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Abstract

We use single cell RNA gene expression data to study the cell cycle. We compare two

methods for single cell RNA gene expression quantification and analyze both the resulting

count matrices and their performance. A method is developed for ordering the cells with

respect to their position in the cell cycle by using Principal Component Analysis. The

gene expression profiles are modelled as function of cyclic time using smoothing cubic

splines. We perform Partial Least Squares regression with the modelled gene expression

profiles as input and determine which expression profiles that are cell cycle periodic within

a significance threshold. The results are analyzed by functional enrichment for biological

processes. The method is applied to three single cell RNA data sets.

A set of new candidate genes are found by performing a correlation analysis to find can-

didate genes that have consistent expression profiles in all three data sets. Enrichment

analysis on the candidate genes show that our method is able to identify genes that have

known cell cycle functions.
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Sammendrag

Vi benytter oss av enkeltcelle RNA genekspresjonsdata for å studere cellesyklusen. To

metoder for enkeltcelle RNA genekspresjonskvantifisering sammenlignes. Vi analyserer

b̊ade tellematrisene og ytelsen p̊a begge metodene. Ved å benytte prinsipialkomponent-

analyse utvikler vi en metode for å bestemme en ordning av cellene med hensyn p̊a deres

posisjon i cellesyklusen. Genenes ekspresjonsprofiler modelleres s̊a som funksjoner av syk-

lisk tid ved hjelp av glattende splineinterpolasjon. En delvis minstekvadraters regresjon

benyttes deretter ved å bruke splinemodellene som inndata for å finne de genutrykkspro-

filene som viser signifikant cellesyklisk-periodiske uttrykk innenfor et signifikansniv̊a. Vi

bestemmer deretter om settet av de signifikante cellesykliske genprofilene har kjente biol-

ogiske funksjoner relatert til cellesyklusen. Vi analyserer tre enkeltcelle datasett med den

utviklede metoden.

Vi bestemmer et sett med nye kandidatgener ved å se p̊a overlappet av signifikant cellesyk-

lusuttrykte gener mellom datasettene. En korrelasjonsanalyse utføres for å finne et sett

med gener som viser konsistente uttrykksprofiler p̊a tvers av datasettene. Deretter anal-

yserer vi om settet av kandidatgener har kjente biologiske funksjoner tilknyttet cellesyk-

lusen. Analysen viser at metoden er i stand til å identifisere gener med kjente biologiske

cellesyklusfunksjoner.
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Chapter 1

Introduction

The cell cycle is an important process in functioning cells. It regulates every step in

the path towards mitosis, when the cell divides and become two cells. The defined steps

in the cell cycle prevents cells from progressing through the cell cycle if irregularities

are detected. This prevents dysfunctional cells with mutated DNA from spreading their

mutations further. Cancer cells are cells that show irregular behaviour in the cell cycle.

They carry mutations in their hereditary code such that they are not susceptible to the

some of the regulatory mechanisms in the cell cycle. When cell divide without regulation

they run a higher risk of developing new mutations and they diverge ever more from the

functioning cells.

Common strategies for studying the cell cycle with RNA sequencing require that the cells

to be studied must be synchronized. This is achieved by adding chemicals to a cell culture

to block the cycling cells in a certain stage of the cell cycle. After a time, a new chemical

is then added to release the cells from the block and the cycling cells will continue cycling

as a synchronised culture. Samples are then extracted from the culture at fixed time

intervals and each sample is sequenced using bulk-RNA technology. A critique of this

approach is that we cannot know exactly how the observed gene expressions are affected

by the synchronisation techniques employed. With the cost of single cell RNA technology

dropping, more an more research facilities have the capability of acquiring genomic data

from single cells in a biological sample. With this technology, we can analyze the gene

expression of each cell in a sample individually. If we are able to apply a time ordering

1
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to the cells observed in single cell RNA experiments, we can model the gene expressions

without the need of synchronization.

1.1 Project goals

In this experiment we will study the cell cycle by analyzing single cell RNA gene expression

profiles. We will compare the performance of single cell gene expression quantification

from sequncing data. Two different technologies will be studied: CellRanger and the

newly released STARsolo.

We will use the generated genomic data to derive a robust method for modelling and

visualizing single cell gene expression data as function of cyclic time. The steps will

involve pre-processing

• Pre-processing.

• Acquiring a ordering of the cell with respect to a cell cycle pseudotime.

• Modelling the gene expression profiles.

• Identification of cell cycle periodic gene expression profiles.

• Analysis of the cell cycle periodic genes.

We will use established bioinformatic software and develop utilities where we need them.

Our method will be tested on multiple single cell gene expression data sets.

1.2 Report outline

Chapter 2 : We provides some background information on the relevant concepts and

methods we need within cell biology, sequencing technology, computer science, mathe-

matical methods and statistical methods.
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Chapter 3 : Explains a strategy for identification of cell cycle periodic genes and gives

the details involved in each step.

Chapter 4 : We present the results of our method applied to multiple data sets.

Chapter 5 : A discussion of the observations from our results are presented.

Chapter 6 : We give a conclusion of the experiment and summarize our observations.

Chapter 7 : A proposition of further improvements and analysis are made.



Chapter 2

Background

The purpose of this chapter is to provide some background theory that may be required

or helpful to understand the material in this report. We will cover cell theory, where we

describe the different kinds of cells, how they are built up and some basic functions of

their biological machinery. This will include how cells store their hereditary information

in the form of deoxyribonucleic acid (DNA), how this is used to transcribe ribonucleic

acid (RNA) which in turn is translated to proteins or used for regulatory processes in the

cell. We will also describe the process in which cells replicate themselves in the process

called the cell cycle.

Further, we will give an introduction to the concept of DNA sequencing. Here, we will

cover technologies used for RNA sequencing, the process in which the complementary

DNA nucleotide sequence of actively expressed genes in a biological sample are obtained.

We will give some historical context and show how the methods for sequencing have devel-

oped from Sanger sequencing to next generation sequencing (NGS) with the application

of single cell sequencing.

We will give a description of the software and tools used to process the data obtained

from the sequencing experiments in the laboratory. Genomics is a complex field at the

intersection of several science disciplines. Often a bioinformatician analyzing data can

choose from many different tools solving the same task using different algorithms. Even

rerunning an experiment with slightly different parameters of the same software can yield

4
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different results. In this field, both reusability of pipelines and reproducibility of their

results is of great concern. In this regard, we will cover some tools and concepts commonly

used to address this concern.

Lastly in this chapter, we will cover the mathematical and statistical methods used to

analyze the data. We give definitions and concepts from linear algebra that we need to

describe our methods. We cover cubic splines and introduce smoothing cubic splines.

From statistics we will present the concept of covariance between correlated variables.

This is a key concept in the methods Principal Component Analysis and Partial Least

Squares. Both of which we will need in our method later.

2.1 Cell Biology

We give a short introduction to cell biology and cover some of the important

2.1.1 The Cell

Living organisms either consists of a single cell or of many cells working together in

intricate systems. Each cell contains all the hereditary information particular to its species

together with the biological machinery needed by the cell to replicate itself. The cell is

often called the smallest unit of life. There are three known tenets of cell theory

1. All living things are composed of one or more cells.

2. The cell is the basic unit of life.

3. New cells arise from pre-existing cells.

All cells can be categorized as either prokaryote or eukaryote. Every cell will share some

basic strucures, regardless of which category they belong to. A cell will always have

an outer plasma membrane, an inner region of cytoplasm, DNA and ribosomes used to

synthesize proteins. Cells are divided into two categories, prokaryotes and eukaryotes.
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Prokaryotes are unicellular organisms that don’t have a membrane-bound nucleus. Bac-

teria falls under this domain. Eukaryotes have a membrane-bound nucleus and many

other components that we will cover next.

Eukaryotes

Eukaryotic cells are cells that have a membrane-bound nucleus. The nucleus is where

eukaryotes store and replicate their DNA. The nucleus contains DNA that is wrapped

around proteins in a structure called chromatin which in turn is organized into multi-

ple chromosomes. This is suspended in the nucleoplasm. The packaging of DNA into

chromosomes is very important to be able to fit all of the genetic code in the nuclues.

The chromosomes in the nucleus contain most of the DNA found in eukaryote cells. The

cell also contains ribosomes. The ribosomes are used to transcribe parts of the DNA to

messenger RNA (mRNA), which in turn is used in protein production or to regulate other

cell functions. This will be the topic of later sections in this chapter.

Eukaryotes also have other membrane-bound units, called organelles. An organelle is

simply a membrane-bound unit inside a cell that performs special functions in the cell. All

eukarytoic cells have the same basic set of membrane-bound organelles. Depending on the

type of cell, the different organelles can come in varying size and numbers, advantageous

to the main task of the cell type. An illustration of a cell can be seen in Figure 2.2.

The membrane of the nucleus consists of a double layer. Together, the two layers are called

the nuclear envelope. As part of the outer layer of the envelope we find the endoplasmic

reticulum (ER). This is the largest organelle of the cell. It is where proteins that will be

incorporated into cellular membranes or proteins that will be secreted from the cell are

synthesized. The proteins break of from the ER in small membrane-bound vesicles and

travel through the cytoplasm until they reach their next destination.

The Golgi apparatus is an organelle that functions as a sort of postal office in the cell.

Proteins that leave ER are destined for the Golgi apparatus. They travel to cis side of the

organelle and are incorporated into the inside of the Golgi apparatus, called the lumen.

The proteins then travel through the Golgi apparatus to the trans side. Underway, the
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Figure 2.1: The central dogma of molecular biology.

proteins can be modified by adding or removing sugar molecules or by adding phosphate

molecules. The proteins are then sorted based on the modifications before they finally

break of in new vesicles, headed for their final destination.

The mitochondria are organelles that produce adeniose triphosphate (ATP). ATP is the

main energy source of the cell. The mitocondria produces ATP through cellular respiration

using chemical energy from nutrients such as sugars. Mitochondria are largely believed

originate from bacteria that became engulfed by host eukaryotic cells and developed a

symbiotic, mutual dependency that gave an evolutionary advantage [SD78; And+03]. A

small part of the genetic material carried in a eukaryotic cell comes from mitochondria.

Lysosomes are organelles that contain digestive enzymes and function as a recycling center

of the cell. It can break down macromolecules and particles floating around in the cytosol

of the cell and reuse the molecules. It can also digest and neutralize particles brought
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Figure 2.2: Organization of a Cell.
Source: www.yourgenome.org

in from the outside of the cell. The peroxisome is another organelle that is involved in

detoxification and breaking down fatty acids and amino acids.

Another definition of an organelle is that any unit within a cell that has a function is

counted as an organelle. That, is we don’t require organelles to be enclosed by a mem-

brane. Within this definition, ribosomes can be categorized as an organelle. Regardless

of which of definition we operate under, the ribosomes serves a very important function

within the cell. It is where the proteins are produced. Ribosomes can be found either

attached to the ER in the rough part or freely suspended in the cytoplasm of the cell. As

mentioned before, proteins that are destined for the membrane of the cell or proteins that

will be secreted from the cell are synthesized in the ER. All other proteins, i.e. proteins

that has a function within the cell, are synthesized at the ribosomes that are suspended

freely in the cytoplasm of the cell. Exactly how a protein is synthesized within a ribosome

is discussed further in section 2.1.3.

2.1.2 DNA - The genetic code

The DNA molecule is organized as two strands that coil around each other. The two

strands form a double helix. Each strand of the DNA molecules consists of long, un-

branched, paired polymers. The polymers again are built by multiple single sugar-

phosphate molecules linked together, each with a nitrogen-containing base attached to

www.yourgenome.org
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it. The sugar-phosphate molecule together with attached base is called a monomer nu-

cleotide, or simply a nucleotide.

In the DNA, there are four possible bases for each monomer nucleotide. They are adenine,

guanine, cytosine and thymine. Commonly, they are simply denoted by the one letter

characters after their respective first letters: A, G, C and T. A single strand of DNA is then

formed by binding the sugar-phosphate molecules of the nucleotide monomers together,

resulting in a chain of A, G, C and T. The sugar-phosphate molecules are asymmetric

such that a single strand of DNA is given a direction.

Each cell replicates its DNA by a process called templated polymerization. This is the

process when a new strand of DNA is formed by linking together nucleotides together by

matching with a pre-existing strand of DNA, called a template strand. In this process

the nitrogen bonds are formed by linking A to T and G to C.

The A-T bonds are formed by two hydrogen bonds, while the G-C bonds are formed by

three hydrogen bonds. Hence, the G-C bonds will be stronger than the A-T bonds. The

pairing of A-Ts and G-Cs then controls the formation of a new strand of DNA onto the

existing template strand. The result is double stranded DNA molecule where each strand

consists of a complementary sequence of A, T, G and C nucleotides.

The bonds between the nitrogen bases are in turn much weaker than the sugar-phosphate

bonds linking each nucleotide together in the single strands. This allows the double-

stranded structure to be pulled apart from each other while maintaining the integrity of

each of the strands. Each of the strands can then be used for continued replication in the

templated polymerization process, passing on the hereditary code of the cell.
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Figure 2.3: RNA and DNA molecules.
Source: Wikimedia Commons

2.1.3 RNA Transcription and Protein Translation

Different types of cells serve specific functions in an organism. Different segments of

DNA encodes for different functions. A gene is a aprt of the DNA that carries the code

used in production of protein. This part can be expressed through another templated

polymerization process, called transcription. During transcription, certain parts of the

DNA are used as templates to form ribonucleic acid, RNA. RNA is very similar to the

DNA, but it differs in two important ways. Each component of the RNA is linked together

by forming bonds between ribose molecules, as opposed to deoxribose in the DNA. The

RNA nucleotides also have four bases, but the thymine base (T) is replaced with a uracil

base (U). During transcription, U will match with A in the DNA and G and C will

match, just as in the DNA polymerization. Only certain segments of a DNA strand is

used to transcribe a RNA molecule and the RNA a is much shorter molecule than the

DNA molecule. Even though one of the bases in the RNA is different than from the

DNA, an RNA molecule perfectly translates to a segment of the DNA. The result after

the templated polymerization process is one copy of a part of the DNA.
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Each cell in an organism in general contains the same DNA. Since different parts of the

DNA transcribes to different RNA molecules, different cells can use the same DNA to

produce different RNA molecules suitable to the task or the state of the specific cell.

Within a cell, the same segment of the DNA, a gene, is typically used repeatedly to

produce many copies of an RNA molecule.

The RNA molecules that are used for protein synthesis are called messenger RNA (mRNA).

This mRNA is headed for ribosomes located at the ER or ribosomes floating in the cyto-

plasm. The nucleotide sequence of the mRNA is read by passing through the ribosome

between the small subunit and the large subunit. The nucleotide sequence from the

mRNA is read three at a time in groups called codons. Each codon from the mRNA is

matched by a three nucleotide long and complementary anti-codon from a transfer RNA

(tRNA). tRNA is an RNA molecule that has an amino acid attached to it. Hence, the

tRNA is responsible for the translation from the language of the nucleotide bases of the

mRNA to amino acids, which are the building blocks of protein. As each codon from the

mRNA is matched by the anti-codons from the tRNA, the amino acids carried by the

tRNA are linked together in a chain of amino acids. The end product is a protein and

the process of synthesizing proteins from mRNA is simply called translation.

2.1.4 Genes

Whenever information from a gene is in the process of producing a functional product,

we say the gene is expressed. The result of gene expression is most often a protein, but

functional RNA, like tRNA, can also be the end product of a gene expression. Only a

small portion of the DNA, around 1.5%, consists of sequences that code for proteins.

Even the parts of the DNA that are referred to as genes contain regions that are not

used in protein translation. The gene is organized into segments called introns, the non-

coding parts, and exons, the protein coding segments. When a part of the DNA has

been transcribed, the resulting RNA molecule is called a pre mRNA. The introns must

be cut away before the before it becomes a mRNA molecule that can be used for protein

translation. This process is called RNA splicing (Figure 2.4).

The expression of a gene is regulated through complex processes and all stages of gene
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Figure 2.4: RNA splicing: from pre mRNA to mRNA.

expression can be affected by regulation. It allows cells to respond to stimuli from its

surroundings and adapt to new circumstances. Gene regulation is also controls develop-

mental paths a cell can take.

2.1.5 The Cell Cycle

The cell cycle is an important function in all cells. From the start of this chapter, we

remember that all cells derive from pre-existing cells. All multi-cellular organisms are

developed from a single cell, a fertilized egg. Multi-cellular organism does not grow

because each of its cells grow. It grows because the cells recreate them selves and increase

in numbers. The cell cycle is a series of phases and events that each cell must pass through

if it is to replicate it self. The process in which cells grow and reproduce is also called

proliferation. The cell cycle is carefully regulated to ensure that the end result, a new

cell, is healthy and can perform its functions.

The cell cylcle consists of two stages. The M-phase (mitosis), where cell divides into
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two daughter cells and the interphase, where the cell grows and ensures that necessary

preparations are made before mitosis. The interphase is further divided into three phases

G1, S and G2. There are also control stages in the cell cycle, called checkpoints. At the

checkpoints, transition into the next phase can be blocked if the there are requirements

within the cell that is not met or if the cell detects environmental factors that are not

favourable for progression through the cell cycle. The cell cycle is illustrated in Figure

??. The characteristics of each of the stages can be described by the following

Figure 2.5: Illustration of the cell cycle with its phases and checkpoints.

• G1 (Gap 1): This is the first growing phase that proceeds immediately after

a daughter cell is formed. The cell grows in size and it produces proteins and

organelles.

• G1/S checkpoint: If the cell passes through this checkpoint, it is committed to

the cell cycle. This checkpoint controls that all necessary supplies for synthesizing

DNA are in place.
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• S (Synthesis): The cell replicates its DNA. All chromosomes are replicated and

organized into sister chromatids.

• G2 (Gap 2): This is the second growing phase. The cell increase in size and

prepares for mitosis.

• G2/M checkpoint: Any damage to the DNA is controlled for and repaired. If

the DNA is damaged, a process called apoptosis may be triggered. Apoptosis is a

process of programmed cell death. This mechanism prevents dysfunctional DNA

from being reproduced to new daughter cells.

• M (Mitosis): The growth stops and the cell prepares for division. Within this

phase, we also find the last checkpoint.

• Metaphase checkpoint: The sister chromatids are separated and organized for

cell division.

Directly after the last checkpoint, cytokinesis follows. In this step, the components of the

cell is organized and the cell finally divides.

There is also a last phase, the G0 phase. Here, the cell does not partake in proliferation.

This can be intermediate phase for a cell, for example if it does not pass the G1/S

checkpoint. In this case, the cell can re-enter the cell cycle later.It can also be a permanent

phase. Neurons is one cell type that mostly don’t proliferate and mostly spend their

entire lifespan in G0. The duration of the cell cycle can vary both between organisms and

different cell types within an organism.

Cancer cells are cells that typically carry mutations that make insusceptible to the reg-

ulatory mechanisms of the cell cycle. This mutations can affect genes that regulates cell

growth, apoptosis or other functions that normally prevents erratic behaviour of the cell.

Such mutations can make cancer cells proliferate at a higher rate compared to functional

cells and they can also evade programmed cell death. When cancer cells grow unregu-

lated, the differentiate increasingly from functioning cells. They can form tumors that

prevent normal functions in an organism and they can spread to other sites in the organ-

ism. Studying the cell cycle is therefore an important endeavour to gain new knowledge

on cancer cells and how they can be regulated.
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2.1.6 Cell Cultures

Cell cultures are grown in an a controlled environment outside of the cell (in vitro). Cells

of interest are isolated from tissue in a biological sample. They usually have a limited

life span, but if a mutation occurs or the cells are manipulated, they can become an

immortalized cell line. In an immortalized cell line, the cells can proliferate indefinitely as

long as they have the resources required. These types of cell lines have many applications

in research. It enables repeated experiments on biological material that has the same

genetics. Because of the mutations that enables immortalization, they may show different

behaviours that must be accounted for in experiments. This will depend on the type of

experiment and the particular cell culture.

HaCat cells is an immortalized cell line that derived from human skin that shows high

rates of proliferation in cell cultures. They have been used to model the metabolism of

Vitamin D3 in the human skin. In [Pen+13], HaCat cells were used in a synchronization

experiment to study cyclic gene expression profiles.

2.2 Sequencing Technologies

We will give a brief introduction to the field of DNA sequencing and its applications.

The core technologies and how they have developed will be outlined. The field of DNA

sequencing is concerned with determining the nucleotide sequences that form the DNA of

a biological sample. By manual methods researchers where able to determine 12 base pair

(bp) sequences from a bacteriophage in 1971[WT71]. Today, high throughput sequencing

is able to determine up to 1000 billions of base pairs per experiment. Depending on

tecnology, reads of base pairs are determined in sequence of varying length, called the read

length. For example, a Illumina HiSeq X reports capability of 2x150 bp read length and 5̃

billion reads per run. PacBio SequelSystems are capable of delivering up to 10 000 reads,

each of length 30 000 bp. DNA sequencing is capable of more than just determining the

nucleotide sequences in the genetic code of an organism. For example, when we prepare

the biological samples for sequencing, we can construct complementary DNA (cDNA)

molecules for RNA present in the sample. This can be used to determine the abundance
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of mRNA in different types of tissues. Different sequencing technologies find appliances

in a wide range of fields. From medicine and molecular biology to forensics.

2.2.1 Sanger Sequencing

The Sanger sequencing method was developed by Frederick Sanger in 1975[SC75]. In the

original paper, the method is described as ”A simple and rapid method for determining nu-

cleotide sequences in single-stranded DNA by primed synthesis with DNA polymerase...”.

DNA polymerase is an enzyme that is necessary for copying DNA. In DNA synthesis,

DNA polymerase uses deoxribonucleotides to copy of existing DNA. Oligonucletides are

synthetic DNA. In sanger sequencing, oligonucleotides are used to form a DNA template.

The DNA template and a DNA sample of interest is then separated in four different

reactions. In each reaction, the template is then extended through a polymerase chain

reaction(PCR) where all DNA nucleotides (A,T,C,G) are available. To each reaction,

a lower concentration of chain-terminating nucleotides of one of A,T,C or G is added.

These chain-terminating nucleotides is missing a 3’-OH group such that DNA polymerase

is not able to contiue DNA synthesis on a strand where it is added. Each reaction will

then produce DNA molecules of random lengths, terminating at one of the four bases. In

addition, these chain-terminators are labeled with a marker. In the early days of Sanger

sequencing, radioactive marker where used.

The sequencing PCR product from each reaction is placed in separate lanes of acrylamide

gel on a glass plate. By exposing the glass plate to an electric field, the DNA molecules will

be organized by size within each lane. By exposing the gel to a X-ray film, the nucleotide

sequence was then determined by manually inspecting marks from different lanes on a

radioautograph. The marks signifies where the ends of the DNA molecules. Since each

lane corresponds to a nucleotide, the sequence can be determined. Sanger sequencing is

capable of performing reads up to 900 bp.

Refinements were progressively added to the Sanger method and it became increasingly

automated. In the 80’s, a method was developed that added fluorescent dyes. Today,

fully automated solutions exist that performs one reaction and determines the sequence

with sensitive cameras. Sanger sequencing has many applications still today and it is
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known for its high accuracy. For example, it is used in verification experiments of new

technologies.

2.2.2 Next Generation Sequencing

By the mid 1990’s and early 2000, several new methods for sequencing started emerging

and sequencing became increasingly comercially available. This wave of new technology

in the field were given the name Next Generation Sequencing (NGS). Today, NGS is often

synonymous with High Throughput Sequencing (HTS) because of its ability to produce

large amounts of genomic data. With NGS, it is possible to determine millions of DNA

sequences in parallell. Compared to Sanger sequencing, the reads are often shorter, 35-700

bp, and it is associated with higher error rates.

One of the methods from NGS is a method of short-read sequencing called sequencing by

synthesis (SBS). Short read methods typically have read lengths that are less than 300

bp. Different SBS appliances have different strategies for determining a DNA sequence.

We will follow the procedure for a Illumina sequencer.

During sequence library preparation, DNA is extracted from a biological sample sheared.

This means that it is cut into smaller fragments of DNA. Then, sequence primers and

adapters are added. The adapter binds the DNA molecule a fixed location in a sequencing

flow cell. A flow cell is a disposable glass plate that chemicals can flow through. This

enables automated chemical reactions inside the sequencer. After the DNA molecules

bind to the flowcell, each location with a DNA attached to it is then amplified using

polymerase so that clusters of DNA molecules are formed. The clustering is necessary to

get a sufficient signal in the next step. Modified nucleotides are added to the flow cell.

Each nucleotide is altered with a molecule that blocks polymerase from progressing after

it is attached. In addition colour dye is attached. The left over nucleotides that has not

been attached to a DNA strand is then washed away and a high sensitive camera can

detect the colour at each location in the flow cell. The blocking molecule and the dye are

then detached from the DNA strands by adding chemicals to the flow cell and washing

out the residues. This process is referred to as a cycle. New cycles are performed until

we have reached the target read length. After all the cycles are finished, the DNA strand
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that has been synthesized is removed. Index primers are then added and an index read

is performed. An index is a DNA sequence that is added to the DNA sequencing library.

It uniquely identifies each biological sample in the experiment. This is necessary to be

able to demultiplex all reads to the sample of their origin. The index read is typically 8

bp and is added to the DNA molecules during library preparation. After the index read

one can optionally perform a reverse read. In this case, the index primer is first removed

and then a complementary DNA (cDNA) strand is built from the original DNA. Index 2

primers are then added and we perform a new index read. After the primer is removed,

cycles to determine the sequence of the cDNA initiates.

We call the first read the forward read, short R1, and the second read the reverse read,

R2. On a Illumina NextSeq 500, the index of the first read is named index P5, while

index 2 is named index P7. An illustration of the process can be seen in Figure 2.6.

Figure 2.6: Illumina sequencing workflow.
Source: Illumina Indexed Sequencing Overview Guide

The strategy of using a forward and a reverse read enables us to reconstruct DNA that

are longer than the cycle capabilities of a specific sequencer when we analyse the results

. Take a sequencer that is capable of producing 150 bp DNA reads in one direction. If it

is enabled for reverse reads as well, we can determine a longer sequence by matching the

end of the first read with beginning of the reverse read. If we require an overlap of 50 bp,

we can construct a DNA sequence that is 250 bp long.

NGS RNA sequencing, often called bulk-RNA, allows us to analyze the abundance of the

genes that are present in a sample. A common application is to look for genes that are
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differentially expressed between sample groups. If we sequence biopsies from two differ-

ent types of tumors, we can examine which genes that differs significantly in expression

levels between the two groups. By analyzing these, we may find new information on the

characteristics of the tumors or the functions of the genes involved.

2.2.3 Singe Cell Sequencing

The previous methods retrieves gene expression information that is an average from all

cells present in a sample. It is not able to distinguish between the origins of the sequences

within a specific biological sample. Single cell sequencing exploits NGS technologies to

examine sequences originating from individual cells in a sample. This allows for analyzing

genomic data at higher resolution. This can be used to investigate genetic mutations

carried by certain cell populations, like cancer cells. With single cell RNA sequencing

(scRNA-seq) we can analyze the gene expression in a cell population, allowing us to

better understand their functions.

Droplet single cell sequencing is a method where the sequence information can be traced

back to its origin. Through a microfluidic channel system, each cell is captured in a oil

droplet together with a bead. This bead is covered with oligos that each contain cell

barcode, a unique molecular identifier (UMI) and the necessities to capture mRNA from

the cell. Individual mRNA molecules from the cell attaches to the oligos on different

locations on a bead. On a single bead, all cell barcodes consist of the same nucleotide

sequence. These cell barcodes is what enables us to map each read back to a single

cell. The UMI’s are unique for each oligo on the bead. This enables us to quantify the

number of copies originating from each mRNA molecule in the cell. The mRNA molecules

attached to the oligos are reverse transcribed to cDNA and amplified with PCR. The cells

are then pooled together and indexing sequences are attached. This allows to separate

cell barcodes originating from different biological samples if we do sequencing on multiple

samples simultaneously. An illustration of the preparation of droplet scRNA-seq using the

10X Chromium technology is given in Figure 2.7. In the case of the 10X technology for

droplet, the prepared libraries are sequenced using Illumina technology. For example, the

Illumina NextSeq 500 mentioned previously. One run is capable of profiling from 1000-10
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Figure 2.7: 10X library preparation workflow.
Source: genewiz.com

000 cells1.

In scRNA-seq, each cell can be considered to be an individual sample. With thousands

of cells in each experiment, it makes analysis more complicated. Analyzing single cell

data often involves complex methods for clustering and visualizing cells that show similar

features. The different clusters will often represent different types of cells. The clusters

must be identified and we may have many different types of cell present. Deriving infor-

mation from this is much more complicated than in bulk-RNA where this resolution is

not attainable.

A draw back of scRNA-seq is that each single cell contain very little RNA. Therefore we

get very sparse gene expression data. This means that many cells will show no expression

in a significant amount of genes. This occurs when mRNA in a droplet does not attach

to the oligos. The input mRNA is not captured by the beads at the same proportion in

all droplets. This is referred to as a dropout and it is hard to separate it from a missing

value, that the gene is not expressed in the cell.

2.3 Computer Science

Here we will introduce computational routines frequently involved with analyzing genomic

data. We will cover the generation of raw sequences from the output of sequencers and how

these are used to retrieve information on which genes that are expressed in a biological

sample. In addition, we cover the concepts and technologies behind the tools needed

to produce the workflows in our method. This covers package management, container

1https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-maximum-number-of-
cells-that-can-be-profiled-

https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-maximum-number-of-cells-that-can-be-profiled-
https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-maximum-number-of-cells-that-can-be-profiled-
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technologies and workflow management.

Demultiplexing Sequencer Output

As we discussed above, the raw sequencer output on modern sequencers are typically

images. Each images contains colored pixels, depicting a nucleotide base in a positon on

a flow cell. Bioinformatic software usually don’t use these images as input. They operate

on contiguous strings of letters representing the nucleotide sequence from a read. This

pre-processing consists of two stages:

• Base calling: A specilized software reads the raw images from the sequencer output

and for each position determines the color and the signal strength. Each position

corresponds to a strand of DNA on the flow cell, the color will map to a base (A,T,C

or G) and signal strength will determine the quality of the base. Images are read

in a sequential manner to build a read. If the base could not be determined, a N is

inserted.

• Demultiplexing: Each read is demultiplexed to a specific biological sample. This

is done by mapping the index read to the corresponding sample. The information

on which index sequence that belongs to which sample must be provided at runtime.

The reads are organized into fastq files. Typically, each sample will have one file for the

forward read and one file for the reverse read. Figure 2.8 and the following describes the

layout of a fastq file:

• Header: A header starting with @ containing the sequencer id, information on the

position of the flow cell the read is read from and information of certain demulti-

plexer parameter, information on whether the read belongs to a pair of R1 and R2

reads, the index sequence.

• The DNA read: A string of A,T,C,G or N equal to the read length.

• Separator: A + sign.
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• The quality read: A string of character encoding the quality of each of the bases

in the DNA read. The string has the same length as the DNA read.

Figure 2.8: Fastq file format.

Sequence Alignment

In sequence alignment we map the sequence reads from the fastq files from a experiment to

a reference genome. We want to find the locations in the DNA that the sequences belong

to. These locations are in turn used to retrieve information of which genes the sequence

belongs to by matching against a gene annotation file. Sequence alignment for RNA-seq

data is challenging in two major ways. First, the sequences are very short compared to

typical DNA reads. Second, mature mRNA molecules are spliced together from exons in

the DNA. Because of this, a short read from a RNA molecule may map many different

loci in. This means that a read may map to many different loci and that sequence from

a RNA molecule may not to a contiguous part of the DNA. Because of the high volume

output from NGS technology, the sequence alignment requires considerable computational

efforts.

Many approaches exist to tackle these problems. Spliced Transcripts Alignment to a Ref-

erence (STAR)[Dob+13] is a highly efficient C++, standalone sequence aligner specifically

aimed at solving these issues. The algorithm consists of two steps, seed searching and a

scoring and stitching step.

In the seed searching, STAR search for a Maximal Mappable Prefix (MMP) sequentially.

For a given sequence, S, and a reference genome sequence, G, MMP is the largest substring
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in S that matches one or more locations in G. If S derives from mRNA that has one or

more junctions, it cannot be mapped to a contiguous sequence in the reference genome.

STAR first finds a MMP from the first base in S. Then, it finds a MMP for the remainder

of S that was not part of the first match. This enables STAR to find matching locations

with a single alignment pass over the reference genome. Furher, it can find all matching

locations for multi mapping reads in the reference genome without any extra effort. When

one alignment pass is done, STAR repeats the process from the other end of the reference.

If the start of S is of low quality but the end has better quality, it is more likely that the

reverse order pass will find MMPs. If the end of a read is not reached while searching for

MMPs, STAR will look for alignments with a user specified amount of mismatches. If it

still can not find good alignments, the tail will be clipped. To perform this searches STAR

uses uncompressed suffix arrays (SA)[MM93]. SA is a string search algorithm that scales

logarithmitcly in search time with reference genome length. Because SA data structure

is uncompressed, it puts higher demand on memory. A human reference genome index

uses roughly 30 GB of memory during a STAR run. Figure 2.9 shows an illustration of

the pass over the reference genome index.

After the passes are finished, STAR chooses the good MMPs based on how many loci

they align to. Those that are under a threshold for multiple alignments are used as

anchor seeds. Seeds that has mapped within a user specified distance of these anchor

seeds are then stitched together in attempt to create new reads. This allows STAR to

detect unknown junctions. STAR uses a scoring scheme that can be specified for giving

penalties to mismatches, insertions, deletions and splice junction gaps.

2.3.1 Package Management and Environments

Computer users often find themselves in need to install new software. Most tasks per-

formed on a computers are realized through software implementations and their applica-

tions range from entertainment to research. Many applications can also be carried out

different types software, each of them can require any amount of other software as a de-

pendency. These dependencies can also be very specific and demand a exact version on

series of software. Each of them in turn can have their own dependencies. This can be
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Figure 2.9: Illustration of pass over a reference genome index in star

depicted as a tree of dependencies, called a dependency graph. Nesting these graphs can

be a tedious and error prone operation, causing a lot of frustration and even erroneous

results. Even worse, the exact origin of such errors can be very hard to detect since they

can happen in any layer of the software structure. They can happen far from the user

interface. Another root to complexity is that two software may have overlapping software

requirements, but the requirement differs in versions of the software. If a software is

upgraded or downgraded while installing a new software, existing software stop working

entirely or subtile errors may be introduced. The software must also be obtained some-

how. This can be done through downloading or transfer files from other medium. Then

manual installation or compiling follows. If you want a upgraded version, the process

must be repeated. Another concern is reproducibility. This is especially important within

research communities if results of one experiment is to be useful for other researchers.

Software stacks that are manually built and maybe altered over time can be challenging

to recreate perfectly.

Package managers aim to ease the burdens of these concerns. Package managers come

in many different shapes and colors and are targeted towards solving different types of

problems. Package managers make software, data or archive available as packages. Each
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package is bundled with a manifest, describing versions, dependencies, build instructions

and other necessities. Packages can be pre-built for different types of computer architec-

tures or they may be a archive that must be compiled after the package is retrieved. A

package manager keeps a record, often in the form of a database, of the packages installed

together with their versions and dependencies. It can prevent new packages with con-

flicting dependencies of being installed or ask the user to specify the preferred outcome.

The packages available through a package manager comes from repositories. One package

manager may use several repositories and user may add or remove and even create own

repositories by desire.

One of the earliest package managers where found in linux distributions in the early 1990’s.

One example of this is dpkg, which still finds its use today. These early package managers

typically installs packages directly on the system and become available to all users. If

multiple users have access to installing software on the system, one user can break the

dependencies of other users on the system.

Another example of a package manager that has gained popularity in recent years is conda.

It enables users to install software in an isolated environment without administrative

priveliges on the system. By using isolated environments the packages are only available

to the users with access to the directory of the installation. Each system user typically uses

their home directories for installation. Each user can have several isolated envrionments,

allowing them to quickly switch between software stacks or different versions of software.

Whereas most package managers are specific to a operating system (OS), conda has

support for a wide range of platforms.

Conda is a powerful tool in experimental development where new software in the frontiers

of research have rapid version increments. It allows to quickly test new versions or new

packages without breaking compatibility towards previous projects. Each project can

have its own isolated environment. With conda it is also easy to export a manifest of the

software stack of each envrionment. This allows for documentation and reproducibility

at a high resolution. Community repositories are also easy to establish and include in

conda. Within bioinformatics, a popular repository for conda is bioconda[Grü+18].
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2.3.2 Container Technologies

Above we discussed concerns related to reproducibility in research fields and how iso-

lated environments could ease this burden. Container technologies aims to solve this

on another level within a computational environment, at the same enabling other useful

features. Container achieves environment isolation through operating system virtualiza-

tion. A running container attaches to operating system of the host computer. Within

the container a isolated operating system is then available. Containers are created by

building an image. An image becomes a container when it is executed and attaches to

the host OS. When an image is built, a base image can be specified. Any other already

existing can be used as a base. The base image can be a full scale linux distribution like

Ubuntu or Debian or it can be specialized light images that are specifically designed to

be minimal so it can downloaded and executed fast. When a image is built, we provide

the instructions needed to install the software or applications we want available within

the container. We can also specify run commands that will start an application when we

execute the container.

Running containers can also communicate with other containers or any device connected

to the host OS or machine. This is done by specifying channels or ports that should

be open to the specific container. A container can connect to a wide range of operating

systems as long as the image is built for the architecture of the machine. Containers

achieve this by using a conatiner engine. This engine is the layer between the host OS

and the virtualized OS. It translates instructions from the virtualized OS to instructions on

the host OS and vice versa. This is visualized in Figure This makes applications bundled

in containers extremely portable and easy to deploy. Applications that are distributed as

containers will achieve highly reproducible results.

Two popular container technologies is Singularity and Docker. A Docker container re-

quires elevated privileges to be executed. By default docker containers executes in a

completely isolated namespace. Directories from the host can be mounted and ports can

be opened for communication with other applications. Docker is specifically designed for

deploying multiple micro applications and docker provides interfaces to orchestrate this.

Because of the requirement of elevated privileges, Docker is more suited for system admin-
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Figure 2.10: The conceptual layers involved in translating instructions from a virtualized
OS to the hardware of the host machine.

istrators and developers that configures services. Singularity is designed specifically for

isolating applications with complex software stacks and to execute scientific applications

in reproducible and portable manner. Singularity runs with user privileges and share the

same namespace as the user. Singularity can also access docker images, either directly

from a repository or pre-built images existing on the host. Singularity is especially useful

when performing computations on computational infrastructure. User typically do not

have access to escalated privileges in such environments. Different projects may require

using different infrastructures and platform. With applications bundled in Singularity

containers, user need only download pre-built containers and deploy them.

2.3.3 Workflow Management

Other challenges developers of engineering or scientific applications often are faced with

is to manage the data processing. From raw data to end product, there can be dozens of
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steps involved. A series of steps that data flows through to reach a end product is called

a pipeline. If a pipeline only needs one software stack, the pipeline can be implemented

in bash script or python script in a straight-forward manner. But this is not always

the case. Each step in a pipeline can potentially involve executing programs that each

require complex software stacks. This is especially true in the field of bioinformatics

where a jungle of highly specialized packages are available. These software stacks may

have incompatible dependencies.

Snakemake[KR12] is a workflow manager that tackles this. It aims at enabling repro-

ducible and scalable pipelines in human readable format. From the documentation2, it

is described by: Snakemake workflows are essentially Python scripts extended by declar-

ative code to define rules. In each rule, a set of input files and a set of output files are

specified. Each rule can specify a conda environment or a singularity file that the rule

should be executed in. We then execute a pipeline by specifying a output file. Snakemake

builds a directed acyclic graph (DAG) of the dependencies of the steps, or rules, involved

in creating the output. An example DAG is given in Figure 2.11. Depending on the

specified resource requirement of each rule, Snakemake can execute the rules in parallel.

Snakemake also has the possibility to use wildcards in path names to generalize rules, we

can write python inline and it has support for benchmarking the rules.

2https://snakemake.readthedocs.io/en/stable/

https://snakemake.readthedocs.io/en/stable/
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Figure 2.11: Snakemake builds a DAG of the dependencies between rules involved in
creating the desired output. Here we build a count matrix from the fastq files of two
single cell samples. A genome is downloaded and an index is built before quantification
proceeds.

2.4 Mathematical Background

Here, we introduce the mathematical tools and concepts that we will need in our method.

We cover periodic functions and trigonometry. Definitions from linear algebra is estab-

lished and the eigenvalue decomposition of a matrix is presented. Finally, we introduce

splines as a interpolation method. We show how a interpolating cubic spline can be con-

structed from solving a linear system of equations. Finally, the define the smoothing cubic

spline as a optimization problem.
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2.4.1 Periodic Functions

A function f : X→ Y is said to be periodic if

f(x) = f(x+ nT ), for x, T ∈ X, n ∈ N+, (2.1)

where X denotes the domain of f , Y denotes the range of f and N+ is the set of positive

integers. We call T the period of f . Furher, if f(x) is T -periodic, then

f(kx+ α), where kx, α ∈ X, (2.2)

will have a period of T/|k|. We call α the phase of the periodic function. The phase will

contribute to an offset in the values that f takes on as a function of x. Another useful

term in describing periodic functions is the frequency, F . The frequency is defined as

F = 1
T

. In engineering applications, the period will often be measured in seconds. The

SI-unit for the frequency is Hz (Hertz) with dimension [1/s].

We can manipulate any periodic function by stretching or shrinking the interval it takes

to perform a full cycle by chosing an appropriate k. Let g : R → [−1, 1] be a periodic

function with T = 2π. If we want to model a periodic event in the shape of g over a

24-hour interval, we must chose a k that satisfies

24 =
2π

k

k =
2π

24
.

The function g(2π
24
t) will be 24-hours periodic ∀t ∈ R.

2.4.2 Trigonometry

In trigonometry, we study the relationships between the side lengths and the angles of

triangles. In a right angle triangle, one angle will always be 90◦. Given the right angle

in Figure 2.12, defined by the corner points A, B and C, the side lengths a, b and c, and

the angles α, β together with the right angle such that α+ β + 90◦ = 180◦, we can define
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Figure 2.12: A right angled triangle defined by the three points, A, B and C, the side
lengths a, b and c, and the angles α, β together with the right angle.

the relationships between the side lengths and the angles by the following trigonometric

functions.

The sine function

sin(α) =
b

c
. (2.3)

The cosine function

cos(α) =
a

c
. (2.4)

And the tangent function

tan(α) =
b

a
=
b/c

a/c
=

sin(α)

cos(α)
. (2.5)

Their inverse functions are known as the arcsine, the arccosine and the arctangent. They

are useful if we know the relationship between the side lengths and want to find the angles

of the triangle. They are defined by
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arcsin(sin(α)) = arcsin(b/c) = α, (2.6)

arccos(cos(α)) = arccos(a/c) = α, (2.7)

arctan(tan(α)) = arctan(b/a) = α. (2.8)

Likewise, for the angle β, we have

sin(β) =
a

c
,

cos(β) =
b

c
,

tan(β) =
a

b
=
a/c

b/c
=

sin(β)

cos(β)
.

Now, we see that

sin(α) = cos(β) = cos(90◦ − α),

cos(α) = sin(β) = sin(90◦ − α).

Hence, for a given angle, the sine and the cosine have a pahse offset of 90◦. These

definitions are only valid for angles α ∈ [0◦, 90◦]. We can extend the domain of these

trigonometric functions to α ∈ R by modelling them on a unit circle, that is, a circle

with radius equal to 1. It is common to use radians as a unit of measure for the angles

of periodic functions. One radian is the angle corresponding to an arc length equal to

the radius of the circle. On the unit circle, a full circle will correspond to 2π. In Figure

2.13, we can see how the trigonometric functions are interpreted on the unit circle. The

functions sin, cos and tan will be 2π-periodic functions with respect to the angle θ. Their

inverse functions will only be one-to-one to parts of the domain because of the symmetry.
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They are defined with the following domain and range

cos : R→ [−1, 1], (2.9)

sin : R→ [−1, 1], (2.10)

tan : R→ R, (2.11)

arccos : [−1, 1]→ [0, π], (2.12)

arcsin : [−1, 1]→ [−π
2
,
π

2
], (2.13)

arctan : R→ (−π
2
,
π

2
). (2.14)

Figure 2.13: Two examples of a unit circle with an angle θ, cos(θ) as the x-values, sin(θ)
as the y-values and tan(θ) is interpreted as where an extension in the radial direction
intersects the tangent of the unit circle at θ = 0 or θ = π.

2.4.3 Linear Algebra

Here, we will give a short introduction to some key concepts in the field of linear algebra.

Some formal definitions that will enable the methods described in the following sections

will be presented. Presentation will be based on the lectures from the course TMA4145

Linear Methods3 given at NTNU, autumn 2013.

Linear algebra is a field of mathematics in which we study the governing rules and con-

3https://www.ntnu.edu/studies/courses/TMA4145

https://www.ntnu.edu/studies/courses/TMA4145
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ventions used to describe linear equations, linear functions and their representations as

vectors and matrices. We will use uppercase openfaced symbols (X) to denote vector

spaces. Boldfaced uppercase symbols (X) denotes matrices. Lowercase boldfaced sym-

bols (x) denotes vectors, while lowercase unboldfaced symbols (x) denotes scalars.

Vector Spaces

A real vector space is a set X equipped with an operation called addition,

X× X→ X, (x,y) 7→ x + y,

an operation called scalar multiplication,

R× X→ X (λ,x) 7→ λx,

an element 0 ∈ X called the zero vector, and for each x ∈ X an additive inverse −x ∈ X,

such that ∀x,y, z ∈ X and scalars λ, µ ∈ R the following properties hold:

Additive identity: x + 0 = x,

Additive inverse: x + (−x) = 0,

Symmetry: x + y = y + x,

Associativity: x + (y + z) = (x + y) + z,

Multiplicative identity: 1x = x,

Compatibility: µ(λx) = (µλ)x,

Distributivity: λ(x + y) = λx + λy,

Distributivity: (λ+ µ)x = λx + µx.

The elements in X are called vectors. A vector space is called a real vector space if the field

of scalars is R. A vector space over the field of complex numbers C is called a complex

vector space. We will only be concerned with real vector spaces in the following sections.
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Linear Subspaces

Let X be a vector space. A subset S ⊂ X is a subspace of X if it is closed under linear

operations. That is,

S is a subspace of X ⇐⇒ λx + µy ∈ S whenever x,y ∈ S and λ, µ ∈ R.

In particular, the zero-set {0} is a subspace in any vector space since

λ0 + µ0 = 0 ∈ {0}, ∀λ, µ ∈ R.

Linear Dependence

A linear combination of vectors x1, ...,xn is a finite sum

n∑
j

ajxj,

where a1, ..., an are scalars.

A set of vectors {v1,v2, ...} is called linearly dependent if any of the vectors is a linear

combination of some of the other vectors.

{v1,v2, ...} linearly dependent ⇐⇒
n∑
j=1

ajvj = 0 n ∈ N, at least one aj 6= 0.

Otherwise, the set is linearly independent.

{v1,v2, ...} linearly independent ⇐⇒

[
∀n ∈ N :

n∑
j=1

ajvj = 0⇒ aj = 0 ∀j

]
.

That is, a linear combination of a linearly independent set of vectors will amount to zero

if, and only if, all the scalars are exactly zero.
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Linear Transformations

Let X and Y be real vector spaces, and let T : X → Y be a mapping between them. We

say that T is a linear transformation if it preserves the linear structure of a vector space.

That is

T linear ⇐⇒ T (λx + µy) = λTx + µTy, x,y ∈ X, λ, µ ∈ R.

Any real valued matrix A ∈Mm×n(R) defines a linear transformation Rn → Rm:


x1

x2
...

xn


x

7→


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


A


x1

x2
...

xn


x

=


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


Ax

Inner Product Spaces

Let X be a real vector space and let x,y ∈ X. An inner product on X, 〈,̇〉̇, is a map

X× X→ R that satisfies

Symmetric: 〈x,y〉 = 〈y,x〉,

Linear in its first argument: 〈λx,y〉 = λ〈x,y〉,

〈x + y, z〉 = 〈x, z〉+ 〈y, z〉,

Positive definite: 〈x,x〉 > 0 for x 6= 0,

for x,y, z ∈ X and λ ∈ R. Any map that satisfies this can be chosen. Usually, the dot

product in Rn is chosen. This is defined by

〈x,y〉 :=
n∑
i=1

xiyi.

Further, two vectors, (x,y) is said to be orthogonal if they satisfy

〈x,y〉 = 0.
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Any vector space equipped with a norm is called an inner product space.

Normed Spaces

It can be proven that any inner product space (X, 〈·, ·〉) yields a natural norm given by

||x|| := (〈x,x〉)1/2.

If we choose the dot product as our inner product, this gives

||x|| := 〈x,x〉1/2 =

√√√√ n∑
i=1

x2i .

This is also known as the Euclidian norm, often simply denoted by || · ||2. For any real

vector x, this is interpreted as its geometrical distance from the origin.

2.4.4 Eigenvalue Decomposition

Let A ∈ Mn×n(R) be a real valued and square matrix with dimensions n × n. We can

define the concepts of eigenvalues and eigenvectors in terms of the equation

Av = λv. (2.15)

An eigenvalue, λ, of the matrix A, is a number λ such that Equation (2.15) has a solution

v 6= 0. The vector v is called an eigenvector of A, corresponding to the eigenvalue λ. The

eigenvectors corresponding to an eigenvalue λ and the zero-vector, form a vector subspace

of X. This vector subspace is called the eigenspace of A corresponding to the eigenvalue

λ. The set of all eigenvalues of A, σ(A), is called the spectrum of A.

From this definition, we see that the eigenvectors of A are those vectors that are only

scaled by a constant λ (the eigenvalue corresponding to that eigenvector) when we apply

the linear transformation A on them. An illustration of the application of A on an

eigenvector v can be seen in Figure 2.14.
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Figure 2.14: Illustration of an application of the linear transformation A on an eigenvector,
v, of A. In this example, Av = λv with λ = −1.

The eigenvalues of the matrix A can be found by obtaining the roots of the characteristic

polynomial of A. We define this in terms of Equation (2.15) by rewriting it to

(A− λI)v = 0,

where I is a n × n matrix that is 1 on its diagonal elements and zeros everywhere else,

also called the identity matrix of dimension n×n. For any vector v 6= 0, the determinant

det(A − λI) must then be zero. By developing this determinant, we will obtain a poly-

nomial of degree n in terms of λ, called the characteristic polynomial of A. Hence, A will

have at least one eigenvalue and at most n eigenvalues. In practice, it is inconvenient to

explicitly solve this polynomial by direct calculation for n larger than about 4. It is more

common to employ numerical methods to approximate the eigenvalues in such cases.

Let A ∈Mn×n(R) and let vi denote the eigenvectors of A. If A has n linearly independent

eigenvectors corresponding to eigenvalues λi (not necessarily distinct). Let

Q =
[
v1 v2 · · · vn

]
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be the n× n matrix with the eigenvectors as its column vectors. Then, we can write

AQ = A
[
v1 v2 · · · vn

]
=
[
Av1 Av2 · · · Avn

]
=
[
λ1v1 λ2v2 · · · λnvn

]
.

Further, let

Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 .
Since Q is n× n and consists of n linearly independent column vectors, it can be shown

that it is invertible. Then we can write

AQ = QΛ

AQQ−1 = QΛQ−1

A = QΛQ−1.

(2.16)

This form is called the eigendecomposition of A.

Eigenvalue decomposition also has a useful property for symmetric matrices. Let A be

a real, symmetric matrix such that A = AT and let (λi,vi), (λj,vj) be eigenvalue-

eigenvector pairs with λi 6= λj. Then, we have

vTi Avj = (vTi Avj)
T = vTj Avi,

by using the symmetry of A. Then, we get

vTi Avj = vTi λjvj = λjv
T
i vj and

vTj Avi = vTj λivi = λiv
T
j vi.

Since we have that λi 6= λj and λiv
T
j vi = λjv

T
i vj, then we must have that vTi vj = 0.

Hence, the eigenvectors of a symmetric matrix form an orthogonal basis. If A ∈Mn×n(R),

they form an orthogonal basis of Rn. If we divide each eigenvector by its own length, the
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set of all eigenvectors of A is said to form an orthonormal basis of Rn.

2.4.5 Smoothing Cubic Splines

Splines refer to an interpolation technique that has many applications in Computer Aided

Design and computer graphics. Using spline interpolation is preferred to polynomial

interpolation because it often yields smoother results. By using piecewise polynomials,

splines can achieve this with a lower polynomial degree.

Assume we are given a set of data points (x0, f0), (x1, f1), . . . , (xn, fn), called our control

points, from some function f : R 7→ R such that f(xi) = fi. In many applications,

one seeks to approximate f on the intervals connecting the data points. This is called

interpolation. We can construct a polynomial Pk(x) of degree k ≤ n that intersects our

data points. If k is large, these approximations tends to oscillate drastically and their

approximation of f tends to be poor. With splines, rather than constructing a single

polynimal of degree k over the entire domain [x0, xn], we construct piecewise polynomials

of a much lower degree that are defined on intervals in between our control points. This

lower degree polynomials are then joined together so that they form a continuous curve

on [x0, xn]. This is called a piecewise polynomial interpolation.

When performing spline interpolation, we must choose a degree of our piecewise poly-

nomials. A typical choice for degree in many applications is k = 3. This is because

polynomials of degree 3 have both continuous first and second derivatives. This enables

smooth curves that are easy to join together without any visible effects. Let qi(x) be

polynomials of degree 3 and let

g(x) = qi(x) when x ∈ [xi, xi+1]

and assume xi < xi+1 for i ∈ [0, n − 1]. Further, we require that g(xi) = f(xi) = fi

together with g′(x0) = k0 and g′(xn) = kn for any two given k0, kn. Then, the Existence

and Uniqueness Theorem of Cubic Splines states that there exists one and only one cubic

spline g(x) satisfying the above conditions. For i ∈ [0, n − 1], we define ci = 1/hi =
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1/(xi+1 − xi) and require

qi(xi) = f(xi),

qi(xi+1) = f(xi+1),

q′i(xi) = ki,

q′i(xi+1) = ki+1,

where q′i is the first derivative of qi and ki is to be determined for i ∈ [1, n − 1]. For the

second derivative, we have the following conditon

q′′i−1(xi) = q′′i (xi) for i ∈ [1, n− 1].

Then, it can be shown that the system determined by the following system of linear

equations has a unique solution for k = [ k1 . . . kn−1 ]:

ci−1ki−1 + 2(ci−1 + ci)ki + ciki+1 = 3
[
c2i−1(fi − fi−1) + ci(fi+1−fi)

]
(2.17)

for i ∈ [1, n − 1]. Now, with given k0, kn and k determined by the above, we define the

piecewise polynomials by

qi(x) = ai0 + ai1(x− xi) + ai2(x− xi)2 + ai3(x− xi)3,

for i ∈ [0, n− 1]. It can be shown that the following coefficients satisfy our conditions:

ai0 = qi(xi) = fi,

ai1 = q′i(xi) = ki,

ai2 =
q′′i (xi)

2
=

3

h2i
(fi+1 − fi)−

1

hi
(ki+1 + 2ki),

ai3 =
q′′′i (xi)

6
=

2

h3i
(fi − fi+1) +

1

h2i
(ki+1 + ki).

One way to alter the behaviour of an interpolating cubic spline is to alter its end condi-

tions. If we require that g′′(x0) = g′′(xn), this is called the natural conditions.
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As we saw, this way of constructing a cubic spline will interpolate the values of f(x)

exactly at all control points. Another form of the cubic spline that has many applications

in data analysis is the smoothing cubic spline. In smoothing cubic splines, we free the

spline of the requirement that it must interpolate the values of f(x) at the control points.

Rather, we introduce an objective function that it should minimize over the domain.

Let f̂ be a cubic spline freed of its interpolation requirements and let our control points

be as previously defined. Our smoothing cubic spline will then be the suitable function

satisfying

g = arg min
f̂

[
pR(f̂) + (1− p)C(f̂)

]
, (2.18)

where R and C are defined by

R(f̂) =
n∑
i=0

(fi − f̂(xi))
2,

C(f̂) =

∫ xn

x0

||f̂(t)||2dt,

and p is the smoothing paramater, to be determined somehow. The term R only accounts

the values that f̂ takes on at the control points. It favors candidate functions that have

values close to values specified by the control points. On the other hand, C accounts for

the characteristics of f̂ over the whole domain determined by our control points. It will

give penalty to candidate functions with large second derivatives. This means that the

more oscillatory the candidate function is, the larger the contribution will be from this

factor. We see that if we choose p = 1, then R determines our optimization problem

completely and our solution becomes the interpolating spline from above. If we choose

p = 0, then C becomes paramount. In this case, our solution will be the least squares line

through the control points.

Since an interpolating spline still may yield oscillations, smoothing splines can be used

when require smoother approximations of f(x). This will come with a cost of loosing

accuracy, but not all applications require a perfect interpolation at the control points.

For example, if we wish to to represent a trend for a stock share that has many local

extrema, fitting a smoothing cubic spline would be good candidate for a strategy. As we

will see later in this thesis, it also find application in modelling gene expression profiles.
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2.5 Statistical Methods

In this section, we will introduce some statistical principles and methods that we will

need in this experiment. Unboldfaced upper case symbols will represent random variables

while boldfaced upper case symbols represent matrices. Boldfaced lower case symbols

represent vectors and unboldfaced lower case symbols represent scalars.

2.5.1 Covariance and Correlation

Let X = [x1 x2 . . . xn ]T and Y = [ y1 y2 . . . yn ]T be two discrete and random

variables, represented as vectors. The mean, µX , and variance, σ2
X , is defined by

µX =
1

n

n∑
i=1

xi

σ2
X =

1

n− 1

n∑
i=1

(xi − µx)2,

where n is called the sample size. The covariance of two random vectors will be a measure

of how much they vary together. The covariance between X and Y , σ(X, Y ), is given by

σ(X, Y ) =
1

n− 1

n∑
i=1

(xi − µx)(yi − µy).

Let X ∈ Mn×p(R) represent the set of p random variables of n observations, X =

[X1 X2 . . . Xp ]. The random variables, Xi, will be the column vectors of X. Then,

we can build the variance-covariance matrix, Cov(X) = C, with elements given by

cij = σ(Xi, Xj). C will be both square and symmetric and the variance of the ran-

dom variables will be the diagonal elements in C. Usually, C is just called the covariance

matrix. Suppose the random variables of X has zero mean. This can be achieved by sub-

tracting the mean, µi, from each of the corresponding random variables, Xi of X. Then,

we can calculate the covariance matrix by

C =
1

n− 1
XXT . (2.19)
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From this, it follows that for a linear combination of random variables, aTX = [a1X1 +

a2X2 + · · ·+ apXp], its covariance matrix is given by

Cov(aTX) =
1

n− 1
aTX(aTX)T

=
1

n− 1
aTX(XTa)

= aTCa.

(2.20)

From the covariance matrix, we can define the correlation matrix, R. The elements of R

is given by

ρij =
σij√
σii
√
σjj

. (2.21)

Each element, ρij, of R measures the linear association between Xi and Xj. The elements

will take values, ρij ∈ [−1, 1], where 1 is total positive linear correlation, -1 is total negative

linear correlation and 0 means no linear correlation.

2.5.2 Principal Component Analysis

Principal Component Anlyis (PCA) is a unsupervised dimensional reduction technique. It

is often employed as an exploratory technique in data sets that have independent observa-

tions from many correlated variables. PCA explains the variance-covariance structure of a

data set through a reduced set of linear combinations of the variables, called the principal

components. PCA can often reveal complex global structures from a higher dimension

space by observing patterns in the lower dimension space of the principal components.

This is achieved by finding the directions with maximum variability in the space deter-

mined by the original variables as its axes. The k directions in this system that explains

the directions of the k highest variabilities are called the k-first principal components of

the data set.

The components are chosen so the first principal component explains the highest variabil-

ity. The second component is chosen so that it explains the direction of second highest

variability under the condition that it is orthogonal to the first principal component, and

so on. By rotating the data set into the new system of the k-first principal components, we
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can often explain almost as much of the variability as in the original covariance structure.

Let X = [ x1 x2 . . . xp ] be a system of p variables, each consisting of n observations

such that X ∈Mn×p(R). Assume that X is mean centered. Further, let C ∈Mp×p(R) be

the covariance matrix of X and let (λi,vi) be the pairs of eigenvalues and eigenvectors of

C such that Equation 2.16 holds with A as C. Let us choose the ith principal component

of X, ti, as follows

ti = vTi X = vi1x1 + vi2x2 + · · ·+ vipxp.

Then, since X is mean centered, we have that

σ2
ti

=

p∑
j=1

(vijXj)
2 = (vTi X)(viX)T

= vTi XXTvi

= vTi Cvi

= λi.

Here, the last step follows by Equation 2.16. Note that the scaling by sample size 1/(n−1)

has been omitted. As will become clear later, it will not matter in this application. Now,

by choosing two arbitrary principal components, ti and tk with i 6= k, we find their

covariance by using the same elaboration as above to be

Cov(ti, tk) = (vTi X)(vkX)T = vTi XXTvk

= vTi Cvk = λkv
T
i vk

= 0.

The last step follows from the orthogonality of eigenvectors of symmetric matrices.

From this, we can choose the first principal component of X by first finding the largest

eigenvalue of its covariance matrix. Then, we construct the first principal component by

selecting the corresponding eigenvector and then for each observation of X finding the

projection in this direction. It is also common to require that the eigenvectors of C are
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unit vectors. Then this can be formulated as

v1 = arg max
||v||=1

vTXXTv. (2.22)

In PCA, we call vi the loading vectors of X. Each component of vi is called the loadings.

The loadings corresponds to the importance a particular variable has when transforming

the observations of X. The greater absolute value the loading has, the more it contributes

to the explained variance in the direction of the loading vector.

Let T ∈ Mn×k(R) consist of the k-first principal components as its column vectors. Fur-

ther, let P ∈Mp×k(R) be the matrix consisting of the corresponding k-first loading vectors

as its column vectors. Now, we can write

X = TPT + E, (2.23)

where E is the residuals, or the error, of the approximation.

It is common to investigate the proportion of total variance explained by each principal

component. This can be done by first finding the eigenvalue decomposition of C, and

then for each principal component i calculate

λi∑p
j=1 λj

.

In data sets with many correlated variables, only a few principal components are needed

to explain a large proportion of the variance in X. How many will depend on the partic-

ular data set and the accuracy needed for the application. By increasing the number of

principal components, we can explain a larger proportion of the covariance structure, but

interpretation and visualization gets increasingly difficult.

As briefly mentioned in Chapter 2.4.4, determining exact eigenvalues for large systems

are infeasible. In practice, we use methods like NIPALS[Wol75] or matrix factorization

methods like Singular Value Decomposition(SVD)[Jol11] or even approximations of it, like

randomized SVD[Mar+10].
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2.5.3 Partial Least Squares Regression

In PCA, we saw that if we had one data set X, we could use its covariance matrix to reduce

the dimensionality of X while conserving as much of the original variation as possible.

In a Partial Least Squares regression (PLS) we want to relate a system of variables and

observations to a response, y. The response can also be multivariate, in which case we

relate it to the multidimensional Y. This is typically called PLS2.

Let X be n × p, consisting of n independent observations of p variables. Let Y be

n × q consist of q response variables, also with n observations. PLS is based on the

decomposition formulated in Equation 2.23, but PLS differs in that we consider the nature

of the response variable when we construct the principal components. Hence, PLS is called

a supervised method.

By Equation 2.23, we transform X and Y to

Y = TQT + F, (2.24)

X = TPT + E, (2.25)

where T is n× k gives the k-first principal components of X, P is p× k and Q is p× q.

The matrices of error F is n× q and E is n× p. It can be shown that, for a non-singular

p× k matrix W,

T = XW,

will also satisfy the above. After T is constructed, we find QT by the least squares solution

of Equation 2.24, such that

QT = (TTT)−1TTY.

Then, the matrix B of the regression coefficients of Y = XB + F can be constructed by

B = WQT = W(TTT)−1TTY,

together with the fitted response matrix Ŷ

Ŷ = TQT = T(TTT)−1TTY.
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In PLS the components of T are denoted as the scores. The component of P are called

the X-loadings while components of Q are called the Y-loadings. Above we shoved how

the components involved in a PLS can be constructed from W, but not how we could

find W. There are many approaches for this. For PLS2, a common approach is to solve

the following optimization problem for i ∈ [1, . . . , k]:

wi = arg max
w

wTXTYYTw

under the constraints

wT
i (Ip −WW+)wi = 1 and

tTi tj = wT
i XTXwj for j ∈ [1, . . . , i− 1].

Here, Ip is the p × p identity matrix and W+ is pseudoinverse of W. It is necessary to

specify the pseudoinverse because typically p >> k and an algebraic inverse is not defined

for such systems. A pseudoinverse can be found by performing a SVD. The matrix W is

called the loading weights. Its elements will tell us how much each of the original variables

in X contributes to the model.

PLS is a versatile method with many applications. By building a PLS model, one can

predict a set of response variables when we have new observation. This is very useful if we

have a set of variables that are difficult or costly to measure. If we can find a set of related

variables that er easier or cheaper to measure, we can perform the costly measurements

on a set of observations and bulid a model using PLS. In the future, we can use the model

to predict the response. By inspecting the components involved in building the model,

one can also find information on in which degree the different variables contributes to the

model.
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Methods and tools

Here we will present the data sets used in this experiment and the software used for the

analysis. We will present a strategy for obtaining a cell cycle pseudotime for the single

cell data and model the gene expressions in the data sets. A method for determining

significant cell cycle periodic genes will be outlined and we give a strategy for analysing

the joined results from all the data sets used.

3.1 Data Origin

3.1.1 HaCat-MEF Cell Cultivation

Both HaCaT and MEF cell lines were obtained from the American Type Culture Collec-

tion (ATCC) and cultivated in a humidified incubator at 37°C in 5% CO2. HaCaT is a

human keratinocyte cell line and was cultured in Dulbecco’s modified Eagle’s medium

(DMEM) (Sigma-Aldrich, D6419) supplemented with 10% fetal bovine serum (FBS)

(Sigma-Aldrich, F7524), 0.1mg/ml gentamicin (Gibco, 15710049), 2mM L-Glutamine

(Sigma-Aldrich, G7513) and 1.25µg/ml fungizone (Sigma-Aldrich, A2942). MEF is a

mouse embryonic cell line and was cultured in DMEM supplemented with 10% FBS,

1% Penicillin-Streptomycin (Sigma-Aldrich, P0781), 2 mM L-Glutamine and 1% MEM

non-essential amino acid solution ((Sigma-Aldrich, M7145). The cells were harvested at

49
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about 70% confluency and counted using the Moxi Z cell counter (ORFLO Technologies).

We made a suspension of 900 000 HaCaT cells and 100 000 MEF cells and centrifuged

at 150 relative centrifugal force (rcf) for 5 minutes at room temperature (RT). After

washing the cells by carefully resuspending them in 1ml phosphate buffered saline (PBS)

(Sigma-Aldrich, BR0014G) supplemented with 400 µg/ml Bovine Serum Albumin (BSA)

(Sigma-Aldrich, A7030), the cells were counted and centrifuged again at 150 rcf for 5 min-

utes at RT. Then PBS-BSA solution was added to achieve a cell concentration of about

1200 cells per µL, followed by gentle resuspension of the cells before they were transferred

through a 40 µM cell strainer. Cell suspension was kept on ice until proceeding with the

10x Genomics Single Cell Protocol.

3.1.2 Library Preparation and Sequencing for HaCat-MEF cells

Cells were processed using the 10x Genomics Chromium Controller and the Chromium

Single Cell 3’ Gene Expression Library & Gel Bead Kit (PN 1000006) following the stan-

dard manufacturer’s protocols1. In brief, between 6000 and 8000 live cells were loaded

onto the Chromium controller in an effort to recover between 3000 and 4000 cells for

library preparation and sequencing. Gel beads were prepared according to standard man-

ufacturer’s protocols. Oil partitions of single-cell oligo coated gel beads (GEMs) were

captured and reverse transcription was performed, resulting in cDNA tagged with a cell

barcode and unique molecular identifier (UMI). Next, GEMs were broken and cDNA was

amplified and quantified using an Agilent Bioanalyzer High Sensitivity chip (Agilent Tech-

nologies). To prepare the final libraries, amplified cDNA was enzymatically fragmented,

end-repaired, and polyA tagged. Fragments were then size selected using SPRIselect

magnetic beads (Omega Bio-tek). Next, Illumina sequencing adapters were ligated to the

size-selected fragments and cleaned up using SPRIselect magnetic beads (Omega Bio-tek).

Finally, sample indices were selected and amplified, followed by a double sided size selec-

tion using SPRIselect magnetic beads (Omega Bio-tek). Final library quality was assessed

using an Agilent Bioanalyzer High Sensitivity chip. Samples were then sequenced on the

Illumina NextSeq 500 with 26 cycles for Read 1, 8 cycles index read and 134 cycles for

Read 2.

1http://tiny.cc/nv32bz

http://tiny.cc/nv32bz
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Figure 3.1: CellRanger mkfastq workflow.
Source: https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/mkfastq

3.1.3 Demultiplexing Sequencer Output for HaCat-MEF cells

Demultiplexing was performed by using CellRanger 3.0.0 with the mkfastq workflow.

The mkfastq workflow reads the Illumina sequencer output files and generate fastq files

for each of the samples if there are multiple samples being processed. The fastq files will

be organized as two files, one for read one (R1) and for read 2 (R2). The R1 files will

contain the barcode reads and the UMI reads, while R2 consists of the corresponding

cDNA reads. An illustration of the format can be seen in Figure 3.2b. Two technical

replicates of the HaCat-MEF culture will be sequenced. Hence, our output fastq files

will consist of two sets of R1 and R2 files. One named HaCat MEF A and one named

HaCat MEF B.

3.1.4 Additional Data Sets

One data set consisting of 293t cells and a data set from Jurkat cells are downloaded from

the 10X resources page23. Their origins are discussed in [Zhe+17].

Fastq files were downloaded from the resource page and reformatted using the python

script provided in Appendix D.1. Reformatting was necessary because these data sets

were demultiplexed using CellRanger 1.0.0, which is incompatible with software used for

sequence alignment in this experiment. An illustration of the difference between the

formats can be seen in Figure 3.2.

2https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
3https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/mkfastq
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
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Barcode UMI 

cDNA readBarcode 

UMI 

cDNA read 

Barcode 

UMI 

cDNA read 

Barcode reads UMI + cDNA reads

(a) CellRanger 1.0.0

Barcode

Barcode + UMI reads cDNA reads

cDNA read UMI 

Barcode cDNA read UMI

Barcode cDNA read UMI 

Barcode cDNA read UMI 

(b) CellRanger 3.0.0

Figure 3.2: Formatting of fastq files for CellRanger 1.0.0 and CellRanger 3.0.0.

3.2 Computational Systems

Our method will be developed on an Infrastructure as a Service (IaaS) node in an Open-

Stack[SAE12] environment provided at HUNT Cloud, NTNU4. The configuration is pre-

4https://www.ntnu.edu/mh/huntcloud

https://www.ntnu.edu/mh/huntcloud
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sented in Table 3.1.

Table 3.1: Configuration of IaaS node.

CPU Intel Xeon E5-2680 v3

CPU clock 2.4 GHz

vCPUS 48

Memory 96GB

OS Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0-145-generic x86 64)

3.3 Software and Tools

The key software used in this experiment together with its version is listed in Table 3.2.

Extensive descriptions of the conda environments used in this experiment can be found

at Appendix E.2.

Table 3.2: Software and versions used in the experiments.

Software Version

conda 4.6.7
snakemake 5.4.3
singularity 2.6.1-dist
python 3.6.8
scanpy 1.3.7
numpy 1.15.4
scipy 1.2.0
csaps 0.5.0
pandas 0.23.4
jupyterlab 0.34.5
R 3.5.1
gprofiler2 0.15
STAR 2.7.0e
CellRanger 3.0.0

3.4 Comparison of Sequence Alignment Methods

We will compare the performance of the CellRanger workflow with the recent addition of

single cell support to STAR through the STARsolo algorithm. The comparison will be

performed on the HaCat MEF A sample. We are interested in both execution times and
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investigating if there are any differences in the resulting count matrices. Specifically, we

want to investigate if there are any differences in the number of total reads or detected

genes for the different types of genes, called biotypes, present in our data set. For both

CellRanger and STARsolo, the results will be generated using the single cell pipeline

developed at the Genomics Core Facility, NTNU. The pipeline is implemented in Snake-

make. At this stage of the experiment, STARsolo has recently been released. As part of

this experiment, we implement a Snakemake workflow and integrate it with the existing

pipeline at GCF. See Appendix E.1 for a reference to the pipeline and the version used in

this experiment. The pipeline takes the fastq files as input and produce count matrices

using CellRanger or STARsolo. These count matrices are in turn used to generate a .h5ad

AnnData object. The resulting data structure will be loaded into a scanpy environment

for analysis.

3.4.1 CellRanger

For CellRanger, we will use the cellranger count workflow with a reference index built

by following the recipe from the 10X resources web page5, with the exception that we

will use GRCh38 release 94 as our human reference genome. The build scripts can also

be found in Appendix D.2. After we have built the reference index, we run CellRangers

count workflow with the following:

cellranger count \

--localcores 48 \

--fastqs data/raw/fastq \

--id HaCat_MEF_A \

--sample HaCat_MEF_A \

--transcriptome data/ext/ensembl/homo_sapiens__mus_musculus/GRCh38/cellranger \

--expect-cells 3500 \

--chemistry SC3Pv2 \

--nopreflight \

--disable-ui

This will generate the count matrix for the sample HaCat MEF A. The CellRanger count

5https://support.10xgenomics.com/single-cell-gene-expression/software/release-
notes/build#hg19mm10 3.0.0

https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#hg19mm10_3.0.0
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#hg19mm10_3.0.0
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workflow gives two count matrices as output in two different folders, outs/raw feature bc matrix

and outs/filtered feature bc matrix. Since STARsolo does not provide similar filter-

ing when it generates the count matrix, we must use the outs/raw feature bc matrix

to give a realistic comparison. To convert this to a .h5ad AnnData object, we use the

script provided in Chapter D.3. To generate AnnData object, we execute

python scripts/cellranger_scanpy.py \

HaCat_MEF_A/outs/raw_feature_bc_matrix/matrix.mtx \

-o HaCat_MEF_A/scanpy/adata.h5ad \

-f cellranger \

--genome homo_sapiens__mus_musculus

The resulting AnnData object will be loaded into a scanpy environment. Cell barcodes

that have zero reads will be filtered. Then, all genes with zero reads in all cell barcodes

are filtered. We call the remaining genes our detected genes. To simplify our analysis, we

will only use the cells originating from the human cells in our experiment. The variable

name for each gene in our count matrix will be prefixed with GRCh38 if they are mapped

to the human genome or GRCm38 if they are mapped to mouse. For each cell, we simply

count the number of reads mapped to human genes and the number of reads mapped to

mouse genes. From this, we calculate the percent mapped to mouse for every cell in our

count matrix. We set a threshold of 15% of reads mapped to mouse. All cell barcodes

above this threshold are classified as mouse cells and excluded from our analysis. These

barcodes are written to a file and will in turn be used to filter out barcodes that originates

from the mouse cells in the count matrices generated by STARsolo.

3.4.2 STARsolo

For STAR, we build the reference index by running STAR --runMode genomeGenerate.

We will use the same genome as we have used for CellRanger above. The index is built

with the following

STAR --runThreadN 48 \

--runMode genomeGenerate \

--genomeDir data/ext/ensembl/homo_sapiens/GRCh38/star \
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--genomeFastaFiles data/ext/ensembl/homo_sapiens/GRCh38/fasta/genome.fa \

--sjdbGTFfile data/ext/ensembl/homo_sapiens/GRCh38/genes/genes.gtf \

--sjdbOverhang 98

To generate the count matrix, we use the recently added STAR --soloType Droplet

algorithm, which enables a drop-in replacement for 10X CellRanger gene quantification

output. For a STARsolo run, we must specify the single cell barcode length and the

UMI length used in the library preparation kit. We must also specify where in the read

STARsolo should start reading the UMI sequence. In addition, we must provide a barcode

whitelist. The whitelist should contain all valid barcodes specific to chemistry used in

the library preparation of the samples. The whitelists for the different 10X chemistry

sets are bundled within the CellRanger software and can be fetched directly from its

folder structure. A table listing which of the official 10X whitelists that should be used

together with the different 10X chemistries can be found in Table C.1 in Appendix C.1.

The barcodes read by STARsolo during the count algorithm are validated against the

specified whitelist. Barcodes with one mismatch against the whitelist will be corrected

and used in the count matrix. Barcodes with more than one mismatch will be discarded.

We generate the count matrices by the following

STAR --soloType Droplet \

--readFilesCommand zcat \

--soloCBwhitelist data/ext/10xgenomics/homo_sapiens/GRCh38/737K-august-2016.txt \

--readFilesIn

data/raw/fastq/HaCat_MEF_A_S1_L001_R2_001.fastq.gz,\

data/raw/fastq/HaCat_MEF_A_S1_L002_R2_001.fastq.gz,\

data/raw/fastq/HaCat_MEF_A_S1_L003_R2_001.fastq.gz,\

data/raw/fastq/HaCat_MEF_A_S1_L004_R2_001.fastq.gz\

\

data/raw/fastq/HaCat_MEF_A_S1_L001_R1_001.fastq.gz,\

data/raw/fastq/HaCat_MEF_A_S1_L002_R1_001.fastq.gz,\

data/raw/fastq/HaCat_MEF_A_S1_L003_R1_001.fastq.gz,\

data/raw/fastq/HaCat_MEF_A_S1_L004_R1_001.fastq.gz \

--genomeDir data/ext/ensembl/homo_sapiens/GRCh38/star \

--outFileNamePrefix data/tmp/singlecell/quant/star/HaCat_MEF_A/ \

--soloCBlen 16 \

--soloUMIlen 10 \
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Table 3.3: The different parameters used to generate count matrices from STARsolo and
the resulting name of the respective datasets.

Name Extra Parameters

star default No extra parameters
star tweaked –outFilterMismatchNoverLmax 1.0

–outFilterMismatchNoverReadLmax 0.05
star mm tweaked –outFilterMismatchNoverLmax 1.0

–outFilterMismatchNoverReadLmax 0.05
–outFilterMultimapNmax 1

--soloUMIstart 17 \

--runThreadN 48 \

--genomeLoad LoadAndKeep

In addition, we will perform two extra alignments using STARsolo, with the additional

parameters listed in Table 3.3. The parameter --outFilterMismatchNoverLmax deter-

mines a cutoff for the ratio of the allowed number of mismatches compared to the length

of mapped reads. Setting this value to 1.0 is equivalent to disabling the check. Instead, we

use the parameter --outFilterMismatchNoverReadLmax to determine the ratio by com-

paring the number of mismatches to length of the read itself. For a read length of 100, a

value of 0.05 will correspond to allowing a mismatch of less than or equal to 5 nucleotides

to be counted as a hit for a particular location in the genome. The last parameter,

--outFilterMultimapNmax determines the maximum allowed number of mapped loca-

tions in the genome. If the number of mapped locations is above this threshold, the read

will be categorized as ”mapped to too many loci” in output logs of STAR and it will not

be included in the count matrix. The default parameters for STAR if no thresholds are

manually specified are --outFilterMultimapNmax 10, --outFilterMismatchNoverLmax

0.3 and --outFilterMismatchNoverReadLmax 1.0 (equivalent to disabled).

Each of the resulting count matrices will be converted to .h5ad AnnData objects, by the

same script as for CellRanger, to be analyzed in a scanpy environment.
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3.4.3 Benchmarking Alignment Methods

The metrics are obtained by using Snakemakes benchmark features. In Snakemake, we

can specify an output file for benchmark metrics with the benchmark tag. Snakemake

will then use functionality provided by the python package psutil6 to track and report the

metrics in a .tsv format. We will report the accumulated metrics obtained by running

both the HaCat MEF A and HaCat MEF B sample through each of the workflows.

3.5 Pre-processing of Single Cell data

Here, will explain the steps involved in pre-processing single cell data and investigating

basic Quality Control (QC) metrics for our experiment.

The count matrices generated by STARsolo must be aggregated into one data set contain-

ing all the data from both samples. We do this by executing the script listed in Appendix

D.3 with the following parameters:

python src/single-cell/rules/quant/scripts/cellranger_scanpy.py \

data/tmp/singlecell/quant/star/HaCat_MEF_A/Solo.out/matrix.mtx \

data/tmp/singlecell/quant/star/HaCat_MEF_B/Solo.out/matrix.mtx \

-o data/tmp/singlecell/quant/aggregate/star/scanpy/scanpy_aggr.h5ad \

-f star \

--normalize mapped

The samples are normalized by down sampling reads such that both data sets have the

same number of total reads. The aggregated AnnData object is loaded into a scanpy

environment. The cells that belong to mouse are filtered out by using the list of barcodes

assigned to mouse in Chapter 3.4.1. We apply a basic pre-filter to remove low quality

cells and genes that are represented in too few cells. We use a threshold of 500 detected

genes per cell. For genes, each gene must be represented in at least 5 cells to pass the

filter. These filters are only applied as an initial step to reduce the set of our viable cell

candidates drastically.

6https://psutil.readthedocs.io/en/latest/

https://psutil.readthedocs.io/en/latest/
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The following three parameters can usually be calculated from all single cell data sets.

The number of detected genes per cell, the number of reads per cell and the fraction of

reads belonging to mitochondrial RNA in each cell. Previous studies show that a high

fraction of mitochondrial reads are related to low quality of the cell[GKK12; Ili+16] as it

may indicate cell death or membrane damage. The QC parameters for number of detected

genes and total reads per cell barcode can be related to either cell size or technical factors

from library preparation or sequecng. A common procedure for single cell QC is to leave

out the cells that show unusual values in these metrics in further analysis[GSM18]. Here,

unusual values must be interpreted isolated for each data set. These metrics can vary

greatly between experiments and it is hard to set universal thresholds that will be valid

for all single cell data sets.

When we filter the data further, we must consider all these three metrics and find a balance

between the thresholds. The metrics may be related to each other and should therefore

not be considered in isolation. The thresholds should also be as permissive as possible

to avoid filtering viable cells[LT19] and the definition of a viable cells will be specific for

different types of analysis. The probability density functions of the QC parameters will

be estimated by using kernel density estimates viewed in violin plots. From this, we set

thresholds to remove any bimodal distributions. A distribution is said to be bimodal if

multiple peaks can be observed in its probability density function.

As a part of our method for pseudotime modelling, we will use a method of unsuper-

vised dimensional reduction technique called Principal Component Analyis (PCA). The

centered data set will be projected into the two first principal components of the PCA.

We want the variability explained by the two first components to be highly related to

the biology of the data set as opposed to nuisance factors, such the total number of

reads. As a quality control, we will perform a PCA analysis and investigate if additional

pre-processing steps are necessary.

To reduce the impact of noisy, low variable genes in the PCA of our data set, we will iden-

tify the genes that are most variable in our data set and use only these as input in the di-

mensional reduction. Here, we use the scanpy method scanpy.pp.highly variable genes(),

which is a python re-implementation of the method described in [Sat+15]. Also here, we

want to be as permissive as possible. Hence, we use very low thresholds for the minimum
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mean and minimum dispersions (min mean=0.0001 and min disp=0.0001, respectively).

The method expects log-transformed, normalized data. The data is first normalized to

Reads Per Million (RPM) with the scanpy method scanpy.tl.normalize per cell()

with reads per cell after=1e6. The data is then log-transformed by scanpy.pp.log1p().

This normalization uses log10(RPM + 1) and by this, it preserves the sparsity of the data

matrix.

The PCA of the data set is calculated by scanpy.tl.pca(). This scanpy method is

an interface to the Scikit-learn PCA implementation[Ped+11]. We investigate our QC

metrics in the two first components of the PCA and remove any visible factors using

scanpys scanpy.tl.regress out(). After these steps, our data set will be ready for

further analysis.

3.6 Deriving a Pseudotime Model

We wish to derive a method for modelling the gene expression levels in our data set as

a function of cyclic time. We will identify cells that have a high expression of marker

genes that are previously shown to be strongly related to the cell cycle. These cells will

be scored according to their relative expression of marker genes within each of the cell

cycle phases G1, S and G2/M. According to this score, they will be classified to one of

these three phases. A threshold for this score is calculated within each of the phases and

cells that falls below the threshold are discarded. We perform a PCA analysis with two

components of the data set with the set of marker genes as input. For each cell, we will

compute its angle in this plane, relative to the PC1 axis. This angle will be used as an

ordering of the cells within each phase before the cells are concatenated to represent the

order of the cell cycle.

3.6.1 Identification of Proliferating Cells

We will assign each cell in the data set to one of the three phases, G1, S or G2/M.

We use a modified version of the scanpy method scanpy.tl.score genes cell cycle()
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together with a set of marker genes that are highly correlated to each of the three phases.

The method will give each cell a score for all three phases. The score will be based on a

comparison of expression levels of the marker genes of the respective phases compared to

a robust mean expression of a random selection of other genes in the dataset. A cell is

assigned a phase according to its highest score. The original scanpy method only takes a

set of genes for the S phase and G2/M phase as input. In the original method, a cell is

classified to G1 if both the score for the S phase and the G2/M phase are negative. This

approach is unsatisfactory for our goals since it is not able to separate G0 from G1. We

want to classify a cell to G1 only if we believe that the cell is under active proliferation.

The modified version of the scanpy method is presented in Appendix D.4.

As our marker genes we use the genes defined in [Whi+02] and [Tir+16] and compile them

to one list presented in Table C.2 in Appendix C.2. The full list consists of 128 marker

genes. We select the genes associated with G1 and M/G1 to be our G1 marker genes, the

genes associated with S to be our S marker genes and the genes associated with G2 and

G2/M to be our G2/M marker genes. Only the cells that have a sufficient score will be

kept for further analysis. As a threshold for the score we use 60% of the mean of the top

10 scores within each phase. The rest of the cells are filtered out.

3.6.2 Pseudotime Ordering of Cells

For each cell, we calculate its angle with the PC1 axis in the PC1,PC2 plane of the filtered

data set. The angle is found by calculating the arctangent with the PC1 component as

the adjacent and the PC2 component as the opposite. This angle will then be used as an

estimate of the cells location in the cell cycle. The cells are sorted by their corresponding

angles and given an order that progress from zero to the length of the data set.

The direction and the starting point of the ordering from the angles in the PC1,PC2

plane is arbitrary and may not represent the progression of the cell cycle as we wish to

model it. In our model, we want the G1 phase to start at exactly time zero. We must

find the boundaries between the phases in our pseudotime ordering and shift it so that

the phase boundary between G2/M and G1 is located at exactly zero. We also want the

phases to progress from G1 to S and then to G2/M along the ordering. The ordering
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is divided into bins of 20 cells and for each bin we calculate the fraction of cells in each

of the phases. Linear interpolation is used on each of these fractions to generate linear

curves that represents the fraction of cells in each phase as a function of the cell order.

We take the phase boundaries to be where these lines intersect. That is, the boundary

of G2/M and G1 is where the fraction of cells classified as G1 equals the fraction of cells

classified as G2/M.

As a quality control of our ordering, we calculate the mean expression of a selection marker

genes within each phase and compare them. We expect that cells in the region between

the boundaries G2/M-G1 and G1-S will have a higher mean expression of the G1 marker

genes compared to the rest of the cells in the ordering. Cells between G1-S and S-G2/M

should have a higher expression of the S marker genes and cells between S-G2/M and

G2/M-G1 should have a higher expression of G2 and G2/M marker genes. We now use

the full set of genes with RPM normalized values for the cells in our pseudotime ordering.

The expressions are calculated for the set of marker genes given in [Whi+02].

In the human cell cycle, the cells divide approximately every 24 hours[GM00]. In these

24 hours, approximately 11 hours is spent in G1, 8 hours in S, 4 hours in G2 and 1

hour in M. In our model, we will assign each cell a time in the interval [0, 24]. This is

achieved by dividing the ordering of the cells by the previously found phase boundaries in

the pseudotime order. The cells have ordering between the boundaries for G2/M-G1 and

G1-S are spread out uniformly in the half-open interval [0, 11), the cells between G1-S

and S-G2/M will be in [11, 19) and the cells between S-G2/M and G2/M-G1 are given

values in [19, 24). The pseudotime order has now been transformed to a pseudotime time

series, from now on referred to only as the pseudotime.

3.7 Gene Expression Modelling using Smoothing Cu-

bic Splines

We want to model the gene expression levels along the pseudotime as periodically, con-

tinuous and sufficiently smooth functions. To achieve this, smoothing cubic splines will

be used. The spline will fit a curve to a set of data points, called the control points. The
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resulting function will be continuous and twice differentiable everywhere.

3.7.1 Control Points

To make the cubic spline periodic, we must make the control points periodic. This is

achieved by dividing the cells in the pseudotime into groups based on uniform time inter-

vals. For a gene expression, we calculate the mean expression within each of the groups.

These mean values are given time points corresponding to mid-point in each group. These

control points will lie in the open interval (0, 24). We close this interval by adding the

mean of the first and the last interval to the time points 0 and 24. We now have periodic

control points in the closed interval [0, 24]. In addition, we want our resulting splines to

have periodic derivatives at the boundaries. That is, if we let f̂(t) be our cubic smoothing

spline, we want that f̂(0) = f̂(24) and f̂ ′(0) = f̂ ′(24). To achieve this, we add the interior

of our control points once to the left by subtracting 24 from their time values and once

to the right by adding 24. Figure 3.3 shows how this is accomplished for a sample gene.

3.7.2 Optimal Smoothing Parameter

When we generate the smoothing splines for a set of data points, we must decide upon

a smoothing parameter, p ∈ [0, 1]. This smoothing parameter gives the weighting of the

constraints given in Equation 2.18. A smoothing parameter of 0 will give the least squares

line through the control points and a smoothing parameter of 1 will yield an interpolating

spline. This is illustrated in Figure 3.4.

We want our spline model to be as smooth as possible without sacrificing the representa-

tion of the data. To find an optimal smoothing parameter for our data set, we calculate

the residuals and the curvature at each control point on a set of marker genes for a range

of smoothing parameter values. Let T be the set of time points of our control points and

let Yg be the set of the mean gene expression related to each of the time points by the

description above for a marker gene g ∈ G. For a smoothing parameter value, p, let f̂pg

denote the resulting cubic smoothing spline for the gene g. We calculate the following for
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(a) (b)

(c)

Figure 3.3: Periodic control points. 3.3a) Control points generated by centered mean
values in fixed time intervals of 2 hours along the pseudotime. 3.3b) Control points with
the added boundary values at 0 and 24. 3.3c) Periodic control points by adding the
interior of the control points once to the left and once to the right.
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Figure 3.4: Smoothing parameter. The smoothing cubic splines for an example gene
expression as a function of the smoothing parameter p. A smoothing parameter of p = 0
gives the least square line through the control points and p = 1 yields the interpolating
cubic spline.

each marker gene, g.

rg(p) = ||f̂pg(T )− Yg||2,

and for h = 24/N with N = 104

cg(p) =
N∑
j

|f̂ ′′pg(jh)|
(1 + f̂ ′pg(jh)2)

3
2

.

From this, we construct the mean values over all genes for each of the two functions such

that for each p, we have

r(p) =

∑
g∈G rg(p)

Ng

,

c(p) =

∑
g∈G cg(p)

Ng

,

where Ng is the length of G. The result is two functions, r(p), the mean 2-norm of the

residuals as a function of the smoothing parameter p and c(p), the mean curvature at the

location of each control point as a function of p. Each of these functions are scaled so
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that r : [0, 1] → [0, 1] and c : [0, 1] → [0, 1]. We construct an objective function g(p) and

choose popt such that

g(p) = r(p) + c(p), and

popt = arg min
p

g(p).

In this objective function, we expect r to be strictly decreasing and c to be strictly

increasing. If the control points follow a close to smooth trajectory, r will decrease rapidly

and c will grow first rapidly, then slowly as functions of p. If our pseudotime of the cells is

able to capture cyclic expressions, we expect this objective function to yield lower values

of p.

As the genes used to generate values for the objective function, we use the full set of marker

genes given in Appendix C.2. We only need our spline model to be a good fit for expression

patterns of genes that show cyclic expression patterns. Hence, it is unnecessary to use a

large set of genes that may not be descriptive to our ends. We use the code in Appendix

D.6 to find the optimal smoothing parameter. To generate our cubic smoothing spline

models, we use the code provided in Appendix D.5. The code uses the python library

csaps7 to generate the cubic smoothing splines.

3.8 Identification of Cell Cycle Periodic Genes

Here we will define a strategy used to identify cyclically expressed genes in our data.

We will analyze the spline model of the full set of detected genes in our data set. We

construct a time series for all genes by subsampling the splines generated for each of the

genes. The expression data generated from the splines will be regressed onto a sine and a

cosine curve with period equal to the estimated human cell cycle of 24 hours using Partial

Least Squares regression (PLS). Each gene will be projected into the plane consisting of

the loading weights to each of the PLS components. Both the significance level and the

phase in the cell cycle will be determined in this plane.

7https://github.com/espdev/csaps

https://github.com/espdev/csaps
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3.8.1 Partial Least Squares Regression

We will use the spline model generated by the above as a smoother for our gene expression

data. We subsample the smoothing spline expression models on fixed time intervals. Each

gene is subsampled on 25 equidistant time points in the range 0 to 24. This data matrix

will be regressed onto two response variables consisting of a sine and a cosine curve of

period 24 hours evaluated on the same time points as for the gene expression obersvations.

For our PLS regression, we will use the implementation miirPLS given in Appendix D.7.

This PLS imlpementation was developed for the synchronization experiment described in

[Pen+13].

3.8.2 Significance Threshold

To determine a significance threshold for the result of the PLS regression, we use the

same approach as in [JLB03]. We will give a brief explanation of the concept. A detailed

description is given in the Method of the referred study.

The distance from the origin to each genes location in the plane of the scaled loading

weights, for simplicity called the loading plane, will be a measure of how strongly it is

coupled to the cell cycle. To determine a significance cut-off value for the genes distance

in the plane, the expression patterns will be regressed on to randomly permuted response

variables. This permutation is performed 1000 times. For each permutation, the length of

each gene in the loading plane is calculated and sorted. We then choose a cut off value for

the length corresponding to a significance level p, so that (1− p)100% of the genes have a

length in the loading plane below this value. In other words, there is an estimate p100%

probability that a gene has a length above this value by chance. To get a more robust

estimate for the cut-off value, we use the mean cut-off value over all 1000 resampling runs.

In our experiment, we use p = 0.05 to determine the cut-off values.
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3.8.3 Phase Assignment

We expect genes with a significant magnitude along both axes to show cyclic behavior

with period equal to the cell cycle, but with a phase off-set to that is explained by some

linear combination of the two response variables. Therefore, the angle in the loading plane

will describe a genes phase in the cell cycle. Each gene is assigned an angle by calculating

the arctangent in the loading plane with its first scaled loading weight as the adjacent

and the second scaled loading weight as its opposite.

The method of phase assignment follows the procedure outlined in [Pen+13]. To classify

the cell cycle phase for the genes in our data set that show significant cell cycle periodic

behavior, we will use marker genes. Again, we use the list compiled in C.2. For each

phase in this list, we take the genes that have significant cyclic behavior in our data set

and calculate their phase angle probability density function by finding the mean angle

and the variance and use this in a normal distribution. Some marker genes may show

expression patterns that are not consistent with their known phase. These marker genes

will contribute to a larger variance in its corresponding distributions. To account for this,

we will use random resampling with leave-10%-out when we calculate the mean and the

variance for each of the distributions. We perform 500 resamples and sort based on the

(mean,variance) pairs based on the variance values. We then select the median variance

with its corresponding mean phase angle. These values will be used for phase classification

for the rest of the genes. Each gene is classified to a phase by assigning the most probable

phase by the probability density functions.

If the cell cycle phase classification in the loading plane shows out-of-order assignments,

we increase the variance of the distribution with the lowest variance incrementally by 25%.

Then, phases are re-assigned and the process is repeated until there are no out-of-order

assignments. To find the phase angle distributions and to assign the cell cycle phases in

the loading plane, we use the code listed in Appendix D.8.
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3.9 Functional Enrichment of Genes

To evaluate the results of our method, we perform a functional enrichment of the signif-

icant cell cycle periodic genes against Gene Ontology Resource[Ash+00; Con18] (GO).

GO is a comprehensive resource for annotation of genes and gene products with their

properties. The ontology is divided into three groups, Molecular Function (MF), Cellular

Component (CC) and Biological Process (BP). Each of these groups consists of terms that

are related to each other in a directed acyclic graph structure. Children terms usually

define more specific properties than their parent and a term may have more than one

parent. A gene may also be related to more than one term. When we perform functional

enrichment on a set of genes, we retrieve the terms that are over-represented within a

significance threshold. The retrieved terms will describe the properties of our input gene

list.

We perform the enrichment on the genes in each of the assigned phases using the R package

gProfiler2[Rau+19] against GO:BP with the g:SCS algorithm described in [Rei+07] for

significance threshold. We use a significance threshold of 0.05 in our queries. This is

equivalent to a false discovery rate of 5%

We will also filter the retrieved terms by their term size. If a term has a small term

size, even an overlap of one gene will yield significant result and term itself may be too

specific for our purpose. If a term size is very large, its definition may be too broad for

any meaningful interpretation. We use 10 as a lower threshold and 2500 for the upper.

The code used to retrieve the results from the GO enrichment is provided in Appendix

D.9.

3.10 Evaluation of Aggregate Results

We find the significant cell cycle periodic genes that are present in all three data sets. This

set will be further divided into known cell cycle periodic genes (our marker genes) and a

set of new candidate genes. These sets will be further divided into two cell cycle phases.

We must take into account that some genes may have been assigned different cell cycle
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phases in our data sets. To tackle this, we will use a different approach to determine their

phases. The idea is that if a gene is present in all three data sets and its gene expression

model is sufficiently similar between them, we can use the mean peaktime from the three

expression models to implicitly assign a phase.

Here, sufficiently similar is quite an open definition. We will calculate the correlation

matrix between the three expression models by using their spline model in each of the

data sets. We subsample the three spline models and calculate their correlation matrix

given in Chapter ??. As a measure of similarity, we will use the mean of the upper

triangular part of the correlation matrix. The upper triangular correlation matrix will be

the sum of all pairwise correlations. This mean correlation will be inspected and we will

apply a suitable threshold.

Last, we will perform functional enrichment on the candidates in each of the estimated

phases.



Chapter 4

Results

4.1 Sequence Alignment

Here, we will present the comparison of the methods for sequence alignments described in

Chapter 3.4. The comparison is performed by analyzing the A sample of the HaCat-MEF

cell culture. Cell barcodes that are classified originating from mouse cells are excluded.

Besides this, the count matrices are only filtered for cell barcodes and genes that have

zero reads.

4.1.1 Comparison of Alignment Methods

From Figure 4.1a, we see that CellRanger and STARsolo yields almost identical results in

the number of genes per biotype. This is not surprising as CellRangers count workflow uses

and underlying STAR aligner with some extra processing of the data. In additon, the same

reference genome and the same gene annotation file is used on all methods. The effects of

the additional parameters for STARsolo are also evident from Table 4.1. As we become

more stringent with the number of mismatches allowed, we can see a decrease in the

number of genes mapped to the pseudogene biotypes while the results for protein encoding

does not change more than -0.78%. Pseudogenes are defined as sequences that are similar

to functioning proteins but does not encode for protein because of present deficiancies

71
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or mutations in their sequences. Hence, it is expected that a more strict threshold for

multimappers are likely to impact the pseudogenes. This becomes more evident if we look

at the relative change of reads per biotype between star default and star mm tweaked.

From Table 4.2, we can clearly see that the reads mapped to pseudogenes decreases

drastically as we become more stringent with the mismatch and multimappers policy.

Here, number of reads mapped to protein encoding only changes by -4.52% The number

of total reads per alignment method are presented in Table 4.3. Except from the difference

of ∼ 161̇06 total reads between star mm tweaked and CellRanger, the differences are very

subtile between the methods. The largest impact comes from introducing the stricter

multimapper policy for STARsolo.
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(a) Number of genes within each biotype compared by alignment method.

(b) Number of reads within each biotype compared by alignment method.

Figure 4.1: Comparison of alignment using CellRanger and STARsolo.
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Table 4.1: Top 8 relative change in detected genes per biotype from method star default
to star mm twaked, ranked by absolute relative change.

Biotype Relative Change[%]

processed pseudogene -17.57

transcribed processed pseudogene -11.68

unprocessed pseudogene -9.02

transcribed unprocessed pseudogene -6.12

processed transcript -4.40

TEC -4.19

transcribed unitary pseudogene -3.77

lincRNA -3.56

(12th) protein coding -0.78

Table 4.2: Top 8 relative change in total reads per biotype from method star default to
star mm twaked, ranked by absolute relative change.

Biotype Relative Change[%]

transcribed processed pseudogene -56.47

processed pseudogene -45.99

pseudogene -34.29

unprocessed pseudogene -30.95

unitary pseudogene -18.18

transcribed unprocessed pseudogene -16.61

TEC -6.75

non coding -6.25

(12th) protein coding -4.52

Table 4.3: Total number of reads per alignment method.

Alignment method Total reads [n]

star default 43359354.0

star tweaked 43079081.0

star mm tweaked 41351617.0

cellranger 42962068.0
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4.1.2 Benchmarking

The benchmark metrics from STARsolo and CellRanger are presented in Table 4.4. The

experiments are run on the system described in Chapter 3.2 and the results are obtained

by employing the benchmark tag in the snakemake rules defining the count workflows.

We see that measured runtimes for STARsolo outperforms the CellRanger default count

workflow by a factor of 11.56. CellRanger count has 1.93 times more I/O in compared to

STARsolo and CellRanger count writes 8.00 times more data compared to STARsolo.

Because CellRanger by default performs secondary analysis on the count data, we sus-

pected this might be the source of the large I/O out observed. Therefore CellRanger was

run one more time with the parameter –nosecondary. This disables the secondary analysis

completely. STARsolo also has the advantage the advantage that it can load the reference

genome index into shared memory. In this case, STARsolo only can load the reference

genome into RAM almost instantly when it aligns the second sample. We also performed

benchmarks for STARsolo with this feature disabled.

STARsolo without shared memory results in a 13% increase in measured runtime. This

makes out 237 seconds. By investigating the output logs of STARsolo, we can see that

this matches the reported time for loading the genome. The increase in 29 GB for I/O in

also matches the size of the reference genome index.

CellRanger count with no secondary analysis offers a speedup in runtime of 20.7% com-

pared to default parameters. Otherwise, the only significant difference is the I/O in with

a difference of 10 GB less and I/O out with 0.45 GB less. The secondary analysis uses in-

formation from the alignment files to derive statistics, and the difference in I/O in can be

attributed to omitting this step. We also that the I/O out has not changed significantly.

This implies the large I/O out observed in CellRanger must attributed to intermediate

operations it performs during the count workflow.
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Table 4.4: Benchmark metrics comparing STARsolo to cellranger count. The reported
metrics for runtime and I/O are accumulated metrics across the two samples, Ha-
Cat MEF A and HaCat MEF B. The metric for max memory usage reported is the peak
Resident Set Size across the two samples.

Workflow Runtime[s] Max memory[GB] I/O in[GB] I/O out[GB] Output size[GB]

STARsolo 1793.51 37.61 49.65 54.78 57.42

STARsolo no shmem 2030.02 37.79 76.97 54.21 57.41

CellRanger nosecondary 17176.03 54.21 85.99 437.32 20.87

CellRanger default 20733.09 53.28 96.04 438.32 21.32

4.2 Pre-Processing and Quality Control

From here on, the aggregate HaCat MEF aligned with the method star mm tweaked will

be used. After intial filtering, we are left with 5056 cells and 18331 genes in our data

set. From Figure 4.2a, we observe bi-modal distributions for both the number of detected

genes per cell and the number of reads per cell. From Figure 4.2b, we see that a threshold

of 8000 reads will remove bi-modality in both number of genes and reads. This will also

remove most of the outliers in fraction of mitochondrial reads in Figure 4.2c. In Figure

4.3 the data set has been filtered a threshold of 8000 reads and a fraction of 0.2 for

mitochondrial reads. No hard filter for number of detected genes were applied.

The data is RPM normalized and log(RPM)+1 transformed. We find 6538 genes classified

as highly variable in our data set. These are used as input for the PCA analysis in

Figure 4.4. We observe that there are no apparent patterns related to the fraction of

mitochondrial reads or to the batch id. For PC1, we can see that both the number of

detected genes and the number of reads per cell are positively correlated to PC1. We

regress out the number of total reads per cell and perform a new PCA projection seen in

4.5. As expected the variation explained by PC1 no longer correlates to the number of

reads.
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Figure 4.2: 4.2a) Kernel density estimates for number of genes detected per cell (n genes),
number of reads per cell (n counts) and percent mitochondrial reads per cell (per-
cent mito). 4.2b) Number of genes detected versus number of reads per cell. 4.2c) Percent
mitochondrial reads versus number of reads per cell.
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Figure 4.3: 4.2a) Kernel density estimates after filtering for number of genes detected per
cell (n genes), number of reads per cell (n counts) and percent mitochondrial reads per
cell (percent mito). 4.2b) Number of genes detected versus number of reads per cell after
filtering. 4.2c) Percent mitochondrial reads versus number of reads per cell after filtering.

Figure 4.4: Projection of the data set into the PC1,PC2 plane. The cells are colored by
number of reads (n counts), the number of detected genes (n genes), fraction of mito-
chondrial reads (percent mito) and batch id (library id).
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Figure 4.5: Projection of the data set into the PC1,PC2 plane after linear regression on
the number of reads. The cells are colored by number of reads (n counts), the number of
detected genes (n genes), fraction of mitochondrial reads (percent mito).

4.3 Pseudotime Modelling

Here, We will model the gene expression levels in our data set as a function of cyclic

time. Proliferating cells will be identified by scoring them against marker genes. The

proliferating cells will then be sorted to represent their order with respect to the cell

cycle.

4.3.1 Pseudotime Ordering

Here, 105 of the marker genes are present as highly variable genes (14 G1, 47 S, 74 G2/M).

The score for each phase is calculated and we perform the PCA projection. In Figure 4.6

we see the resulting projection into the PC1,PC2 plane colored by the scores to each of

the phases and the assigned phase for each cell. From the PCA projection, we can see

three distinct clusters and that each cluster is correlated to high score in one of the three

phases. In the PC1 component, the clusters with high scores in each of the phases are

separated. A high score in G2/M is related to low values in PC1 and high G1 scores to

a higher value. S lies between. Most of the variation related to the cell cycle seems to

be explained by the PC2 component, where a low PC2 component is related to a high

score for S and a high PC2 component is related to a high G2/M score. Both components

captures variation related to the cell cycle and the three clusters with a high phase score

form a triangular pattern in the PC1,PC2 plane.

The data set consists of 577 cells after filtering, of which 157 cells are classified as G1, 215
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as S and 205 as G2/M. Figure 4.7 shows a new projection of the data set after filtering

by the phase scores. The three clusters are now more distinct. We calculate the angle of

the remaining cells in the PC1,PC2 plane. The cells are sorted accordingly and assigned

an order in the pseudotime.

Figure 4.6: Projection into the PC1,PC2 plane of the data set with the highly variable
marker genes as input. The plots are colored by G1 score, S score, G2/M score and
assigned phase.

Figure 4.7: Projection into the PC1,PC2 plane of the data set after filtering by the phase
scores. The plots are colored by G1 score, S score, G2/M score and assigned phase.

4.3.2 Phase Distribution Model

Figure 4.8 shows the number of cells per phase within each bin along the pseudotime

ordering together with the linear curves representing the fraction of cells within each

phase. The ordering has been shifted to align the G2/M-G1 boundary at zero. By

intersecting the lines, the boundary for G1-S is found to be located at order 143 and the

boundary for S-G2/M is located at order 368.

Figure 4.9 shows the comparison of the mean expressions of a set of marker genes within

each of the modelled phases. Figure 4.9a shows the mean expression of the G1 marker

genes. Six out of the ten present marker genes have their highest mean expression in the

modelled G1 phase, but two of these show low overall expression. In Figure 4.9b, we see
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that the marker genes for S does slightly better. Eight of the marker genes have their

highest mean expression in the modelled S phase and two have their highest expression in

the modelled G1 and G2/M phase. For the G2 and G2/M genes in Figure 4.9c and 4.9d,

all 21 genes have their highest expression in G2/M. In total 35 of 41, or ∼ 85%, of the

selected marker genes have their highest mean expression in their corresponding modelled

phase in the pseudotime ordering.
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Figure 4.8: Pseudotime ordering for HaCat cells. 4.8a) Number of cells per phase
for each bin of size 20 through the pseudotime ordering of the cells. 4.8b) Linear curves
representing the fraction of cells in each phase along the pseudotime ordering.
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Figure 4.9: Mean expressions for HaCat cells. Mean expression of marker genes
in the modelled phases along the pseudotime ordering. The following shows the mean
expressions for 4.9a) G1 marker genes. 4.9b) S marker genes. 4.9c) G2 marker genes.
4.9d) G2/M marker genes.

4.4 Modelling Gene Expression with Cubic Smooth-

ing Splines

From the acquired ordering of the cells, we want to model their gene expressions. We

apply the strategy outlined in Chapter 3.7 to obtain the spline model for the genes in our
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data set. First, we must determine a optimal smoothing parameter for our data set. We

find the optimal smoothing parameter to be p = 0.15. The objective function is presented

in Figure 4.10. The resulting model is presented in Figure 4.11 together with a scatter

plot for the expression levels in each cell along the pseudotime ordering for each of the

presented genes.

We see that some of the marker genes have cells that show similar expression levels

throughout the ordering. Our spline model is still able produce cyclic expression because

distribution of zero expressions varies. There are also examples of marker genes that have

very distinct activity in their modelled phase. For example PLK1 and AURKA in G2.

Figure 4.10: Smoothing parameter for HaCat cells. Scaled 2-norm of the residuals,
r(p), together with the curvature c(p) and the objective function g(p).
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Figure 4.11: Gene expression model for HaCat cells. Scatter plots of the gene
expression through the pseudotime ordering compared to the resulting spline model for
each of the genes. The scatter plot is colored by the cell classification in Chapter 4.3.1
while the spline model is colored by modelled phase after the time. For the scatter plot,
cells classified as G1 are green, red for S and blue for G2/M. In the spline model, the
color is green between 0 and 11 hours (G1), red for 11 to 19 hours (S) and blue for 19
to 24 hours (G2/M). 4.11a) Shows the comparison for a selection of M/G1 (PTTG1) and
G1 marker genes. 4.11b) Shows the comparison for a selection of S marker genes. 4.11d)
Shows the comparison for a selection of G2 marker genes. 4.11c) Shows the comparison
for a selection of G2/M marker genes.
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4.5 Identification of Cell Cycle Periodic Genes

We now wish to identify the genes in our data set that show significant cyclic expression

profiles. We use the spline model obtained for our data set and subsample all 18331

genes in our data set on hourly time points. Our input to the PLS will then consist

of 25 observations and 18331 variables. Our response variables in the PLS will be one

sine and one cosine function with a period of one cell cycle, 24 hours. To generate the

observations, the sine and cosine are evaluated at the modelled timepoints corresponding

to the generated observations for the genes.

We find a cut-off for the length in the loading plane, corresponding to a p-value 5% to be

r = 1.27. There are 1239 genes in our dataset that show significant cell cycle periodicity.

In Figure 4.12a and 4.12b the position of gene in the loading are presented before and

after filtering. Figure 4.12c shows the initial phase angle distribution of the marker genes

and Figure 4.12d shows the corresponding cell cycle phase assignments. Because of out-of-

order phase assignments, the variances in the distribution are adjusted using the method

in Chapter 3.8.3. The variance for G2 is increased in 9 iterations. For S, we need 8

iterations. The result is shown in Figure 4.12e and 4.12f. We see that the distributions

for G2 and G2/M are almost identical. This indicates that their marker genes show similar

expression patterns. There are 16 genes that are not captured by any of the marker gene

distributions. By inspecting the spline model of these 16 genes, we find them to be G1

and assign the phase manually. The end result can be seen in Figure 4.13.

The number of assigned genes to each of the cell cycle phases can be seen in Table 4.5.

Over half of the genes are assigned to the S phase. Of the 128 marker genes used, 111

are present as significant cell cycle periodic genes in this data set. Of these 111 marker

genes, 69 has been assigned their expected phase.

Figure 4.14 shows the top eight genes within each classified cell cycle phase. For M/G1 we

see that many of expression profiles among the top eight resembles those we would expect

from G2 or G2/M. CCNB1 is known to be G2/M but here it is assigned to M/G1. The

other phases presents expression profiles that clearly resembles their phases, but in G2

and G2/M we can see that both have assigned genes that are known to be in a neighboring

phase. The expression profiles from the top eight G2 and G2/M are hard to distinguish
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visually. From the phase assignment, we know that their marker genes showed similar

expression profiles. It is therefore not surprising that we have boundary issues in the

assignments between the phases. In S we also have one marker gene from a neighboring

phase, but its expression profile is clearly S.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.12: PLS regression on the HaCat cells. The phases appended with -shift

is where we have accounted for the periodicity of the phases. 4.12a) Position of all 18331
in the loading plane. The most significant gene, TOP2A, is marked in yellow. 4.12b) The
position in the loading plane of the 1239 genes that show significant cell cycle periodicity.
The most significant gene, TOP2A, is marked in yellow. 4.12c) The initial phase angle
distribution of the marker genes. 4.12d) The initial assignment of cell cycle phase. 4.12e)
The phase angle distribution of the marker genes after adjusting variances according to
out-of-order assignments. 4.12f) Assignment after adjusting variances according to out-
of-order assignments.
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Figure 4.13: The final cell cycle phase classification for all significant genes in the HaCat
data set.

Table 4.5: The number of assigned genes to each of the cell cycle phases.

Cell Cycle Phase Assigned Genes

S 783

G2 179

G2/M 101

G1 94

G1/S 58

M/G1 24
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(a) Top 8 M/G1 genes. (b) Top 8 G1 genes.

(c) Top 8 G1/S genes. (d) Top 8 S genes.

(e) Top 8 G2 genes. (f) Top 8 G2/M genes.

Figure 4.14: Top cyclic genes for HaCat cells. Top 8 genes within each of the
assigned phases, ranked by their length in the PLS loading plane. Genes prepended with
a * marked in blue identify marker genes with their correct phase. Genes prepended with
∼ marked in red signify marker genes that are not classified as expected.

4.6 Functional Enrichment

We perform a functional enrichment anlysis of the genes found to have significant cell

cycle periodicity in the previous chapter. We perform the enrichment on each of the

assigned phases. We present only the top 10 significant terms, where they exist. More

extensive tables can be found in Appendix C.3.

The significant terms in M/G1 seems to be mostly related to functions associated with

late G2/M. We know from the previous inspection of expression profiles that many of the

genes assigned to M/G1 resembled more the behaviour of G2/M. Hence, significant terms
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for G2/M here should therefore be expected.

No significant terms for the genes assigned to G1 is found for this data set and the

significant terms found in G1/S has no obvious explaination. The significant terms for

genes assigned to S clearly shows expected functions for this phase. From distributions

in the phase assignment, we remember that G2 and G2/M were close to identical. A

consequence of this is that there is left a gap between G2 and S where ideally G2 should

have a distribution present. Hence, genes that are towards late G2 can be assigned to S.

Effects from this can also be viewed from the significant terms in G2 and G2/M where

both show similar terms. These are terms that represent functions assoicated with G2/M.

Table 4.6: The 10 most significant terms in the functional enrichment of HaCat cells
classified as M/G1 by phase distribution of marker genes.

Table 4.7: Significant terms in the functional enrichment of Hacat cells classified as G1/S
by phase distribution of marker genes.
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Table 4.8: The 10 most significant terms in the functional enrichment of Hacat cells
classified as S by phase distribution of marker genes.

Table 4.9: The 10 most significant terms in the functional enrichment of Hacat cells
classified as G2 by phase distribution of marker genes.

Table 4.10: The 10 most significant terms in the functional enrichment of Hacat cells
classified as G2/M by phase distribution of marker genes.
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4.7 Additional Data Sets

We present the results obtained by applying our method on the two data sets described in

Chapter 3.1.4. We perform sequence alignment using STARsolo with the same parameter

set as for the HaCat cells. In addition, we use the same reference genome and the same

gene annotation file.

4.7.1 293t Results

We apply our method for identification of cyclic gene expressions on the 293t cells. The

cells origin are described in Chapter 3.1.4.

Pseudotime Ordering

After initial pre-processing and quality control (see Appendix A.1), we are left with 11447

cells and 5430 genes classified as highly variable. Here, only 18 of the marker genes are

present as highly variable genes. Three are G1, six are S and nine are G2/M. The cells

are given a score for each of the cell cycle phases. From Figure 4.15a, we see that there

are some peculiar patterns from the PCA analysis. As we can see in Figure 4.15b, these

patterns are not explained by any of the usual quality control metrics. PC1 seems to be

related to the cell cycle phase scores, with G2/M associated with higher PC1 values, S

score with lower PC1 values and G1 in the middle.

After filtering on the phase scores, we can see that the projection in 4.15c looks much

better with a clear separation of all three phase scores. We note that there are still some

effects left. Especially for the G1 cells, where two clusters can be seen. We are left with

a total of 629 cells where 356 are in G1, 195 in S and 78 in G2/M. The cells are ordered

by their angle and we calculate each cells corresponding time point in the estimated 24

hour duration of the human cell cycle. Additional figures can be found in Appendix A.2.

Since these patterns were not present during pre-processing, we suspected that they might

occur due to the low input of marker genes in our PCA analysis. In Appendix B.1, we

can see the results of performing a PCA on the HaCat cells with the same set of marker
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genes that were present in 293t. We observe similar behaviour.
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Figure 4.15: PCA analysis of the 293t cells. The PCA projection of the 293t data
set with only the highly variable marker genes as input. 4.15a) The PCA projection after
cell cycle phase scoring. The projections are colored by G1 score, S score, G2/M score
and assigned phase. 4.15b) The PCA projection colored by number of reads, numbder of
detected genes, percent mitochondrial reads and library id. 4.15c) The PCA projection
after filtering on cell cycle phase score.

Gene Expression Modelling

We find an optimal smoothing parameter of p = 0.15 for the smoothing cubic spline model

in this data set. Figure 4.16 show the spline model applied to a selection of marker genes.

We observe some artefacts in the scatter plots where some expression levels are clustered

together in stripes. This is most visible in TAF1 and FOXO4. The effect seems to be

mostly located in the G1 phase. This is also where we found the most distinct patterns

in the PCA analysis of the 293t.
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The constant gene expression levels in the scatter plots are more present here than in the

HaCat cells, but that the spline still performs well due to distribution of zero expressions

in the ordering.
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(a) (b)

(c) (d)

Figure 4.16: Gene expression model for 293t cells. Scatter plots of the gene expres-
sion through the pseudotime ordering compared to the resulting spline model for each
of the genes. The scatter plot is colored by the cell classification in Chapter 4.3.1 while
the spline model is colored by modelled phase after the time. For the scatter plot, cells
classified as G1 are green, red for S and blue for G2/M. In the spline model, the color is
green between 0 and 11 hours (G1), red for 11 to 19 hours (S) and blue for 19 to 24 hours
(G2/M). We show a comparison for a selection of marker genes in 4.16a) M/G1 (PTTG1)
and G1. 4.16b) S. 4.16d) G2. 4.16c) G2/M.
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Cell Cycle Periodic Genes

We use the spline model to subsample the gene expressions in the data set on an hourly

interval and apply the PLS regression to a cell cycle periodic sine and cosine response.

With a significance level corresponding to a p-value of 5%, we find the cutoff value for

the distance from the origin in the loading plane to be r = 0.92. There 1295 genes that

are above this level. Figure 4.17 shows the progression of the cell cycle phase assignment

in the loading plane, using the same method as for the HaCat cells. The variance for

the G2 distribution must be increased over 24 iterations before there are no out-of-order

assignments between S and G2. As we see in Figure 4.17e and 4.17f, using this method

on the out of order assignments in G1/S and S is futile. The reason for this is that the

mean of the phase distribution for the G1/S marker genes lies between S and G2. This is

solved by admitting that this method is unable to separate the two phases in the loading

plane and we combine the assignments from both to one phase, S. The final assignments

in the loading plane can be seen in Figure 4.18.

The number of genes assigned to each phase can be seen in Table 4.11. Genes assigned to

G2/M make up roughly 1/3 of all the significant genes in the data set. Of the 128 marker

genes, 94 show significant cell cycle periodicity, where 65 are assigned to their expected

phase. Figure 4.19 shows the top eight genes in each phase, ranked by their distance from

the origin in the loading plane.

The top eight genes in M/G1 show much of the same behaviour as for the HaCat cells.

Many show expression profiles expected of G2/M. Three of the genes here are also known

to be G2/M and one is known to be S. The other phases do better. Also here, G2 have

marker genes that are known to be in G2/M while G2/M have seven marker genes among

the top eight that are classified to their expected phase.

Also here we see that phase assignment by the probability distribution of marker show

issues with assignments in the boundary of the cell cycle phases.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.17: PLS regression on the 293t cells. The phases appended with -shift is
where we have accounted for the periodicity of the phases. 4.17a) Position of all 18957
in the loading plane. TOP2A, is marked in yellow. 4.17b) The position in the loading
plane of the 1295 genes that show significant cell cycle periodicity. TOP2A is marked in
yellow. 4.17c) The initial phase angle distribution of the marker genes. 4.17d) The initial
assignment of cell cycle phase. 4.17e) The phase angle distribution of the marker genes
after adjusting variances according to out-of-order assignments. 4.17f) Assignment after
adjusting variances according to out-of-order assignments.
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Figure 4.18: The final cell cycle phase classification for all significant genes in the 293t
data set.

Table 4.11: The number of assigned genes to each of the cell cycle phases for the 293t
cells.

Cell Cycle Phase Assigned Genes

G2/M 461

S 364

G2 288

G1 94

M/G1 88
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(a) Top 8 M/G1 genes. (b) Top 8 G1 genes.

(c) Top 8 S genes. (d) Top 8 G2 genes.

(e) Top 8 G2/M genes.

Figure 4.19: Top cyclic genes for 293t cells. Top 8 genes within each of the assigned
phases, ranked by their length in the PLS loading plane. Genes prepended with a *
marked in blue identify marker genes with their correct phase. Genes prepended with ∼
marked in red signify marker genes that are not classified as expected. Note: In this data
set G1/S and S was merged into one phase, S, because the G1/S distribution was out of
order

Functional Enrichment

We perform functional enrichment using gprofiler2 for all the significant genes in each of

the assigned phases. We present only the top 10 significant terms, where they exist. More

extensive tables can be found in Appendix C.4.

There are no significant terms for M/G1 and G1/S show one significant term, RNA

processing. This term is related to processing pre mRNA to mature mRNA. It is not

directly specific to cell cycle processes. For the genes in S, the top 10 significant terms are

strongly correlated to biological process involved in the synthesis of DNA. G2 also shows
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significant terms for RNA processing together with other mRNA production processes.

In addition, generic cell cycle terms are present and some that are more related to G2/M,

like mitotic cell cycle. G2/M shows significant terms that are expected in this phase.

Table 4.12: Significant terms in the functional enrichment of 293t cells classified as G1
by phase distribution of marker genes.

Table 4.13: The 10 most significant terms in the functional enrichment of 293t cells
classified as S by phase distribution of marker genes.

Table 4.14: The 10 most significant terms in the functional enrichment of 293t cells
classified as G2 by phase distribution of marker genes.
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Table 4.15: The 10 most significant terms in the functional enrichment of 293t cells
classified as G2/M by phase distribution of marker genes.

4.7.2 Jurkat Results

We apply our method for identification of cyclic gene expressions on the Jurkat cells. The

cells origin are described in Chapter 3.1.4.

Pseudotime Ordering

After pre-processing of the Jurkat cells (Appendix A.3), we are left with 12681 viable

cells and 5246 genes classified as highly variable. Only 13 of our marker genes are present

among the highly variable genes (three in G1, six in S and four in G2/M). The cell cycle

phase scores are calculated and we apply a filter based on the scores. Figure 4.20 shows the

resulting PCA projections before and after filtering, with only the highly variable marker

genes as input. Similar behaviour as for 293t cells and the HaCat cells in Appendix B.1

can be observed, but also here we are able to get a separation of the phases after filtering.

The cells are ordered based on their angle in PC1,PC2 plane and we assign them a time

point in the cell cycle. Additional figures are presented in Appendix A.4. We have 137

cells classified as G1, 102 for G2/M and 73 for S.
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Figure 4.20: PCA analysis of Jurkat cells. The PCA projection of the Jurkat data
set with only the highly variable marker genes as input. 4.20a) The PCA projection after
cell cycle phase scoring. The projections are colored by G1 score, S score, G2/M score
and assigned phase. 4.20b) The PCA projection colored by number of reads, number of
detected genes, percent mitochondrial reads and library id. 4.20c) The PCA projection
after filtering on cell cycle phase score.

Gene Expression Modelling

We find an optimal smoothing parameter of p = 0.25 for the Jurkat cells. Figure 4.21

shows the spline on a selection of marker genes in each of the phases. The same trends as

in the HaCat and 293t cells are present. The variation of the modelled gene expression

patterns are mainly driven by the fraction of zeros within each region. Both CCNG2 and

CHAF1B show very distinct activity in the S phase. Many of the other marker genes

have distinct bumps around the same timepoint at ∼9 hours, but the spline model show

distinct activity in all phases.
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(a) (b)

(c) (d)

Figure 4.21: Gene expression model for Jurkat cells. Scatter plots of the gene
expression through the pseudotime ordering compared to the resulting spline model for
each of the genes. The scatter plot is colored by the cell classification in Chapter 4.3.1
while the spline model is colored by modelled phase after the time. For the scatter plot,
cells classified as G1 are green, red for S and blue for G2/M. In the spline model, the color
is green between 0 and 11 hours (G1), red for 11 to 19 hours (S) and blue for 19 to 24
hours (G2/M). The comparison is presented for marker genes in 4.21a) M/G1 (PTTG1)
and G1. 4.21b) S. 4.21d) G2. 4.21c) G2/M.
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Cell Cycle Periodic Genes

A PLS regression is performed on the data set. Again, the spline model for all the genes in

the data set is subsampled on hourly intervals and the resulting data set of 25 observations

is used as input to the PLS. We find a cutoff of r = 1.18, corresponding to a significance a

p = 5%, for the distance from the origin in the PLS loading plane. A total of 1478 genes

show significant cell cycle periodicity. The significant genes are assigned a cell cycle phase

according to the phase angle distribution of the marker genes. The result can be seen in

Figure 4.22. Because of out of order assignments with G1/S and S, the variance of G1/S

is increased incrementally by 25% over the course of nine iterations. As with the other

data sets, marker genes in G2 and G2/M have similar distributions also for the Jurkat

cells. We are still left with one region of genes that are not assigned. This region lies

between M/G1 and G1/S. By inspection, we confirm that these genes show expression

profiles expected from G1 and assign them manually to this phase. The final result is

presented in Figure 4.23.

The number of genes within each cell cycle phase is presented in Table 4.16. Of the 128

marker genes, we have 88 present as significant cell cycle periodic genes. Of these 88,

56 are classified to be in their expected phases. Figure 4.24 presents the top eight genes

within each of the assigned phases, ranked by their length in the loading plane.

M/G1 has genes assigned from both G2/M and G1 and several of the expression profiles

here show G2/M signatures. The rest of the phases show expression profiles that is

expected from their respective phases, but the phase assignments yield boundary issues

also here.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.22: PLS regression on the Jurkat cells. The phases appended with -shift

is where we have accounted for the periodicity of the phases. 4.22a) Position of all 17867
in the loading plane. TOP2A, is marked in yellow. 4.22b) The position in the loading
plane of the 1478 genes that show significant cell cycle periodicity. TOP2A is marked in
yellow. 4.22c) The initial phase angle distribution of the marker genes. 4.22d) The initial
assignment of cell cycle phase. 4.22e) The phase angle distribution of the marker genes
after adjusting variances according to out-of-order assignments. 4.22f) Assignment after
adjusting variances according to out-of-order assignments.
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Figure 4.23: The final cell cycle phase classification for all significant genes in the Jurkat
data set.

Table 4.16: Number of assigned genes to each of the cell cycle phases for the Jurkat cells.

Cell Cycle Phase Assigned Genes

S 598

G2 270

G1/S 249

G2/M 245

M/G1 89

G1 27
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(a) Top 8 M/G1 genes. (b) Top 8 G1 genes.

(c) Top 8 G1/S genes. (d) Top 8 S genes.

(e) Top 8 G2 genes. (f) Top 8 G2/M genes.

Figure 4.24: Top genes for Jurkat cells. Top 8 genes within each of the assigned
phases, ranked by their length in the PLS loading plane. Genes prepended with a *
marked in blue identify marker genes with their correct phase. Genes prepended with ∼
marked in red signify marker genes that are not classified as expected.

Functional Enrichment

The significant genes in the Jurkat data set are analyzed using funtional enrichment with

gprofiler2 and a significance threshold of 0.05. We perform the analysis of the genes

phase-by-phase and the 10 most significant terms are presented, where they exist, in

Table 4.17-4.22. Extensive tables are presented in Appendix C.5.

Again we find G2/M related terms for the genes in M/G1. Genes in G1 have significant

terms for G0-G1 regulation. In G1/S we find terms related to G1/S transisition together

with DNA replication and DNA repair in addition to general cell cycle terms. For S we

have RNA processing other terms related to RNA production together with general cell
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cycle terms and one term for DNA replication. G2 has its majority of terms related to

RNA production. For genes in G2/M, several terms for cell division are present together

with general cell cycle terms.

Table 4.17: The most significant terms in the functional enrichment of Jurkat cells clas-
sified as M/G1 by phase distribution of marker genes.

Table 4.18: Significant terms in the functional enrichment of Jurkat cells classified as G1
by phase distribution of marker genes.

Table 4.19: The 10 most significant terms in the functional enrichment of Jurkat cells
classified as G1/S by phase distribution of marker genes.
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Table 4.20: The 10 most significant terms in the functional enrichment of Jurkat cells
classified as S by phase distribution of marker genes.

Table 4.21: The 10 most significant terms in the functional enrichment of Jurkat cells
classified as G2 by phase distribution of marker genes.

Table 4.22: The 10 most significant terms in the functional enrichment of Jurkat cells
classified as G2/M by phase distribution of marker genes.
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4.8 Aggregated Results

We will now analyze the combined results from the three data sets to identify genes with

consistent expression profiles in the HaCat, 293t and Jurkat cells. We find 169 significant

cell cycle periodic genes that are present in all three data sets. The mean of the upper

triangular correlation matrix is found for each of the genes and we apply a filter to the

genes based on this. The mean peak times of the common genes will be calculated from

the spline models and used to estimate the genes phase.

The frequency plot and kernel density estimate for the correlation factor are presented in

Figure 4.25. We use a cut-off to filter the bi-modal distribution observed. This corresponds

to a correlation factor of 0.7. By inspection, the gene with the lowest correlation factor

after filtering yields satisfactory results. After filtering, we are left with 138 genes that

have consistent expression profiles in all the data sets. Of these, 68 are marker genes,

which gives us 70 new candidate genes. The set of new candidate genes is further divided

into a list for genes with a mean peak time in S (11.0 ≤ µpeak < 19) and one for G2/M

(19.0 ≤ µpeak). None of the present genes have a peaktime in G1 (below 11.0). We find

that 34 of the 70 are assigned to S and 36 to G2/M.

The gene expression profiles for the top eight marker genes, new candidate genes in S and

new candidate genes in G2/M are presented in Figure 4.26-4.28. For the top eight genes

in S, we see that many of the genes have different characteristics between the data sets,

but that the trends are mostly consistent for all the expression profiles.

The top 15 genes in the marker genes, S and G2/M are listed in Table 4.23-4.25. The full

tables are provided in Appendix C.6.
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(a) (b)

Figure 4.25: Correlation factor. 4.25a) The frequency plot for the correlation factors
of the common genes for the three data sets. 4.25b) Kernel density estimate for the
correlation factor of the common genes for the three data sets.
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Figure 4.26: Top 8 marker genes ranked by mean correlation across datasets.
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Figure 4.27: Top 8 new candidate genes classified as S by mean peaktime across datasets,
ranked by mean correlation across datasets.
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Figure 4.28: Top 8 new candidate genes classified as G2/M by mean peaktime across datasets,
ranked by mean correlation across datasets.
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Table 4.23: Top 15 marker genes ranked by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

NUSAP1 3.58 0.99 21.82 1

BUB1 4.22 0.99 21.45 2

G2E3 4.30 0.99 22.29 3

PIMREG 3.58 0.99 22.40 4

KIF20A 2.33 0.99 22.13 5

EXO1 1.35 0.98 16.00 7

CCNB1 5.51 0.98 22.47 8

AURKA 5.25 0.98 22.13 10

NDC80 3.32 0.98 21.73 11

MCM6 2.97 0.98 15.18 12

PLK1 4.65 0.98 22.23 13

HMMR 3.83 0.98 21.90 14

NUF2 3.11 0.97 22.05 15

CCNE2 3.53 0.97 15.71 17

CENPF 5.56 0.97 22.31 20
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Table 4.24: Top 15 new candidate genes classified as S by mean peaktime across datasets
ranked by mean correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

HPRT1 1.58 0.96 17.19 25

ORC6 2.12 0.96 17.11 29

MCM10 2.48 0.94 15.74 50

RABIF 1.28 0.92 15.38 62

MCM3 3.16 0.91 14.91 68

PSMC3IP 2.13 0.90 14.73 72

PCLAF 4.01 0.90 14.63 76

BTG3 1.70 0.89 14.74 81

VRK1 1.90 0.89 18.55 82

ACD 1.82 0.89 16.14 83

UBE2T 2.91 0.89 18.59 84

CHAF1A 3.44 0.88 13.51 89

NUDT8 2.06 0.88 13.82 90

UROS 1.34 0.88 14.39 91

DNAJC9 2.62 0.88 15.74 92
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Table 4.25: Top 15 new candidate genes classified as G2/M by mean peaktime across
datasets ranked by mean correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

UBALD2 2.17 0.99 22.32 6

ARL6IP1 4.37 0.98 22.35 9

REEP4 1.58 0.97 21.89 16

SGO2 3.10 0.97 22.10 18

KNSTRN 2.92 0.97 22.09 19

VDAC3 1.61 0.96 19.10 26

ZWINT 2.35 0.95 19.84 34

MAD2L1 2.10 0.95 21.48 37

KPNA2 3.45 0.95 22.13 41

NAA50 1.70 0.94 19.38 47

DEPDC1B 1.83 0.93 21.56 56

SPC25 2.10 0.93 21.65 58

ASPM 4.01 0.91 22.47 63

PRR11 2.91 0.91 22.18 64

BUB3 2.62 0.91 21.38 66

4.8.1 Functional Enrichment

Functional enrichment is performed by using gprofiler2. We perform the queries on the

list of new candidate genes assigned to S and to G2/M. All the significant terms are

presented in Table 4.26 and in Table 4.27.

Here both phases show significant terms related to their functions in the cell cycle together

with generic cell cycle terms. For S, we have DNA replication related terms. Pyrimidine

nucleoside triphosphate metabolic process is related to production of DNA compounds.

For G2/M, chromatid and chromosome segregation terms are the most significant. We

also have terms related to cell division. This indicates that several of our new candidate

genes have known cell cycle functions.
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Table 4.26: Significant terms in the functional enrichment of the new candidate genes
classified as S by mean peaktime across data sets.

Table 4.27: Significant terms in the functional enrichment of the new candidate genes
classified as G2/M by mean peaktime across data sets.
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Discussion

5.1 Sequence Alignment

The gene expression quantifaction from STARsolo and CellRanger yield almost identi-

cal results in both the number of reads per biotype and the number of genes detected

per biotype. By manipulating the paramterers of STASRsolo, we were able to reduce

the amount of reads and genes mapped to pseudogenes significantly while the numbers

changed little for protein coding reads and for genes. The decrease in reads and genes

mapped to pseudogenes was reduced slightly by restricting the number of mismatched

bases allowed. As expected, when the number of allowed multimapping alignments was

reduced, pseudogenes decreased drastically. Hence, a strict multimapping policy for single

cell alignments might be a good policy in single cell experiments. A draw back for Cell-

Ranger is the lack of support for altering the parameters to alignment procedures. Users

have little to no freedom to tweak parameters according to their particular experiments.

In the benchmark metrics we also find favourable results for STARsolo. It was capable

of producing identical output at a 11.54 speedup in runtime. We were able to improve

the runtime for CellRanger by disabling the secondary analysis. This gave a speedup

of 20.7%, but STARsolo still outperforms it by a factor of 9.57 in runtime. CellRanger

also produce a high volume of I/O during execution. This volume is not present in the

resulting output files of CellRanger. It consists of intermedite files that are used during

118
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runtime. It is clear that STARsolo outperforms CellRanger on all the measured metrics

in this benchmark, but many users may find the secondary analysis available through

CellRanger useful.

5.2 Pseudotime Ordering

With the exception of the HaCat cells, there are some clear issues with distinct artefacts

in the PCA that is the basis of the ordering. The observed structures does not seem to

be related to the common nuisance factors like total number of reads or batch effects.

By performing a PCA on the HaCat cells with a low input of marker genes, we were to

reproduce the behavior. In spite of the visible effects, the method is still able to produce

an ordering for the cells inn all three data sets.

Also in the comparison of the mean expression levels within each modelled phase, the

HaCat data set shows the best performance. Here, 85% of the marker genes have their

highest mean expression in the expected phase against 70% for 293t and 78% for Jurkat.

The issue is mainly with predicting the G1 marker genes and for 293t and Jurkat, to some

extent, S. For G2/M, all data sets show an almost perfect prediction with the expression

levels. The exception being for 293t where two G2/M marker genes show higher mean

expressions in other phases.

The weaker results in G1 and S might indicate some issues with classification of G1

and S cells, or they might indicate that the marker genes are not perfectly compatible

with this type of experiment. Some of the marker genes show very little differences in

variability in expresseion levels between the modelled phases. Broadly, we evaluate the

overall performance of this method to be good enough for our purposes, with some issues

that needs further research.
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5.3 Gene Expression Modelling

The optimal smoothing parameter found for all data sets lie in the lower ranges (p = 0.15

for HaCat and 293t, p = 0.25 for Jurkat). This is a weak indication that our ordering

method is able to produce close to smooth trajectories for the control points of the gene

expression levels of our marker genes.

From the scatter plots of the gene expressions per cell, we could see that for several of the

marker genes the expression values for the cells that have a non-zero expression do not

change significantly throughout the ordering. In these genes, our method for producing

the control points are still able to model variability through the phases of the ordering.

This is because the density of cells that have zero expression varies through the time

intervals in the ordering. Hence, when the means from the time intervals that are used

as control points for the splines, we are able to model the variation in a way that is more

conforming to the expected behaviour of a cyclic gene expression. At the same time,

some marker genes in all data sets of genes that do show very distinct expression levels,

exclusively in their respective phases.

We also note that for the scatter plots in 293t and Jurkat, we can observe some artefacts

in the expression levels in the form stripes. This does affect the spline model in itself,

but may point to some issues with the ordering. These stripes may very well be a direct

effect from the patterns observed in the PCA in the two data sets.

5.4 Identification of Cell Cycle Periodic Genes

Our method is able to identify a similar amount of periodic gene expressions in all three

data sets. We found 1239 for Hacat, 1295 for 293t and 1478 for Jurkat. These are at the

same levels, or higher, than reported findings in previous synchronization experiments.

For example, in [Pen+13] 1249 periodic expressions were found and 874 are reported in

[Whi+02].

The method used for phase assignments mostly produce assignments that are in order

with respect to the cell cycle. In all three data sets G2 and G2/M have very similar
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distributions which leads to many of the marker genes in these two phases being miss-

assigned to one or the other. Most phases show some miss-assignments of marker genes in

almost all phases. For the 293t data set, the mean phase angle of the G1/S marker genes

were between the mean phase angle of G2 and S. Hence, this assignment method failed

to separate G1/S and S and the two phases merged into S. We also observe that there

are issues with the assignments of M/G1 in all three data sets. Many of the expressions

assigned to M/G1 show profiles more consistent with G2 or G2/M. This method for

classification has some issues regarding boundaries between all cell cycle phases, but it is

mostly able to predict a phase that fits with the observed expression profile.

All three data sets show different distributions in the number of assigned genes to each

phase, but most of the periodic genes are classified to S, G2 or G2/M. The number of

genes assigned to G1 or M/G1 are consistently among the lowest across all data sets.

5.5 Functional Enrichment

The biological process enrichment generally gives expected significant terms for S and

G2/M in all three data sets. For S, most significant terms are related to DNA replication,

DNA repair, chromosome organization. For G2/M, we typically see terms for cell division,

nuclear division, organelle fission, chromatid and chromosome segregation and mitotic cell

cycle. For the HaCat data set, significant terms in G2 are more similar to what we find

in the enrichment for G2/M in the data sets, while for 293t and Jurkat we find significant

terms for RNA splicing and RNA processing.

From our enrichment for biological processes, we see that our method is able to detect

genes related to cell cycle and largely assign phases conforming to their biological func-

tions. Some of the anomalies observed in our enrichment come from the boundary issues

in phase assignment discussed in the results. This is most clear from the enrichment of

M/G1. There is very little biology confirmed by the enrichment of G1 genes, but G1 is

also the phase that generally has the fewest assignments in our experiment.
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5.6 Aggregate Results

By requiring consistency in the expression profiles among the data sets analysed, we

reduce the set of interest down to 138 genes. Because of our similarity requirement, we

can confidently assign a phase by their modelled peaktime. This eliminates the phase

boundary issues observed by the assignment by the phase probability density functions.

The functional enrichment analysis of these sets yields fewer significant terms because we

have less genes as input in our queries. The retrieved terms are strongly related to their

respective phases without any noise from neighbouring phases. This indicates that many

of our new candidate genes have known cell cycle functions. It also indicates that phase

assignment by modelled peaktime from the smoothing cubic spline model may be a better

strategy.
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Conclusion

In our analysis, we have shown that STARsolo and CellRanger produce almost identical

results and that STARsolo does this in a highly effective manner. CellRanger provides

functionality for quality reports and secondary analysis that does not exist in STAR-

solo. CellRanger is arguably more user friendly than STARsolo, but for many users the

technicalities of STARsolo will be straightforward. The fast run time of STARsolo and

its parameter flexibility is a huge benefit for developers that want to experiment with

different parameters and investigate the effects on their data.

By using single cell RNA-seq data from HaCat, 293t and Jurkat cells, we have derived

a model for identifying genes that show cyclic expression profiles with period matching

the cell cycle. We use dimensional reduction through Principal Component Analysis with

marker genes as input variables. By investigating expression levels in the marker genes

with a scoring scheme, cells that are proliferating are identified. Each cell is assigned

an order with respect to the cell cycle by using the angles in the principal component

plane. The strategy is shown to be sensitive for a low input of marker genes, producing

clustering artefacts in the Principal Component Analysis. The method is able to produce

a ordering of the cells in spite of the visible artefacts, implying that the method is robust.

We have developed method using smoothing cubic splines to model the gene expression

levels through the ordering as a function of cyclic time. The method is able to produce

smooth expression profiles that are periodic in pseudotime.
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Partial Least Squares regression is used to identify genes that show cyclic expression profile

with period matching the cell cycle. Here, the developed method uses the smoothing

cubic spline model of the gene expression profiles as denoiser. The smoothing cubic spline

models of each gene expression is subsampled on hourly intervals through the pseudotime

and used as the input observation for the Partial Least Squares regression. We use a

sine and cosine function with period equal to the cell cycle as the response variable. The

sine and cosine are evaluated at the timepoints corresponding to the observations used

for the smoothing cubic smoothing spline model. The genes are analyzed in the plane

of the scaled loading weights retrieved from the Partial Least Squares regression model.

We determine a threshold for the distance from the origin in this plane corresponding

to a False Discovery Rate of 5% by performing a permutation analysis on the response

variables. By obtaining the phase angle probability density function of the marker genes

in the plane of the scaled loading weights, we assign each gene above the threshold a their

most probable phase. This method of phase assignment has been shown in this study to

produce miss-assignments of marker genes to neighboring phases in all three data sets.

The method is able to determine cell cycle periodic genes in the same numbers as has been

previously reported from bulk RNA sequencing synchronization experiments. We find

1239 cell cycle periodic genes for the HaCat cells, 1295 for 293t and 1478 for the Jurkat

cells corresponding to a p-value of 5%. We perform a functional enrichment analysis

for biological processes on the cell cycle periodic genes in each data set for each of the

assigned phases. At a significance threshold corresponding to p = 5% genes assigned to S

and G2/M generally retrieves significant terms related phase-specific processes across all

data sets. With few exceptions, the enrichment analysis retrieves cell cycle related terms

for most phases in all data sets. M/G1 and G2 frequently have significant terms from

G2/M as an effect of the miss-assignments from phase angle probability density function.

The abundance of significant terms related to the cell cycle shows that our method is able

to identify genes with known cell cycle functions.

A set of new candidate genes are produced by performing a correlation analysis on the

gene expression profiles from the smoothing cubic spline model on significant cell cycle

periodic genes that are present in all three data sets. A requirement for similarity is

found by analyzing the kernel density estimate distribution of the mean upper triangular
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correlation matrix for each of the genes present in all three data sets. We find a threshold

for the mean correlation factor by filtering the bi-modal distribution observed. In total

138 genes that are above the mean correlation threshold, of which 68 are among our

marker genes. The 70 new candidate genes are assigned phase by the mean peaktime

obtained from the three smoothing cubic spline gene expression models. We assign 34

genes to S and 36 to G2/M. Functional enrichment analysis is performed on the set of

new candidate genes in each of the phases. Here, all significant terms are either general

terms or specific to the functions related to the respective cycles.

In this experiment we have derived a method for identifying cell cycle periodic genes

within a significance threshold using single cell RNA-seq data. The method for obtaining

a smoothing cubic spline model for gene expression profiles through pseudotime has proven

to be robust across all three data sets. Two different strategies for assigning cell cycle

phase to genes with significant cell cycle periodic expressions have been developed. In

this process, we have developed a library of utility routines. These are published and are

freely available together with working examples implemented in jupyter notebooks and

data. All significant cell cycle periodic genes HaCat, 293t and Jurkat cells are published

together with the set of genes present in all three data sets.



Chapter 7

Future work

In our experiments, we saw that the pseudotime ordering based on PCA was sensitive to a

low input of marker genes. By utilizing other techniques, we can omitt the requirement of

marker genes completely. Single cell RNA-seq is a field of rapid technological increments

and new software emerge weekly. During the work on this experiment software such has

Cyclum[Lia+19] has emerged. Cyclum uses a machine learning approach that is claimed

to be able to efficiently infer latent cell-cycle trajectories from scRNA-seq gene expres-

sion data by characterizing circular trajectories in the high-dimensional gene expression

space. Cyclum is implemented in TensorFlow[Aba+16] which is a portable computing

environment that can easily be run on Graphical Processing Units.

Some of the steps in the methods from the utility library developed for this experiment

should also be automated. This should be a fairly straight forward task. Most parts of the

method run automatically with parameters that are dynamically set based on output from

previous steps. The aligning of G1 to start at order zero after the phase angle assignment

in the principal component has only been semi-automated. The user must specify how

many orders should be shifted and in which direction. The user must also specify if the

order should be reversed. The cell cycle phase assignment of the significant cell cycle

periodic genes are also semi-automated. If full automation is achieved, the workflow can

be implemented as a pipeline. This allows for easily acquiring of significant cell cycle

periodic gene expressions from more data sets.
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In this experiment, the results from each of the data sets was only analyzed using func-

tional enrichment. This confirmed that we were able to retrieve known cell cycle genes

by our method, but the exciting potential lies in analyzing the gene expressions that are

not known to have particular functions. These should be identified and further analyzed.

When analyzing the genes that were present in all three data sets, we saw the mean

peaktime performed better than assignment by phase angle probability density function.

A new analysis should be done within each of three data sets to determine if this is more

stable approach. The overlap analysis has the strength of using the mean peaktime across

all three data sets for each gene, but in our analysis where we compared the top eight genes

in each phase in the data sets, we saw many examples on genes that were classified to a

phase but had the distinct characteristics from another phase in its expression profiles.

A similar correlation analysis as was done in this experiment could also be repeated by

analyzing the overlapping genes from the data sets in pairs. This would enable us to

expand our list of candidate genes. These candidate genes can in turn be used as marker

genes in new experiments to, both to test their validity and to investigate if they will

yield better results.



Appendix A

Extra Material

A.1 Pre-Processing of 293t cells

After initial filtering, we have 11978 viable cells and 18957 detected genes. Figure A.1

shows kernel density estimates for detected genes, number of reads and percent mito-

chondrial reads together with scatter plots for number of reads against detected genes

and number of reads against percent mitochondrial read. Figure A.2 shows the same

plots after applying a hard filter on 2500 reads and 10% mitochondrial reads.

We are left with 11447 cells. The data is RPM normalized and transformed with log(RPM+

1). We find that the data set has 5430 genes that are classified as highly variable. We

use the data set with these genes as input to a PCA. In Figure A.3a we see that PC1

is correlated to a high number of reads and a high number of detected genes. There are

no clear patterns for the percent of mitochondrial reads nor are there any visible batch

effects. We perform a regression on the number of reads per cell and perform a new pro-

jection. The result can be seen in A.3b. Now, there are no clear patterns for the number

of reads or for the number of detected genes along any of the principal components.
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Figure A.1: Pre-processing of 293t cells. A.1a) Kernel density estimates for number
of genes detected per cell (n genes), number of reads per cell (n counts) and percent
mitochondrial reads per cell (percent mito). A.1b) Number of genes detected versus
number of reads per cell. A.1c) Percent mitochondrial reads versus number of reads per
cell.
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Figure A.2: Pre-processing of 293t cells. A.1a) Kernel density estimates after filtering
for number of genes detected per cell (n genes), number of reads per cell (n counts) and
percent mitochondrial reads per cell (percent mito). A.1b) Number of genes detected
versus number of reads per cell after filtering. A.1c) Percent mitochondrial reads versus
number of reads per cell after filtering.
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Figure A.3: PCA analysis of 293t cells. Projection of the data set into the PC1,PC2
plane. The cells are colored by number of reads (n counts), the number of detected genes
(n genes), fraction of mitochondrial reads (percent mito) and batch id (library id). A.3a)
Initial PCA projection of the 293t data set. A.3b) PCA projection after regressing out
number of reads.
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A.2 Pseudotime Ordering of 293t cells
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Figure A.4: Ordering of 293t cells. The pseudotime ordering after rearranging so that
the G2/M-G1 boundary is at zero. We find that the phase boundaries are located at
order 337 for G1-S and 545 for S-G2/M. A.4a) Number of cells per phase for each bin
of size 20 through the pseudotime ordering of the cells. A.4b) Linear curves representing
the fraction of cells in each phase along the psedotime ordering.
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Figure A.5: Mean expressions of 293t cells. Mean expression of marker genes in the
modelled phases along the pseudotime ordering. We use the full data set of all 18975
RPM normalized genes in the ordering. Roughly ∼ 70% of the marker have their highest
mean expression in the expected modelled phase. A.5a) Mean expressions for G1 marker
genes. A.5b) Mean expressions for S marker genes. A.5c) Mean expressions for G2 marker
genes. A.5d) Mean expressions for G2/M marker genes.

A.3 Pre-Processing of Jurkat cells

After initial filtering, we have 13154 viable cells and 17867 detected genes. Figure A.6

shows kernel density estimates for detected genes, number of reads and percent mito-
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chondrial reads together with scatter plots for number of reads against detected genes

and number of reads against percent mitochondrial read. Figure A.7 shows the same

plots after applying a hard filter on 3000 reads and 10% mitochondrial reads.

We are left with 12681 cells. The data is RPM normalized and transformed with log(RPM+

1). We find that the data set has 5246 genes that are classified as highly variable. We

use the data set with these genes as input to a PCA. In Figure A.8a we see that PC1

is correlated to a high number of reads and a high number of detected genes. There are

no clear patterns for the percent of mitochondrial reads nor are there any visible batch

effects. We perform a regression on the number of reads per cell and perform a new pro-

jection. The result can be seen in A.8b. Now, there are no clear patterns for the number

of reads or for the number of detected genes along any of the principal components.
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Figure A.6: Pre-processing of Jurkat cells. A.6a) Kernel density estimates for number
of genes detected per cell (n genes), number of reads per cell (n counts) and percent
mitochondrial reads per cell (percent mito). A.6b) Number of genes detected versus
number of reads per cell. A.6c) Percent mitochondrial reads versus number of reads per
cell.
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Figure A.7: Pre-processing of Jurkat cells. A.6a) Kernel density estimates after fil-
tering for number of genes detected per cell (n genes), number of reads per cell (n counts)
and percent mitochondrial reads per cell (percent mito). A.6b) Number of genes detected
versus number of reads per cell after filtering. A.6c) Percent mitochondrial reads versus
number of reads per cell after filtering.
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Figure A.8: PCA for Jurkat cells. Projection of the data set into the PC1,PC2
plane. The cells are colored by number of reads (n counts), the number of detected
genes (n genes), fraction of mitochondrial reads (percent mito) and batch id (library id).
A.8a) Initial PCA projection of the 293t data set. A.8b) PCA projection after regressing
out number of reads.
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Figure A.9: Ordering of Jurkat cells. The pseudotime ordering after rearranging so
that the G2/M-G1 boundary is at zero. We find that the phase boundaries are located
at order 127 for G1-S and 196 for S-G2/M. A.9a) Number of cells per phase for each bin
of size 20 through the pseudotime ordering of the cells. A.9b) Linear curves representing
the fraction of cells in each phase along the psedotime ordering.
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A.4 Pseudotime Ordering of Jurkat cells
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Figure A.10: Mean expressions for Jurkat cells. Mean expression of marker genes
in the modelled phases along the pseudotime ordering. We use the full data set of all
18975 RPM normalized genes in the ordering. Roughly ∼ 78% of the marker have their
highest mean expression in the expected modelled phase. A.10a) Mean expressions for
G1 marker genes. A.10b) Mean expressions for S marker genes. A.10c) Mean expressions
for G2 marker genes. A.10d) Mean expressions for G2/M marker genes.



Appendix B

Figures

B.1 Low Input PCA for HaCAT

We performed a PCA analysis with low input of marker genes on the HaCat cells to

compare their behaviour with the observed patterns in the 293t cells and the Jurkat cells.

We see that the patterns clearly are related amount of marker genes present. Here, we

used the same set of marker genes on the HaCat cells as those that were used for 293t.

(a) Before filtering on cell cycle phase scores.

(b) After filtering on cell cycle phase scores.

Figure B.1: The result of a low input of marker genes in the PCA analysis of HaCat cells.
The HaCat cells show similar behaviour as the 293t and Jurkat cells.
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Tables

C.1 Barcode Whitelists for STARsolo

The following whitelists can be found within the folder structure of a CellRanger instal-

lation. Specifically, they are found in the following folder:

cellranger-3.0.2/cellranger-cs/3.0.2/lib/python/cellranger/barcodes/.

Table C.1: Whitelists used for cell barcode validation depending on the 10X chemistry
version.

10X Chemistry Barcode Whitelist

10X Genomics Chromium Single Cell V1 737K-april-2014 rc.txt

10X Genomics Chromium Single Cell V2 737K-august-2016.txt

10X Genomics Chromium Single Cell V3 3M-february-2018.txt
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C.2 Marker Genes for Cell Cycle Identifaction

The following set of genes are used as the set of marker genes in our cell cycle scoring.

The source whitfield 2002 refers to the study [Whi+02] and regev lab 2016 to [Tir+16].

Table C.2: The list of phase specific genes presented with their Ensembl id, gene symbol,
associated phase and their source.

gene symbols phase source

Ensembl

ENSG00000012048 BRCA1 S whitfield 2002

ENSG00000139618 BRCA2 S whitfield 2002

ENSG00000138764 CCNG2 S whitfield 2002

ENSG00000123080 CDKN2C S whitfield 2002

ENSG00000228716 DHFR S whitfield 2002

ENSG00000095002 MSH2 S whitfield 2002

ENSG00000132780 NASP S whitfield 2002

ENSG00000167325 RRM1 S whitfield 2002

ENSG00000171848 RRM2 S whitfield 2002

ENSG00000176890 TYMS S whitfield 2002

ENSG00000145386 CCNA2 G2 whitfield 2002

ENSG00000162063 CCNF G2 whitfield 2002

ENSG00000117724 CENPF G2 whitfield 2002

ENSG00000131747 TOP2A G2 whitfield 2002

ENSG00000089685 BIRC5 G2/M whitfield 2002

ENSG00000169679 BUB1 G2/M whitfield 2002

ENSG00000156970 BUB1B G2/M whitfield 2002

ENSG00000134057 CCNB1 G2/M whitfield 2002

ENSG00000157456 CCNB2 G2/M whitfield 2002

ENSG00000170312 CDC2 G2/M whitfield 2002

ENSG00000117399 CDC20 G2/M whitfield 2002

ENSG00000101224 CDC25B G2/M whitfield 2002

ENSG00000158402 CDC25C G2/M whitfield 2002

ENSG00000129355 CDKN2D G2/M whitfield 2002

ENSG00000115163 CENPA G2/M whitfield 2002

Continued on next page
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Table C.2: The list of phase specific genes presented with their Ensembl id, gene symbol,
associated phase and their source.

gene symbols phase source

Ensembl

ENSG00000173207 CKS1B G2/M whitfield 2002

ENSG00000123975 CKS2 G2/M whitfield 2002

ENSG00000166851 PLK1 G2/M whitfield 2002

ENSG00000087586 AURKA G2/M whitfield 2002

ENSG00000161800 RACGAP1 G2/M whitfield 2002

ENSG00000112984 KIF20A G2/M whitfield 2002

ENSG00000151465 CDC123 G1 whitfield 2002

ENSG00000094880 CDC23 G1 whitfield 2002

ENSG00000105810 CDK6 G1 whitfield 2002

ENSG00000129757 CDKN1C G1 whitfield 2002

ENSG00000184481 FOXO4 G1 whitfield 2002

ENSG00000173327 MAP3K11 G1 whitfield 2002

ENSG00000147133 TAF1 G1 whitfield 2002

ENSG00000136270 TBRG4 G1 whitfield 2002

ENSG00000071564 TCF3 G1 whitfield 2002

ENSG00000133740 E2F5 G1 whitfield 2002

ENSG00000164754 RAD21 M/G1 whitfield 2002

ENSG00000164611 PTTG1 M/G1 whitfield 2002

ENSG00000150630 VEGFC M/G1 whitfield 2002

ENSG00000100526 CDKN3 M/G1 whitfield 2002

ENSG00000105173 CCNE1 G1/S whitfield 2002

ENSG00000175305 CCNE2 G1/S whitfield 2002

ENSG00000164045 CDC25A G1/S whitfield 2002

ENSG00000093009 CDC45L G1/S whitfield 2002

ENSG00000094804 CDC6 G1/S whitfield 2002

ENSG00000124762 CDKN1A G1/S whitfield 2002

ENSG00000101412 E2F1 G1/S whitfield 2002

ENSG00000073111 MCM2 G1/S whitfield 2002

ENSG00000149308 NPAT G1/S whitfield 2002

Continued on next page
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Table C.2: The list of phase specific genes presented with their Ensembl id, gene symbol,
associated phase and their source.

gene symbols phase source

Ensembl

ENSG00000132646 PCNA G1/S whitfield 2002

ENSG00000163950 SLBP G1/S whitfield 2002

ENSG00000100297 MCM5 S regev lab 2016

ENSG00000168496 FEN1 S regev lab 2016

ENSG00000104738 MCM4 S regev lab 2016

ENSG00000076248 UNG S regev lab 2016

ENSG00000131153 GINS2 S regev lab 2016

ENSG00000076003 MCM6 S regev lab 2016

ENSG00000144354 CDCA7 S regev lab 2016

ENSG00000143476 DTL S regev lab 2016

ENSG00000198056 PRIM1 S regev lab 2016

ENSG00000276043 UHRF1 S regev lab 2016

ENSG00000119969 HELLS S regev lab 2016

ENSG00000049541 RFC2 S regev lab 2016

ENSG00000117748 RPA2 S regev lab 2016

ENSG00000111247 RAD51AP1 S regev lab 2016

ENSG00000112312 GMNN S regev lab 2016

ENSG00000092470 WDR76 S regev lab 2016

ENSG00000012963 UBR7 S regev lab 2016

ENSG00000077514 POLD3 S regev lab 2016

ENSG00000156802 ATAD2 S regev lab 2016

ENSG00000051180 RAD51 S regev lab 2016

ENSG00000174371 EXO1 S regev lab 2016

ENSG00000075131 TIPIN S regev lab 2016

ENSG00000136982 DSCC1 S regev lab 2016

ENSG00000197299 BLM S regev lab 2016

ENSG00000118412 CASP8AP2 S regev lab 2016

ENSG00000162607 USP1 S regev lab 2016

ENSG00000092853 CLSPN S regev lab 2016

Continued on next page
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Table C.2: The list of phase specific genes presented with their Ensembl id, gene symbol,
associated phase and their source.

gene symbols phase source

Ensembl

ENSG00000101868 POLA1 S regev lab 2016

ENSG00000159259 CHAF1B S regev lab 2016

ENSG00000136492 BRIP1 S regev lab 2016

ENSG00000129173 E2F8 S regev lab 2016

ENSG00000164104 HMGB2 G2/M regev lab 2016

ENSG00000137804 NUSAP1 G2/M regev lab 2016

ENSG00000175063 UBE2C G2/M regev lab 2016

ENSG00000088325 TPX2 G2/M regev lab 2016

ENSG00000080986 NDC80 G2/M regev lab 2016

ENSG00000143228 NUF2 G2/M regev lab 2016

ENSG00000148773 MKI67 G2/M regev lab 2016

ENSG00000120802 TMPO G2/M regev lab 2016

ENSG00000013810 TACC3 G2/M regev lab 2016

ENSG00000129195 PIMREG G2/M regev lab 2016

ENSG00000113810 SMC4 G2/M regev lab 2016

ENSG00000169607 CKAP2L G2/M regev lab 2016

ENSG00000136108 CKAP2 G2/M regev lab 2016

ENSG00000178999 AURKB G2/M regev lab 2016

ENSG00000138160 KIF11 G2/M regev lab 2016

ENSG00000143401 ANP32E G2/M regev lab 2016

ENSG00000188229 TUBB4B G2/M regev lab 2016

ENSG00000075218 GTSE1 G2/M regev lab 2016

ENSG00000138182 KIF20B G2/M regev lab 2016

ENSG00000123485 HJURP G2/M regev lab 2016

ENSG00000111665 CDCA3 G2/M regev lab 2016

ENSG00000112742 TTK G2/M regev lab 2016

ENSG00000142945 KIF2C G2/M regev lab 2016

ENSG00000100401 RANGAP1 G2/M regev lab 2016

ENSG00000010292 NCAPD2 G2/M regev lab 2016

Continued on next page
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Table C.2: The list of phase specific genes presented with their Ensembl id, gene symbol,
associated phase and their source.

gene symbols phase source

Ensembl

ENSG00000126787 DLGAP5 G2/M regev lab 2016

ENSG00000184661 CDCA2 G2/M regev lab 2016

ENSG00000134690 CDCA8 G2/M regev lab 2016

ENSG00000114346 ECT2 G2/M regev lab 2016

ENSG00000137807 KIF23 G2/M regev lab 2016

ENSG00000072571 HMMR G2/M regev lab 2016

ENSG00000134222 PSRC1 G2/M regev lab 2016

ENSG00000011426 ANLN G2/M regev lab 2016

ENSG00000143815 LBR G2/M regev lab 2016

ENSG00000175216 CKAP5 G2/M regev lab 2016

ENSG00000138778 CENPE G2/M regev lab 2016

ENSG00000102974 CTCF G2/M regev lab 2016

ENSG00000117650 NEK2 G2/M regev lab 2016

ENSG00000092140 G2E3 G2/M regev lab 2016

ENSG00000139354 GAS2L3 G2/M regev lab 2016

ENSG00000094916 CBX5 G2/M regev lab 2016

C.3 Functional Enrichment of HaCat cells

We list up to the 60 most significant terms in our functional enrichment of the genes

found to be significantly cell cycle periodic. The results are listed per data set per cell

cyle phase.
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Table C.3: Significant terms in the functional enrichment of Hacat cells classified as M/G1
by phase distribution of marker genes.

Table C.4: Significant terms in the functional enrichment of Hacat cells classified as G1/S
by phase distribution of marker genes.
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Table C.5: The 60 most significant terms in the functional enrichment of Hacat cells
classified as S by phase distribution of marker genes.
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Table C.6: The 60 most significant terms in the functional enrichment of Hacat cells
classified as G2 by phase distribution of marker genes.
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Table C.7: The 60 most significant terms in the functional enrichment of Hacat cells
classified as G2/M by phase distribution of marker genes.
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C.4 Functional Enrichment of 293t cells

We list up to the 60 most significant terms in our functional enrichment of the genes

found to be significantly cell cycle periodic. The results are listed per data set per cell

cyle phase.

Table C.8: Significant terms in the functional enrichment of 293t cells classified as M/G1
by phase distribution of marker genes.

Table C.9: Significant terms in the functional enrichment of 293t cells classified as G1 by
phase distribution of marker genes.
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Table C.10: The 60 most significant terms in the functional enrichment of 293t cells
classified as S by phase distribution of marker genes.
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Table C.11: Significant terms in the functional enrichment of 293t cells classified as G2
by phase distribution of marker genes.
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Table C.12: The 60 most significant terms in the functional enrichment of 293t cells
classified as G2/M by phase distribution of marker genes.
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C.5 Functional Enrichment of Jurkat cells

We list up to the 60 most significant terms in our functional enrichment of the genes

found to be significantly cell cycle periodic. The results are listed per data set per cell

cyle phase.

Table C.13: The 60 most significant terms in the functional enrichment of Jurkat cells
classified as M/G1 by phase distribution of marker genes.

Table C.14: Significant terms in the functional enrichment of Jurkat cells classified as G1
by phase distribution of marker genes.



APPENDIX C. TABLES 156

Table C.15: The 60 most significant terms in the functional enrichment of Jurkat cells
classified as G1/S by phase distribution of marker genes.
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Table C.16: Significant terms in the functional enrichment of Jurkat cells classified as S
by phase distribution of marker genes.
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Table C.17: The 60 most significant terms in the functional enrichment of Jurkat cells
classified as G2 by phase distribution of marker genes.
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Table C.18: The 60 most significant terms in the functional enrichment of Jurkat cells
classified as G2/M by phase distribution of marker genes.
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C.6 Cyclic Genes from the Aggregated Results

Table C.19: Marker genes ranked by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

NUSAP1 3.58 0.99 21.82 1

BUB1 4.22 0.99 21.45 2

G2E3 4.30 0.99 22.29 3

PIMREG 3.58 0.99 22.40 4

KIF20A 2.33 0.99 22.13 5

EXO1 1.35 0.98 16.00 7

CCNB1 5.51 0.98 22.47 8

AURKA 5.25 0.98 22.13 10

NDC80 3.32 0.98 21.73 11

MCM6 2.97 0.98 15.18 12

PLK1 4.65 0.98 22.23 13

HMMR 3.83 0.98 21.90 14

NUF2 3.11 0.97 22.05 15

CCNE2 3.53 0.97 15.71 17

CENPF 5.56 0.97 22.31 20

CENPA 3.96 0.97 22.47 21

TUBB4B 2.58 0.96 21.65 22

CDC20 4.45 0.96 22.61 23

DTL 4.30 0.96 15.55 24

KIF2C 3.05 0.96 22.22 27

TIPIN 1.26 0.96 16.35 28

CCNA2 3.96 0.96 21.62 30

RACGAP1 2.59 0.96 21.58 31

GTSE1 4.47 0.95 22.10 32

KIF11 2.19 0.95 22.11 33

FEN1 3.61 0.95 14.01 35

MCM5 3.58 0.95 14.88 36

CENPE 3.36 0.95 22.37 38

Continued on next page
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Table C.19: Marker genes ranked by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

CHAF1B 3.79 0.95 15.22 39

DLGAP5 4.05 0.95 22.46 40

CCNB2 3.32 0.94 22.19 42

RAD21 1.89 0.94 22.39 43

PSRC1 3.81 0.94 22.05 44

PCNA 4.30 0.94 14.51 45

E2F1 2.85 0.94 15.49 46

CDK1 4.02 0.94 21.55 48

CDC6 2.86 0.94 14.80 49

CDKN3 3.36 0.93 22.50 51

ANP32E 2.09 0.93 21.41 52

UHRF1 2.89 0.93 15.12 53

UBE2C 5.09 0.93 22.07 54

PTTG1 3.01 0.93 22.88 55

CKAP2L 2.45 0.93 22.02 57

CLSPN 4.96 0.92 14.97 59

UNG 2.81 0.92 14.57 60

CKAP2 3.09 0.92 22.22 61

SLBP 2.62 0.91 15.00 65

AURKB 4.61 0.91 22.14 67

CDCA3 3.47 0.91 22.21 69

CBX5 2.83 0.91 19.09 70

GINS2 3.19 0.90 15.76 71

TOP2A 6.54 0.90 21.69 77

NEK2 3.91 0.90 22.38 79

WDR76 3.28 0.89 14.57 80

TPX2 4.22 0.89 22.19 85

CKS2 4.01 0.87 22.17 96

TYMS 2.81 0.85 15.92 102

MKI67 5.21 0.85 21.89 104

Continued on next page
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Table C.19: Marker genes ranked by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

RPA2 1.67 0.84 14.05 106

HMGB2 3.71 0.83 21.81 107

CKS1B 3.41 0.81 22.09 117

HELLS 3.57 0.79 12.89 120

CDC45 1.94 0.75 15.00 127

TACC3 2.58 0.74 22.01 128

HJURP 2.63 0.71 19.96 134

CDCA7 3.25 0.70 14.86 136

SMC4 3.73 0.70 21.28 137

RFC2 2.40 0.70 14.93 138

Table C.20: New candidate genes classified as S by mean peaktime across datasets, ranked
by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

HPRT1 1.58 0.96 17.19 25

ORC6 2.12 0.96 17.11 29

MCM10 2.48 0.94 15.74 50

RABIF 1.28 0.92 15.38 62

MCM3 3.16 0.91 14.91 68

PSMC3IP 2.13 0.90 14.73 72

PCLAF 4.01 0.90 14.63 76

BTG3 1.70 0.89 14.74 81

VRK1 1.90 0.89 18.55 82

ACD 1.82 0.89 16.14 83

UBE2T 2.91 0.89 18.59 84

CHAF1A 3.44 0.88 13.51 89

Continued on next page
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Table C.20: New candidate genes classified as S by mean peaktime across datasets, ranked
by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

NUDT8 2.06 0.88 13.82 90

UROS 1.34 0.88 14.39 91

DNAJC9 2.62 0.88 15.74 92

RFC4 2.41 0.87 14.79 93

IER3IP1 1.38 0.87 16.82 94

CARHSP1 2.46 0.87 15.75 95

CYB5R3 1.20 0.87 13.89 97

NME4 1.63 0.85 11.94 100

CDT1 2.97 0.85 13.85 101

NAE1 1.25 0.85 17.51 103

EMG1 1.44 0.85 16.49 105

RAD51C 1.73 0.82 18.75 112

HAUS8 1.38 0.82 13.16 113

HSPB11 1.54 0.82 12.97 114

DCTPP1 2.13 0.81 13.27 115

DUT 2.98 0.81 13.77 116

ACYP1 1.89 0.78 14.01 122

RAD1 1.94 0.77 17.79 124

GEMIN4 1.47 0.73 13.52 129

ASF1B 2.46 0.73 13.75 130

ITGB1BP1 1.68 0.73 14.45 131

UBA2 1.61 0.70 18.39 135
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Table C.21: New candidate genes classified as G2/M by mean peaktime across datasets,
ranked by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

UBALD2 2.17 0.99 22.32 6

ARL6IP1 4.37 0.98 22.35 9

REEP4 1.58 0.97 21.89 16

SGO2 3.10 0.97 22.10 18

KNSTRN 2.92 0.97 22.09 19

VDAC3 1.61 0.96 19.10 26

ZWINT 2.35 0.95 19.84 34

MAD2L1 2.10 0.95 21.48 37

KPNA2 3.45 0.95 22.13 41

NAA50 1.70 0.94 19.38 47

DEPDC1B 1.83 0.93 21.56 56

SPC25 2.10 0.93 21.65 58

ASPM 4.01 0.91 22.47 63

PRR11 2.91 0.91 22.18 64

BUB3 2.62 0.91 21.38 66

NELFE 1.70 0.90 21.81 73

CAPZA1 1.43 0.90 21.09 74

PBK 2.87 0.90 21.59 75

DBF4 2.38 0.90 21.77 78

HP1BP3 1.94 0.89 22.00 86

SGO1 2.10 0.89 22.12 87

BRD8 1.55 0.89 21.54 88

PSIP1 1.79 0.86 19.13 98

GPSM2 2.13 0.85 22.13 99

PLIN3 1.33 0.83 23.54 108

COPS3 1.67 0.83 19.16 109

CCDC88A 1.51 0.83 22.33 110

HNRNPR 1.36 0.83 20.04 111

TRABD 1.25 0.80 24.47 118

Continued on next page
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Table C.21: New candidate genes classified as G2/M by mean peaktime across datasets,
ranked by correlation across datasets.

Mean Loading Mean Correlation Mean Peaktime Rank

Gene Symbol

ARHGAP11A 2.53 0.80 22.31 119

SRRT 1.35 0.79 19.34 121

KIF22 2.13 0.78 21.95 123

H2AFX 2.75 0.76 21.65 125

DESI2 1.45 0.76 22.76 126

AATF 1.31 0.73 21.62 132

UPF3A 1.42 0.72 21.13 133



Appendix D

Code snippets

D.1 Reformatting of CellRanger 1.0.0 fastq Format

The following code was used to reformat fastq files generated by CellRanger 1.0.0.

#!/bin/python

import dinopy

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("I1")

parser.add_argument("RA")

parser.add_argument("R1_out")

parser.add_argument("R2_out")

args = parser.parse_args()

ra_reader = dinopy.FastqReader(args.RA)

illumina_index = args.RA.split('_')[1].split('-')[1]

reads = []

umi = []

count = 0

for sequence, name, quality in ra_reader.reads(quality_values=True):

if count%2 == 0:

reads.append((sequence,name.replace(b'1:N:0:0','2:N:0:{}'.format(illumina_index).encode()),quality))

else:

umi.append((sequence, name, quality))

count += 1

166
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with dinopy.FastqWriter(args.R2_out) as r2_writer:

r2_writer.write_reads(reads)

r1_out = []

I1_reader = dinopy.FastqReader(args.I1)

for bc_reads, umi_reads in zip(I1_reader.reads(quality_values=True), umi):

r1_out.append((bc_reads[0]+umi_reads[0],bc_reads[1].replace(b'2:N:0:0','1:N:0:{}'.format(illumina_index).encode()),bc_reads[2]+umi_reads[2]))

with dinopy.FastqWriter(args.R1_out) as r1_writer:

r1_writer.write_reads(r1_out)

D.2 Reference Index for Cellranger

The following build script is used to build a joint reference index of Homo sapiens

GRCh38.94 and Mus musculus GRCm38.94 to be used with the cellranger count work-

flow.

wget https://ftp.ensembl.org/pub/release-94/gtf/homo_sapiens/Homo_sapiens.GRCh38.94.gtf.gz

gunzip Homo_sapiens.GRCh38.94.gtf.gz

wget https://ftp.ensembl.org/pub/release-94/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.primary_assembly.fa.gz

gunzip Mus_musculus.GRCm38.dna.primary_assembly.fa.gz

wget https://ftp.ensembl.org/pub/release-94/gtf/mus_musculus/Mus_musculus.GRCm38.94.gtf.gz

gunzip Mus_musculus.GRCm38.94.gtf.gz

cellranger mkgtf Homo_sapiens.GRCh38.94.gtf Homo_sapiens.GRCh38.94.filtered.gtf \

--attribute=gene_biotype:protein_coding \

--attribute=gene_biotype:lincRNA \

--attribute=gene_biotype:antisense \

--attribute=gene_biotype:IG_LV_gene \

--attribute=gene_biotype:IG_V_gene \

--attribute=gene_biotype:IG_V_pseudogene \

--attribute=gene_biotype:IG_D_gene \

--attribute=gene_biotype:IG_J_gene \

--attribute=gene_biotype:IG_J_pseudogene \

--attribute=gene_biotype:IG_C_gene \

--attribute=gene_biotype:IG_C_pseudogene \

--attribute=gene_biotype:TR_V_gene \

--attribute=gene_biotype:TR_V_pseudogene \
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--attribute=gene_biotype:TR_D_gene \

--attribute=gene_biotype:TR_J_gene \

--attribute=gene_biotype:TR_J_pseudogene \

--attribute=gene_biotype:TR_C_gene

cellranger mkgtf Mus_musculus.GRCm38.94.gtf Mus_musculus.GRCm38.94.filtered.gtf \

--attribute=gene_biotype:protein_coding \

--attribute=gene_biotype:lincRNA \

--attribute=gene_biotype:antisense \

--attribute=gene_biotype:IG_LV_gene \

--attribute=gene_biotype:IG_V_gene \

--attribute=gene_biotype:IG_V_pseudogene \

--attribute=gene_biotype:IG_D_gene \

--attribute=gene_biotype:IG_J_gene \

--attribute=gene_biotype:IG_J_pseudogene \

--attribute=gene_biotype:IG_C_gene \

--attribute=gene_biotype:IG_C_pseudogene \

--attribute=gene_biotype:TR_V_gene \

--attribute=gene_biotype:TR_V_pseudogene \

--attribute=gene_biotype:TR_D_gene \

--attribute=gene_biotype:TR_J_gene \

--attribute=gene_biotype:TR_J_pseudogene \

--attribute=gene_biotype:TR_C_gene

cellranger mkref --genome=GRCh38 \

--fasta=Homo_sapiens.GRCh38.dna.primary_assembly.fa \

--genes=Homo_sapiens.GRCh38.94.filtered.gtf \

--genome=GRCm38 \

--fasta=Mus_musculus.GRCm38.dna.primary_assembly.fa \

--genes=Mus_musculus.GRCm38.94.filtered.gtf \

--nthreads=48 \

--memgb=80 \

--ref-version=3.0.2

D.3 Conversion to AnnData object

The following script is used to convert count matrices from CellRangers count algorithm

or STARsolo algorithm to a AnnData object. The AnnData object can loaded directly

into a Scanpy environment for analysis.

#!/usr/bin/env python
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import warnings

warnings.filterwarnings("ignore", message="numpy.dtype size changed")

import sys

import os

import argparse

import scanpy as sc

import pandas as pd

import numpy as np

from vpolo.alevin import parser as alevin_parser

GENOME = {'homo_sapiens': 'GRCh38',

'human': 'GRCh38',

'hg38': 'GRCh38',

'GRCh38': 'GRCh38',

'mus_musculus': 'mm10',

'mouse': 'mm10',

'mm10': 'mm10',

'GRCm38': 'mm10'

}

parser = argparse.ArgumentParser(description=__doc__,

formatter_class=argparse.RawDescriptionHelpFormatter

)

parser.add_argument('input',

help='input file(s)',

nargs='+'

)

parser.add_argument('-o',

'--outfile',

help='output filename',

required=True

)

parser.add_argument('-f',

'--input-format',

choices=['cellranger_aggr', 'cellranger',

'star', 'alevin', 'umitools'],

default='cellranger_aggr',

help='input file format'

)

parser.add_argument('-F',

'--output-format',

choices=['anndata', 'loom', 'csvs'],

default='anndata',

help='output file format'

)

parser.add_argument('--sample-info',
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help='samplesheet info, tab seprated file assumes `Sample_ID` in header',

default=None

)

parser.add_argument('--feature-info',

help='extra feature info filename, tab seprated file assumes `gene_id` in header',

default=None

)

parser.add_argument('--genome',

help='reference genome',

default=None

)

parser.add_argument('--filter-org',

help='filter data (genes) by organism',

default=None

)

parser.add_argument('--gex-only',

help='only keep `Gene Expression` data and ignore other feature types.',

default=True

)

parser.add_argument('--normalize',

help='normalize depth across the input libraries',

default='none',

choices=['none', 'mapped']

)

parser.add_argument('--batch',

help='column name in `sample-info` with batch covariate',

default=None

)

parser.add_argument('--no-zero-cell-rm',

help='do not remove cells with zero counts',

action='store_true'

)

parser.add_argument('-v ',

'--verbose',

help='verbose output.',

action='store_true'

)

def downsample_gemgroup(data_list):

"""downsample data total read count to gem group with lowest total count

"""

min_count = 1E99

sampled_list = []

for i, data in enumerate(data_list):

isum = data.X.sum()

if isum < min_count:

min_count = isum

idx = i
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for j, data in enumerate(data_list):

if j != idx:

sc.pp.downsample_counts(data, target_counts = min_count)

sampled_list.append(data)

return sampled_list

def read_cellranger(fn, args, rm_zero_cells=True, **kw):

"""read cellranger results

Assumes the Sample_ID may be extracted from cellranger output dirname,

e.g ` ... /Sample_ID/outs/filtered_feature_bc_matrix.h5 `

"""

if fn.endswith('.h5'):

if not args.genome:

raise ValueError('loading a .h5 file in scanpy requires the `genome` parameter')

dirname = os.path.dirname(fn)

data = sc.read_10x_h5(fn, genome=GENOME[args.genome])

data.var['gene_symbols'] = list(data.var_names)

data.var_names = list(data.var['gene_ids'])

else:

mtx_dir = os.path.dirname(fn)

dirname = os.path.dirname(mtx_dir)

data = sc.read_10x_mtx(mtx_dir,

gex_only=args.gex_only,

var_names='gene_ids',

make_unique=True

)

data.var['gene_ids'] = list(data.var_names)

sample_id = os.path.basename(os.path.dirname(dirname))

data.obs['library_id'] = [sample_id] * data.obs.shape[0]

barcodes = [b.split('-')[0] for b in data.obs.index]

if len(barcodes) == len(set(barcodes)):

data.obs_names = barcodes

data.obs.index.name = 'barcodes'

data.var.index.name = 'gene_id'

return data

def read_cellranger_aggr(fn, args, **kw):

data = read_cellranger(fn, args)

dirname = os.path.dirname(fn)

if not fn.endswith('.h5'):

dirname = os.path.dirname(dirname)

# fix cellranger aggr enumeration to start at 0 (matches scanpy enum)

barcodes = [i[0] for i in data.obs.index.str.split('-')]

barcode_enum = [int(i[1])-1 for i in data.obs.index.str.split('-')]

data.obs_names = ['-'.join(e) for e in zip(barcodes, barcodes_enum)]
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aggr_csv = os.path.join(dirname, 'aggregation.csv')

if os.path.exists(aggr_csv):

aggr_csv = pd.read_csv(aggr_csv)

sample_map = dict((i, n) for i,n in enumerate(aggr_csv['library_id']))

samples = [sample_map[i] for i in barcode_enum]

data.obs['library_id'] = samples

return data

def read_star(fn, args, **kw):

mtx_dir = os.path.dirname(fn)

dirname = os.path.dirname(mtx_dir)

data = sc.readwrite._read_legacy_10x_mtx(mtx_dir,

var_names='gene_ids',

make_unique=True

)

data.var['gene_ids'] = list(data.var_names)

sample_id = os.path.basename(dirname)

data.obs['library_id'] = [sample_id] * data.obs.shape[0]

barcodes = [b.split('-')[0] for b in data.obs.index]

if len(barcodes) == len(set(barcodes)):

data.obs_names = barcodes

return data

def read_alevin(fn, args, **kw):

avn_dir = os.path.dirname(fn)

dirname = os.path.dirname(avn_dir)

if fn.endswith('.gz'):

df = alevin_parser.read_quants_bin(input_dir)

else:

df = alevin_parser.read_quants_csv(input_dir)

row = {'row_names': df.index.values.astype(str)}

col = {'col_names': np.array(df.columns, dtype=str)}

data = AnnData(df.values, row, col, dtype=np.float32)

data.var['gene_ids'] = list(data.var_names)

sample_id = os.path.basename(dirname)

data.obs['library_id'] = [sample_id] * data.obs.shape[0]

return data

def read_umitools(fn, **kw):

raise NotImplementedError

READERS = {'cellranger_aggr': read_cellranger_aggr,

'cellranger': read_cellranger,

'star': read_star,

'umitools': read_umitools,
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'alevin': read_alevin

}

if __name__ == '__main__':

args = parser.parse_args()

reader = READERS.get(args.input_format.lower())

if reader is None:

raise ValueError('{} is not a supported input format'.format(args.input_format))

for fn in args.input:

if not os.path.exists(fn):

raise IOError('file does not exist! {}'.format(fn))

n_input = len(args.input)

if n_input > 1:

assert(args.input_format != 'cellranger_aggr')

if args.sample_info is not None:

sample_info = pd.read_csv(args.sample_info, sep='\t')

if not 'Sample_ID' in sample_info.columns:

raise ValueError('sample_sheet needs a column called `Sample_ID`')

sample_info.index = sample_info['Sample_ID']

if args.batch is not None:

batch_categories = sample_info[batch].astype('category')

else:

sample_info = None

if args.batch is not None:

raise ValueError('cannot use option `batch` when option `--sample-info` not used')

batch_categories = None

if args.feature_info is not None:

feature_info = pd.read_csv(args.feature_info, sep='\t')

if not 'gene_id' in feature_info.columns:

raise ValueError('feature_info needs a column called `gene_id`')

feature_info.index = feature_info['gene_id']

else:

feature_info = None

data_list = []

for i, fn in enumerate(args.input):

fn = os.path.abspath(fn)

data = reader(fn, args)

data_list.append(data)

if len(data_list) > 1:

if args.normalize == 'mapped':

data_list = downsample_gemgroup(data_list)

data = data_list.pop(0)
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if len(data_list) > 0:

data = data.concatenate(*data_list, batch_categories=batch_categories)

# clean up feature info (assumes inner join)

# fixme: maybe outer join support is what we want ?

if any(i.endswith('-0') for i in data.var.columns):

keep = [i for i in data.var.columns if i.endswith('-0')]

data.var = data.var.loc[:,keep]

data.var.columns = [i.split('-')[0] for i in data.var.columns]

if sample_info:

lib_ids = set(data.obs['library_id'])

for l in lib_ids:

if l not in sample_info.index:

raise ValueError('Library `{}` not present in sample_info'.format(l))

obs = sample_info.loc[data.obs['library_id'],:]

obs.index = data.obs.index.copy()

data.obs = data.obs.merge(obs, how='left', on='barcode', copy=False)

if not args.no_zero_cell_rm:

keep = data.X.sum(1).A.squeeze() > 0

data = data[keep,:]

keep = data.X.sum(0).A.squeeze() > 0

#keep = (data.X != 0).any(axis=0)

data = data[:,keep]

if feature_info:

data.var = data.var.merge(feature_info, how='left', on='gene_id', copy=False)

if 'gene_symbols' in data.var.columns:

mito_genes = data.var.gene_symbols.str.startswith('MT-')

data.obs['fraction_mito'] = np.sum(data[:, mito_genes].X, axis=1).A1 / np.sum(data.X, axis=1).A1

data.obs['n_counts'] = data.X.sum(axis=1).A1

if args.verbose:

print(data)

print(data.X.A.sum())

if args.output_format == 'anndata':

data.write(args.outfile)

elif args.output_format == 'loom':

data.write_loom(args.outfile)

elif args.output_format == 'csvs':

data.write_csvs(args.outpfile)
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D.4 Modified Cell Cycle Scoring

The following method is a modified version of the scanpy method scanpy.tl.score genes genes cell cycle().

The method is modified to take an additional list of G1 marker genes to use in the

cell cycle scoring. The classification is performed by the same logic as in the origi-

nal method. In addition, the parameteres used in the calls to the underlying method

scanpy.tl.score genes() are tweaked to account for a low number of total genes in the

data set.

def my_score_genes_cell_cycle_improved(

adata,

g1_genes,

s_genes,

g2m_genes,

copy=False,

**kwargs):

"""Score cell cycle genes [Satija15]_.

Given two lists of genes associated to S phase and G2M phase, calculates

scores and assigns a cell cycle phase (G1, S or G2M). See

:func:`~scanpy.api.score_genes` for more explanation.

Parameters

----------

adata : :class:`~anndata.AnnData`

The annotated data matrix.

g1_genes : `list`

List of genes associated with S phase.

s_genes : `list`

List of genes associated with S phase.

g2m_genes : `list`

List of genes associated with G2M phase.

copy : `bool`, optional (default: `False`)

Copy `adata` or modify it inplace.

**kwargs : optional keyword arguments

Are passed to :func:`~scanpy.api.score_genes`. `ctrl_size` is not

possible, as it's set as `min(len(s_genes), len(g2m_genes))`.

Returns

-------

Depending on `copy`, returns or updates `adata` with the following fields.

**G1_score** : `adata.obs`, dtype `object`

The score for G1 phase for each cell.

**S_score** : `adata.obs`, dtype `object`

The score for S phase for each cell.

**G2M_score** : `adata.obs`, dtype `object`

The score for G2M phase for each cell.

**phase** : `adata.obs`, dtype `object`
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The cell cycle phase (`S`, `G2M` or `G1`) for each cell.

See also

--------

score_genes

Examples

--------

See this `notebook <https://github.com/theislab/scanpy_usage/tree/master/180209_cell_cycle>`__.

"""

#logg.info('calculating cell cycle phase')

import scanpy as sc

adata = adata.copy() if copy else adata

ctrl_size = min(len(s_genes), len(g2m_genes), len(g1_genes))

s_n_bins = round((len(g1_genes)+len(g2m_genes))/ctrl_size)

g1_n_bins = round((len(s_genes)+len(g2m_genes))/ctrl_size)

g2m_n_bins = round((len(g1_genes)+len(s_genes))/ctrl_size)

# add s-score

sc.tl.score_genes(adata, gene_list=s_genes, score_name='S_score', ctrl_size=ctrl_size, n_bins=s_n_bins, **kwargs)

# add g2m-score

sc.tl.score_genes(adata, gene_list=g2m_genes, score_name='G2M_score', ctrl_size=ctrl_size, n_bins=g2m_n_bins, **kwargs)

# add g1-score

sc.tl.score_genes(adata, gene_list=g1_genes, score_name='G1_score', ctrl_size=ctrl_size, n_bins=g1_n_bins, **kwargs)

if not 'G1_score' in adata.obs.columns:

print("WARNING: No G1-genes found in data set. Computing G1-score as -sum(S_score,G2M_score)")

adata.obs['G1_score'] = -adata.obs[['S_score', 'G2M_score']].sum(1)

scores = adata.obs[['S_score', 'G2M_score', 'G1_score']]

# default phase is S

phase = pd.Series('not_assigned', index=scores.index)

# if G2M is higher than S and G1, it's G2M

phase[(scores.G2M_score > scores.S_score) & (scores.G2M_score > scores.G1_score)] = 'G2M'

# if S is higher than G2M and G1, it's S

phase[(scores.S_score > scores.G2M_score) & (scores.S_score > scores.G1_score)] = 'S'

# if G1 is higher than G2M and S, it's G1

phase[(scores.G1_score > scores.G2M_score) & (scores.G1_score > scores.S_score)] = 'G1'

adata.obs['phase'] = phase

#logg.hint(' \'phase\', cell cycle phase (adata.obs)')

return adata if copy else None
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D.5 Generating Cubic Smoothing Splines

The following code is used to generate the cubic smoothing splines from gene expression

data from a pseudotime ordering.

def subsample_gene(data, gene_name, width=2):

gene_cat = 'gene_ids' if gene_name.startswith("ENS") else 'gene_symbols'

if not gene_name in list(data.var[gene_cat]):

raise ValueError("Gene symbol {} not in data set!".format(gene_name))

data_test = data[:,data.var[gene_cat] == gene_name]

m_arr = []

for i in range(0,24,width):

m_arr.append(data_test[ (i <= data_test.obs['time']) & (data_test.obs['time'] < i+2),:].X.mean())

return np.array(m_arr)

def generate_cyclic_control_points(data, gene_name, width=2, smooth=False, smooth_its=1):

subsample = subsample_gene(data,gene_name,width=width)

boundary = (subsample[0]+subsample[-1])/2

x = np.append([np.arange(width/2,24,width)], [subsample], axis=0).T

x = np.vstack((np.array([0,boundary]), x,np.array([24,boundary])))

if smooth:

for k in range(smooth_its):

xnew = x.copy()

for i in range(1,len(x)-1):

xnew[i] = (0.5*x[i-1] + x[i] + 0.5*x[i+1])*0.5

x = xnew

x0 = x[1:-1].copy()

x1 = x[1:-1].copy()

x0[:,0] -= np.max(x[:,0])

x1[:,0] += np.max(x[:,0])

return np.vstack((x0,x,x1)), x

def spline_model2_csaps(data,gene_name,width=2,csaps_smooth=0.3,plot_figs=False,add_boundaries=True):

import csaps

if add_boundaries:

X, x = generate_cyclic_control_points(data, gene_name, width=width, smooth=False)

else:

X, x = generate_cyclic_control_points_no_boundaries(data, gene_name, width=width, smooth=False)
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sp = csaps.UnivariateCubicSmoothingSpline(X[:,0], X[:,1], smooth=csaps_smooth)

if plot_figs:

xs = np.linspace(0,24,1000)

y = sp(xs)

plt.figure(figsize=(7,7))

plt.plot(xs,y)

plt.plot(x[:,0],x[:,1],'*')

plt.axhline(y=0, color='k')

plt.xticks(np.arange(0,26,4))

plt.show()

return sp, x

D.6 Optimal Smoothing Parameter

The following code is used to determine the optimal smoothing parameter to be used with

the cubic smoothing splines for a given data set. The genes used to generate the function

values are the marker genes from Appendix C.2 labeled whitfield 2002. We use the code

listed in Appendix D.5 to generate the splines.

def csaps_error(data,ens_list,csaps_smooth=0.3,subsample_width=2):

ens_list = list(set(list(ens_list)).intersection(list(data.var.index)))

res = {}

for i, gene in enumerate(sorted(ens_list)):

sp, ctr_x = spline_model2_csaps(data,gene,width=subsample_width,csaps_smooth=csaps_smooth,plot_figs=False)

y_raw = data[:,[gene]].X

y_est = sp(data.obs['time'])

res[gene] = {'res_2-norm': np.linalg.norm(y_raw-y_est,axis=0),

'res_mean': np.mean(abs(y_est-y_raw)),

'res_var': np.var(abs(y_est-y_raw),ddof=1),

'sum_curvature': np.sum(csaps_curvature(data,sp=sp)),

'gene_symbol': data.var.loc[gene]['gene_symbols']}

return res

def csaps_curvature(data,sp=None,gene=None,width=2,csaps_smooth=0.3):

if not sp:

if not gene:

raise ValueError("If not a csaps spline is defined (sp=) a gene must be specified with gene=")

sp, x = spline_model2_csaps(data,gene=gene,widht=width,csaps_smooth=csaps_smooth)
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time = data.obs['time']

ys = sp(time)

grady = np.gradient(ys,time)

grad2y = np.gradient(grady,time)

denom = np.power(1+np.power(grady,2),1.5)

return abs(grad2y)/denom

def find_opt_smooth(data_bb,plot=False):

report_df = pd.read_csv("./data/knownGenes_derived.txt", sep=" ")

mean_norm = []

mean_sum_curvature = []

for i in np.arange(0,1.05,0.05):

print("Calculating for smooth parameter = {}".format(i))

for p in ['S','G2/M','G2','G1']:

residuals = {}

p_df = report_df[report_df['phase'] == p]

ens_list = list(set(list(p_df['Ensembl'])).intersection(list(data_bb.var.index)))

r = mscu.csaps_error(data_bb, ens_list, csaps_smooth=i, subsample_width=2)

residuals.update(r)

res_df = pd.DataFrame.from_dict(residuals,orient='index')

mean_norm.append(res_df['res_2-norm'].mean())

mean_sum_curvature.append(res_df['sum_curvature'].mean())

i = np.arange(0,1.05,0.05)

#scale

scaled_mean_norm = np.array([x - np.min(mean_norm) for x in mean_norm])

scaled_mean_norm /= np.max(scaled_mean_norm)

scaled_mean_curve = np.array([x - np.min(mean_sum_curvature) for x in mean_sum_curvature])

scaled_mean_curve /= np.max(scaled_mean_curve)

#plot

if plot:

plt.figure(figsize=(9,9))

plt.plot(i,scaled_mean_norm,label='r: scaled 2-norm error')

plt.plot(i,scaled_mean_curve,label='c: scaled curvature')

plt.plot(i,scaled_mean_curve+scaled_mean_norm,label='g = r + c')

plt.xlabel("Smoothing parameter")

plt.ylabel("Objective function")

plt.legend()

plt.savefig("./figures/objective_function.png")

#solve

from scipy.interpolate import interp1d

t = np.arange(0,1,0.01)

intp = interp1d(i,scaled_mean_curve+scaled_mean_norm)

opt_smooth = t[np.where(intp(t) == np.min(intp(t)))[0][0]]
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return opt_smooth

D.7 Partial Least Squares Regression

The following code is used for the Partial Least Squares Regression of the subsampled

spline data and for resampling and identification of a significance cut-off value. The PLS

implementation miirPLS was developed for the study [Pen+13].

X <- read.csv("../data/final_hacat/subsampled_splines.csv", row.names=1)

Y <- read.csv("../data/final_hacat/PLS/PLS_Y.csv", row.names=1)

options(warn=-1)

retList = miirPLS(X,Y,ModifiedTtest = 1)

options(warn=0)

options(warn=-1)

#n resamples

n = 1000

#dX number of variables

dX = ncol(X)

#alpha significance level

alpha = 0.05

#nCut cutoff corresponding to alpha

nCut = ceiling(dX*alpha)

R <- matrix(0, dX, n)

rCut <- vector("numeric", length = n)

for (j in 1:n){

#permute Y

Yperm <- Y[sample(nrow(Y)),]

resampleRetList = miirPLS(X, Yperm, ModifiedTtest = 1)

for (i in 1:dX){

#compute distance R from origin in PLS-loading plane

R[i,j] = sqrt(sum(resampleRetList$model$sigLoadings[i,]^2))

}

r = sort(R[,j], decreasing = TRUE)

rCut[j] = r[nCut]

}

options(warn=0)

write.csv(retList$q,

file="../data/final_hacat/PLS/q.csv",

row.names=TRUE

)
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write.csv(retList$model$sigLoadings,

file="../data/final_hacat/PLS/model_sigloadings.csv",

row.names=TRUE

)

write.csv(retList$model$scores,

file="../data/final_hacat/PLS/model_scores.csv",

row.names=TRUE

)

write.csv(retList$model$loadings,

file="../data/final_hacat/PLS/model_loadings.csv",

row.names=TRUE

)

write.csv(retList$model$loadingWeights,

file="../data/final_hacat/PLS/model_loadingweights.csv",

row.names=TRUE

)

write.csv(retList$model$sigLoadings,

file="../data/final_hacat/PLS/model_sigloadings.csv",

row.names=TRUE

)

write.csv(rCut,

file="../data/final_hacat/PLS/r_cutoff.csv"

)

miirPLS = function (X, Y, n = NULL, ModifiedTtest = 0.5, sets = NULL, aMax = 2,

method = "kernel", ridge = 0.1, scrambleSets = F)

{

library(MASS)

Y <- as.matrix(Y)

X <- scale(X, scale = FALSE)

Y <- scale(Y, scale = FALSE)

dSets <- length(names(sets))

if (method == "bridge") {

mainMod <- calibrate.bridgePLS(X, Y, aMax = aMax, ridge = ridge)

}

if (method == "kernel") {

mainMod <- calibrate.kernelPLS(X, Y, aMax = aMax)

}

W <- mainMod$sigLoadings

t2 <- crossvalidatePLS(W, X, Y, ModifiedTtest, penalty = NULL,

aMax = aMax, method = method, ridge = ridge)

Wjk <- t2$Wjk

Yval <- t2$Yval

if (!is.null(sets)) {

for (set in names(sets)) {

sets[[set]] <- intersect(sets[[set]], colnames(X))

}

sets <- sets[unlist(lapply(sets, length) > 3)]

setStats <- setScores(W, sets, t2$t2, T2null = NULL)
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TsetReal <- setStats$setT

print("sets computed")

}

penalty <- t2$penalty

t2 <- t2$t2

names(t2) <- colnames(X)

if (!is.null(n)){

print("Starting resampling")

qv <- resamplePLS(W, t2, X, Y, TsetReal, sets, n, ModifiedTtest,

penalty = penalty, method = method, ridge = ridge, aMax = aMax,

scrambleSets = scrambleSets)

print("Resampling finished")

Tpert = qv$Tpert

qSet = qv$qSet

qv = qv$qv

}

else {

Tpert = NULL

qSet = NULL

qv = NULL

}

if (is.null(sets)) {

Wset <- NULL

setT <- NULL

}

else {

Wset <- setStats$setW

setT <- setStats$setT

}

if (method == "bridge") {

expVarX <- diag(t(mainMod$scores) %*% mainMod$scores)/sum(diag(X %*%

t(X)))

}

if (method == "kernel") {

expVarX <- (colSums(mainMod$loadings * mainMod$loadings) *

diag(crossprod(mainMod$scores)))/(sum(X^2))

}

dY <- dim(Y)

q2 <- vector("numeric", length = (dY[2] + 2))

for (k in 1:dY[2]) {

q2[k] <- 1 - sum((Y[, k] - Yval[, k, aMax])^2)/sum((Y[,

k]^2))

}

q2[dY[2] + 1] <- 1 - sum((Y - Yval[, , aMax])^2)/sum((Y)^2)

q2[dY[2] + 2] <- 1 - sum((mainMod$f)^2)/sum((Y)^2)

if (!is.null(qv)){

names(qv) <- colnames(X)

}

return(list(T2 = t2, model = mainMod, q = qv, Wjk = Wjk,
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Tpert = Tpert, sets = sets, qSet = qSet, Wset = Wset,

setT = setT, Yval = Yval, expVarX = expVarX, q2 = q2,

X = scale(X, scale = F, center = -1 * attr(X, "scaled:center")),

method = method, Y = Y))

}

calibrate.bridgePLS = function (X, Y, aMax = 3, ridge = 0.1)

{

a <- aMax

dY <- dim(Y)

dX <- dim(X)

b <- array(NA, dim = c(dX[2], dY[2], aMax))

W <- matrix(0, dX[2], a)

alpha <- 1

G0 <- svd(Y)

if (dY[2] == 1) {

G0 <- G0$u %*% (G0$d) %*% t(G0$u)

}

else {

G0 <- G0$u %*% diag(G0$d) %*% t(G0$u)

}

G <- (1 - ridge) * G0 + (ridge) * diag(dY[1])

H <- t(X) %*% G

usv <- svd(H)

Va <- as.matrix(usv$u[, 1:a])

Da <- X %*% Va

qa <- t(Y) %*% Da %*% ginv(t(Da) %*% Da)

f <- Y - Da %*% t(qa)

Ua <- Y %*% qa

Q0 <- usv$v

sf <- alpha * t(Da) %*% Da + (1 - alpha) * t(Ua) %*% Ua

for (i in 1:a) {

W[, i] <- sqrt(diag(sf)[i]) * Va[, i]

if (dY[2] == 1) {

b[, , i] = Va[, 1:i] %*% (as.matrix(qa[, 1:i]))

}

else {

b[, , i] = Va[, 1:i] %*% t(as.matrix(qa[, 1:i]))

}

}

rownames(W) <- colnames(X)

fullModel <- list(sigLoadings = W, scores = Da, loadings = Va,

qa = qa, Ua = Ua, b = b, Q0 = Q0, f = f)

return(fullModel)

}

calibrate.kernelPLS = function (X, Y, aMax = 3)

{

Y <- as.matrix(Y)
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a <- aMax

dY <- dim(Y)

dX <- dim(X)

R <- matrix(0, ncol = a, nrow = dX[2])

W <- matrix(0, ncol = a, nrow = dX[2])

P <- matrix(0, ncol = a, nrow = dX[2])

Q <- matrix(0, ncol = a, nrow = dY[2])

B <- array(0, c(dX[2], dY[2], a))

Yhat <- array(0, c(dX[1], dY[2], a))

U <- matrix(0, ncol = a, nrow = dX[1])

T <- matrix(0, ncol = a, nrow = dX[1])

XtY <- crossprod(X, Y)

for (a in 1:aMax) {

if (dY[2] == 1) {

w <- XtY/sqrt(c(crossprod(XtY)))

}

else {

if (dY[2] < dX[2]) {

q = eigen(crossprod(XtY), symmetric = TRUE)$vectors[,

1]

w <- XtY %*% q

w <- w/sqrt(c(crossprod(w)))

}

else {

w <- eigen(tcrossprod(XtY), symmetric = TRUE)$vectors[,

1]

}

}

r <- w

if (a > 1) {

for (j in 1:(a - 1)) {

r <- r - (P[, j] %*% w) * R[, j]

}

}

t <- X %*% r

t2 <- c(crossprod(t))

p <- crossprod(X, t)/t2

q <- crossprod(XtY, r)/t2

u <- Y %*% q

XtY <- XtY - (t2 * p) %*% t(q)

T[, a] <- t

R[, a] <- r

P[, a] <- p

Q[, a] <- t(q)

B[, , a] <- R[, 1:a, drop = FALSE] %*% t(Q[, 1:a, drop = FALSE])

U[, a] <- u

W[, a] <- w

Yhat[, , a] <- T[, 1:a] %*% t(Q[, 1:a, drop = FALSE])

}
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f <- Y - Yhat[, , aMax]

sc <- sqrt(diag(crossprod(T, T)))

Wa <- W

for (a in 1:aMax) {

Wa[, a] <- W[, a] * sc[a]

T[, a] <- T[, a]

}

rownames(T) <- rownames(X)

rownames(Wa) <- colnames(X)

W <- list(sigLoadings = Wa, loadingWeights = W, scores = T,

loadings = P, qa = Q, Ua = U, b = B, Q0 = NULL, f = f)

return(W)

}

crossvalidatePLS = function (W, X, Y, ModifiedTtest = 0.5, aMax = 3, method = "kernel",

ridge = 0.1, penalty = NULL)

{

library(Hotelling)

dY <- dim(Y)

dX <- dim(X)

t2 <- vector("numeric", length = dX[2])

Wjk <- array(data = NA, dim = c(dX[2], aMax, dX[1]))

Yval <- array(data = 0, dim = c(dY[1], dY[2], aMax))

usv <- svd(X)

Xc <- usv$u %*% diag(usv$d)

for (ii in 1:dX[1]) {

if (method == "bridge") {

subMod <- calibrate.bridgePLS(scale(Xc[-ii, ], scale = F),

scale(Y[-ii, ], scale = F), ridge = ridge, aMax = aMax)

}

if (method == "kernel") {

subMod <- calibrate.kernelPLS(scale(Xc[-ii, ], scale = F),

scale(Y[-ii, ], scale = F), aMax = aMax)

}

for (a in 1:aMax) {

Yval[ii, , a] <- Xc[ii, ] %*% as.matrix(subMod$b[,

, a])

}

Wi <- t(t(subMod$sigLoadings) %*% t(usv$v))

sol <- svd(crossprod(W, Wi))

rot <- sol$v %*% t(sol$u)

Wjk[, , ii] <- Wi %*% rot

}

if (ModifiedTtest == 1) {

t2 <- sqrt(apply(W^2, 1, sum))

}

else {

cvmx <- array(data = NA, dim = c(dX[2], aMax, aMax))

for (i in 1:dX[2]) {
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cvmx[i, , ] <- cov(scale(t(as.matrix(Wjk[i, , ])),

center = TRUE, scale = FALSE))

}

if (is.null(penalty)) {

penalty <- apply(cvmx, c(2, 3), median)

}

for (i in 1:dX[2]) {

cvmx[i, , ] <- (1 - ModifiedTtest) * (cvmx[i, , ]) +

ModifiedTtest * penalty

}

for (i in 1:dX[2]) {

t2[i] <- hotell(cvmx[i, , ], W[i, ])

}

}

t2 <- as.matrix(t2)

names(t2) <- colnames(X)

t2 <- list(t2 = t2, penalty = penalty, Yval = Yval, Wjk = Wjk)

return(t2)

}

setScores = function (W, sets, T2, T2null = NULL, computeWset = TRUE)

{

library(vegan)

dSets <- length(names(sets))

dW <- dim(W)

setW <- matrix(0, dSets, dW[2])

setT <- vector("numeric", length = dSets)

H <- sqrt(rowSums(W^2))

for (set in 1:dSets) {

setCov <- cor(rbind(0, t(W[sets[[set]], ])))

setCov[setCov < 0] <- 0

setD <- scale(setCov, center = F, scale = 1/sqrt(T2)[sets[[set]]])

setD <- scale(t(setD), center = F, scale = 1/sqrt(T2)[sets[[set]]])

diag(setD) <- 0

setT[set] <- sum(setD)/(length(sets[[set]])^2 - length(sets[[set]]))

if (computeWset) {

setWtemp <- W[sets[[set]], ]

for (a in 1:dW[2]) {

setW[set, a] <- weighted.mean(setWtemp[, a],

w = colMeans(setD))

}

rownames(setW) <- names(sets)

}

else {

setW <- NULL

}

}

names(setT) <- names(sets)

return(list(setT = setT, setW = setW))
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}

resamplePLS = function (W, Treal, X, Y, TsetReal, sets, n, ModifiedTtest, penalty,

method = "kernel", ridge = 0.01, aMax = 3, scrambleSets = F)

{

dY <- dim(Y)

dX <- dim(X)

dSet <- length(names(sets))

dW <- dim(W)

aMax <- dW[2]

Tpert <- array(data = NA, dim = c(dX[2], n))

TsetPert <- array(data = NA, dim = c(dSet, n))

for (i in 1:n) {

if (i %in% c(2, 3, 5, 7, 9, 11, 17, 33, 65, 129, 257,

513, 1025, 2049, 4097)) {

print(paste("completed", as.character(i - 1), "resamplings"))

}

Yind <- sample(1:dY[1])

Y <- Y[Yind, ]

Y <- as.matrix(Y)

if (method == "kernel") {

pertModel <- calibrate.kernelPLS(X, Y, aMax = aMax)

}

if (method == "bridge") {

pertModel <- calibrate.bridgePLS(X, Y, aMax = aMax,

ridge = ridge)

}

Wpert <- pertModel$sigLoadings

ValRes <- crossvalidatePLS(Wpert, X, Y, ModifiedTtest,

penalty = penalty, aMax = aMax, method = method,

ridge = ridge)

if (!is.null(sets)) {

if (scrambleSets) {

for (set in names(sets)) {

sets[[set]] <- sample(colnames(X), size = length(sets[[set]]))

}

setStatsPert <- setScores(W, sets, Treal, T2null = NULL)

}

else {

setStatsPert <- setScores(Wpert, sets, ValRes$t2,

T2null = NULL, computeWset = F)

}

TsetPert[, i] <- setStatsPert$setT

}

Tpert[, i] <- ValRes$t2

}

qv <- vector("numeric", dX[2])

print("Computing q values")

for (i in 1:dX[2]) {
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n_better <- colSums(Tpert >= Treal[i])

qv[i] <- median(n_better)/(1 + sum(Treal > Treal[i]))

}

if (!is.null(sets)) {

print("computing set q values")

qSet <- vector("numeric", dSet)

for (i in 1:dSet) {

n_better <- colSums(TsetPert >= TsetReal[i])

qSet[i] <- median(n_better)/(1 + sum(TsetReal > TsetReal[i]))

}

names(qSet) <- names(sets)

}

else {

qSet <- NULL

}

return(list(qv = qv, Tpert = Tpert, qSet = qSet))

}

D.8 Calculating the Phase Angle Distribution of Marker

Genes

The following code is developed for modelling the phase angle distribution of marker genes

in the PLS loading plane and to assign a phase for the genes in the PLS loading plane.

def compute_angle_phase_distribution_with_resampling(pls_sigload_cutoff,clean=True):

known_df = pd.read_csv("./data/known_plus_regev.csv",index_col=0)

z = np.zeros(len(known_df['phase'].unique()))

angle_dist_df = pd.DataFrame({'mean': z,

'variance': z,

'n': z},

index=known_df['phase'].unique()

)

for p in known_df['phase'].unique():

p_df = known_df[known_df['phase'] == p].copy()

p_genes = list(set(list(p_df['Ensembl'])).intersection(set(list(pls_sigload_cutoff.index))))

angle_dist_df.loc[p,'n'] = len(p_genes)

if len(p_genes) > 2:

re_means = []

re_vars = []

#resampling with leave 10% out

for i in range(500):

re_genes = np.random.choice(p_genes, len(p_genes)-int(np.ceil(len(p_genes)*0.1)))

re_angles = pls_sigload_cutoff.loc[re_genes, 'angles']
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if re_angles.max() - re_angles.min() > 1.5*np.pi:

re_angles[re_angles > np.pi] -= 2*np.pi

m = np.mean(re_angles)

v = np.var(re_angles,ddof=1)

re_means.append(m)

re_vars.append(v)

m_v_df = pd.DataFrame({'mean': re_means, 'variance': re_vars})

m_v_df = m_v_df.sort_values(by=['variance'])

mean = m_v_df.loc[int(len(m_v_df)*0.5),'mean']

variance = m_v_df.loc[int(len(m_v_df)*0.5),'variance']

else:

p_angles = pls_sigload_cutoff.loc[p_genes, 'angles']

if p_angles.max() - p_angles.min() > 1.5*np.pi:

p_angles[p_angles > np.pi] -= 2*np.pi

mean = np.mean(p_angles)

variance = np.var(p_angles,ddof=1)

angle_dist_df.loc[p,'mean'] = mean

angle_dist_df.loc[p,'variance'] = variance

if clean:

angle_dist_df.dropna(inplace=True)

angle_dist_df = angle_dist_df[angle_dist_df['variance'] != 0]

angle_dist_df = angle_dist_df[angle_dist_df['variance'] < 1.5 ].copy()

#make cyclic where needed

for p in angle_dist_df.index.unique():

if (angle_dist_df.loc[p,'mean'] + 3*np.sqrt(angle_dist_df.loc[p,'variance']) > 2*np.pi)

and (np.sqrt(angle_dist_df.loc[p,'variance'])<1):

shift_df = pd.DataFrame({

'mean': angle_dist_df.loc[p,'mean']-2*np.pi,

'variance': angle_dist_df.loc[p,'variance'],

'n': angle_dist_df.loc[p,'n']

}, index=['{}-shift'.format(p)])

angle_dist_df = angle_dist_df.append(shift_df)

elif (angle_dist_df.loc[p,'mean'] - 3*np.sqrt(angle_dist_df.loc[p,'variance']) < 0)

and (np.sqrt(angle_dist_df.loc[p,'variance'])<1):

shift_df = pd.DataFrame({

'mean': angle_dist_df.loc[p,'mean']+2*np.pi,

'variance': angle_dist_df.loc[p,'variance'],

'n': angle_dist_df.loc[p,'n']

}, index=['{}-shift'.format(p)])

angle_dist_df = angle_dist_df.append(shift_df)

return angle_dist_df

def assign_phase(pls_sigload_cutoff,angle_dist_df):

import scipy

assigned_phase = []



APPENDIX D. CODE SNIPPETS 190

for gene, row in pls_sigload_cutoff.iterrows():

angle = row['angles']

z_d = {}

for p in angle_dist_df.index.unique():

mean = angle_dist_df.loc[p,'mean']

scale = np.sqrt(angle_dist_df.loc[p,'variance'])

z_d[p] = scipy.stats.norm.pdf(angle, mean, scale)

phase_max = max(z_d, key=z_d.get)

assigned_phase.append(phase_max if z_d[phase_max]>0.05 else 'not_assigned')

pls_sigload_cutoff['assigned_phase'] = assigned_phase

pls_sigload_cutoff['assigned_phase'].value_counts()

D.9 Functional Enrichment using gProfiler2

The following code is used to retrieve the significant terms in our functional enrichment

analysis. The R script will also export a table of significant terms to images.

#!/usr/bin/env Rscript

library(gprofiler2)

args = commandArgs(trailingOnly=TRUE)

df <- read.csv(file=args[1], header=TRUE, sep=",", row.names=1)

if (length(args)==3) {

df <- df[df$assigned_phase == args[3],]

}

res <- gost(rownames(df),

organism='hsapiens',

user_threshold=0.05,

correction_method=c('g_SCS'),

domain_scope=c('annotated'),

sources=c('GO:BP')

)

res$result <- res$result[res$result$term_size > 10,]

res$result <- res$result[res$result$term_size < 2500,]
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if (nrow(res$result)>60){

res$result <- res$result[1:60,]

}

publish_gosttable(res,filename=args[2])

if (nrow(res$result)>10){

res$result <- res$result[1:10,]

publish_gosttable(res,filename=gsub(".png","_top10.png",args[2]))

}



Appendix E

Material Availability

E.1 Single Cell pipeline

As part of this experiment, a Snakemake pipeline was implemented for running STARsolo.

This was developed as a part of the existing single cell pipeline at Genomics Core Facility,

Norwegian University of Science and Technology.

• Repository: https://github.com/gcfntnu/single-cell/tree/star

• Branch: star

• Commit: 1e6988664923d4dee2f15cf1eba664f5d731e363

E.2 Developed Material

The materiel developed for this experiment can in the git repository below. The count

matrices are too large to upload, but will be delivered upon request.

• Repository: https://github.com/gcfntnu/single-cell/tree/star

192
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The repository contains the following:

• The lists of genes acquired in our analysis.

• The conda environments used.

• Example notebook for the 293t analysis.

• Example notebook for PLS regression.

• The PLS implementation, miirPLS.

• Our developed utilites.
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