, or extracellular contrast agents. A variety of 

such agents are available including (i), bifunctional agents, such as gadolinium rhodamine 

dextran (GRID), which enable cell detection by MRI and identification in histological sections 

[439-441]; (ii), convertible contrast agents (based on MnO, MnO2, Mn3O4, and MnCO3), which 

switch from T2*-weighted contrast to T1-weighted contrast upon molecular dissolution inside 

lysosomes and endosomes [442]; and (iii), different types of metallic particles, including gold 

nanoparticles (Au3Cu1), aptamer-modified nanoparticles, and various types of functionalized 

derivatives, which enable  delivery of antibodies, ligands and drugs to target tissues [443-448].  
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One of the most widely used classes of intracellular contrast agents comprises different types of 

ferumoxide-based microparticles/nanoparticles and their modified derivatives. These include 

poly(lactide-co-glycolide) (PLGA)-coated [449], poly(N,N-dimethylacrylamide) maghemite 

(PDMAAm)-coated [450], and D-Mannose-modified nanoparticles [451] with ferumoxide cores, 

superparamagnetic iron oxides (SPIO), ultra-small paramagnetic iron oxides (USPIO) [450-463], 

and micron-sized particles of iron oxide (MPIO) [464-466]. Although some of these contrast 

agents have been approved for clinical use, for example, Endorem™, Feridex® (SPIO), and 

Sinerem®, Combidex® (USPIO), intracellular uptake of these particles by means of endocytosis 

often requires long incubation times, while it also necessitates surface modification or 

conjugation with transfection agents [455].  Another consideration is that for single-cell 

detection by MRI, which may be desirable in transplantation studies that involve monitoring of 

the temporospatial migration of transplanted cells, very large numbers of SPIO/USPIO are 

required to achieve sufficient intracellular iron uptake for visualisation by MRI. This suggests 

that the application of these agents carries the inherent risk of intracellular iron overload, with 

associated cytotoxic effects and potential interference with the cells’ function and migratory 

capacity post-transplantation [467]. Some of these practical limitations can be overcome by 

using MPIO, which have a higher magnetite content than SPIO/USPIO and can thus achieve 

better iron loads using significantly less contrast agent [466, 467]. However, a major caveat in 

the use of intracellular magnetic labels is that imaging artefacts deriving from secondary uptake 

of the label by in situ macrophages cannot be excluded. As a consequence, correlation of MRI 

findings with those of histological/histochemical methods is imperative, as it adds interpretive 

acumen to the relevant investigations by evaluating the rigour of MRI data within an 

appropriate biological context.  

 

In addition to the above, the emergence of new classes of nonmetallic chemical exchange 

saturation transfer (CEST) agents has been met with great interest. The specific contrast agents 

applied alone, or in combination with ferumoxide agents, enable simultaneous imaging of 

multiple cellular and molecular targets [468-471] and are thus extremely important for non-

invasive monitoring of the effects and function of cell transplants in vivo. Finally, the evolution 

of other novel MRI-based methodologies, such as frequency-labelled exchange (FLEX) transfer 

[472], can be expected to be a driver for the development of sophisticated, versatile contrast 

agents which will elucidate dynamic changes in specific genes and proteins in response to cell 

transplants.  
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1.5. Biotechnology and nanotechnology in transplant-mediated repair 

1.5.1. Biomaterials

 

A pertinent issue in transplant-mediated CNS repair is optimisation of cell graft function and 

survival by mitigating the deleterious effects of host immune responses post-transplantation 

[473]. Equally important is the ability to direct the fate/differentiation of transplanted cells in 

situ, enhance their therapeutic potential, for example, by graft functionalisation and controlled 

expression of genes and proteins for targeted delivery in vivo, and to provide regenerating CNS 

axons with molecular and structural support to promote directional growth towards appropriate 

synaptic targets.  Such interventions are made feasible through advances in biomaterials 

science and nanotechnology, which allow manipulation of a multitude of natural and synthetic 

biomaterials for tailor-made applications in experimental models, as well as in regenerative 

medicine and tissue engineering. Examples include  microcapsules/microcarriers for 

immunoisolation and delivery of cells and genes to specific tissues [473-480], as well as  

biomimetic matrices with ECM properties, which act as biodegradable scaffolds for bridging CNS 

lesion cavities [473, 474] (Figure 1.7).  
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Figure 1.7 – Microcapsules and microcarriers can be utilised for cell transplantation. The semi-
permeable membrane of microcapsules protects encapsulated cells from immune responses in 
the host microenvironment. Microcapsules allow entry of O2 and nutrients into the capsule while 
they enable diffusion of therapeutic molecules and waste products out of the capsule. 
Microcarriers, on the other hand, support cell attachment to the surface of the capsule and can 
be utilised for scaffolding of CNS lesions. 
 

 

Although the choice of type and form of biomaterials is dictated by the specific aims of the 

therapeutic approach in each case, desirable properties include biocompatibility, mechanical 

stability, permeability, and ease of handling [476]. Representative examples of applications of 

different types of biomaterials in regenerative neuroscience models include (i), attachment of 

NSCs to modified PLGA particles and transplantation in stroke-induced cavities [481, 482]; (ii), 

transplantation of hydrogel matrices seeded with engineered fibroblasts to promote ON axon 

growth after intracranial ON lesion [483]; (iii), use of a self-assembling nanofibre peptide 

scaffold (SAPNS) to promote ON regeneration in chronic optic tract lesion [423]; (iv), use of 

poly(D,L)-lactide matrices for stem cell tissue engineering [484] and for co-transplantation of 

OECs and ONF to stimulate axon regeneration after spinal cord hemisection [293]; and (v), 

transplantation of mesenchymal stem cells seeded in modified hydrogel matrices to treat 

chronic spinal cord lesions [485]. 
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1.5.2. Tailor-made alginate matrices 

 

Alginates are naturally occurring polysaccharides, comprised of unbranched copolymers of 1 4 

linked -D-mannuronic acid (M) and -L-guluronic acid (G) [486, 487], which are found in algae 

[488] and certain types of bacteria [489, 490]. Alginates are promising candidate biopolymers 

for cell encapsulation as a result of their ionotropic properties [491] and the fact that they lend 

themselves to structural and compositional modification for tailored applications through the 

conversion of M-residues to G-residues with the use of C-5 epimerases [492-496]. The specific 

arrangement of G- and M- monomers in the polymer chains, and the type of divalent cation 

used for ionotropic gelation, such as Ca2+, Ba2+, and Sr2+ in the gelling solution, determine the 

strength, stability, syneresis, and permeability of the alginate microbeads and microcapsules 

[497-499]. In addition to the above, further modification of the alginates can be effected by 

engraftment of functional peptides, such as arginine-glycine-aspartic acid (RGD) [500]. Such 

manipulations aim to ascribe specific functional properties to the alginates by mimicking ECM 

conditions, which are expected to promote cell adhesion, survival, and differentiation post-

transplantation [500].  

 

The biocompatibility of different types of alginate hydrogels for immunoisolation of cell 

transplants has been studied with promising results [499-504]. Equally promising are specific 

applications of modified alginate matrices in neurotransplantation and CNS repair, including the 

use of alginate hydrogels for differentiation of neural stem cells [505-510], promotion of neurite 

outgrowth in vitro [511], as well as directed outgrowth of regenerating CNS axons in vivo 

[512]. Furthermore, the ability to modulate alginate hydrogel properties such as mechanical 

strength and stability suggests that alginates may have additional roles in CNS repair studies, 

such as utilisation for controlled release of MRI contrast agents for tracing of regenerating CNS 

axons in vivo. Clearly, the functional attributes of the alginates in each case should be 

determined by the type of CNS lesion, the specific reparative or imaging approach and, 

importantly, the type of cell(s) used to mediate repair. It is therefore imperative to thoroughly 

test and develop alginate matrices tailored to the specific requirements of individual 

intervention strategies. 
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2. Overview of methods 

 
This section describes the key methodology involved in the papers that comprise this thesis. A 

detailed description of the rest of the methods used is provided in the Materials and Methods 

section of each paper. 

 

 

Table 1. Overview of key methodology presented in this thesis 
  
  Method Paper

1. OEC purification and culture I, II, IV 
2. Intracellular labelling of OECs with MPIO I, II 
3. Optic nerve crush injury II 
4. Ivit and iON OEC engraftment II 
5. Ivit MnCl2 injections II 

   
6. In vivo and in vitro MRI   

6.1. T2*/T2-weighted imaging I, II  
6.2. 3D T1-weighted imaging II, II, III 
6.3. 2D T1-weighted imaging I, III 

   
7. Formation of Mn-alginate beads III 
8. RGD peptide coupling to alginates IV 
9. Epimerisation of alginates III, IV 

10. Cell encapsulation in alginates IV 
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2.1. OEC purification and culture

 

The OECs utilised in this thesis were purified from neonatal Fischer rats as described by Barnett 

and Roskams [516]. Briefly, the olfactory bulbs of 4-5 P7/P8 rats were finely chopped, 

enzymatically digested in L-15 (Leibovitz) medium (Sigma), and triturated through a 26 gauge 

needle. Dissociated cells were incubated in a cocktail of the O4 (IgM at 1:4) and anti-

galactocerebroside (IgG3 at 1:2.) primary antibodies, followed by their fluorochrome 

conjugated class-specific secondary antibodies.  After rinsing, dissociated cells were incubated 

in goat anti-mouse IgM phycoerythrin and goat anti-mouse IgG3 fluorescein secondary 

antibodies (1:100, Southern Biotech). Fluorescence-activated cell sorting (FACS, Vantage 

Becton Dickenson) was used for OEC purification by selecting for galactocerebroside-negative 

and O4-positive cells. OECs were subsequently cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM GlutaMAX; Sigma) with 1.25% gentamicin (Sigma) and 5% FBS (Autogen Bioclear) on 

13 g/ml poly-L-lysine- (PLL) (Sigma) coated cell culture flasks (Corning).  The cultures were 

supplemented with 500ng/ml fibroblast growth factor 2 (FGF2) (Peprotech, London, UK), 

50ng/ml heregulin (hrg 1) (R&D Systems Europe Ltd, Abingdon, UK), and 10-6 M forskolin 

(Sigma).  OECs were passaged at confluence. Purity of the OECs populations was assessed by 

p75NTR specific labelling and was always 98-100%. 

 

2.2. Intracellular labelling of OECs with MPIO 

 

MPIO with a diameter of 0.96 m (Bangs Laboratories, US) were used for intracellular labelling 

of OECs. The specific MPIO are comprised of a COOH-modified styrene-divinyl benzene inert 

polymer with a  Fe3O4 magnetic core (27.8% w/w magnetite content) and a fluorescent label 

(Dragon Green; ex480, em520) (MC05F/8112; density 2.06g/cm3, 1% solids, 1.278x1010 

beads/ml; Bangs Laboratories, Inc, Fishers IN, US). After washing with PBS, the MPIO were 

resuspended in PBS or OEC media and added to the OEC cultures. Assessment of labelling 

efficiency was based on adjustment of the following parameters: (i), MPIO label concentration, 

expressed as number of MPIO particles per cell; minimum MPIO:OEC=10:1, maximum 

MPIO:OEC=100:1; (ii), degree of confluence of the OEC cultures, starting with 100% and 

reducing to 50%, (iii) duration of incubation, starting with 18h and reducing to 6h.  After 

labelling, the media were removed by aspiration and the cultures extensively washed with PBS, 

before addition of new media.  
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2.3. Optic nerve crush injury 

 

For ONC operations, inbred female Fischer rats (110-115g) were anaesthetised with 

subcutaneous injection of 0.4ml/100g of 2:3:3:4 mixture of Haldol/Midazolam/Fentanyl/sterile 

water respectively, under sedation with 4% isoflurane in 3% O2. ONC was performed according 

to Berry et al [143]. Briefly, after intraorbital exposure through a superior palperbal incision, the 

dural sheath of the ON was incised longitudinally and the ON crushed for 10s, 2mm caudal to 

the lamina cribrosa using microforceps (AgnTho’s AB, Lidingö, Sweden). Care was taken not to 

disturb the central retinal artery running inside the dural sheath along the ON.  Post-surgical 

analgesia was maintained with subcutaneous injections of 1.667 l/g of 1:10 Buprenorphin 

(Tegmesic®, Schering-Plough, Brussels, Belgium) in sterile water.  Animals were kept in a 

12:12 artificial light-dark cycle and fed ad libitum.

 

2.4. Ivit and iON OEC engraftment 

 

For ivit OEC engraftment, a 3 l suspension of 2.5x105 OECs was injected acutely post-ONC into 

the left eye of anaesthetised animals, immediately posterior to the ora serrata. The same 

suspension volume and OEC concentration were used for iON injections, 1mm proximal to the 

injury, i.e. between the lamina cribrosa and the ONC lesion site. A pulled-glass capillary 

micropipette with a tip diameter of ~0.1-0.2mm was used for the injections. To minimise reflux, 

the micropipette tip remained inside both the vitreous body (ivit groups), and the ON (iON 

groups), for a few seconds, before being slowly withdrawn.   

 

2.5. Ivit MnCl2 injections

An aqueous solution of 3 l of 150nmol MnCl2 was injected into the vitreous body of the left eye 

of anaesthetised animals, immediately posterior to the ora serrata, in the same manner as for 

ivit OEC engraftment above. 

 

2.6. In vivo and in vitro MRI

MRI was performed on a 7T Bruker Biospec Avance 70/20 (Bruker Biospin MRI, Ettlingen, 

Germany) small animal scanner. A 72mm volume resonator was used for RF transmission and 

an actively decoupled (i), mouse head surface coil (MPIO OEC phantom study), and (ii), rat 

head surface coil (in vivo experiments) for RF reception.  No surface coil was used for the in 

vitro experiments involving Mn-alginate beads. 
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2.6.1. T2*/T2-weighted imaging 

For T2*-weighted imaging, a multi-gradient echo (MGE) sequence was used with the following 

parameters: TR=1000ms, TE=5, 10, 15, 20ms, flip angle 30%, FOV=2.8x2.5cm2, 

matrix=224x200, pixel resolution=125x125 m2/pixel, number of slices=10, slice 

thickness=0.70mm (no gap), and an acquisition time of 16m40s with 5 averages. 

For T2-weighted imaging, a rapid acquisition with relaxation enhancement (RARE) spin echo 

sequence was applied with the following parameters: TR= 2000ms, TE=12, 36, 60ms, 

FOV=2.80x2.50cm2, matrix=224x200, pixel resolution 125x125 m2/pixel, number of slices=20, 

slice thickness=0.70mm (no gap), and an acquisition time of 16m40s with 5 averages. 

 

2.6.2. 3D T1-weighted imaging 

 

For in vivo T1-weighted imaging, a 3D FLASH sequence was used with the following 

parameters: TR=12ms, TE=3.5ms, FOV=3.5x2.2cm3, acquisition matrix=224x192x141, voxel 

resolution 156x156x156 m/voxel; 12 averages were obtained and the acquisition time was 

33min 38s. 

 

To correct for the gradually reduced RF signal detected by the surface coil, two additional T1-

weighted 3D FLASH sequence scans were performed for in vivo MRI using coupled and single 

coil operations, respectively, with the same sequence parameters as in 2.5.3. above, but with 

reduced resolution and with an acquisition time of 2min 3s/scan.   

 

2.6.3. 2D T1-weighted imaging 

 

For imaging release of Mn2+ from alginate beads in vitro, the following sequence was applied:  

2D MSME evolution scanning: TE.=8.1ms, TR=500ms, FOV=30x40mm, matrix=128x64, slice 

thickness=1mm, NEX=1, 6 frames per h over 24h.  

2.7. Formation of Mn-alginate beads 

Five different alginate samples were used in the study of Mn2+/alginate beads: two 

commercially available alginates and three alginates of extreme composition: (i), High-G 

alginate from Laminaria hyperborea (67% G, intrinsic viscosity 620 ml/g) and (ii), high-M 
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alginate from Macrocystis pyrifera (40% G, intrinsic viscosity 820 ml/g) were obtained from FMC 

biopolymer and Sigma Chemicals, respectively. (iii), A polymannuronan alginate (polyM, 0% G, 

intrinsic viscosity 800 ml/g) was produced by an epimerase-negative mutant (AlgG-) of 

Pseudomonas fluorescens (28). (iv), A strictly alternating (polyMG) alginate (46% G, 0% GG, 

intrinsic viscosity 700 ml/g), and (v), a polyguluronan alginate (polyG, 88% G, intrinsic viscosity 

1150 ml/g) were produced by epimerising the bacterial polyM alginate with the C-5 epimerases 

AlgE4 and AlgE6, respectively. An electrostatic bead generator was used to form alginate beads 

by dripping a 1.8% (w/v) solution of Na-alginate (filtrated through 0.8 m filters, dissolved in 

ion free water) into gelling solutions containing divalent cations, i.e. (a),  0.1 M MnCl2 + 1 mM 

BaCl2, and (b), 0.1 M MnCl2 + 10 mM CaCl2.  

2.8. RGD peptide coupling to alginates

 

RGD peptide was coupled to alginates using carbodiimide chemistry. 3.5g-5g of purified 

mannuronan were dissolved in 1% phosphate buffer saline (PBS) solution overnight. EDC was 

added to the solution at 1:20 molar ratio to the uronic acid monomers of the alginate. Sulfo-

NHS was added as a co-reactant at a 1:20 molar ratio to the EDC and incubated for 2 hours 

(h). The peptide was then added at a concentration of 100 mol/ml, as described by Rowley et 

al [500] and allowed to react for 20h before the alginate solution was purified through 

extensive dialysis against 3 shifts of 50mM NaCl, and against distilled water, until the water 

measured <2 s.  The alginates were subsequently freeze dried and stored at 4°C. 

2.9. Epimerisation of alginates 

Alginate consisting of G- and MG-blocks was made by epimerization using the C-5 epimerases 

AlgE4 (produced in Hansenula polymorpha) and AlgE6 (produced in Eschericia coli). To produce 

MG alternating alginate, AlgE4 enzyme was added to alginate at a 1:200 ratio in a mixture of 

0.25% (w/v) alginate, 50mM MOPS, 2.5mM CaCl2 and 10mM NaCl and incubated for 24h-48h at 

37ºC.  To produce alginates with a G-content of 50% and 70%, AlgE6 enzyme was added to 

MG alternating alginate at a ratio of 1:20 in a mixture of 0.25% alginate (w/v) and 50mM MOPS 

for 2.5h and 24h, respectively. To eliminate potential toxins, the epimerized alginates were 

purified through a carbon filter (PALL Corporation).   
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2.10. Cell encapsulation in alginates 

 

2% (w/v) alginate solutions were prepared from peptide alginates and control alginates by 

mixing with 0.3M D-mannitol (VWR) in sterile water. 2% alginate solution and OEC suspension 

were mixed in a 10ml syringe at a final concentration of 1.5x106 cells/ml in 1.8% alginate. 

Beads with encapsulated cells were formed by dripping the alginate solutions into a gelling bath 

containing 50mM CaCl2, 0.15M Mannitol and 10mM MOPS buffer in 1L sterile endotoxin-free 

water using an electrostatic bead generator with electrostatic potential difference 7kV, needle 

size of 0.35mm outer diameter, and flow at 10ml/h. Beads containing encapsulated 

OECs/myoblasts were transferred to 75cm2 cell culture flasks containing appropriate culture 

media and incubated at 37ºC with 7% (for OECs) and 5% CO2 (for myoblasts), respectively.  
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3. Aims 

The aim of this project was to integrate MRI and biomaterials in the study of visual pathway 

repair mediated by olfactory ensheathing cell (OEC) transplants.   

 

Key objectives include: 

 

(i) Development of customised labelling protocols for efficient labelling of OECs with 

micron-sized particles of iron oxide (MPIO). 

(ii) Combining cellular MRI and manganese-enhanced MRI (MEMRI) for monitoring 

intravitreal (ivit) and intra-optic nerve (iON) OEC grafts and damaged/regenerating 

retinal ganglion cell (RGC) axons after visual pathway lesion. 

(iii) Testing the potential of ivit and iON OECs as mediators of visual pathway repair. 

(iv) Producing and testing modified alginates as systems for controlled release of Mn2+ 

for MEMRI 

(v) Producing and characterising arginine-glycine-aspartic acid (RGD)-peptide alginates 

and testing their interactions with OECs in vitro with a view to developing suitable 

matrices for future in vivo application. 
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4. Overview of papers
 

4.1. Paper I - Labelling of olfactory ensheathing cells (OECs) with micron-sized 

particles of iron oxide (MPIO) and detection by MRI  

The aim of this study was to test the suitability of MPIO, a widely applied class of T2* contrast 

agents, for intracellular labelling of OECs for detection by MRI in vitro and in vivo. We defined 

labelling efficiency in terms of (i), percentage of labelled OECs, and (ii), intracellular iron 

uptake, and proceeded to develop a tailored labelling protocol that can achieve both objectives 

without compromising OEC viability, proliferation, and migration capacity for application in 

future investigations of OEC-mediated repair after visual pathway lesion in rats monitored by 

MRI. 

 

We found that OECs avidly endocytose MPIO, achieving a labelling efficiency of >90% with 

incubation times as short as 6h, while the intracellular MPIO uptake was contingent on MPIO 

label concentration,  yielding intracellular iron loads between 1.90pg and 13.80pg. No adverse 

effects of the MPIO label in terms of cytotoxicity, altered cell morphology, proliferation and 

migration pattern in culture, were observed up to 96h post-labelling. Furthermore, MPIO-

labelled OECs were resolvable by MRI at 7T in vitro, and also in vivo, after engraftment in the 

vitreous body of adult rats.  

 

This study provides the first detailed protocol for safe, efficient labelling of OECs with MPIO for 

non-invasive imaging by MRI in conjunction with studies of CNS repair mediated by OEC 

transplants.  
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4.2. Paper II - In vivo MRI of olfactory ensheathing cell grafts and regenerating 

axons in transplant-mediated repair of the adult rat optic nerve 

A key aim of this study was to combine cellular MRI and MEMRI to monitor OEC transplants and 

regenerating RGC axons in vivo, after visual pathway lesion in the adult rat, and to test whether 

MEMRI is sensitive enough to detect potential axon regenerative effects of OEC grafts.  

 

We found that the T1-weighted 3D FLASH sequence applied for MEMRI facilitates simultaneous 

visualisation of Mn2+-enhanced regenerating retinal ganglion cell (RGC) axons and MPIO-

labelled OEC grafts. Furthermore, the MEMRI technique was sensitive enough to detect axon 

regenerative responses to the iON grafts at 20dpl. However, the CNR profiles of animals with 

iON MPIO-labelled OEC transplants were partially distorted due to susceptibility effects of the 

MPIO proximal to the lesion. Ultrastructural analysis of tissue obtained at 40dpl revealed robust 

axonal sprouting and surviving iON OECs proximal to the lesion site. Importantly, formation of 

myelin of peripheral appearance proximal to the lesion site suggested a remyelinating role for 

iON OEC transplants. Finally, the ultrastructural study revealed secondary uptake of MPIO by 

macrophages and degradation of the MPIO label at >40dpl.   

 

The specific study demonstrated the applicability of MEMRI as a tool for monitoring repair of 

the rat visual pathway mediated by OEC transplants in terms of visualising MPIO-labelled OEC 

grafts and regenerating RGC axons, as well as detecting axon regenerative responses to OEC 

transplants. Being the first study to combine the application of two different contrast agents in 

the rat visual pathway lesion model, the study also revealed some of the methodological 

challenges involved in the specific MR imaging approach. Furthermore, the evidence of 

secondary uptake of the MPIO label by macrophages constitutes a reminder of the fact that 

relevant artefacts in such investigations cannot be excluded. Finally, the suggestion of a 

remyelinating role for iON OECs after ONC injury is a very promising finding, but in the absence 

of supplementary data to unequivocally confirm this observation, the specific result is regarded 

with cautious optimism.  
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4.3. Paper III - Mn-alginate gels as a system for controlled release of Mn2+ in 

manganese-enhanced MRI 

 

The aim of the study was to evaluate alginate beads of different composition in combination 

with different cross-linking divalent ions as systems for controlled release of Mn2+ in vitro and to 

provide proof of principle for potential application of such systems in vivo, by testing the utility 

of controlled release of Mn2+ from ivit Mn-alginate beads for MEMRI of the normal rat visual 

projection.  

 

We utilised different types of commercially available and modified alginates to form Mn-alginate 

beads and imaged the release of Mn2+ from the Mn-alginate beads in vitro, as well as in vivo, 

after unilateral ivit injection in rat, using a 7T MR scanner. Compartment model simulation and 

analysis found that the time constant ( 1) that represents the rate of release of Mn2+ from the 

alginate beads greatly varied between the different types of alginates and had values between 

600min and 100min, corresponding to the order high-G  high-M > polyMG, as well as 

Ba2+>Ca2+. This means that reductions of ivit Mn2+ concentration up to 85% can be effected by 

selective adjustment of alginate composition and choice of cross-linking divalent ions.  

 

These findings are highly significant as they demonstrate the feasibility of designing and 

utilising alginate-based systems for controlled release of Mn2+, which enable optimal contrast 

enhancement and potentially circumvent the issue of Mn2+-induced toxicity. Furthermore, the 

pliability and versatility of alginates indicate that such systems can be used to adjust Mn2+ 

uptake, transport and clearance to the requirements of specific neuroanatomical and 

biophysical properties of the system under investigation, thus enabling the refinement of the 

MEMRI technique through the development of sophisticated derivative approaches. 
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4.4. Paper IV - Effects of RGD-peptide modified alginates on olfactory ensheathing 

cells and myoblasts 

The aims of the study were to produce RGD-peptide alginate capsules of different flexibility, 

characterise the modified alginates, test their effects on OECs in terms of cell survival, cell-cell, 

and cell-matrix interactions using both 3D and 2D cultures, and compare these interactions with 

those of myoblasts using the same culture substrates.  

 

Chemoenzymatic modification enabled RGD peptide coupling to the alginate by first introducing 

RGD peptide to mannuronan and subsequently introducing MG- and G-blocks using C-5 

epimerases, thus preventing interference with the G-blocks as a result of peptide coupling. 

Analysis using NMR spectroscopy determined the degree of RGD-peptide coupling, alginate 

composition, as well as downstream processes on the RGD-coupled alginates. 2D cultures of 

OECs and myoblasts revealed dynamic responses to the RGD-coupled alginates in terms of 

altered morphology and adhesion of the cells to the alginate substrate by extension of 

processes. Encapsulation in RGD-coupled alginates did not promote survival and/or 

differentiation of the cells.  

 

The present study demonstrates the utility of our protocol for alginate modification and 

characterisation, however it does not confirm improved OEC or myoblast survival in response to 

RGD-peptide modified alginates. While RGD-coupled alginates induced dynamic responses to 

OECs and myoblasts in terms of cell-cell, cell-matrix interactions, encapsulation in RGD-coupled 

alginates did not enhance survival/differentiation of either cell type in vitro. This suggests that 

further modification of the alginates is necessary, for example, by coupling more RGD peptide 

to the alginates, or by further modulating their composition. Clearly the ability to modify and 

thoroughly characterise the alginates is a major advantage in developing tailor-made matrices 

for transplantation of OECs and other cell types in different experimental models. 
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5. Discussion 

 
In the present study, we adopted an interdisciplinary approach in the investigation of 

transplant-mediated CNS repair, by (i), defining the biological context of the investigation in 

terms of experimental model and cell of interest, (ii), predicting potential outcomes of cell 

transplantation in the specific model, (iii), integrating MRI methodologies for monitoring cell 

transplants and regenerating CNS axons, and (iv), modifying biopolymers to address specific 

methodological and biological aspects of the study.  

5.1. Regeneration of RGC axons mediated by OEC transplants  

 

A key hypothesis in our study was that RGC axon regenerative effects can be mediated by 

transplantation of OECs after ONC injury. Initial assessment of the reparative effects of OEC 

transplants after ON lesion was based on analysis of MEMRI data at 20dpl. Intraorbital ON 

lesioning results in loss of 90% of RGC [344], while the spontaneous regenerative response of 

<10% of the remaining RGC is abortive and, thus, not sustained beyond 20dpl [344].  Based on 

previous studies by our group, in which the regenerative effects of LI and PNG after ONC in 

mouse and rat, respectively, were assessed by MEMRI [407, 418, 424], we predicted that RGC 

axon regeneration in response to ivit and iON OEC transplants, would be manifested as 

elevated CNR profiles along the ON proximal and, possibly, distal to the lesion site. The 

designations proximal and distal correspond to the ON segment from the lamina cribrosa up to 

the lesion site, and from the latter towards the chiasm, respectively.  

 

Based on the above assumptions, the observation at 20dpl that the CNR profiles of animals with 

ivit OECs were not significantly different (P>0.05; two-tailed t test) from those of untreated 

controls indicated that the ivit OEC grafts had no neuroprotective/regenerative effects. It can be 

argued that the lack of RGC axon response to the ivit OEC grafts may be attributed to poor 

graft function and/or survival, or insufficiency of the ivit transplants in terms of number of 

transplanted cells. However, a thorough investigation of the regenerative effects of ivit OECs 

after ONC injury was not implemented, as it did not constitute a primary goal within the 

framework of this study. In light of the above, it can only be concluded that potential 

neuroprotective/regenerative effects of ivit OECs on RGC may be marginal and, thus, not 

detectable by MEMRI [407].  
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Contrary to the above, analysis of the MEMRI data obtained from the iON groups, revealed 

differences (P 0.05; two-tailed t test) between the CNR along the ON proximal, as well as 

distal to the ONC lesion site, compared to those of untreated controls, indicating a regenerative 

response to the iON transplants.  

 

These observations suggested that it would be interesting to investigate whether the axon 

regenerative effects detected by MEMRI in the iON transplanted animals would be sustained 

beyond 20dpl. However, given methodological considerations relating to potential toxic effects 

of repeated doses of MnCl2 on RGC neurons and OEC grafts (discussed in section 5.6), we 

decided that MEMRI should not be used beyond the 20dpl time point. Evaluation of the 

reparative potential of OECs at >40dpl, was thus based on ultrastructural analysis using TEM.   

 

Ultrastructural analysis at >40dpl revealed SLA proximal to the injury site in the iON 

transplanted animals, consistent with an axon regenerative response, thus confirming the 

MEMRI observations from 20dpl. Qualitative comparison with untreated controls showed that 

the degree of axonal sprouting observed in the iON transplanted group was far more extensive 

and, thus, consistent with axon regenerative effects of the iON OECs, rather than an abortive 

regenerative response triggered by the ONC injury.  Small numbers of SLA were also observed 

in the iON transplanted animals distal to the lesion site. Furthermore, we identified OECs 

extending long processes in close proximity with SLA and blood vessels proximal to the injury, 

providing indirect evidence of long-term survival and integration of OEC transplants with the 

host tissue. Thus, based on the observations at 20dpl and >40dpl, we conclude that there is an 

axon regenerative response to iON OECs in terms of increased axonal sprouting proximal, and 

to a far lesser extent, distal to the lesion site.  

 

Our findings partially confirm findings by Plant et al [346] and Liu et al [347] of axon 

regenerative responses to OEC transplants after rat visual pathway lesion.  Liu et al [347], 

however, reported long-distance RGC axon regeneration, and also functional recovery at 8wpl. 

This difference may be attributed to the fact that Liu et al [347] utilised human recombinant 

GDNF, in addition to OEC transplants. Although we recognize that combinatorial approaches 

may be better aligned towards promoting visual pathway repair, as they simultaneously address 

different factors involved in CNS recovery, our reparative strategy, on this occasion, was based 

on OEC transplants only. This is because one of the main aims of our study was to test the 

suitability of MEMRI as a method for monitoring OEC-mediated repair in the visual pathway. 

This implied that transplantation of OEC, unassisted by other factors, would allow investigation 

of the regenerative capacity of OECs per se and, by the same token, would provide a clearer 
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measure of MEMRI sensitivity in detecting the relevant responses. In addition to the above, our 

observation of surviving iON OECs at >40dpl contrasts with the findings by Plant et al [346] as 

these authors did not identify any surviving OECs in the ON at 7 weeks post-transplantation. 

However, differences in our corresponding experimental protocols may account for this 

discrepancy, including number of transplanted cells and time point for transplantation. In our 

study, 2.5x105 OECs were transplanted acutely after ONC lesion, compared to 5x104 cells 

transplanted at 5dpl in the study by Plant et al [346].   

 

Finally, additional methodological considerations require clarification. The OECs utilised in our 

study did not express GFP and would not have been readily identifiable in histological sections. 

This precluded correlation of MRI data with findings from ex vivo examination of tissue 

collected from OEC transplanted animals. Alternatively, immunohistochemistry could have been 

used, however, in the absence of a specific marker for OECs [264, 265], unequivocal 

identification is not possible. Furthermore, identification of OECs by immunoreactivity with 

p75NTR gives variable results and p75NTR expression is lost once the cells have differentiated into 

a myelinating phenotype, while Gap-43 immunoreactivity for detection of regenerating RGC 

axons was considered redundant in the presence of ultrastructural data.  

 

5.2. Can OECs play a remyelinating role in visual pathway repair? 

 

The ultrastructural study provided evidence of remyelination of ON axons by myelin of 

peripheral appearance, as indicated by its hue and lamellar periodicity [374]. This finding is 

promising, however, it should be interpreted with caution, given that remyelination by OECs is 

indistinguishable from that by Schwann cells [319-325]. In a previous study, Li et al [374] 

reported that remyelination of ON axons is mediated by iON Schwann cell transplants only, not 

by iON OECs. In our study, we utilised 98-100% pure OECs obtained exclusively from the OB, 

which precludes the presence of contaminating Schwann cells in the OEC transplant.  

Furthermore, we did not observe any new myelin formation in ON collected from untreated 

controls, while the observed myelin in the iON tissue was always apposed to OECs. Based on 

these observations, we may attribute the presence of new myelin to the transplanted OECs. 

However, the possibility that the observed myelin may be due to Schwann cells migrating from 

meningeal fibres, as a result of the ONC injury, cannot be excluded [327]. Immunostaining for 

P0 might have confirmed the type of myelinating cell. Such investigation, however, would be 

confounded by the absence of an unequivocal marker for OECs [264, 265] and the fact that the 

OECs used in this study did not express GFP.  Finally, a pertinent issue in this discussion is 

myelination by oligodendrocytes, given that the presence of iON OECs may either stimulate 
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myelin formation by endogenous oligodendrocytes, or impair it through a mechanism of 

competitive inhibition. Clearly, additional investigations are necessary to further explore and 

confirm a remyelinating role for OECs in visual pathway repair.  

5.3. To what extent can MPIO uptake by OECs be controlled?  

Labelling efficiency and cellular responses to intracellular labels can be expected to be 

contingent on the particular type of label and cell under investigation. A main consideration with 

regard to ferumoxide-based intracellular labels is the risk of cytotoxicity associated with 

intracellular iron overload [467]. It is therefore imperative to develop safe intracellular labelling 

protocols tailored to specific cell types and imaging requirements.   

 

Despite the fact that OECs are promising candidates in transplant-mediated repair, very few 

studies have utilised cellular MRI of OEC transplants [513, 514], thus little is known about the 

suitability of specific contrast agents for intracellular labelling of OECs for MRI.  In these earlier 

studies, the OECs were labelled using SPIO [513] and magnetodendrimers [514], while 

incubation time was 48h and 24h, respectively. Cell viability was assessed at one time point 

only, i.e. immediately after labelling, and no adverse effects of the label were reported, except 

for concentrations of SPIO of 6mg/ml, which were cytotoxic and resulted in complete loss of the 

OECs from the in vitro cultures [513]. Using the protocol developed in Paper 1, however, high 

labelling efficiency (>90%) was achieved with incubation times as short as 6h. Furthermore, cell 

proliferation, migration and survival were monitored over 96h post-transplantation, thus 

excluding potential delayed adverse effects of the intracellular label in vitro. No adverse effects 

of the intracellular MPIO label were observed at any time during the observation period. 

 

Labelling efficiency was defined as 90% MPIO-labelled OECs and a minimum intracellular iron 

load of 0.90pg, which allows single cell detection by MRI [442]. The definition of a minimum 

threshold for intracellular MPIO uptake for single cell detection by MRI was based on an earlier 

study by Shapiro and Koretsky [442]. For the purpose of future MRI studies, we wanted to 

ensure that our labelling protocol enables sufficient intracellular iron load to detect potential 

migration of individual or small numbers of OECs post-transplantation in vivo by MRI.  

 

We found that optimal labelling efficiency of >90% is achieved by incubation of 50% confluent 

OEC cultures with MPIO over a period of 6h. Individual OECs displayed differential intracellular 

MPIO uptake, while MPIO uptake was also contingent on the MPIO concentration used for 

labelling and was in the range of 12-115 endocytosed MPIO. This corresponds to 1.90-13.80pg 
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of intracellular iron load, which is considered sufficient for single-cell detection by MRI at a 

resolution of 100 m, based on previous findings [442]. Monitoring of the MPIO-labelled OECs 

over a period of 96h post-labelling and comparison with unlabelled control OECs did not reveal 

any differences in cell survival, proliferation, and migration capacity in vitro, showing no 

adverse effects of the MPIO label.  

 

The observation of differential uptake of the MPIO label by individual OECs, irrespective of 

MPIO label concentration and length of incubation is hardly surprising, given that intracellular 

MPIO uptake by individual cells cannot be fully controlled under experimental conditions. At the 

same time, the specific finding confirms the assumption that partial control of intracellular iron 

load can be effected by using smaller-diameter MPIO with lower magnetite content, and shorter 

incubation times, thus limiting the risk of cytotoxicity associated with intracellular iron overload.   

Another important consideration is MPIO label retention after endocytosis. In our study, the 

MPIO were retained by the OECs throughout the incubation period. Interestingly, however, the 

specific MPIO type and labelling protocol developed in our study were utilised by a different 

research group for intracellular labelling of myeloma cells. After initial uptake of the MPIO label, 

these investigators found that the MPIO were rejected by the myeloma cells n vitro , possibly 

via an efflux mechanism (Dr Therese Standal; personal communication). Although this response 

may be explained by specific biochemical properties pertaining to cancer cells, the particular 

observation further emphasises the importance of thoroughly testing the suitability of different 

intracellular labels and protocols for specific cell types. Intracellular MPIO retention by specific 

cell types may be another factor that cannot be fully controlled under experimental conditions. 

In such cases, potential rejection of the MPIO label by transplanted cells post-transplantation in 

situ would seriously impact the usefulness of relevant MRI data.   

5.4. Viability and function of MPIO-labelled OECs in vivo  

 

The protocol developed in Paper 1 ensured that labelling of OECs with MPIO does not 

compromise cell viability, proliferation, and migration capacity in vitro, as demonstrated in a 

series of assays performed up to 4d post-labelling. While these results confirm the safety and 

efficiency of MPIO-labelling for the purposes of the MRI protocols used in Paper 2, they do not 

constitute undisputable predictors of MPIO-labelled OEC behaviour post-transplantation in vivo. 

Considering the framework of our study, a discussion on in vivo function and survival of 

transplanted MPIO-labelled OECs, can only be based on indirect measures. 
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As discussed earlier, MEMRI did not detect any RGC axon responses to ivit OEC transplants. If 

we were to assume that this lack of regenerative response can be attributed to poor OEC 

survival and/or function post-transplantation, MPIO-labelling per se does not appear to be a 

contributing factor.  This is because equivalent observations were made in the animal groups 

with ivit unlabelled OEC, i.e. both MPIO-labelled and unlabelled ivit OEC groups had CNR 

profiles that were not significantly different from those of untreated controls (i.e. P>0.05; 

paired t test).   

 

On the other hand, MEMRI detected axon regenerative responses to both MPIO-labelled and 

unlabelled iON OECs, providing indirect evidence of MPIO-labelled OEC function post-

transplantation. On this occasion, the CNR profiles of animals with unlabelled iON OECs were 

significantly higher than those of untreated controls (P=0.02; paired t test). The differences in 

the CNR of MPIO-labelled iON OEC and untreated control animals were marginally significant 

(P=0.05; paired t test). It can be argued that this may be an indicator of reduced survival 

and/or efficacy of the iON MPIO-labelled OEC graft as a result of intracellular MPIO. However, 

the lower CNR profiles observed in the MPIO-labelled OEC group can be explained by distortion 

of the CNR of the Mn2+-enhanced ON as a result of T2* effects from MPIO proximal to the 

lesion site (please see section 5.5), rather than impaired iON graft function and/or survival as a 

result of MPIO labelling.  

 

Finally, ultrastructural analysis identified MPIO-labelled OECs extending long processes in close 

apposition with SLA and blood vessels, thus providing evidence of long-term survival, function 

and integration of iON MPIO-labelled OEC grafts with host tissue. Although the above 

observations suggest that intracellular MPIO may not compromise the viability and function of 

MPIO-labelled OEC grafts in vivo, potential adverse effects of intracellular MPIO post-

transplantation should be thoroughly investigated in a different study, designed specifically for 

this purpose. 

 

5.5. Monitoring MPIO-labelled OEC transplants by MRI. Fact or artefact?  

 

Cellular MRI provides information about cell graft localisation immediately post-transplantation, 

while it also enables longitudinal monitoring of transplanted cell movements and survival in situ, 

albeit with certain caveats. 

 

MPIO-labelled OECs can be imaged both with T2*- and T2-weighted MRI. T2*-weighted gradient 

echo sequences are highly sensitive to the MPIO label. However, consistent with our 
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expectations, better image quality was achieved with T2 imaging. In the pilot experiment 

described in Paper 1, the T2*-weighted sequence revealed a large hypointense region in the 

ipsilateral eye of ivit transplanted animals consistent with ivit MPIO-labelled OECs. No 

hypointense region was present in the contralateral eye, in which unlabelled OECs had been 

transplanted.  Similarly, in Paper 2, the ivit MPIO-labelled OEC graft was unequivocally detected 

with T2*-weighted imaging, while no hypointense region was revealed in the contralateral eye 

of the animals after saline injections.  

 

Unequivocal detection of the iON MPIO-labelled OEC transplants based on T2*-weighted images 

alone was confounded by the fact that potential blood/air artefacts in the region of the injury 

could not be excluded. Nonetheless, analysis of SNR comparing the ipsilateral and contralateral 

ON of iON engrafted animals and untreated controls revealed signal attenuation proximal to the 

injury side consistent with the MPIO-labelled OEC graft.  

 

An important finding in our study is the evidence of secondary MPIO uptake by macrophages 

revealed by the ultrastructural study. This observation was not entirely unexpected. It 

reiterated, however, one of the main limitations associated with the use of intracellular contrast 

agents such as MPIO, i.e. imaging artefacts derived from secondary uptake of the label by in 

situ macrophages and other scavenger cells. Furthermore, the evidence of MPIO degradation 

revealed by the ultrastructural study questions the suitability of the MPIO label for longitudinal 

studies beyond 40dpl. Apart from false positives derived from secondary MPIO uptake, potential 

degradation of the label within transplanted cells might significantly compromise the efficacy of 

cellular MRI, resulting in signal loss/ dilution, while it may also have deleterious effects on long-

term graft function and survival.  

 

Additionally, although tracking of cell movements by MRI may be desirable, in vivo monitoring 

of potential migration of the ivit and iON transplanted MPIO-labelled OECs by MRI was not 

possible in our study. Although individual cells had enough intracellular MPIO for single cell 

detection by MRI, the large susceptibility effects induced by the intracellular MPIO label limited 

resolution to the macroscopic graft. 
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5.6. MEMRI in combination with T2* contrast agents – imaging, interpretation, and 

toxicity 

 

In the present study, MEMRI was applied for in vivo monitoring of RGC axons after visual 

pathway lesion and transplantation with OECs. Consistent with previous findings, MEMRI 

enabled visualisation of damaged and regenerating RGC axons 24h after ivit injection of 

150nmol of MnCl2, demonstrating the efficacy of the technique for CNS axon tracing in vivo 

[406-408, 418-419, 424]. Analysis of the MEMRI data using a semi-automatic segmentation 

technique [418] provided the CNR profiles of the Mn2+-enhanced ON in the different 

experimental groups.   

 

As discussed earlier, based on previous studies [408, 421-424], we predicted that potential 

axon regenerative effects of OEC transplants would be reflected in increased CNR proximal and, 

possibly, distal to the lesion site.  Furthermore, previous work by our group [407] determined 

that the lowest axon density resolvable by MEMRI is 125 000 axons/mm2 and that anterograde 

transport of Mn2+ in RGC axons is via kinesin-mediated anterograde transport mechanisms, thus 

requiring viable axons [419]. As discussed in section 5.1, the fact that no significant differences 

were found in the CNR of the ivit engrafted groups compared to untreated controls at 20dpl, 

suggested that the ivit OEC transplants did not have a neuroprotective/regenerative effect on 

RGC neurons. Contrary to this finding, analysis of the CNR profiles along the ON of animals with 

iON MPIO-labelled OEC transplants compared to untreated controls, revealed marginally 

significant differences at 1-3mm from the lamina cribrosa, indicative of an axon regenerative 

response to the graft. However, the CNR profile of the Mn2+-enhanced ON of iON MPIO-labelled 

OEC animals was distorted by susceptibility effects induced by the presence of MPIO proximal 

to the lesion site. Comparison of the CNR profiles of the iON unlabelled OEC group with 

untreated controls, revealed statistically significant differences at 0.6mm-2mm (P=0.02; paired 

t test) from the lamina cribrosa, consistent with an axon regenerative response to the iON OEC 

transplant.  

 

Notwithstanding the distortion of the CNR profiles of the Mn2+-enhanced ON as a result of the 

iON MPIO, the MEMRI technique was sensitive enough to detect axon regenerative responses 

to MPIO-labelled OEC transplants. On the other hand, the challenges in the interpretation of 

MEMRI data indicate that combination of different contrast agents in future studies may require 

the development of sophisticated post-processing tools that can compensate for the loss of T1 

signal as a result of susceptibility effects derived from T2* contrast agents. Furthermore, spin 

echo sequences, such as RARE, are less sensitive to T2* effects than gradient echo sequences, 
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such as FLASH. However, gradient echo sequences are faster and yield higher SNR, thus 

enabling better resolution and significantly reducing scanning times. These factors were taken 

into account in applying gradient echo sequences for the purposes of the specific study. 

 

An important result in our study was that the T1-weighted 3D FLASH sequence applied for 

MEMRI of RGC axons, simultaneously detected the MPIO-labelled ivit and iON OEC transplants. 

This finding can be explained by the fact that T2* susceptibility effects derived from the MPIO 

destroy the Mn2+-derived T1 signal. Although simultaneous detection of MPIO-labelled grafts by 

MEMRI was not a primary goal of our investigation, the specific effect may be useful in terms of 

reducing scanning times for each animal in similar experimental protocols.  On the other hand, 

the interplay between the two contrast agents poses certain methodological challenges.  

 

A main consideration in the above study was that serial in vivo imaging of RGC axons using 

MEMRI would necessitate co-localisation of MnCl2 with ivit and iON labelled OEC grafts at 

specific time points. Although the ivit dose of 150nmol of MnCl2 used in the study does not 

induce toxicity, while it has also been reported to have a neuroprotective effect on RGC neurons 

[407], potential toxic effects of repeated ivit doses of MnCl2 on OEC transplants and RGC 

neurons could not be excluded. Another consideration was that Mn2+-induced toxicity might be 

exacerbated in the presence of intracellular iron from the MPIO label, and vice versa. We 

therefore decided to postpone MEMRI until 20dpl so as not to interfere with OEC graft function 

and survival by introducing MnCl2 to the tissue acutely post-transplantation. The same 

considerations indicated that MEMRI beyond the 20dpl time point should not be used in the 

specific experimental protocol. As a result, ultrastructural analysis rather than MEMRI was used 

for follow up of the animals at >40dpl.  

 

Taken together, the above findings illustrated some of the opportunities and challenges 

involved in integrating MEMRI as a tool for monitoring transplant-mediated repair after visual 

pathway lesion. While the technique indeed enabled detection of axon regenerative responses 

to the iON OEC transplants, correlation of the MEMRI data with ultrastructural findings was 

essential for correct interpretation and/or verification of the MEMRI observations. Furthermore, 

the risk of cytotoxic effects as a result of co-localisation of Mn2+ and OEC transplants, as well as 

interplay between T1 and T2/ T2* contrast agents, are factors that must be taken into 

consideration in future studies involving serial in vivo MEMRI of RGC axons after transplantation 

of MPIO-labelled OECs.  
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5.7. Controlled release of Mn2+ from alginate beads - what can it achieve?  

A novel approach in our study was the development of tailor-made alginates for controlled 

release of Mn2+ for future MEMRI applications in studies of CNS damage and repair.  The 

rationale behind this approach was that such systems should enable optimal contrast 

enhancement in MEMRI and also minimise the inherent risk of Mn2+-induced toxicity associated 

with repeated and/or high doses of Mn2+. This rationale was based on earlier observations 

regarding Mn2+ uptake into neurons [419], as well as differential structural, mechanical, and 

functional properties of modified alginate gels in physiological conditions [492-494, 497, 498, 

515]. 

 

Earlier findings suggested that there is a plateau of maximum Mn2+ entry into neurons [419], a 

corollary of which being that increased Mn2+-induced signal enhancement is contingent on 

prolonged Mn2+ availability, rather than on Mn2+ dose.  This indicated that regulation and 

adjustment of Mn2+ release to the neuronal uptake threshold can be expected to dramatically 

reduce exposure of neurons to Mn2+. 

 

Furthermore, previous studies demonstrated that the compositional and structural properties of 

alginate can be modulated by conversion of M-residues to G-residues using mannuronan C-5 

epimerases [492, 493, 494, 497]. Additionally, it is known that alginates display different 

affinities to divalent ions such as Ba2+ and Ca2+ [498] and that the binding between guluronic 

acid residues and Ca2+ or Ba2+ is characterised by strong and specific auto-cooperativity [515]. 

In physiological conditions, alginate hydrogels have a tendency to swell and dissolve, as 

divalent crosslinking ions are released in competition with non-gelling ions, with each 

crosslinking ion being replaced by two Na+. However, more stable gels can be produced using 

high G-content alginates, or divalent ions, such as Ba2+, which have a high affinity to alginate. 

At the same time, given that the affinities of Ba2+, Ca2+, and Mn2+ to alginate are in the order 

Ba2+>Ca2+>>Mn2+, we predicted that formation of alginate gels using gelling solutions 

containing (i), BaCl2 and MnCl2, and (ii), CaCl2 and MnCl2, will result in differential rates of 

release of Mn2+ under physiological conditions.  

 

Consistent with our predictions, elemental analysis and stability studies revealed distinct 

differences in the ion binding capacity of the different Mn-alginate gels. As expected, Mn/Ba-

alginate gels were most stable. Analysis of the MRI data and simulation of the ivit Mn2+ release 

and concentration in the beads and in the vitreous using a compartment model confirmed the 

above findings. Two time constants for ivit Mn2+ release were extracted from the model, i.e. a 
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long and a short time constant ( 1 and 2, respectively), corresponding to slow and fast rates of 

release. While the short time constant hardly varied between the different alginates, there were 

significant differences in the long time constant (i.e. 600min-100min) in the order high-G  

high-M > polyMG, as well as Ba2+>Ca2+, i.e. contingent on the crosslinking ions.  

 

Unilateral ivit injection of Mn-alginate beads resulted in clear enhancement of the rat visual 

projection consistent with uptake of Mn2+ released from the beads by RGC neurons and active 

anterograde transport within RGC axons [416-417]. Simulation of the ivit Mn2+concentration 

showed that controlled release of Mn2+ from alginate with a time constant of 600min, 

representing the rate of Mn2+ release, effectively reduced maximum ivit Mn2+ concentration to 

57%, 21%, and 15%. This relates to an initial amount of bound Mn2+ stipulated at 20%, 80%, 

and 100%, respectively. On the other hand, a time constant of 100min, led to a corresponding 

reduction of ivit Mn2+ to 63%, 46%, and 44%. Furthermore, we predict that the use of Mn-

alginates for controlled release of Mn2+ can achieve reduction of maximum ivit Mn2+ 

concentration by ~85%. Considering that a bolus injection results in ivit Mn2+ concentration of 

100%, the large reductions in the ivit Mn2+ concentration facilitated by controlled release of 

Mn2+ from tailor-made alginates are highly significant in terms of reducing the risk of Mn2+ 

toxicity to RGC axons.  

 

In light of the above, we provide proof of principle for the design of alginate-based systems for 

controlled release of Mn2+ for MEMRI. We propose that such systems can be customised for use 

with specific experimental models, taking into account the particular bioanatomical/biophysical 

properties of the neuronal populations under investigation in terms of Mn2+ uptake, transport 

and clearance. Such applications can be expected to enhance the versatility and scope of the 

MEMRI technique for safe application in longitudinal studies of CNS damage and repair.  

 

5.8. Modification of alginates with RGD-peptides – developing an ideal matrix? 

 

One of the main considerations in studies of transplant-mediated repair is cell graft rejection as 

a result of immune responses. Although this type of host response may be modulated by the 

use of immunosuppressive treatments, or circumvented by utilising autologously derived or 

syngeneic transplants, it is often the case that the function, survival and integration of the 

transplanted cells with the host tissue is poor. With regard to OECs, survival post-

transplantation can be expected to be as low as 50% [248]. Furthermore, our observations in 

Paper 2 indicated that a possible reason for the lack of neuroprotective/regenerative effects of 

ivit OEC transplants may have been poor function and/or survival of the OEC graft post-
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transplantation in the vitreous.  This suggested that enhanced benefits of transplanted OEC 

might be derived through utilisation of biopolymer matrices for cell encapsulation.  

 

Based on the knowledge that the structural and mechanical propertied of alginates lend 

themselves to substantial modification [492, 493, 494, 497] and that RGD-peptide coupling to 

alginates promotes differentiation, adhesion, and survival of encapsulated cells by mimicking 

ECM conditions [500], we proposed to test the effects of RGD-peptide modified alginates as 

substrates for the culture of OECs in vitro with a view to future applications in connection with 

in vivo transplantation studies. Given that the interactions between RGD-alginates and 

myoblasts are well-characterised [500, 517], we used myoblasts as a reference cell line in the 

study.  

 

The strategy for alginate modification adopted in our study involved introduction of bioactive 

ligands to the M-residues of the alginate using a chemoenzymatic approach. G-residues were 

subsequently introduced to the alginate by epimerisation with mannuronan C-5 epimerases (as 

in Paper 3). The particular approach ensured that there is no interference with G-blocks as a 

result of the peptide coupling, thus allowing the G-blocks to be the main contributor to the 

formation of the gels.  

 

Another advantage in our methodological approach is that the proportions of M- and G- 

sequences and grafted functional peptide in our modified alginates, as well as downstream 

effects, were determined by NMR spectroscopy, while molecular weight characterisation was 

achieved by intrinsic viscosity measurements. This type of characterisation is very important 

given that the structural and compositional properties of the modified alginates may thus be 

correlated with observations from in vitro assay studies to elicit specific interactions with the 

cells under investigation, also with a view to in vivo applications.  

 

Characterisation of the alginates showed that modification of the alginates’ composition by 

epimerisation was consistent with previous findings [492, 493, 494, 497]. Utilisation of the 

RGD-coupled alginates and their non-coupled equivalents as substrates for OEC and myoblast 

culture in the form of flat gels (2D cultures) revealed dynamic responses to the RGD-coupled 

alginates in terms of altered OEC and myoblast morphology, formation of large clusters 

scattered across the surface of the gels, and adhesion of the cells to the alginate substrate by 

extension of bipolar processes. The specific morphological phenotype is largely unseen for OECs 

[256], while it denotes an intracellular response in terms of gene/protein expression affecting 

the cytoskeletal structure. On the other hand, encapsulation in RGD-coupled alginates did not 
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promote survival and/or differentiation of OECs and myoblasts in vitro. It is postulated, 

however, that further modification of the alginates, for example by coupling more functional 

peptide, or decreasing the G-content of the alginates may be necessary. 

 

The above findings are interesting with regard to future applications of RGD-peptide alginates in 

experimental studies of CNS repair mediated by OEC transplants. They indicate that 

introduction of RGD-peptide to the alginates may have an epigenetic effect on OECs, elucidation 

of which may lead to the development of tailor-made, functionalised alginate matrices for 

encapsulation of OECs with a view to promoting OEC survival and specific cell functions, such as 

increased secretion of neurotrophic factors.  Furthermore, it can be envisaged that modification 

of alginate matrices with functional peptides can by used to produce scaffolds which promote 

enhanced function and survival of seeded OECs, alone or in combination with other cell types. 

Such scaffolds may also provide molecular guidance and structural support to regenerating 

axons, facilitating directional growth towards correct synaptic targets distant to the lesion site.  
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6. Conclusions 
 

The aim of this thesis was to integrate MRI and biomaterials in the study of visual pathway 

repair mediated by OEC transplants.  Based on the findings of the relevant investigations, we 

can draw the following main conclusions: 

 

(i) MRI enables simultaneous in vivo monitoring of OEC transplants and regenerating 

RGC axons, however, signal distortions as a result of interplay between T1 and T2* 

contrast agents, as well as false positives in terms of imaging artefacts derived 

from secondary uptake of intracellular T2* contrast agents in situ, necessitate 

careful correlation of the MRI data with ultrastructural findings for correct 

interpretation and/or verification of MRI-based observations.  

(ii) OEC transplants have an axon regenerative effect and, possibly, a remyelinating 

role after iON transplantation following ONC injury. 

(iii) Tailor-made Mn-alginate beads can be utilised for controlled release of Mn2+ as a 

means of optimising contrast enhancement and minimising the risk of Mn2+-induced 

cytotoxicity, thus providing a significant refinement of the MEMRI technique. 

(iv) RGD-modified alginates induce dynamic responses on OECs in terms of 

morphology, cell-cell, and cell-matrix interactions, suggesting that further 

modification of the alginates may produce tailor-made, functionalised alginate 

matrices with ECM properties to be used for OEC encapsulation/seeding in models 

of CNS repair mediated by OEC transplants.  

 

 

 

 

 

 

 

 

 

 

 

 

55



56



7. Future directions 
 

Integration of imaging, biomaterials, and nanotechnologies is important in investigations of CNS 

damage and repair. However, although advances in these technologies create opportunities for 

innovation and thus enable investigations in neuroscience which might have been inconceivable 

only some decades ago, their application should be hypothesis-driven rather than technology-

driven. In other words, technology alone, no matter how powerful, may not be expected to 

elucidate key mechanisms of CNS damage and repair unless it is supported by rigorous 

biological principles and ability to address specific biological questions. 

 

The complexity of the mechanisms of CNS damage and repair suggests that multi-factorial 

approaches may be better-aligned towards promoting repair of the damaged CNS after injury. 

Future research may thus benefit from the utilisation of biomaterials and nanotechnologies to 

optimise the effects of cell transplants in situ, deliver genes and proteins to appropriate targets, 

modulate the inhibitory nature of the lesion microenvironment, and promote axonal 

regeneration and re-establishment of lost synaptic contacts. Furthermore, emerging 

technologies such as bioprinting may be important for producing customised functional matrices 

for scaffolding of different types of CNS lesions. 

 

Ability to monitor and elucidate the efficacy of transplant-mediated CNS repair in vivo, can be 

expected to rely on multimodal imaging and to integrate different MRI technologies, such as cell 

tracking, MEMRI, fMRI, and DTI/tractography, with MR spectroscopy and PET, to evaluate 

different aspects of the reparative process. Smart contrast agents, which circumvent the 

vagaries of imaging artefacts and which enable visualisation of genes and proteins post-

transplantation are also of great interest. However, appropriate correlation of in vivo imaging 

data with the findings of more traditional methods, such as EM, immunohistochemistry and in 

situ hybridisation, may still be necessary for rigorous evaluation of the efficacy of therapeutic 

interventions in experimental CNS lesion models.  

 

Finally, successful integration of interdisciplinary approaches in regenerative medicine may, in 

the future, contribute towards resolving the lack of regenerative capacity in the CNS.  

 

In the words of Ramón y Cajal: ‘It is for the science of the future to change, if possible, this 

harsh decree. Inspired with high ideals, it must work to impede or moderate the gradual decay 

of neurons, to overcome the almost invincible rigidity of their connections, and to re-establish 

normal nerve paths, when disease has severed centres that were intimately associated’. 
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Abstract

One of the main challenges in tissue engineering and regenerative medicine is the ability to 

maintain optimal cell function and survival post-transplantation and to protect the transplanted 

cells from immune responses and rejection in the host-tissue microenvironment. Biomaterials 

such as alginates can be utilised for immunoisolation, while they may also provide structural 

support to the cell transplants by mimicking the extracellular matrix. In the present study, we 

produced RGD-peptide coupled, stable alginates of variable flexibility by adopting a unique 

strategy for controlling the peptide coupling and G-content of the alginates. We characterised 

the alginates and proceeded to test their interactions with olfactory ensheathing cells (OECs) 

and myoblasts in 2D and 3D cultures.  We found that RGD-peptide modified alginates induced 

distinct cell-substrate interactions, demonstrated as marked morphological changes in 2D 

cultures of OECs and myoblasts, and partially enhanced survival, compared to unmodified and 

control alginates. 3D cultures, however, did not demonstrate substantial benefits of RGD-

modification in terms of improved encapsulated cell viability. Taken together, our findings 

suggest that further modification, for example, by coupling more RGD peptide to the alginate 

and/or reducing the rigidity of the 3D network, might be necessary in order to significantly 

enhance the survival of encapsulated OECs and myoblasts, with a view to future transplantation 

studies.  

1. Introduction 

In the last decades, cell therapy has emerged as a promising approach in translational 

medicine, with potential applications in the treatment of a multitude of conditions, ranging from 

diabetes (1-5), and bone defects (6), to cancer (7), and central nervous system (CNS) lesions 

as a result of trauma [8-10] or neurodegenerative disease (11-13).  Contingent on cell type and 

disease/injury under treatment, cell transplantation may aim to replace and/or regenerate 

damaged tissues, promote de novo tissue formation, or deliver secreted factors and therapeutic 

molecules in situ (14, 15).  The success of cell therapy, however, is often confounded by poor 

cell function, survival, and integration with host tissue post-transplantation, as well as by the 

need for immunosuppression in experimental and clinical protocols which involve the use of 

allografts or xenografts (16). To circumvent some of these issues, biomaterials are increasingly 

used in tissue engineering and regenerative medicine as they may provide the dual benefits of 

immunoisolation and structural support to encapsulated cells, mimicking extracellular matrix 

(ECM) conditions for enhanced cell-cell and cell-tissue interactions (17,18). Such matrices may 

also enable controlled cell proliferation, fate and differentiation in situ (17, 18).  
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Alginates, a generic term for naturally occurring polysaccharides found in algae (19) and some 

bacteria (20, 21), are widely used for microencapsulation of a variety of cell types (22-27). 

Alginates are linear unbranched copolymers of 1 4 linked -D-mannuronic acid (M) and -L-

guluronic acid (G) and their superior ionotropic properties (28) and biocompatibility render them 

particularly suitable for formation of hydrogel beads for cell encapsulation. Furthermore, 

alginates can be structurally and compositionally modified by converting M-residues to G-

residues using mannuronan C-5 epimerases, while they can also be grafted with functional 

peptides such as arginine-glycine-aspartic acid (RGD), to enhance cell adhesion (29). Such 

manipulations enable tailoring and optimisation of the alginates to meet specific requirements 

for mechanical stability and functionality (30-35).   

 

In the present study, we aimed to (i), produce peptide-coupled, stable alginate microbeads of 

variable flexibility by adopting a unique strategy for controlling the degree of peptide grafting as 

well as the G-content of the alginates, and (ii), characterise the modified alginates and monitor 

and compare their interactions with two different cell types, both in 3D and 2D cultures. We 

used a chemoenzymatic strategy (32, 36) to introduce bioactive ligands exclusively to the M-

residues of alginate in a two-step process. First, a pure mannuronan was grafted with RGD 

peptides using carbodiimide chemistry, and then, it was treated with mannuronan C-5 

epimerases, which convert non-substituted M-residues into G-residues in the alginate chain (32-

34). We determined the proportions of M- and G- sequences and the degree of peptide 

substitution in the modified alginates using NMR spectroscopy, and further characterised the 

molecular size of the grafted alginates by intrinsic viscosity measurements. The alginates were 

purified by active coal filtration. We proceeded to test whether the modified alginates, in the 

form of flat gels (2D culture) and microbeads (3D culture), enhance cell survival and/or 

differentiation and whether they thereby render themselves as suitable substrates for 

immobilisation of olfactory ensheathing cells (OECs), a promising candidate cell type in 

transplant-mediated CNS repair (37), with a view to future in vivo transplantation studies in 

experimental CNS lesion models. C2C12 myoblasts, a well-characterised cell line in 

immobilisation studies utilising RGD-coupled alginates (29), were used as a reference cell line in 

the study.   
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2. Materials and Methods 

2.1. Alginate 

Mannuronan isolated from an epimerase-negative mutant (ALG-) of Pseudomonas fluorescens 

(batch 512-215-01 TP, FM=1, [ ]=1614ml/g) was modified by coupling a hexapeptide with the 

sequence GRGDSP to the C-5 carboxyl group of mannuronic acid monomers. UPLVG (batch 

FP603-04, NovaMatrix™, Norway) was used as control alginate. 

 

2.2. Peptide coupling 

Two batches of alginates, i.e. batch 1, and 2, were produced by peptide coupling of sequences 

GRGDSP (AlBioTech, US) to mannuronan using carbodiimide chemistry. 3.5g (batch 1), and 5g 

(batch 2) of purified mannuronan were dissolved at 1% in phosphate buffer saline (PBS) 

solution overnight. EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride) was 

added to the solution at 1:20 molar ratio to the uronic acid monomers of the alginate. Sulfo-

NHS (N-hydroxysulfosuccinimide) was added as a co-reactant to the EDC at a 1:20 molar ratio 

and incubated for 2 hours (h). The peptide was then added at a concentration of 100 mol/ml, 

as described in Rowley and Mooney (29) and allowed to react for 20h before the alginate 

solution was purified through extensive dialysis against 3 shifts of distilled water, 3 shifts of 

50mM NaCl, and against distilled water, until the water conductivity measured <2 s. The 

alginates were subsequently freeze dried and stored. 

 

2.3. Epimerisation 

Alginate consisting of G- and MG-blocks was made by epimerizing the peptide-coupled 

mannuronans with the mannuronan C-5 epimerase AlgE4 from the alginate producing 

bacterium Hansenula vivelandii (produced recombinantly in Hansenula polymorpha) and AlgE6 

(produced in Eschericia coli) (33). To produce MG alternating alginate, AlgE4 was added to the 

mannuronan at a 1:200 (w/w) ratio in a mixture of 0.25% (w/v) alginate, 50mM MOPS, 2.5mM 

CaCl2 and 10mM NaCl and incubated for 24h-48h at 37ºC. To produce alginates with a G-

content of 50% and 70%, AlgE6 was added to MG alternating alginate at 1:20 ratio in a mixture 

of 0.25% alginate (w/v) and 50mM MOPS for 2.5h and 24h, respectively. To eliminate potential 

toxins, the epimerized alginates were purified through a carbon filter (PALL Corporation).  

Control samples were prepared by epimerizing an uncoupled alginate (i.e. pure mannuronan). 

 

2.4. NMR spectroscopy 

In order to reduce the viscosity of the alginate samples prior to the NMR measurements, the 

samples were depolymerised by mild acid hydrolysis to a final average Dpn~30 residues (38). 
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3-(trimethylsilyl)-proprionic-2,2,3,3,-d4 acid sodium salt (Aldrich, Milwaukee, WI, USA) was 

used as internal standard for the chemical shift and triethylenetetra-amine hexa-acetate (Sigma 

Aldrich) was added to chelate residual calcium ions in end-point epimerased samples. 

Preliminary tests of depolymerisation by mild acid hydrolysis on the peptide grafted alginate 

showed no detachment of the RGD-peptide. 

 

1D and 2D homonuclear experiments were carried out on a BRUKER Avance DPX 300 or 400 

spectrometer equipped with a 5mm QNP and 5mm z-gradient DUL (C/H) probe, respectively.  

2D homonuclear and heteronuclear experiments were performed on a BRUKER Avance 600 

spectrometer equipped with a 5mm z-gradient CP-TCI (H/C/N) probe. The NMR data were 

recorded with BRUKER XwinNMR Ver. 2.6 or 3.5 software. The NMR data were processed and 

analysed with BRUKER Topspin Ver. 3.0 software.  

 

For quantification of the peptide grafted alginate and the M/G ratio in alginate, 1D spectrum 

was recorded using a pulse with a 30 degree flip angle at 25°C, 40ºC, or 90°C. For assignment 

of the peptide and peptide grafted alginate 2D homonuclear in-phase correlation spectroscopy 

(IP-COSY) (39), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy 

(NOESY) with mixing time 100ms, and heteronuclear 13C heteronuclear single quantum 

coherence were recorded at 25°C.  

 

2.5. Intrinsic viscosity measurements 

Intrinsic viscosity was measured at the flow time through a capillary, using an Ubbelohde (type 

0a), a titrator (ABU91 Autoburette, Radiometer, Copenhagen), and a viscometer (AVS310, 

Schott Gerte). 10-15mg of alginate were dried in a chemical dehydrator overnight. Alginate was 

dissolved in 10ml water and 10ml 0.1M NaCl.  15ml filtrated 0.1M NaCl were added to a clean 

ubbelohde connected to a viscometer and the efflux time measured at a constant temperature 

of 20°C. After filtration through a 5 m filter, 15ml of the alginate solution was added to a clean 

ubbelohde connected to a viscometer, the titrator turned on, and the efflux time measured at a 

constant temperature of 20°C. The sample was diluted 5 times and 4 parallel measurements 

performed at each dilution.  

 

2.6. Cell seeding on flat alginate gels 

To form flat alginate gels, 16.2mM GDL were added to autoclaved solutions of 0.7% alginate, 

2mM HEPES and 8.1mM CaCO3. The solutions were subsequently transferred to 24-well cell 

culture plates (Corning) in volumes of 400 l/well and allowed to gel for 1h at room 

temperature. OECs and myoblasts were seeded on the gels at concentrations of 1x104cells/cm2. 
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To compare cell cultures on alginate flat gels with cell cultures on their standard substrates, the 

same concentrations of OECs and myoblats were seeded on empty wells coated with poly-L-

lysine and untreated plastic surface (Corning), respectively. OEC and myoblast cultures were 

fed with appropriate media and incubated at 37ºC with 7% and 5% CO2, respectively. 

 

2.7. Cell encapsulation in alginate beads 

2% (w/v) alginate and 0.3M D-mannitol (VWR) in sterile water were prepared from peptide 

alginates and control alginates. 1.8ml of 2% alginate solution and 0.2ml of cell suspension were 

mixed in a 10ml syringe at a final concentration of 1.5x106 cells/ml of alginate. Beads with 

encapsulated cells were formed by dripping the alginate solutions into a gelling bath containing 

50mM CaCl2, 0.15M Mannitol and 10mM MOPS buffer using an electrostatic bead generator 

with electrostatic potential difference 7kV, flow 10ml/h, and distance between needle and 

gelling solution surface 1.7cm. Beads containing encapsulated myoblasts and OECs were 

transferred to 75cm2 cell culture flasks containing their respective culture media and incubated 

at 37ºC with 5% and 7% CO2, respectively.  

 

2.8. OEC purification and culture 

Neonatal rat OECs were purified as described by Barnett and Roskams (40). Briefly, the 

olfactory bulbs of 4-5 P7 Fischer rats were finely chopped, enzymatically digested in L-15 

(Leibovitz) medium (Sigma) and triturated through a 26 gauge needle. Dissociated cells were 

incubated in a cocktail of the O4 (IgM at 1:4) and anti-galactocerebroside (IgG3 at 1:2.) 

primary antibodies, followed by their fluorochrome conjugated class specific secondary 

antibodies. After rinsing, dissociated cells were incubated in goat anti-mouse IgM phycoerythrin 

and goat anti-mouse IgG3 fluorescein secondary antibodies (1:100, Southern Biotech). OECs 

were purified by fluorescence-activated cell sorting (FACS, Vantage Becton Dickenson) by 

selecting for galactocerebroside-negative and O4-positive cells. Purity of the OEC populations 

was assessed by p75NTR specific labelling and was always 98-100%. OECs were subsequently 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM GlutaMAX; Sigma) with 1.25% 

gentamicin (Sigma) and 5% FBS (Autogen Bioclear) on 13 g/ml poly-L-lysine- (PLL) (Sigma) 

coated 25cm2 flasks. The cultures were supplemented with 500ng/ml fibroblast growth factor 2 

(FGF2) (Peprotech, London, UK), 50ng/ml heregulin (hrg 1) (R&D Systems Europe Ltd, 

Abingdon, UK), and 10-6 M forskolin (Sigma). The cells were maintained in sub-confluent 

cultures prior to the experiments. 
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2.9. Myoblasts 

C2C12 mouse skeletal myoblasts (ATCC) were cultured in DMEM (Sigma) supplemented with 

10% FCS, 4mM glutamine (Sigma) and 20 g/ml gentamicin (Sanofi Aventis). The cells were 

maintained in sub-confluent cultures prior to the experiments.   

 

2.10. Live/Dead assay 

Cell viability was qualitatively assessed post-seeding/encapsulation by visualisation of live and 

dead cells, stained by calcein and ethidium homodimer-1 (EthD-1) using LIVE/DEAD® assay 

(Molecular Probes).  A working solution consisting of 3ml PBS, 1.8 l calcein and 8 l EthD-1 was 

freshly made before each experiment and added to cell culture media in a 1:1 ratio. The 2D 

cultures and 3D cultures were studied using confocal laser scanning microscopy (CLSM) 

(LSM510, Carl Zeiss).  Three-dimensional images were constructed by a 3D projection function 

after digital sectioning through the entire microbeads (Z-stacks). A quantitative assessment of 

the relative proportion of live and dead cells was performed by counting live and dead cells 

through the Z-stacks obtained from the microbeads (n=10).  

2.11. MTT assay 

Mitochondrial activity was assessed by MTT assay. Cell cultures on flat alginate gels ore 

encapsulated cells were incubated with culture media conditioned with 0.5mg/ml MTT for 4h at 

37ºC. For the flat gels, the media was harvested and cells sampled by centrifugation. 

Subsequently, 400 l DMSO and 50 l 0.1M glycine/0.1M NaCl were added to the cell pellets. For 

the microbeads, the media were removed and further processes as described (41). For each 

condition, 200 l of the colour solution were analysed at 570nm on a Victor3 Multilabel Plate 

Reader (Perkin Elmer).  

 

3. Results 

 

3.1. Characterisation of modified alginates 

Coupling of RGD-peptide (GRGDSP) to mannuronan was characterised by NMR spectroscopy 

using homo- and heteronuclear spectra (Figure 1). The anomeric signals for mannuronan and 

both H , H  from proline and arginine were used to determine the degree of substituted C-5 

mannuronan units with RGD peptide. Due to relatively large differences in concentration 

between mannuronan and RGD-peptide, which resulted in a high signal-to-noise ratio in 

combination with complex coupling for the peptide proton, this will only give a rough estimate 

for the specific coupling reaction. The NMR spectra also revealed some by-products from the 

coupling reaction which, based on NMR spectra, could be assigned to urea derivatives and N-
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acylurea bound to mannuronan. The remaining urea derivatives were removed during the 

activated carbon filtration, while the N-acylurea was still bound to the alginate. A negative 

control experiment with N-acylurea-bound alginate did not show any effects on viability and 

morphology of OECs in 2D culture. Prior to the coupling of RGD-peptide to mannuronan, both 

compounds were characterised using standard 1D and 2D homonuclear spectra in order to 

check their purity (data not shown). 

 

NMR spectroscopy was also used to determine the composition of the alginates as previously 

described (34). Figure 2 shows the anomeric regions of alginate before and after epimerisation. 

From the spectra, we calculated the molar fractions of monomers, the four possible diads (FGG, 

FMM, FMG, FGM), and the G-centered triads (FGGG, FMGG, and FGGM and FMGG), which allow 

calculation of the average length of the G-blocks (NG>1), a value that correlates well with the gel 

forming capacity of the polymers. The sequence data, the peptide content, and intrinsic viscosities 

are provided in Table 1. The epimerisation reactions were tailored to produce alginates 

containing alternating structures of M and G interspacing G-blocks. Indeed, high-G and low-G 

alginates with and without peptides were produced in both batches of alginates for 2D and 3D 

experiments. As can be seen for the alginates produced for 2D experiments, the FMM was lower 

than for the naturally occurring alginate used as controls. Hence, about every second M was 

converted to G by the AlgE4 epimerase. For the alginates produced for the 3D experiments, the 

conversion of M-blocks to MG-blocks is not that obvious, indicating inefficient treatment of the 

mannuronan by AlgE4. However, the efficiency of AlgE6 is shown given that long G-blocks 

(NG>1 2) were produced for all high-G samples. As described above, the peptide content was 

estimated by NMR spectroscopy to be about 0.2% and 0.1% of the uronic acid units grafted 

with peptide for the 2D and 3D experiments, respectively. As expected, the content of peptide 

was the same within each batch, as the same background (i.e. mannuronan with peptide) was 

used for the production of epimerised alginates. The grafted peptide did not seem to affect the 

epimerisation reaction as a higher G-content (FG) was found for the peptide grafted alginates 

compared to the non-grafted alginates. Table 1 also shows that a slight reduction in intrinsic 

viscosity was seen for all samples compared to the mannuronan starting material, probably as a 

result of handling and hydrolysis. 

 

3.2. Interactions between alginates and OECs  

 

3.2.1. Flat gels 

Microscopic examination of the OEC 2D cultures after Live/Dead staining revealed distinct 

morphological differences in OECs contingent on the type of substrate used (Figure 3). On the 

 8



RGD substituted alginates, i.e. RGD LG and RGD HG, the OECs hade formed small clusters and 

they  were rounded, with short bipolar processes attached to the gel surface. By contrast, OECs 

seeded on the non-substituted alginates, i.e. Alg LG, Alg HG, and UPLVG, were spherical and 

had formed aggregates floating in the culture media, These cells demonstrated poor survival, 

with all cells being lost, especially those cultured on UPLVG gels, by 72h post-seeding. Control 

OEC cultures on PLL-treated surfaces displayed normal morphology, i.e. the majority of cells 

were spindle-shaped, interspersed with some stellate-shaped cells.  

 

The mitochondrial activity of OECs cultured on different substrates was assessed between 24h 

and 72h post-seeding. Irrespective of type of alginate substrate, the mitochondrial activity of 

OECs decreased by 48h, possibly reflecting a relatively low attachment ratio. An increase in 

mitochondrial activity was observed, however, for OECs cultured on PLL-coated surfaces, 

consistent with better attachment and survival.  

 

3.2.2. Microbeads 

 

Live/Dead assay on encapsulated OECs (3D cultures) showed that the cells were able to survive 

within the microbeads, irrespective of alginate type or modification used. Interestingly, OECs 

encapsulated in the coupled as well as non-coupled alginates had arranged themselves within 

channels formed in the alginate in a characteristic fireworks-like pattern. The relative 

proportions of live cells/microbead were estimated from digital sectioning through the 

microbeads (Z-stacks) using CLSM. Overall OEC survival, however, inside the microbeads 

deteriorated between 9d and 16d post-encapsulation (Figure 3).  

 

3.3. Interactions between alginates and C2C12 myoblasts 

3.3.1. Flat gels  

 

Microscopic examination of the C2C12 myoblasts cultured on RGD-coupled alginate , i.e. RGD 

LG, RGD HG, small clusters of cells (Figure 4). Similar to OECs, the myoblasts were rounded 

and extended protrusions attached to the gel surface. However, no myoblast attachment was 

observed on the non-coupled alginates, i.e. Alg LG, Alg HG, and UPLVG). Instead, large cell 

aggregates were observed, floating in the media (Figure 4). On cell culture plastic, however, 

the myoblasts were attached and spread across the gel surface (Figure 4).  

 

The mitochondrial activity of myoblasts was higher when cultured on the RGD-coupled 

alginates, compared to non-coupled ones. For myoblasts cultured on RGD HG, the 

 9



mitochondrial activity was consistent during the 72h period, compared to decreasing 

mitochondrial activity observed on the RGD LG gels. The highest levels of mitochondrial activity 

though were observed on myoblasts on cell culture plastic (Figure 4).  

 

3.3.2. Microbeads 

Live/Dead assay demonstrated long-term myoblast survival throughout the observation period 

(41d), irrespective of type of alginate used for the 3D cultures, although dead cells were also 

observed in the microbeads (Figure 4). Similar to OECs, myoblasts cultured in RGD LG and Alg 

LG had arranged themselves within channels, showing a distinct fireworks-like pattern.  While 

mostly dead cells were observed in these channels at 1d-10d, the channels were subsequently 

filled with live myoblasts. 

 

The mitochondrial activity of myoblasts encapsulated in RGD-coupled (RGD HG, RGD LG, 

batch1) and non-coupled (Alg HG, Alg LG, and UPLVG) alginates was monitored over a period 

of 38d. At 1d-14d post-encapsulation, The mitochondrial activity of myoblasts in RGD HG and 

Alg HG alginates was lower than in RGD LG, Alg LG, and UPLVG.  After 20d, the mitochondrial 

activity of myoblasts ad increased in all types of microbeads. Compared to unmodified 

alginates, the RGD-modified alginates did not seem to impact myoblast viability in the 3D 

cultures, rather the differences observed seem to relate more to the M and G content of the 

alginates.  

 

DISCUSSION

Although there is intense interest in peptide coupled alginates in the field of tissue engineering 

and an increasing number of studies are using RGD-coupled alginates (REFs), little has been 

described regarding the composition of the polymers utilised in these studies. Hence, the aim of 

this study was to monitor cell attachment and survival using structurally-designed and well-

characterised RGD-coupled alginates. The peptide alginates were produced by chemoenzymatic 

modification, ensuring peptide coupling to the M-units in the alginate by first introducing 

peptide to mannuronan and subsequently introducing MG- and G-blocks by epimerisation. In 

this way, the peptide coupling on the carboxyl group of the uronic acids does not interfere with 

G-blocks being the main contributor to alginate gel formation. This chemoenzymatic strategy 

has previously been shown for galactose (36) and methacrylate substituted alginates (32).  

 

The peptide coupling was characterised by NMR showing that 0.1-0.2% of the monomers were 

substituted by peptide. As 5% of the carboxyl groups were activated by EDC and Sulfo-NHS, 
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and excess of peptide was added, the yield is 2-4%. The basis of this coupling reaction was the 

work of Rawley and Mooney (29), reporting 55-60% incorporation efficiency using carbodiimide 

chemistry. Even though the results from the NMR characterisation are a rough estimate, this 

cannot explain the difference in the coupling efficiency (29). Furthermore, NMR spectroscopy 

allows identification of other products from the carbodiimide coupling reaction. This information 

was used to adapt downstream protocols for processing of the RGD-coupled alginate. 

Especially, some of the by-products and non-reacted peptides were not removed during 

dialysis. This can lead to an apparently higher incorporation efficiency. The NMR data show that 

the active coal filtration was efficient to remove most of these products from RGD-coupled 

alginates, except for N-acylurea bound to alginate. Nonetheless, it can be concluded that NMR 

spectroscopy can be used to determine the coupling efficiency, as well as to monitor the effects 

of the downstream process on the RGD-coupled alginates. 

 

In addition to the above, NMR was used to characterise alginate composition. The relevant 

findings were consistent with what is previously shown for enzymatic modifications of 

mannuronan with the mannuronan C-5 epimerases AlgE4 and AlgE6 (33,34). The alginate was 

tailored to contain a majority of G- and MG-blocks forming stable gels with divalent ions (33). 

Furthermore, we aimed to produce alginates with different contents of G-blocks, as this has 

been demonstrated to give gels of different stiffness (34), which has been shown to impact 

differentiation of C2C12 myoblasts (29). As expected, compared to UPLVG alginate, the 

epimerized alginates had a reduced fraction of M dimers and trimers and a higher number of 

MG-blocks. Furthermore, FMM values in peptide coupled and non-coupled equivalents were 

similar, indicating that the peptide did not significantly interrupt the epimerization reaction at a 

degree of substitution of 0.1%-0.2%.   

 

Compared to batch 2, epimerised alginates in batch 1 had similar FG values, and showed better 

homology between the RGD-coupled alginates and their non-coupled equivalents. However, 

while batch 2 alginates had similar FG values, the G-content in the RGD LG and Alg LG alginates 

was much lower than that of the LG alginates in batch 1 (i.e. FG 0.3, compared to FG 0.5). 

This difference in the G-content can be explained by the fact that the reaction time for batch 2 

alginates was 24h, as opposed to 48h used for batch 1.  Thus the stability of batch 1 alginate 

gels should be expected to be higher than that of batch 2 alginates given that substituting M-

blocks with MG-blocks has been shown to produce more stable alginates (33, 34, 42). 

 

The intrinsic viscosity of the alginates was found to decrease slightly during peptide coupling 

and epimerization.  Vold et al (43) showed that there are no differences in chain stiffness 
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between poly M, poly G, and poly MG alginates.  The coupling and epimerization reactions per 

se do not result in chain breakage, however a degree of hydrolysis upon handling of the gels 

may explain the observed reduction in viscosity.  Nonetheless, intrinsic viscosity values, 

irrespective of sample type, are comparable. 

 

Subsequent to characterization, we proceeded to test the interactions of the modified alginates 

with OECs and myoblasts, two different cell types with therapeutic potential in regenerative 

medicine and tissue engineering.   

 

OECs are unique glia that have emerged as promising candidates in the repair of CNS lesions 

(37, 44, 45), however, OEC survival post-transplantation may be expected to be as low as 50% 

(44). Despite the fact that encapsulation of OECs in biopolymer matrices may improve cell 

survival, few studies have explored this line of research (46, 47), while, to our knowledge, there 

is only one study of OEC culture on alginate (48). The specific study utilised unmodified alginate 

alone, and in combination with fibronectin, for culture of OEC monolayers and showed that 

OECs were transformed to atypical cells and displayed inhibited metabolic activity (48).  

 

In our study, OECs cultured on RGD alginate flat gels formed large clusters of spherical cells 

with bipolar protrusions attached to the gels. The particular morphotype was similar to that of 

myoblasts cultured on RGD alginates, and also consistent with a previous report, in which OEC 

morphologic plasticity and motility were associated with rapid changes in mitotic activity (49).  

There were no obvious differences in OEC morphology and pattern between RGD LG and RGD 

HG alginates, suggesting that while the RGD peptide may facilitate OEC adhesion, gel rigidity 

does not inhibit or promote OEC attachment.  

 

The above observations indicate that the presence of RGD in the alginate, induced an effect to 

the OEC 2D cultures in terms of cell-cell, cell-substrate interactions. It can be argued that the 

specific morphology and pattern observed in OEC cultured on RGD-coupled alginate gels are 

indicative of a dynamic intracellular response in terms of altered gene/protein expression, 

transcription and translation, causing a modulation of cytoskeletal structure. It would be 

interesting to elucidate which factors in OECs are upregulated and downregulated in response 

to RGD-coupled alginates, however, such investigations would necessitate the use of proteomic 

and/or genomic methods and were, therefore, beyond the scope of the present study.  

 

Encapsulation of OECs in RGD-coupled alginates (3D cultures) did not induce an effect on OECs 

in terms of improved survival. This suggests that further modifications may be required to 
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develop a tailor-made alginate substrate for optimisation of OEC function and survival with 

regard to future transplantation studies. Such modifications may include coupling more RGD-

peptide to the alginate, further modulating the mechanics of the alginate microbeads, as well as 

testing whether higher concentrations of encapsulated OECs may display improved survival.  

 

Myoblasts are proposed for repair of skeletal muscle and myocardial tissue (50, 51) and have 

been widely used in conjunction with biopolymer matrices (32, 50, 51, 52). Rowley and Mooney 

(29) have established that RGD alginates mediate myoblast differentiation into multi-nucleated 

myofibrils. In our study, however, we were not able to replicate these findings as the myoblasts 

remained undifferentiated, displaying unaltered morphology throughout the observation period.  

The lack of differentiation may be attributed to the fact that the RGD densities in our alginates 

were significantly lower than those used by Rowley and Mooney (29). However, control 

myoblast cultures, using plastic as a substrate, supplemented with differentiation media, also 

remained undifferentiated in this experiment.  Therefore, we cannot exclude the possibility that 

the myoblasts utilized in this study had lost their differentiation capacity.  

 

There was a discrepancy between the low mitochondrial activity of myoblasts encapsulated in 

RGD HG and Alg HG alginates and the relatively large proportion of live cells observed in these 

microbeads during the first week after encapsulation. The comparatively low metabolic activity 

may have denoted a differentiation process, however, CLSM observations did not confirm any 

signs of cell fusion.   

 

The overall survival/growth of the myoblasts during the 42d observation period showed only 

small differences in mitochondrial activity as well as the proportion of live and dead cells within 

the Alg HG and UPLVG microbeads. We interpret these findings as indicative of 1-2 cell divisions 

during the 41d encapsulation period, as shown previously (32).   

 

It is noteworthy that relatively improved myoblast survival was observed in the RGD LG and Alg 

LG microbeads, where the cells had arranged themselves in a characteristic fireworks-like 

pattern inside channels formed inside the microbead.  The channels formed in the microbeads 

could be attributed to viscous drag that may have occurred during gelling. Myoblasts, have 

been previously shown to have inhibited growth after encapsulation (32, 52). Our observations 

thus indicate that myoblasts may have been able to expand within these channels, which are 

assumed to contain lower gel concentrations, or may even represent gel-free pockets. 

Interestingly, there is a better correlation between MTT data and Live/Dead CLSM data from 

the LG alginate microbeads throughout the observation period, compared to the other alginate 
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types.  Furthermore, the overall metabolic activity of myoblasts encapsulated in the LG 

alginates was consistently higher than that of myoblasts in HG and UPLVG alginates.  It is 

known that increased solid stress on cells may affect proliferation and survival (41). On the 

other hand, a higher level of capsule stability in terms of increased G-content may be desirable 

with a view to in vivo transplantation (53). Our findings suggest, however, that a lower degree 

of network rigidity, rather than grafting the alginates with RGD peptide alone, may be a key 

component for improved myoblast survival post-encapsulation in vitro. 

 

Taken together, the findings from the myoblast and OEC 2D and 3D studies did not reveal 

enhanced cell adhesion and survival in vitro as a result of RGD grafting, despite observed 

attachment of cells, morphological changes and partially improved viability in 2D cultures for 

some of the surfaces . Nonetheless, we predict that improved attachment and survival of OECs 

and myoblasts should be achieved with higher percentage of coupled peptides in the alginates. 

We also recognise that further modifications and tailoring of the alginates may be required with 

a view to transplantation of encapsulated OECs and myoblasts in vivo, especially with regard to 

the former as little is known about OEC interactions with modified alginates. Furthermore, given 

that different types of CNS lesions require different reparative strategies, it is important to 

consider that the alginate substrates used in conjunction with OEC transplantation need to be 

tailored accordingly. For example, if OEC transplantation aims at neuroprotection, as in the case 

of intravitreal grafts to promote optic nerve regeneration after injury, optimisation of OEC 

survival and function post-transplantation, in terms of sustained secretion of neurotrophic 

factors, may be effected by encapsulation and associated changes in the 3D microenvironment 

of the cells.  If, however, OEC transplants aim to stimulate directed axonal growth towards 

synaptic targets distal to the lesion site, as for example in a spinal cord injury scenario, an 

appropriate RGD-coupled alginate matrix should be in the form of a scaffold which, should 

serve the dual purpose of mediating improved function and survival of seeded OECs, as well as 

providing an appropriate substrate for regenerating RGC axons in terms of structural and 

molecular support, by mimicking ECM functions. Finally, other types of CNS lesions, such as 

stroke-induced cavities, might require transplantation of microbeads with cells seeded on the 

surface, to act as scaffolds and induce de novo neurogenesis within the lesion cavity (54). The 

importance of unique strategies for alginate modification as well as appropriate characterisation 

of the modified alginates are of great relevance in this context. 
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Figure 1 

 
 
Figure 1 - 1D proton spectrum RGD-peptide grafted mannuronan at 40 C. A. The anomeric 

region. B. The aliphatic region. The anomeric proton of mannuronan and both H , H  from 

proline and arginine were used to determine the degree of substituted C-5 mannuronic acid 

units with RGD-peptide. By-products were assigned to consist mainly of urea derivatives and N-

acylurea bound to mannuronan. C. The aliphatic region before activated coal treatment D. The 
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aliphatic region after the activated coal treatment. The chemical shifts vary slightly given the 

equal pH of the samples. Acetate was an impurity from the freeze dryer. 

 

Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 - 1D proton spectrum of epimerased RGD-peptide grafted alginate at 90 C. A. The 

anomeric region for the RGD-peptide grafted alginate before epimerisation B. after 

epimerasation.   
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Figure 3 

 
 

 
 
 
 
Figure 3 - Live/dead assay showing overall OEC survival and interaction profiles with different 

alginate substrates. A. Representative images of 2D ad 3D cultures. Upper row shows 2D OEC 

cultures at 6d post-seeding. OECs seeded on RGD-modified alginates display altered 
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morphology compared to controls (PLL substrate). Instead of spindle shaped, the cells are 

rounded and extend bipolar protrusions attached to the gel surface (shown in higher 

magnification in B). Second and fourth rows show representative images from Live/Dead assays 

on 3D OEC cultures at 6d and 16d. Overall OEC survival declines between 6d and 16d, 

irrespective of substrate. Equator images, representing cross sections through the different 

types of alginate microbeads at the same time points, show that the size of the microbeads is 

stable over time. C Higher magnification of RGD LG microbeads at 6d post-encapsulation 

showing characteristic arrangement of OECs in a fireworks-like pattern.  
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Figure 4 
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Figure 4 - Interaction profiles of myoblasts with different alginate substrates. A. 

Representative images of 2D ad 3D cultures. Upper row shows 2D myoblast cultures at 48h 

post-seeding. Myoblasts seeded on RGD-modified alginates display altered morphology 

compared to controls (plastic substrate). The myoblasts are rounded and extend bipolar 

protrusions attached to the gel surface (shown in higher magnification in B). Second to sixth 

row showing Live/Dead assay from 3D myoblast cultures at 1d, 10d, and 38d post-

encapsulation. Relatively improved myoblast survival was observed in the RGD LG (shown in 

higher magnification in C) and Alg LG microbeads, where the cells had arranged themselves in 

a characteristic fireworks-like pattern inside channels formed inside the microbead. Equator 

images from the three different time points demonstrate that the different types of microbeads 

were stable throughout the observation period. D, E show mitochondrial activity of myoblasts 

from the 2D and 3D cultures respectively. The overall survival/growth of the myoblasts during 

the observation period showed only small differences in mitochondrial activity as well as in the 

proportion of live and dead cells within the Alg HG and UPLVG microbeads.  
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