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Alzheimer’s disease (AD) is highly heritable and recent studies have identified over 20 disease-86 

associated genomic loci. Yet these only explain a small proportion of the genetic variance, 87 

indicating that undiscovered loci remain. Here, we performed the largest genome-wide 88 

association study of clinically diagnosed AD and AD-by-proxy (71,880 cases, 383,378 controls). 89 

AD-by-proxy, based on parental diagnoses, showed strong genetic correlation with AD (rg=0.81). 90 

Meta-analysis identified 29 risk loci, implicating 215 potential causative genes. Associated genes 91 

are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). 92 

Gene-set analyses indicate biological mechanisms involved in lipid-related processes and 93 

degradation of amyloid precursor proteins. We show strong genetic correlations with multiple 94 

health-related outcomes, and Mendelian randomisation results suggest a protective effect of 95 

cognitive ability on AD risk. These results are a step forward in identifying the genetic factors that 96 

contribute to AD risk and add novel insights into the neurobiology of AD.  97 
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Introduction 98 

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with roughly 35 million 99 

people affected.1 AD is highly heritable, with estimates ranging between 60 and 80%.2 100 

Genetically, AD can be roughly divided into 2 subgroups: 1) familial early-onset cases that are 101 

often explained by rare variants with a strong effect,3 and 2) late-onset cases that are influenced 102 

by multiple common variants with low effect sizes.4 Segregation analyses have linked several 103 

genes to the first subgroup, including APP5, PSEN16 and PSEN27. The identification of these genes 104 

has resulted in valuable insights into a molecular mechanism with an important role in AD 105 

pathogenesis, the amyloidogenic pathway,8 exemplifying how gene discovery can add to 106 

biological understanding of disease aetiology.  107 

Besides the identification of a few rare genetic factors (e.g. TREM29 and ABCA710), 108 

genome-wide association studies (GWAS) have mostly discovered common risk variants for the 109 

more complex late-onset type of AD. APOE is the strongest genetic risk locus for late-onset AD, 110 

responsible for a 3- to 15-fold increase in risk.11 A total of 19 additional GWAS loci have been 111 

described using a discovery sample of 17,008 AD cases and 37,154 controls, followed by 112 

replication of the implicated loci with 8,572 AD patients and 11,312 controls.4 The currently 113 

confirmed AD risk loci explain only a fraction of the heritability of AD and increasing the sample 114 

size is likely to boost the power for detection of more common risk variants, which will aid in 115 

understanding biological mechanisms involved in the risk for AD.  116 

In the current study, we included 455,258 individuals (Nsum) of European ancestry, meta-117 

analysed in 3 phases (Figure 1). Phase 1 consisted of 24,087 clinically diagnosed late-onset AD 118 

cases, paired with 55,058 controls. In phase 2, we analysed an AD-by-proxy phenotype, based on 119 
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individuals in the UK Biobank (UKB) for whom parental AD status was available (N proxy 120 

cases=47,793; N proxy controls=328,320). The value of by-proxy phenotypes for GWAS was 121 

recently demonstrated by Liu et al12 for 12 common diseases, including substantial gains in 122 

statistical power for AD. The high heritability of AD implies that case status for offspring can be 123 

partially inferred from parental case status and that offspring of AD parents are likely to have a 124 

higher genetic AD risk load. We thus defined individuals with one or two parents with AD as proxy 125 

cases, while upweighting cases with 2 parents. Similarly, the proxy controls include subjects with 126 

2 parents without AD, where older cognitively normal parents were upweighted to account for 127 

the higher likelihood that younger parents may still develop AD (see Methods). As the proxy 128 

phenotype is not a pure measure of an individual’s AD status and may include individuals that 129 

never develop AD, genetic effect sizes will be somewhat underestimated. However, the proxy 130 

case-control sample is very large, and therefore substantially increases power to detect genetic 131 

effects for AD12, as was also demonstrated in a more recent study using UKB13. Finally, in phase 132 

3, we meta-analysed all individuals of phase 1 and phase 2 together and tested for replication in 133 

an independent sample. 134 

 135 

Results 136 

Genome-wide meta-analysis for AD status 137 

Phase 1 involved a genome-wide meta-analysis for clinically-diagnosed AD case-control status 138 

using cohorts collected by 3 independent consortia (PGC-ALZ, IGAP and ADSP), totalling 79,145 139 

individuals (Nsum - effective sample size Neff=72,500) of European ancestry and 9,862,738 genetic 140 

variants passing quality control (Figure 1, Supplementary Table 1). The ADSP subset 141 
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encompassed whole exome sequencing data from 4,343 cases and 3,163 controls, while the 142 

remaining datasets consisted of genotype single nucleotide polymorphism (SNP) arrays. For PGC-143 

ALZ and ADSP, raw genotypic data were subjected to a standardized quality control pipeline. 144 

GWA analyses were run per cohort and then included in a meta-analysis alongside IGAP, for 145 

which only summary statistics were available (see Methods). As described in detail in the 146 

Supplementary Note, the phase 1 analysis identified 18 independent loci meeting genome-wide 147 

significance (GWS; P<5×10-8), all of which have been identified by previous GWAS (Table 1, 148 

Supplementary Figure 1, Supplementary Table 2). 149 

We next (phase 2) performed a GWAS using 376,113 individuals of European ancestry 150 

from UKB with parental AD status weighted by age to construct an AD-by-proxy status (Figure 1). 151 

Here, we identified 13 independent GWS loci, 8 of which overlapped with phase 1 (Table 1, 152 

Supplementary Note).  We observed a strong genetic correlation of 0.81 (SE=0.185) between AD 153 

status and AD-by-proxy, as well as substantial concordance in the individual SNP effects, as 154 

described in the Supplementary Note.  155 

Given the high genetic overlap, in phase 3 we conducted a meta-analysis of the clinical 156 

AD GWAS and the AD-by-proxy GWAS (Figure 1), comprising a total sample size of 455,258 157 

(Neff=450,734), including 71,880 (proxy) cases and 383,378 (proxy) controls. The linkage 158 

disequilibrium (LD) score intercept14 was 1.0018 (SE=0.0109) and the sample size-adjusted15  λ1000 159 

was 1.044, indicating that most of the inflation in genetic signal (λGC=1.0833) could be explained 160 

by polygenicity (Supplementary Figure 1B). There were 2,357 GWS variants, which were 161 

represented by 94 lead SNPs, located in 29 distinct loci (Table 1, Figure 2, Supplementary Figure 162 

2). These included 15 of the 18 loci detected in Phase 1, all of the 13 detected in Phase 2, as well 163 
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as 9 loci that were sub-threshold in both individual analyses but reached significance in the meta-164 

analysis. A large proportion of the lead SNPs (60/94) was concentrated in the established APOE 165 

risk locus on chromosome 19. This region is known to have a complex LD structure and a very 166 

strong effect on AD risk, thus we consider these SNPs likely to represent a single association 167 

signal. Conditional analysis indicated that most loci represented a single fully independent signal, 168 

while the TREM2, PTK2B/CLU, and APOE loci contained multiple possible causal signals 169 

(Supplementary Note; Supplementary Tables 3-4).  170 

Of the 29 associated loci, 16 overlapped one of the 20 genomic regions previously 171 

identified by the GWAS of Lambert et al.,4 replicating their findings, while 13 were novel. The 172 

association signals of five loci (CR1, ZCWPW1, CLU/PTK2B, MS4A6a and APH1B) are partly based 173 

on the ADSP exome-sequencing data. Re-analysis of these loci excluding ADSP resulted in similar 174 

association signals (Supplementary Table 5), implying that we have correctly adjusted for partial 175 

sample overlap between IGAP and ADSP. The lead SNPs in three loci (with nearest genes HESX1, 176 

TREM2 and CNTNAP2) were only available in the UKB cohort (Table 1), but were of good quality 177 

(INFO>0.91, HWE P>.19, missingness<.003). These SNPs were all rare (MAF < .003), meaning that 178 

they will require future confirmation in another similarly large sample. However, variants in 179 

TREM2 have been robustly linked to AD in prior research9. 180 

Verifying the 13 novel loci against other recent  genetic studies on AD9,16,12,17,18, 4 loci 181 

(TREM2, ECHDC3, SCIMP and ABI3) have been previously discovered in addition to the 16 182 

identified by Lambert et al., leaving 9 novel loci at the time of this writing (ADAMTS4, HESX1, 183 

CLNK, CNTNAP2, ADAM10, APH1B, KAT8, ALPK2, AC074212.3). The ADAMTS4 and KAT8 loci have 184 

also since been identified in a recent analysis in a partially overlapping sample.13 Comparing our 185 
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meta-analysis results with all loci of Lambert et al.4 to determine differences in associated loci, 186 

we were unable to observe 4 loci (MEF2C, NME8, CELF1 and FERMT2) at a GWS level (observed 187 

P-values were 1.6x10-5 to 0.0011), which was mostly caused by a lower association signal in the 188 

UKB dataset (Supplementary Table 6). By contrast, Lambert et al4 were unable to replicate the 189 

DSG2 and CD33 loci in the second stage of their study. In our study, DSG2 was also not supported 190 

(meta-analysis P=0.030; UKB analysis P=0.766), implying invalidation of this locus, while the CD33 191 

locus (rs3865444 in Table 1) was significantly associated with AD (meta-analysis P=6.34 x 10-9; 192 

UKB analysis P=4.97 x 10-5), implying a genuine genetic association with AD risk.  193 

Next, we aimed to find further support for the novel findings by using an independent 194 

Icelandic cohort (deCODE19,20), including 6,593 AD cases and 174,289 controls (Figure 1; 195 

Supplementary Table 7) to test replication of the lead SNP or an LD-proxy of the lead SNP (r2>.9) 196 

in each locus. We were unable to test two loci as the lead SNPs (and SNPs in high LD) either were 197 

not present in the Icelandic reference panel or were not imputed with sufficient quality. For 6 of 198 

the 7 novel loci tested for replication, we observed the same direction of effect in the deCODE 199 

cohort. Furthermore, 4 loci (CLNK, ADAM10, APH1B, AC074212.3) showed nominally significant 200 

association results (P<0.05) for the same SNP or a SNP in high LD (r2 > 0.9) within the same locus 201 

(two-tailed binomial test P=1.9x10-4). The locus on chromosome 1 (ADAMTS4) was very close to 202 

significance (P=0.053), implying stronger evidence for replication than for non-replication. Apart 203 

from the novel loci, we also observed sign concordance for 96.3% of the top (per-locus) lead SNPs 204 

in all loci from the meta-analysis (two-tailed binomial test P=4.17x10-7) that were available in 205 

deCODE (26 out of 27).  206 
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As an additional method of testing for replication, we used genome-wide polygenic score 207 

prediction in two independent samples.21 The current results explain 7.1% of the variance in 208 

clinical AD at a low best fitting P-threshold of 1.69x10-5 in 761 individuals with case-control 209 

diagnoses (P=1.80x10-10). When excluding the APOE-locus (chr19: 45020859-45844508), the 210 

results explain 3.9% of the variance with a best fitting P-threshold of 3.5x10-5 (P=1.90x10-6). We 211 

also predict AD status in a sample of 1,459 pathologically confirmed cases and controls22 with an 212 

R2=0.41 and an area under the curve (AUC) of 0.827 (95% CI: 0.805-0.849, P=9.71x10-70) using the 213 

best-fitting model of SNPs with a GWAS P<.50, as well as R2=0.23 and AUC=0.733 (95% CI: 0.706-214 

0.758, P=1.16x10-45) using only APOE SNPs. This validation sample contains a small number of 215 

individuals overlapping with IGAP; previous simulations with this sample have indicated that this 216 

overfitting increases the margin of error of the estimate approximately 2-3%.22 This sample, 217 

however, represented severe, late-stage AD cases contrasted with supernormal controls, so the 218 

polygenic prediction may be higher than expected for typical case-control or population samples.  219 

 220 

Functional interpretation of genetic variants  221 

Functional annotation of all GWS SNPs (n=2,357) in the associated loci showed that SNPs were 222 

mostly located in intronic/intergenic areas, but also in regions that were enriched for chromatin 223 

states 4 and 5, implying effects on active transcription (Figure 3; Supplementary Table 8). 25 224 

GWS SNPs were exonic non-synonymous (ExNS) (Figure 3A; Supplementary Table 9) with likely 225 

deleterious impacts on gene function. Converging evidence of strong association (Z>|7|) and a 226 

high observed probability of a deleterious variant effect (CADD23 score≥30) was found for 227 

rs75932628 (TREM2), rs142412517 (TOMM40) and rs7412 (APOE). The first two missense 228 
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mutations are rare (MAF=0.002 and 0.001, respectively) and the alternative alleles were 229 

associated with higher risk for AD. The latter APOE missense mutation is the well-established 230 

protective allele Apoε2. Supplementary Tables 8 and 9 present a detailed annotation catalogue 231 

of variants in the associated genomic loci. We also applied a fine-mapping model24 to identify 232 

credible sets of causal SNPs from the identified GWS variants (Supplementary Table 8). The 233 

proportion of plausible causal SNPs varied drastically between loci; for example, 30 out of 854 234 

SNPs were selected in the APOE locus (#26), while 345 out of 434 SNPs were nominated in the 235 

HLA-DRB1 locus (#7). Credible causal SNPs were not limited to known functional categories such 236 

as ExNS, indicating more complicated causal pathways that merit investigation with the set of 237 

variants prioritized by these statistical and functional annotations.   238 

Partitioned heritability analysis,25 excluding SNPs with extremely large effect sizes (i.e. 239 

APOE variants) showed enrichment for h2SNP for variants located in H3K27ac marks 240 

(Enrichment=3.18, P=9.63×10-5), which are associated with activation of transcription, and in 241 

Super Enhancers (Enrichment=3.62, P=2.28×10-4), which are genomic regions where multiple 242 

epigenetic marks of active transcription are clustered (Figure 3D; Supplementary Table 10). 243 

Heritability was also enriched in variants on chromosome 17 (Enrichment=3.61, P=1.63x10-4) and 244 

we observed a trend of enrichment for heritability in common rather than rarer variants 245 

(Supplementary Figure 3; Supplementary Tables 11 and 12). Although a large proportion (23.9%) 246 

of the heritability can be explained by SNPs on chromosome 19, this enrichment is not significant, 247 

due to the large standard errors around this estimate (Supplementary Table 11). Overall these 248 

results suggest that, despite some nonsynonymous variants contributing to AD risk, most of the 249 
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GWS SNPs are located in non-coding regions and are enriched for regions that have an activating 250 

effect on transcription. 251 

 252 

Implicated genes 253 

To link the associated variants to genes, we applied three gene-mapping strategies implemented 254 

in FUMA26 (see Methods). We used all SNPs with a P-value < 5x10-8 for gene-mapping. Positional 255 

gene-mapping aligned SNPs to 99 genes by their location within or immediately up/downstream 256 

(+/-10kb) of known gene boundaries, eQTL (expression quantitative trait loci) gene-mapping 257 

matched cis-eQTL SNPs to 168 genes whose expression levels they influence in one or more 258 

tissues, and chromatin interaction mapping linked SNPs to 21 genes based on three-dimensional 259 

DNA-DNA interactions between each SNP’s genomic region and nearby or distant genes, which 260 

we limited to include only interactions between annotated enhancer and promoter regions 261 

(Supplementary Figure 4; Supplementary Tables 13 and 14). This resulted in 192 uniquely 262 

mapped genes, 80 of which were implicated by at least two mapping strategies and 16 by all 3 263 

(Figure 4E).  264 

Of special interest is the locus on chromosome 8 (CLU/PTK2B). In the GWAS by Lambert 265 

et al.4, this locus was defined as 2 distinct loci (CLU and PTK2B). Although our conditional analysis 266 

based on genetic data also specified this locus as having at least 2 independent association signals 267 

(Supplementary Table 4), the chromatin interaction data in two immune-related tissues – the 268 

spleen and liver (Supplementary Table 14), suggests that the genomic regions indexed by PTK2B 269 

and CLU loci might physically interact (Figure 3E), therefore putatively affecting AD pathogenesis 270 

via the same biological mechanism. The patterns of tissue-specific gene expression are largely 271 
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dissimilar between CLU and PTK2B, although both are expressed relatively highly in the brain and 272 

lymph nodes.27 Future studies should thus consider the joint effects of how these two genes 273 

simultaneously impact AD risk.  274 

Eight genes (HLA-DRB5, HLA-DRB1, HLA-DQA, HLA-DQB1, KAT8, PRSS36, ZNF232 and 275 

CEACAM19) are particularly notable as they are implicated via eQTL association in the 276 

hippocampus, a brain region highly affected early in AD pathogenesis (Supplementary Table 13). 277 

Chromosome 16 contains a locus implicated by long-range eQTL association (Figure 3F) clearly 278 

illustrating how the more distant genes C16orf93, RNF40 and ITGAX can be affected by a genetic 279 

factor (rs59735493) in various body tissues (e.g. blood, skin), including a change in expression for 280 

RNF40 observed in the dorsolateral prefrontal cortex. These observations emphasize the 281 

relevance of considering putative causal genes or regulatory elements not solely on the physical 282 

location but also on epigenetic influences. As detailed in the Supplementary Note, eQTLs were 283 

overrepresented in the risk loci and a number of QTL associations (including eQTLs, mQTLs and 284 

haQTLs) were identified in relevant brain regions, providing interesting targets for future 285 

functional follow-up and biological interpretation (Supplementary Tables 15-17).   286 

Although these gene-mapping strategies imply multiple putative causal genes per GWAS 287 

locus, several genes are of particular interest, as they have functional or previous genetic 288 

association with AD. For locus 1 in Supplementary Table 13, ADAMTS4 encodes a protein of the 289 

ADAMTS family which has a function in neuroplasticity and has been extensively studied for its 290 

role in AD pathogenesis.28 For locus 19, the obvious most likely causal gene is ADAM10, as this 291 

gene has been associated with AD by research focusing on rare coding variants in ADAM10.29 292 

However, this is the first time that this gene is implicated as a common risk factor for AD, and is 293 
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supported by the putative causal molecular mechanism observed in dorsolateral prefrontal 294 

cortex eQTL and mQTL data (Supplementary Tables 15 and 16) for multiple common SNPs in LD. 295 

The lead SNP for locus 20 is a nonsynonymous variant in exon 1 of APH1B, which encodes for a 296 

protein subunit of the γ-secretase complex cleaving APP.30 A highly promising candidate gene for 297 

locus 21 is KAT8, as the lead SNP of this locus is located within the third intron of KAT8, and 298 

multiple significant variants within this locus influence the expression or methylation levels of 299 

KAT8 in multiple brain regions (Supplementary Tables 13 and 16) including hippocampus. The 300 

chromatin modifier KAT8 is regulated by KANSL1, a gene associated with AD in absence of APOE 301 

ɛ4. A study on Parkinson’s disease (PD) reported KAT8 as potential causal gene based on GWAS 302 

and differential gene expression results, implying a putative shared role in neurodegeneration of 303 

KAT8 in AD and PD.31 Although previously reported functional information on genes can be of 304 

great value, it is preferable to consider all implicated genes as putative causal factors to guide 305 

potential functional follow-up experiments.   306 

We next performed genome-wide gene-based association analysis (GWGAS) using 307 

MAGMA.32 This method annotates SNPs to known protein-coding genes to estimate aggregate 308 

associations based on all SNPs in a gene. It differs from FUMA as it provides a statistical gene-309 

based test, whereas FUMA maps individually significant SNPs to genes. With GWGAS, we 310 

identified 97 genes that were significantly associated with AD (Supplementary Figure 5; 311 

Supplementary Table 18), of which 74 were also mapped by FUMA (Figure 4E). In total, 16 genes 312 

were implicated by all four strategies (Supplementary Table 19), of which 7 genes (HLA-DRA, 313 

HLA-DRB1, PTK2B, CLU, MS4A3, SCIMP and RABEP1) are not located in the APOE-locus, and 314 

therefore of high interest for further investigation.  315 
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 316 

Gene-sets implicated in AD and AD-by-proxy 317 

Using the gene-based P-values, we performed gene-set analysis for curated biological pathways 318 

and tissue/single-cell expression. Four Gene Ontology (GO)33 gene-sets were significantly 319 

associated with AD risk: Protein lipid complex (P=3.93×10-10), Regulation of amyloid precursor 320 

protein catabolic process (P=8.16×10-9), High density lipoprotein particle (P=7.81x10-8), and 321 

Protein lipid complex assembly (P=7.96×10-7) (Figure 4A; Supplementary Tables 20 and 21). 322 

Conditional analysis on the APOE locus showed associations with AD for these four gene-sets to 323 

be independent of the effect of APOE, though part of the association signal was also attributable 324 

to APOE. All 25 genes of the High density lipoprotein particle pathway are also part of the Protein 325 

lipid complex; conditional analysis showed that these gene-sets are not interpretable as 326 

independent associations (P=0.18), but the other three sets are independently significant 327 

(Supplementary Table 20).  328 

Linking gene-based P-values to tissue- and cell-type-specific gene-sets, no association 329 

survived the stringent Bonferroni correction, which corrected for all tested gene-sets (i.e. 6,994 330 

GO categories, 53 tissues and 39 cell types). However, we did observe suggestive associations 331 

across immune-related tissues when correcting only for the number of tests within all tissue 332 

types or cell-types (Figure 4C; Supplementary Table 22), particularly whole blood (P=5.61×10-6), 333 

spleen (P=1.50x10-5) and lung (P=4.67x10-4), which were independent from the APOE-locus. In 334 

brain single-cell expression gene-set analyses, we found association for microglia in the mouse-335 

based expression dataset (P=1.96x10-3), though not surviving the stringent Bonferroni correction 336 

(Figure 4B; Supplementary Table 23). However, we observed a similar association signal for 337 
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microglia in a second independent single-cell expression dataset in humans (P=2.56x10-3) 338 

(Supplementary Figure 6; Supplementary Table 24). As anticipated, both microglia signals are 339 

partly depending on APOE, though a large part is independent (Supplementary Tables 23 and 340 

24). 341 

 342 

Cross-trait genetic influences 343 

As described in the Supplementary Note and Supplementary Tables 25-26, we observed 344 

that the genetic influences on AD overlapped with a number of other diseases and psychological 345 

traits including cognitive ability and educational attainment, replicating previous studies.34,35 To 346 

extend these findings, we used Generalised Summary-statistic-based Mendelian 347 

Randomisation36 (GSMR) to test for potential credible causal associations of genetically 348 

correlated outcomes which may directly influence the risk for AD. Due to the nature of AD being 349 

a late-onset disorder and summary statistics for most other traits being obtained from younger 350 

samples, we do not report tests for the opposite direction of potential causality (i.e. we did not 351 

test for a causal effect of a late-onset disease on an early-onset disease). In this set of analyses, 352 

SNPs from the summary statistics of genetically correlated phenotypes were used as 353 

instrumental variables to estimate the putative causal effect of these “exposure” phenotypes on 354 

AD risk by comparing the ratio of SNPs’ associations with each exposure to their associations with 355 

AD outcome (see Methods). Association statistics were standardized, such that the reported 356 

effects reflect the expected difference in odds ratio (OR) for AD as a function of every SD increase 357 

in the exposure phenotype. We observed a protective effect of cognitive ability (OR=0.89, 95% 358 

CI: 0.85-0.92, P=5.07x10-9), educational attainment (OR=0.88, 95%CI: 0.81-0.94, P=3.94×10-4), 359 
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and height (OR=0.96, 95%CI: 0.94-0.97, P=1.84x10-8) on risk for AD (Supplementary Table 27; 360 

Supplementary Figure 7). No substantial evidence of pleiotropy was observed between AD and 361 

these phenotypes, with <1% of overlapping SNPs being filtered as outliers (Supplementary Table 362 

27). 363 

 364 

Discussion 365 

By using an unconventional approach of including a proxy phenotype for AD to increase sample 366 

size, we have identified 9 novel loci and gained novel biological knowledge on AD aetiology. We 367 

were able to test 7 of the 9 novel loci for replication, of which 4 loci showed clear replication, 1 368 

locus showed marginal replication and 2 loci were not replicated at this moment. Both the high 369 

genetic correlation between the standard case-control status and the UKB by proxy phenotype 370 

(rg=0.81) and the high rate of novel loci replication in the independent deCODE cohort suggest 371 

that this strategy is robust. Through in silico functional follow-up analysis, and in line with 372 

previous research,18,37 we emphasise the crucial causal role of the immune system - rather than 373 

immune response as a consequence of disease pathology - by establishing variant enrichments 374 

for immune-related body tissues (whole blood, spleen, liver) and for the main immune cells of 375 

the brain (microglia). Of note, the enrichment observed for liver could alternatively indicate the 376 

genetic involvement of the lipid system in AD pathogenesis.38 Furthermore, we observe 377 

informative eQTL associations and chromatin interactions within immune-related tissues for the 378 

identified genomic risk loci. Together with the AD-associated genetic effects on lipid metabolism 379 

in our study, these biological implications (which are based on genetic signals and unbiased by 380 

prior biological beliefs) strengthen the hypothesis that AD pathogenesis involves an interplay 381 
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between inflammation and lipids, as lipid changes might harm immune responses of microglia 382 

and astrocytes, and vascular health of the brain.39 383 

 In accordance with previous clinical research, our study suggests an important role for 384 

protective effects of several human traits on AD. Cognitive reserve has been proposed as a 385 

protective mechanism in which the brain aims to control brain damage with prior existing 386 

cognitive processing strategies.40 Our findings imply that some component of the genetic factors 387 

for AD might affect cognitive reserve, rather than being involved in AD-pathology-related 388 

damaging processes, influencing AD pathogenesis in an indirect way through cognitive reserve. 389 

Furthermore, a large-scale community-based study observed that AD incidence rates declined 390 

over decades, which was specific for individuals with at minimum a high school diploma.41 391 

Combined with our Mendelian randomisation results for educational attainment, this suggests 392 

that the protective effect of educational attainment on AD is influenced by genetics. Similarly, 393 

the observed positive effects of height could be a result of the genetic overlap between height 394 

and intracranial volume42,43, a measure associated to decreased risk of AD.44 This indirect 395 

association is furthermore supported by the observed increase in cognitive reserve for taller 396 

individuals.45 Alternatively, genetic variants influencing height might also affect biological 397 

mechanisms involved in AD aetiology, such as IGF1 that codes for the insulin-like growth factor 398 

and is associated with cerebral amyloid.46 399 

The results of this study could furthermore serve as a valuable resource for selection of 400 

promising genes for functional follow-up experiments and identify targets for drug development 401 

and stratification approaches. We anticipate that functional interpretation strategies and follow-402 
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up experiments will result in a comprehensive understanding of late-onset AD aetiology, which 403 

will serve as a solid foundation for improvement of AD therapy. 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

URLs 412 

UK Biobank: http://ukbiobank.ac.uk 413 

Database of Genotypes and Phenotypes (dbGaP): https://www.ncbi.nlm.nih.gov/gap 414 

Functional Mapping and Annotation (FUMA) software: http://fuma.ctglab.nl 415 

Multi-marker Analysis of GenoMic Annotation (MAGMA) software: 416 

http://ctg.cncr.nl/software/magma  417 

mvGWAMA and effective sample size calculation: https://github.com/Kyoko-wtnb/mvGWAMA 418 

LD Score Regression software: https://github.com/bulik/ldsc 419 

LD Hub (GWAS summary statistics): http://ldsc.broadinstitute.org/ 420 

LD scores: https://data.broadinstitute.org/alkesgroup/LDSCORE/ 421 

Psychiatric Genomics Consortium (GWAS summary statistics): 422 

http://www.med.unc.edu/pgc/results-and-downloads 423 

http://ukbiobank.ac.uk/
https://www.ncbi.nlm.nih.gov/gap
http://fuma.ctglab.nl/
http://ctg.cncr.nl/software/magma
http://ctg.cncr.nl/software/magma
https://github.com/Kyoko-wtnb/mvGWAMA
https://github.com/Kyoko-wtnb/mvGWAMA
https://github.com/bulik/ldsc
http://ldsc.broadinstitute.org/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://www.med.unc.edu/pgc/results-and-downloads
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MSigDB curated gene-set database: 424 

http://software.broadinstitute.org/gsea/msigdb/collections.jsp 425 

NHGRI GWAS catalog: https://www.ebi.ac.uk/gwas/ 426 

Generalised Summary-data-based Mendelian Randomisation software: 427 

http://cnsgenomics.com/software/gsmr/ 428 

Credible SNP set analysis software: https://github.com/hailianghuang/FM-summary 429 
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Figure Legends 618 

Figure 1. Overview of analysis steps. The main genetic analysis encompasses the procedures to detect 619 
GWAS risk loci for AD. The functional analysis includes the in silico functional follow-up procedures with 620 
the aim to put the genetic findings in biological context. N = total of individuals within specified dataset. 621 

622 
623 

Figure 2. GWAS meta-analysis for AD risk (N=455,258). Manhattan plot displays all associations per 624 
variant ordered according to their genomic position on the x-axis and showing the strength of the 625 
association with the –log10 transformed P-values on the y-axis. The y-axis is limited to enable visualization 626 
of non-APOE loci. For the Phase III meta-analysis, the original –log10 P-value for the APOE locus is 276. 627 

628 
629 

Figure 3. Functional annotation of GWAS results. a) Functional effects of variants in genomic risk loci of 630 
the meta-analysis (the colours of the legend are ordered from right to left in the figure) – the second bar 631 
shows distribution for exonic variants only; b) Distribution of RegulomeDB score for variants in genomic 632 
risk loci, with a low score indicating a higher probability of having a regulatory function (see Methods); c) 633 
Distribution of minimum chromatin state across 127 tissue and cell types for variants in genomic risk loci, 634 
with lower states indicating higher accessibility (see Methods); d) Heritability enrichment of 28 functional 635 
variant annotations calculated with stratified LD score regression (bars represent standard errors). 636 
UTR=untranslated region; CTCF=CCCTC-binding factor; DHS=DNaseI Hypersensitive Site; 637 
TFBS=transcription factor binding site; DGF=DNAaseI digital genomic footprint; e) Zoomed-in circos plot 638 
of chromosome 8; f) Zoomed-in circos plot of chromosome 16. Circos plots show implicated genes by 639 
significant loci, where dark blue areas indicate genomic risk loci, green lines indicate eQTL associations 640 
and orange lines indicate chromatin interactions. Genes mapped by both eQTL and chromatin interactions 641 
are in red. The outer layer shows a Manhattan plot containing the negative log10-transformed P-value of 642 
each SNP in the GWAS meta-analysis of AD. Full circos plots of all autosomal chromosomes are provided 643 
in Supplementary Figure 4. 644 

645 
646 

Figure 4. Functional implications based on gene-set analysis, genetic correlations and functional 647 
annotations. The gene-set results are displayed per category of biological mechanisms (a), brain cell-types 648 
(b) and tissue types (c). The red horizontal line indicates the significance threshold corrected for all gene-649 
set tests of all categories, while the blue horizontal lines display the significance threshold corrected only 650 
for the number of tests within the three categories (i.e. gene-ontology, tissue expression or single cell 651 
expression); d) Genetic correlations between AD and other heritable traits (bars represent 95% 652 
confidence intervals); e) Venn diagram showing the number of genes mapped by four distinct strategies.653 
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Tables 654 
 655 

Table 1. Summary statistics of significantly associated regions identified in the genome-wide association analysis of Alzheimer’s disease (AD) case-control 656 
status, AD-by-proxy phenotype and meta-analysis. 657 
 658 

Region   Case-control status (Phase 1)   AD-by-proxy (Phase 2)   Overall (Phase 3) 

Locus Chr Gene  SNP p  SNP p  SNP bp A1 A2 MAF Z p direction 

1 1 ADAMTS4  rs4575098 1.57E-04  rs4575098 6.88E-08  rs4575098 161155392 A G 0.240 6.36 2.05E-10 ?+++ 

2 1 CR1  rs6656401 1.39E-17  rs679515 8.85E-10  rs2093760 207786828 A G 0.205 8.82 1.10E-18 ++++ 

3 2 BIN1  rs4663105 3.58E-29  rs4663105 5.46E-26  rs4663105 127891427 C A 0.415 13.94 3.38E-44 ?+++ 

4 2 INPPD5  rs10933431 1.67E-06  rs10933431 2.51E-06  rs10933431 233981912 G C 0.235 -6.13 8.92E-10 ?--- 

5 3 HESX1  NA   rs184384746 1.24E-08  rs184384746 57226150 T C 0.002 5.69 1.24E-08 ???+ 

6 4 CLNK  rs6448453 0.024  rs6448451 1.19E-08  rs6448453 11026028 A G 0.252 6.00 1.93E-09 ?+-+ 

-- 4 HS3ST1  rs7657553 2.16E-08  rs7657553 0.790  rs7657553 11723235 A G 0.291 1.95 0.051 ?++- 

7 6 HLA-DRB1  rs9269853 2.66E-08  rs6931277 1.78E-07  rs6931277 32583357 T A 0.153 -6.49 8.41E-11 ?--- 

8 6 TREM2  NA   rs187370608 1.45E-16  rs187370608 40942196 A G 0.002 8.26 1.45E-16 ???+ 

9 6 CD2AP  rs9381563 5.35E-09  rs9381563 8.10E-06  rs9381563 47432637 C T 0.355 6.33 2.52E-10 ?+++ 

10 7 ZCWPW1  rs1859788 6.05E-09  rs7384878 2.38E-10  rs1859788 99971834 A G 0.310 -7.93 2.22E-15 ---- 

11 7 EPHA1  rs11763230 2.58E-11  rs7810606 1.01E-06  rs7810606 143108158 T C 0.500 -6.62 3.59E-11 ?--- 

12 7 CNTNAP2  NA   rs114360492 2.10E-09  rs114360492 145950029 T C 0.000 5.99 2.10E-09 ???+ 

13 8 CLU/PTK2B  rs4236673 6.36E-20  rs1532278 7.45E-09  rs4236673 27464929 A G 0.391 -8.98 2.61E-19 ---- 

14 10 ECHDC3  rs11257242 2.38E-08  rs11257238 5.84E-05  rs11257238 11717397 C T 0.375 5.69 1.26E-08 ?+++ 

15 11 MS4A6A  rs7935829 8.21E-13  rs1582763 4.72E-09  rs2081545 59958380 A C 0.381 -7.97 1.55E-15 ---- 

16 11 PICALM  rs10792832 1.12E-17  rs3844143 5.31E-11  rs867611 85776544 G A 0.314 -8.75 2.19E-18 ?--- 

17 11 SORL1  rs11218343 5.57E-11  rs11218343 2.81E-06  rs11218343 121435587 C T 0.040 -6.79 1.09E-11 ?--- 

18 14 SLC24A4  rs12590654 1.98E-08  rs12590654 3.70E-06  rs12590654 92938855 A G 0.344 -6.39 1.65E-10 ?--- 

19 15 ADAM10  rs442495 3.09E-04  rs442495 2.65E-07  rs442495 59022615 C T 0.320 -6.07 1.31E-09 ?--- 

20 15 APH1B  rs117618017 0.022  rs117618017 2.64E-07  rs117618017 63569902 T C 0.132 5.52 3.35E-08 ++++ 

21 16 KAT8  rs59735493 8.25E-04  rs59735493 3.72E-06  rs59735493 31133100 A G 0.300 -5.49 3.98E-08 ?--- 

22 17 SCIMP  rs113260531 3.21E-06  rs9916042 4.73E-08  rs113260531 5138980 A G 0.120 6.12 9.16E-10 ?+++ 

23 17 ABI3  rs28394864 7.29E-05  rs28394864 6.80E-06  rs28394864 47450775 A G 0.473 5.62 1.87E-08 ?+++ 



 

 
 

28 

-- 17 BZRAP1-AS1  rs2632516 1.42E-09  rs2632516 0.005  rs2632516 56409089 C G 0.455 -4.90 9.66E-07 ?--- 

-- 18 SUZ12P1  rs8093731 4.63E-08  rs8093731 0.766  rs8093731 29088958 T C 0.010 -2.17 0.030 ?-?- 

24 18 ALPK2  rs76726049 0.039  rs76726049 1.83E-07  rs76726049 56189459 C T 0.014 5.52 3.30E-08 ?+++ 

25 19 ABCA7  rs4147929 8.64E-09  rs3752241 2.87E-08  rs111278892 1039323 G C 0.161 6.50 7.93E-11 ?+++ 

26 19 APOE  rs41289512 2.70E-194  rs75627662 9.51E-296  rs41289512 45351516 G C 0.039 35.50 5.79E-276 ?+++ 

27 19 AC074212.3  rs76320948 1.54E-05  rs76320948 1.80E-05  rs76320948 46241841 T C 0.046 5.46 4.64E-08 ?+?+ 

28 19 CD33  rs3865444 4.25E-08  rs3865444 4.97E-05  rs3865444 51727962 A C 0.320 -5.81 6.34E-09 ?--- 

29 20 CASS4   rs6014724 8.72E-08   rs6014724 6.32E-06   rs6014724 54998544 G A 0.089 -6.18 6.56E-10 ?--- 

Note: Independent lead SNPs are defined by r2 < .1; distinct genomic loci are >250kb apart. The locus column indicates the loci number based on Phase III 659 
(-- indicates that this locus is non-significant). The gene symbols are included to conveniently compare the significant loci with previously discovered loci. 660 
The bolded genes correspond to the novel loci indicating the genes in closest proximity to the most significant SNP, while emphasizing this is not necessarily 661 
the causal gene. Allele1 is the effect allele for the meta association statistic. The directions of effect of the distinct cohorts are in the following order: ADSP, 662 
IGAP, PGC-ALZ, UKB note that the first cohort is often missing as this concerns exome sequencing data. Corrected P value for significance = 5E-08 (marked 663 
as bold and underlined values). Note that the lead SNP can differ between the distinct analyses, while it tags the same locus.664 
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Methods 665 

Participants 666 

Participants in this study were obtained from multiple sources, including raw data from case-667 

control samples collected by the Psychiatric Genomics Consortium (PGC-ALZ) and the Alzheimer’s 668 

Disease Sequencing Project (ADSP; made publicly available through dbGaP [see URLs]), summary 669 

data from the case-control samples in the International Genomics of Alzheimer’s Project (IGAP), 670 

and raw data from the population-based UK Biobank (UKB) sample which was used to create a 671 

weighted AD-proxy phenotype. An additional independent case-control sample (deCODE) was 672 

used for replication. Full descriptions of the samples and their respective phenotyping and 673 

genotyping procedures are provided in the Supplementary Note and the Life Sciences Reporting 674 

Summary.   675 

 676 

Data Analysis 677 

Single-marker association analysis 678 

Genome-wide association analysis (GWAS) for each of the ADSP, PGC-ALZ and UKB datasets was 679 

performed in PLINK47, using logistic regression for dichotomous phenotypes (cases versus 680 

controls for ADSP and PGC-ALZ cohorts), and linear regression for phenotypes analysed as 681 

continuous outcomes (proxy phenotype constructed as the number of parents with AD for UKB 682 

cohort). For the ADSP and PGC-ALZ cohorts, association tests were adjusted for gender, batch (if 683 

applicable), and the first 4 ancestry principal components. Twenty principal components were 684 

calculated, and depending on the dataset being tested, additional principal components (on top 685 

of the standard of 4) were added if significantly associated to the phenotype. Furthermore, for 686 
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the PGC-ALZ cohorts age was included as a covariate. For 4,537 controls of the DemGene cohort 687 

(subset of PGC-ALZ), no detailed age information was available, besides the age range the 688 

subjects were in (20-45 years). We therefore set the age of these individuals conservatively to 20 689 

years. For the ADSP dataset, age was not included as a covariate due to the enrichment for older 690 

controls (mean age cases = 73.1 years (SE=7.8); mean age controls = 86.1 years (SE=4.5)) in their 691 

collection procedures. Correcting for age in ADSP would remove a substantial part of genuine 692 

association signals (e.g. well-established APOE locus rs11556505 is strongly associated to AD 693 

(P=1.08x10-99), which is lost when correcting for age (P=0.0054). For the UKB dataset, 12 ancestry 694 

principal components were included as covariates, as well as age, sex, genotyping array, and 695 

assessment centre. We used the genome-wide threshold for significance of P<5×10-8). 696 

 697 

Multivariate genome-wide meta-analysis 698 

Two meta-analyses were performed, including: phase 1) cohorts with case-control phenotypes 699 

(IGAP, ADSP and PGC-ALZ datasets), and phase 3) all cohorts, also including the UKB proxy 700 

phenotype. 701 

Because of partial overlap between cohorts, the per SNP test statistics was defined by 702 

𝑍𝑍𝑘𝑘 =
∑𝑖𝑖𝑤𝑤𝑖𝑖𝑍𝑍𝑖𝑖

�∑𝑖𝑖𝑤𝑤𝑖𝑖
2 + ∑𝑖𝑖∑𝑗𝑗𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗|𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗|(𝑖𝑖 ≠ 𝑗𝑗)

 703 

where wi and Zi are the squared root of the sample size and the test statistics of SNP k in cohort 704 

i, respectively. CTI is the cross-trait LD score intercept estimated by LDSC14,48 using genome-wide 705 

summary statistics. This is equal to48  706 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗 =
𝑁𝑁𝑠𝑠𝑖𝑖𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗
�𝑁𝑁𝑖𝑖𝑁𝑁𝑗𝑗

 707 

where Ni and Nj are the sample sizes of cohorts i and j and Nsij the number of samples overlapping 708 

between them, and ρij the phenotypic correlation between the measures used in the two cohorts 709 

for the overlapping samples. Under the null hypothesis of no association any correlation between 710 

Zi and Zj is determined only by that phenotypic correlation, scaled by the relative degree of 711 

overlap. As such, this correlation can be estimated by the CTI.  712 

The test statistics per SNP per GWAS were converted from the P-value, incorporating the 713 

sign of either beta or odds ratio. When direction is aligned the conversion is two-sided. To avoid 714 

infinite values, we replaced P-value 1 with 0.999999 and P-value < 1e-323 to 1e-323 (the 715 

minimum >0 value in Python). The script for the multivariate GWAS is available online (see URLs). 716 

 717 

Effective sample size 718 

The effective sample size (Neff) is computed for each SNP k from the matrix M, containing the 719 

sample size Ni of each cohort i on the diagonal and the estimated number of shared data points 720 

Nsijρij = CTIij�𝑁𝑁𝑖𝑖𝑁𝑁𝑗𝑗  for each pair of cohorts i and j as the off-diagonal values. A recursive 721 

approach is used to compute Neff. Going from the first cohort to the last the (remaining) size of 722 

the current cohort is added to the total Neff. Then for each remaining other cohort it overlaps 723 

with, the size of those other cohorts is reduced by the expected number of samples shared by 724 

the current cohort; overlap between the remaining cohorts is similarly adjusted. This process 725 

ensures that each overlapping data point is counted only once in Neff.  726 
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The computation proceeds as follows. Starting with the first cohort in M, Neff is first 727 

increased by M1,1, corresponding to the sample size of that cohort. The proportion of samples 728 

shared between cohort 1 and each other cohort j is then computed as p1,j = M1,j/Mj,j, and M is 729 

adjusted to remove this overlap, multiplying all values in each column j by 1-p1,j. This amounts to 730 

reducing the sample size of each other cohort j by the number of samples it shares with cohort 1 731 

and reducing the shared samples between cohort j and subsequent cohorts by the same 732 

proportion. After this, the first row and column of M are discarded, and the same process is 733 

applied to the new M matrix. This is repeated until M is empty.  734 

The effective sample size is used as a parameter in the MAGMA analysis (Methods section 735 

1.14) and reported in the main text as the combined sample sizes for the meta-analysis. We use 736 

the term Nsum to indicate the total number of individuals when simply summing them over the 737 

distinct cohorts. The script for the Neff computation is available online (see URLs). 738 

 739 

Genomic risk loci definition 740 

We used FUMA26 v1.2.8, an online platform for functional mapping and annotation of genetic 741 

variants, to define genomic risk loci and obtain functional information of relevant SNPs in these 742 

loci. We first identified independent significant SNPs that have a genome-wide significant P-value 743 

(<5×10-8) and are independent from each other at r2<0.6. These SNPs were further represented 744 

by lead SNPs, which are a subset of the independent significant SNPs that are in approximate 745 

linkage equilibrium with each other at r2>0.6. We then defined associated genomic risk loci by 746 

merging any physically overlapping lead SNPs (LD blocks <250kb apart). LD information was 747 

calculated using the UK Biobank genotype data as a reference.  748 
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For GWS SNPs in the defined risk loci, we applied a summary statistic-based fine-mapping model 749 

to identify credible causal SNPs within each locus, as previously described24. This Bayesian model 750 

estimates a per-SNP posterior probability of a true disease association using maximum likelihood 751 

estimation and the steepest descent approach, creating a set of SNPs in each locus that contains 752 

the causal SNP in 99% of cases, given that the causal variants are among the genotyped/imputed 753 

SNPs. The software used, FM-summary, is available online (see URLs). 754 

 755 

Independent sample replication  756 

For novel SNPs identified in the phase 3 meta-analysis, replication was tested in the independent 757 

deCODE sample using logistic regression with Alzheimer’s disease status as the response and 758 

genotype counts and a set of nuisance variables including sex, county of birth, and current age 759 

as predictors.20 Correction for inflation of test statistics due to relatedness and population 760 

stratification in this Icelandic cohort was performed using the intercept estimate (1.29) from LD 761 

score regression14. 762 

 763 

Conditional analysis 764 

We performed conditional analysis with GCTA-COJO49 to assess the independence of association 765 

signals, either within or between GWAS risk loci. COJO enables conditional analysis of GWAS 766 

summary statistics without individual-level genotype data. We therefore performed conditional 767 

analysis on the phase 3 summary statistics, using 10,000 randomly selected unrelated samples 768 

from the UKB dataset as a reference dataset to determine LD-patterns. Conditional analysis was 769 

run per chromosome or per locus with the default settings of the software. 770 
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 771 

Heritability and Genetic Correlation 772 

LD score regression14 was used to estimate clinical AD heritability and to calculate genetic 773 

correlations48 between the case-control and proxy phenotypes using summary statistics. Pre-774 

calculated LD scores from the 1000 Genomes European reference population were obtained 775 

online (see URLs). Liability heritability was calculated with a population prevalence of 0.0431 (the 776 

population prevalence of age group 70-75 in the Western European population, resembling the 777 

average age of onset of 74.5 for the clinical case group) and a sample prevalence of 0.304. The 778 

genetic correlation was calculated on HapMap3 SNPs only to ensure high quality LD score 779 

calculation. 780 

 781 

Stratified Heritability 782 

To test whether specific categories of SNP annotations were enriched for heritability, we 783 

partitioned the SNP heritability for binary annotations using stratified LD score regression14. 784 

Heritability enrichment was calculated as the proportion of heritability explained by a SNP 785 

category divided by the proportion of SNPs that are in that category. Partitioned heritability was 786 

computed by 28 functional annotation categories, by minor allele frequency (MAF) in six 787 

percentile bins, and by 22 chromosomes. Annotations for binary categories of functional genomic 788 

characteristics (e.g. coding or regulatory regions) were obtained online (see URLs). The 789 

Bonferroni-corrected significance threshold for 56 annotations was set at: P<0.05/56=8.93×10−4. 790 

 791 

Polygenic risk scoring 792 
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We calculated polygenic scores (PGS) using two independent genotype datasets. First, 761 793 

individuals (379 cases and 382 controls) from the ADDNeuroMed study50 were included, using 794 

the same QC and imputation approach as for the other datasets with genotype-level data (see 795 

Supplementary Note). Second, 1459 individuals (912 severe, late-stage cases and 547 age-796 

matched controls with little to no cognitive dysfunction) from the TGEN study22 were assessed 797 

and their diagnostic status was confirmed via post-mortem neuropathology. Imputed SNPs in this 798 

sample were filtered based on INFO>0.9 and MAF>0.01. PGS were created using PLINK47 for the 799 

TGEN dataset and PRSice21 for the ADDNeuroMed dataset. In both samples, PGS were calculated 800 

on hard-called imputed genotypes using P-value thresholds from 0.0 to 0.5 and using PLINK’s 801 

clumping procedure to prune for LD. Clumping was based on the effect size estimates of SNPs 802 

originating from the Phase 3 meta-analysis for the ADDNeuroMed sample. For TGEN, clumping 803 

was previously performed using the IGAP summary statistics; these clumped SNPs were filtered 804 

for overlap with the Phase 3 SNPs. PGS were calculated in both samples using the SNP effect size 805 

estimates from the Phase 3 meta-analysis. The explained variance (ΔR2) was derived from a linear 806 

model in which the AD phenotype was regressed on each PGS while controlling for GWAS 807 

covariates, compared to a linear model with covariates only. In the TGEN dataset, sensitivity, 808 

specificity, and area under the curve (AUC) of predicting confirmed case/control status were 809 

calculated, using the R package pROC51 and bootstrapped confidence intervals. Of note, 810 

approximately 3% of the TGEN sample overlapped with the IGAP cohort included in the meta-811 

analysis; previous simulation work using PGS in this sample has shown that this overfitting leads 812 

to only a modest increase (2-3%) in the margin of error around the AUC estimate.22 813 

 814 
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Functional Annotation 815 

Functional annotation of GWS SNPs implicated in the meta-analysis was performed using FUMA26 816 

v1.2.8. Functional consequences for these SNPs were obtained by matching SNPs to databases 817 

containing known functional annotations, including ANNOVAR52 categories, Combined 818 

Annotation Dependent Depletion (CADD) scores23, RegulomeDB53 (RDB) scores, and chromatin 819 

states54,55. ANNOVAR annotates the functional consequence of SNPs on genes (e.g. intron, exon, 820 

intergenic). CADD scores predict how deleterious the effect of a SNP with higher scores referring 821 

to higher deleteriousness. A CADD score above 12.37 is the threshold to be potentially 822 

pathogenic56. The RegulomeDB score is a categorical score based on information from expression 823 

quantitative trait loci (eQTLs) and chromatin marks, ranging from 1a to 7 with lower scores 824 

indicating an increased likelihood of having a regulatory function. The chromatin state represents 825 

the accessibility of genomic regions (every 200bp) with 15 categorical states predicted by a 826 

hidden Markov model based on 5 chromatin marks in the Roadmap Epigenomics Project.55 A 827 

lower state indicates higher accessibility, with states 1-7 referring to open chromatin states. We 828 

annotated the minimum chromatin state across tissues to SNPs. A legend describing the 829 

RegulomeDB and chromatin state scores can be found in the Supplementary Note. 830 

 831 

Gene-mapping 832 

Genome-wide significant loci obtained by GWAS were mapped to genes in FUMA26 using three 833 

strategies: 834 
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1. Positional mapping maps SNPs to genes based on physical distance (within a 10kb 835 

window) from known protein coding genes in the human reference assembly 836 

(GRCh37/hg19).  837 

2. eQTL mapping maps SNPs to genes with which they show a significant eQTL association 838 

(i.e. allelic variation at the SNP is associated with the expression level of that gene). eQTL 839 

mapping uses information from 45 tissue types in 3 data repositories (GTEx57 v6, Blood 840 

eQTL browser58, BIOS QTL browser59), and is based on cis-eQTLs which can map SNPs to 841 

genes up to 1Mb apart. We used a false discovery rate (FDR) of 0.05 to define significant 842 

eQTL associations. 843 

3. Chromatin interaction mapping was performed to map SNPs to genes when there is a 844 

three-dimensional DNA-DNA interaction between the SNP region and another gene 845 

region. Chromatin interaction mapping can involve long-range interactions as it does not 846 

have a distance boundary. FUMA currently contains Hi-C data of 14 tissue types from the 847 

study of Schmitt et al60. Since chromatin interactions are often defined in a certain 848 

resolution, such as 40kb, an interacting region can span multiple genes. If a SNP is located 849 

in a region that interacts with a region containing multiple genes, it will be mapped to 850 

each of those genes. To further prioritize candidate genes, we selected only genes 851 

mapped by chromatin interaction in which one region involved in the interaction overlaps 852 

with a predicted enhancer region in any of the 111 tissue/cell types from the Roadmap 853 

Epigenomics Project55 and the other region is located in a gene promoter region (250bp 854 

up and 500bp downstream of the transcription start site and also predicted by Roadmap 855 

to be a promoter region). This method reduces the number of genes mapped but 856 
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increases the likelihood that those identified will have a plausible biological function. We 857 

used an FDR of 1×10-5 to define significant interactions, based on previous 858 

recommendations60 modified to account for the differences in cell lines used here. 859 

 860 

Brain-specific QTL annotation 861 

As AD is characterized by neurodegeneration, we annotated the significant genomic loci with 862 

publicly available databases of expression, methylation, and histone acetylation QTLs, as 863 

catalogued in BRAINEAC61, CommonMind Consortium Portal62 and xQTL Serve63, as an extension 864 

of the GTEx tissue eQTL mapping performed in FUMA. Descriptions of these brain eQTL databases 865 

and settings we used are in the Supplementary Note.  866 

   867 

 868 

Gene-based analysis 869 

To account for the distinct types of genetic data in this study, genotype array (PGC-ALZ, IGAP, 870 

UKB) and whole-exome sequencing data (ADSP), we first performed two gene-based genome-871 

wide association analysis (GWGAS) using MAGMA32, followed by a meta-analysis. SNP-based P-872 

values from the meta-analysis of the 3 genotype-array-based datasets were used as input for the 873 

first GWGAS, while the unimputed individual-level sequence data of ADSP was used as input for 874 

the second GWGAS. 18,233 protein-coding genes (each containing at least one SNP in the GWAS) 875 

from the NCBI 37.3 gene definitions were used as basis for GWGAS in MAGMA. Bonferroni 876 

correction was applied to correct for multiple testing (P<2.74x10-6). 877 

 878 
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Gene-set analysis 879 

Results from the GWGAS analyses were used to test for association in 7,086 predefined gene-880 

sets of four categories: 881 

1. 6,994 curated gene-sets representing known biological and metabolic pathways derived 882 

from Gene Ontology (5917 gene-sets), Biocarta (217 gene-sets), KEGG (186 gene-sets), 883 

Reactome (674 gene-sets) catalogued by and obtained from the MsigDB version 6.164 (see 884 

URLs) 885 

2. Gene expression values from 53 tissues obtained from GTEx57, log2 transformed with 886 

pseudocount 1 after winsorization at 50 and averaged per tissue. 887 

3. Cell-type specific expression in 24 broad categories of brain cell types, which were 888 

calculated following the method described in 37. Briefly, brain cell-type expression data 889 

was drawn from single-cell RNA sequencing data from mouse brains. For each gene, the 890 

value for each cell-type was calculated by dividing the mean Unique Molecular Identifier 891 

(UMI) counts for the given cell type by the summed mean UMI counts across all cell types. 892 

Single-cell gene-sets were derived by grouping genes into 40 equal bins based on 893 

specificity of expression. 894 

4. Nucleus specific gene expression of 15 distinct human brain cell-types from the study 895 

described in65. The value for each cell-type was calculated as in point 3. 896 

These gene-sets were tested using MAGMA. We computed competitive P-values, which 897 

represent the test of association for a specific gene-set compared with genes not in the gene-set 898 

to correct for baseline level of genetic association in the data. The Bonferroni-corrected 899 

significance threshold was 0.05/7,087 gene-sets=7.06×10-6. The suggestive significance threshold 900 
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was defined by the number of tests within the category. Conditional analyses were performed as 901 

a follow-up using MAGMA to test whether each significant association observed was 902 

independent of APOE (a gene-set including all genes within region chr19:45,020,859-45,844,508). 903 

Furthermore, the association between each of the significant gene-sets was tested conditional 904 

on each of the other significantly associated gene-sets. Gene-sets that retained their association 905 

after correcting for other sets were considered to represent independent signals. We note that 906 

this is not a test of association per se, but rather a strategy to identify, among gene-sets with 907 

known significant associations and overlap in genes, which set(s) are responsible for driving the 908 

observed association. 909 

 910 

Cross-Trait Genetic Correlation 911 

Genetic correlations (rg) between AD and 41 phenotypes were computed using LD score 912 

regression14, based on GWAS summary statistics obtained from publicly available databases (see 913 

URLs and Supplementary Table 26). The Bonferroni-corrected significance threshold was 0.05/41 914 

traits=1.22×10-3. 915 

 916 

Mendelian Randomisation 917 

To infer credible causal associations between AD and traits that are genetically correlated with 918 

AD, we performed Generalised Summary-data based Mendelian Randomisation36 (GSMR; see 919 

URLs). This method utilizes summary-level data to test for putative causal associations between 920 

a risk factor (exposure) and an outcome by using independent genome-wide significant SNPs as 921 

instrumental variables as an index of the exposure. HEIDI-outlier detection was used to filter 922 

http://cnsgenomics.com/software/gsmr/
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genetic instruments that showed clear pleiotropic effects on the exposure phenotype and the 923 

outcome phenotype. We used a threshold p-value of 0.01 for the outlier detection analysis in 924 

HEIDI, which removes 1% of SNPs by chance if there is no pleiotropic effect. To test for a potential 925 

causal effect of various outcomes on risk for AD, we selected phenotypes in non-overlapping 926 

samples that showed (suggestive) significant (P<0.05) genetic correlations (rg) with AD. With this 927 

method it is typical to test for bi-directional causation by repeating the analyses while switching 928 

the role of the exposure and the outcome; however, because AD is a late-onset disease, it makes 929 

little sense to estimate its causal effect on outcomes that develop earlier in life, particularly when 930 

the summary statistics for these outcomes were derived mostly from younger samples than those 931 

of AD cases. Therefore, we conducted these analyses only in one direction. For genetically 932 

correlated phenotypes, we selected independent (r2=<0.1), GWS lead SNPs as instrumental 933 

variables in the analyses. The method estimates a putative causal effect of the exposure on the 934 

outcome (bxy) as a function of the relationship between the SNPs’ effects on the exposure (bzx) 935 

and the SNPs’ effects on the outcome (bzy), given the assumption that the effect of non-936 

pleiotropic SNPs on an exposure (x) should be related to their effect on the outcome (y) in an 937 

independent sample only via mediation through the phenotypic causal pathway (bxy). The 938 

estimated causal effect coefficients (bxy) are approximately equal to the natural log odds ratio 939 

(OR)36 for a case-control trait. An OR of 2 can be interpreted as a doubled risk compared to the 940 

population prevalence of a binary trait for every SD increase in the exposure trait. This method 941 

can help differentiate the causal direction of association between two traits, but cannot make 942 

any statement about the intermediate mechanisms involved in any potential causal process.  943 
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Data Availability Statement 944 

Summary statistics will be made available for download upon publication (https://ctg.cncr.nl).  945 

 946 

Code Availability Statement 947 

The analyses were produced with standard code for software programs utilized, which can be 948 

made available on request from the first author. All software used is freely available online. 949 

Custom code for the meta-analysis correcting for overlapping samples is available at 950 

https://github.com/Kyoko-wtnb/mvGWAMA.  951 

about:blank
https://github.com/Kyoko-wtnb/mvGWAMA
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