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2 Analytical Calculation Model for Predicting Cracking
3 Behavior of Reinforced Concrete1 Ties
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5 Abstract: This paper formulates an analytical calculation model for predicting the cracking behavior of reinforced concrete ties to provide
6 more consistent crack width calculation methods for large-scale concrete structures in which large bar diameters and covers are used. The
7 calculation model was derived based on the physical behavior of reinforced concrete ties reported from experiments and finite-element
8 analyses in the literature. The derivations led to a second order differential equation for the slip that accounts for the three-dimensional
9 effects of internal cracking by using a proper bond-slip law. The second order differential equation for the slip was solved completely ana-

10 lytically, resulting in a closed-form solution in the case of lightly loaded members and in a non-closed-form solution in the case of heavily
11 loaded members. Finally, the paper provides a solution strategy to facilitate a practical and applicable method for predicting the complete
12 cracking response. Comparison with experimental and finite-element results in the literature demonstrated the ability of the calculation model
13 to predict crack widths and crack spacing consistently and on the conservative side regardless of the bar diameter and cover. DOI: 10.1061/
14 (ASCE)ST.1943-541X.0002510. © 2019 American Society of Civil Engineers.

15 Author keywords: Crack widths; Crack distances; Analytical calculation model; Bond-slip; Reinforced concrete (RC) ties; Large-scale
16 concrete structures.

17 6 Introduction

18 7 Predicting the cracking behavior of reinforced concrete (RC) struc-
19 tures consistently and accurately is not straightforward. This is re-
20 flected in the many approaches proposed in the literature (Borosnyói
21 and Balázs 2005). Formulas based on empirical, semiempirical,
22 elastic analysis, and even fracture mechanics have all been pro-
23 posed. Mechanical calculation models based on the internal crack-
24 ing behavior of RC ties have also recently been proposed (Fantilli
25 et al. 2007; Debernardi and Taliano 2016; Kaklauskas 2017).
26 The study presented in this paper is part of an ongoing research
27 project with the overall objective of improving crack width cal-
28 culation methods for the large-scale concrete structures planned
29 for the coastal highway route “Ferry-free E39” in Norway. The
30 Norwegian Public Roads Administration (NPRA) recommends that
31 the design of such structures should follow the guidelines provided
32 in N400 (NPRA 2015), which state that the crack width calculation
33 methods should be in accordance with the provisions in Eurocode 2
34 (EC2) (CEN 2004). However, Tan et al. (2018a) showed that the
35 crack width formulas recommended by EC2 and the fibModel Code

362010 (MC2010) ( fib 2013) predict the cracking behavior of struc-
37tural elements inconsistently, particularly in cases of large covers
38and bar diameters. The analytical calculation model presented in this
39paper was based on solving the second order differential equation
40(SODE) for the slip when applying a bond-slip law first proposed by
41Eligehausen et al. (1983) and later adopted by MC2010. Other au-
42thors in the literature have used a similar approach (e.g., Russo and
43Romano 1992; Balázs 1993; Debernardi and Taliano 2016), an ap-
44proach which has recently been acknowledged in the state-of-the-art
45French research project CEOS.fr (2016) as an alternative way of
46calculating crack widths for large RC members. The main drawback
47in using this approach until now was the analytically complex sol-
48ution of the SODE for the slip, thus resorting to numerical solution
49techniques instead and by that reducing the practical applicability of
50the approach. Moreover, the background of the SODE for the slip
51was never properly elaborated.
52The aim of this research was to provide more realistic and con-
53sistent surface crack width calculation methods for large-scale con-
54crete structures, where large covers in combination with large bar
55diameters in several layers and bundles are typically used, by de-
56riving and solving the SODE for the slip completely analytically.
57First, the SODE for the slip was derived. Then, the SODE for the
58slip was solved analytically, after which a solution strategy for de-
59termining the complete cracking response was developed for the
60purposes of practical application. Finally, the application was dem-
61onstrated by comparing analytical predictions with experimental
62and finite-element (FE) results reported in the literature.
63The analytical model was derived using the concept of axisym-
64metry and applies first and foremost to such conditions. However, it
65will be shown that the model also has the ability to predict the crack-
66ing behavior of RC ties that deviate from such conditions by trans-
67forming an arbitrary cross section into an equivalent axisymmetric
68cross section. Moreover, predicting realistic and consistent surface
69crack widths is an important part of the structural design, and it
70might also be relevant for the aesthetics of a structure (Leonhardt
711988). On the other hand it is often argued that the crack width
72at the reinforcement appears more relevant in terms of durability.
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73 Predicting the latter, though, becomes rather complicated and was
74 not addressed in this study.

75 Physical Behavior of RC Ties

76 A typical deformation configuration of RC ties according to several
77 experimental studies reported in the literature (Watstein and Mathey
78 1959; Broms 1968; Husain and Ferguson 1968; Yannopoulos 1989;
79 Beeby 2004; Borosnyói and Snóbli 2010) is depicted in Fig. 1(a).
80 Note that the crack width at the interface between concrete and steel
81 wcr;int is considerably smaller than that on the concrete surface wcr,
82 which according8 to Goto (1971) and Tammo and Thelandersson
83 (2009) is due to the rib interaction between concrete and steel. This
84 causes the concrete to crack internally, which allows it to follow the
85 displacement field of steel at the interface almost completely. This
86 reported physical behavior formed the basis for ignoring the crack
87 width at the interface in the FE model of Tan et al. (2018b). This
88 imposed equal longitudinal displacements for concrete and steel at
89 the interface as shown in Fig. 1(b), in which it should be noted that
90 the crack width wcr applies to the concrete surface only. The FE
91 model was validated against the classical experiments of Bresler and
92 Bertero (1968) and Yannopoulos (1989), where comparison of steel
93 strains, the development of crack widths and the mean crack spacing
94 showed good agreement. Furthermore, the FE model was also used
95 to analyze cylindrical RC ties to better understand the cracking
96 behavior. It was observed that the bond transfer at the interface
97 caused radial displacements of the concrete, which in turn increased
98 hoop stresses and strains. This resulted in internal splitting cracks
99 and inclined cracks, depicted respectively as circles and straight

100 lines in Fig. 1(b), when the principal stresses exceeded the tensile
101 strength of the concrete. Moreover, deriving local bond-slip curves
102 at different positions over the bar length showed that such curves
103 include the effect that internal splitting and inclined cracks had

104on reducing the bond transfer. In other words, the local bond-slip
105curve describes how the 3D behavior of an RC tie affects the bond
106transfer. This shows that a single local bond-slip curve is sufficient
107to describe the mean bond transfer at the interface between concrete
108and steel for an arbitrary RC tie.

109Mechanical Crack Width Calculation Model

110Main Assumptions

111The analytical calculation model was derived based on the physical
112behavior of RC ties discussed in the previous section. However,
113some simplifications were made, and at first the concept of axisym-
114metry was also used for simplicity. Firstly, concrete and steel were
115both treated as elastic materials. Secondly, the nonlinearity of the
116internal cracking of the confining concrete was accounted for by
117lumping this behavior to the interface between the materials using
118a bond-slip law, i.e., claiming that the three sections in Figs. 2(a–c)
119are statically equivalent. Note that a physical slip u occurs at the
120interface in Figs. 2(b and c) as a result of treating concrete and steel
121as elastic materials. This means that the total slip stot in the stati-
122cally equivalent section in Fig. 2(c) is composed of two parts: the
123slip at the interface u caused by the formation of internal inclined
124cracks and the elastic deformations of the concrete caused by axial
125and shear deformations in the cover ss. This also conforms to the
126definition of slip in fib bulletin 10 ( fib 2000). Assuming that the
127slip at the interface is equivalent to the deformation caused by in-
128ternal inclined cracks implies in reality that the crack width at the
129interface can be ignored in the calculation model, so that the result-
130ing crack width applies to the concrete surface. Furthermore, the
131Poisson’s ratio for concrete can be ignored (νc ¼ 0) because the
132concrete is assumed to be exposed to heavy internal cracking as
133described in the previous section. Finally, the displacement field
134depicted in Fig. 3, which shows the deformed configuration of
135an arbitrary section in an RC tie subjected to loading at the rebar
136ends, can be assumed to apply for an arbitrary statically equivalent
137section.
138The continuum concept (Irgens 2008) is hereafter used to formu-
139late the compatibility, material laws, and equilibrium for concrete
140and steel.

141Equations for Concrete

142General Equations
143The SODE for the concrete displacements was derived by using the
144cylindrical coordinates and the displacement field depicted in Fig. 3.
145Concrete strains at the interface εci and the specimen surface εco
146were assumed to be related as

ψðxÞ ¼ εco
εci

≤ 1 ð1Þ

147in which

εci ¼
dwciðxÞ
dx

ð2Þ

148and

εco ¼
dwcoðxÞ

dx
ð3Þ

149where dwci and dwco are differential displacements at the interface
150and at the specimen surface respectively. Note that the inequality
151in Eq. (1) is because the concrete strains at the specimen surface
152cannot exceed the concrete strains at the interface as a consequence

(a)

(b)

F1:1 Fig. 1. (a) Typical deformation configuration of RC ties with deformed
F1:2 steel bars observed in experiments; and (b) FE model with assumptions
F1:3 in accordance with Tan et al. (2018b) showing a typical deformation
F1:4 configuration and crack plot, where straight lines indicate inclined
F1:5 internal cracks and circles indicate internal splitting cracks.
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153 of force being applied at the steel bar ends. The maximum longi-
154 tudinal displacement of the concrete cover relative to the concrete
155 interface is

−ΔwcmaxðxÞ ¼ wciðxÞ − wcoðxÞ ð4Þ

156 Moreover, longitudinal concrete displacements can be formu-
157 lated as

wcðR; xÞ ¼ wciðxÞ þΔwcmaxðxÞψ̄ðR; xÞ ð5Þ
158in which ψ̄ is a shape function describing the variation in longitu-
159dinal displacements over the section and over the bar length. It was
160chosen to satisfy the following boundary conditions:

wcðR1; xÞ ¼ wciðxÞ
wcðR2; xÞ ¼ wcoðxÞ ð6Þ

161where R1 and R2 are the radial coordinates of respectively the inter-
162face and the specimen surface. It should be noted that Fig. 3 omits
163radial displacements for the concrete, while in the case of axisym-
164metry displacements in the hoop direction are nonexistent. Omit-
165ting radial displacements contradicts the physical behavior of RC
166ties discussed previously, but using a bond-slip law τðuÞ, with τ
167denoting the bond stress, will take into account the 3D effects that
168are excluded when radial displacements for the concrete are omit-
169ted. This means that Eq. (5) suffices in describing the displacement
170field for concrete. Now, using Green strains for small displacements
171yield the following nonzero components in the strain tensor for
172concrete:

εc ¼
∂wcðR; xÞ

∂x ¼ dwciðxÞ
dx

þ ∂
dx

½ΔwcmaxðxÞψ̄ðR; xÞ� ð7Þ

γcRx ¼ γcxR ¼ ∂wcðR; xÞ
∂R ¼ ΔwcmaxðxÞ

dψ̄ðR; xÞ
dR

ð8Þ

173where εc and γcRx ¼ γcxR are longitudinal strains and engineering
174shear strains respectively. Consequently, Eqs. (7) and (8), and
175ignoring the Poisson’s ratio for concrete, yield the following non-
176zero components for the stress tensor:

σc ¼ Ecεc ð9Þ

(a)

(d)

(b) (c)

F2:1 Fig. 2. (a) Internally cracked section typically observed in physical experiments; (b) the internal cracking behavior lumped as springs to the interface
F2:2 between concrete and steel; (c) statically equivalent section using a bond-slip law for the springs; and (d) equivalent cross sections when using the
F2:3 second order differential equation for the slip.

F3:1 Fig. 3. Displacement field of an arbitrary statically equivalent section.
F3:2 The section to the left-hand side shows the undeformed configuration,
F3:3 while the section to the right-hand side shows the deformed configura-
F3:4 tion for a load applied to the rebar end greater than zero.
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τ cxR ¼ τ cRx ¼
1

2
EcγcxR ð10Þ

177 where σc and τ cRx ¼ τ cxR are respectively the normal and the shear
178 stresses, while Ec is the Young’s modulus for concrete. Considering
179 equilibrium for the concrete in Fig. 2(c) yields

dFcðxÞ
dx

¼ τðuÞ
X

πϕs ð11Þ

180 where τ is the bond stress dependent on the slip at the interface u,
181 and

P
πϕs is the total perimeter surrounding the steel bars in a

182 cross section. The concrete force resultant can be formulated as

FcðxÞ ¼
Z
Ac

σcdAc ð12Þ

183 where Ac is the concrete area.
184 Finally, inserting Eqs. (12), (9), (7), (4), (1), (2), and (3) in
185 Eq. (11) successively yields

Ec
∂
∂x

Z
Ac

�
dwciðxÞ
dx

− dwciðxÞ
dx

½1 − ψðxÞ�ψ̄ðR; xÞ

− ½wciðxÞ − wcoðxÞ�
∂ψ̄ðR; xÞ

∂x
�
dAc ¼ τðuÞ

X
πϕs ð13Þ

186 which is the SODE for the longitudinal concrete displacements at
187 the interface.

188 Simplified Equations
189 An analytical solution of Eq. (13) is possible in the case of axisym-
190 metry if both ψ and ψ̄ are known. In most practical situations, how-
191 ever, this is not the case. A practical approach to Eq. (13) would
192 therefore be to redefine Eq. (1) as

ψðxÞ ¼ ψ ¼ εcm
εci

≤ 1 ð14Þ

193 in which

εcm ¼ dwcmðxÞ
dx

¼ ψεci ð15Þ

194 are mean concrete strains and wcm are mean displacements over the
195 section—see Fig. 3, which in this particular case simplifies the
196 shape function to

ψ̄ ¼ 1 ð16Þ

197 Note that ψ in Eq. (14) is now assumed constant. Edwards and
198 Picard (1972) were the first to introduce the concept of Eq. (14).
199 This was later investigated more thoroughly by conducting non-
200 linear finite-element analysis (NLFEA) on cylindrical RC ties in
201 Tan et al. (2018c). It was concluded that although the shape func-
202 tion ψ̄, first defined in Eq. (5) varied with respect to both R and
203 x-coordinates over the bar length, the ratio in Eq. (14) remained
204 more or less constant over the bar length except for a small region
205 close to the loaded end. Actually, it was observed that a constant
206 value of ψ ¼ 0.70 over the entire bar length seemed reasonable
207 independent of geometry and load level. The physical interpretation
208 of Eq. (15) is that plane sections that do not remain plane are
209 implicitly accounted for in determining the equilibrium. Now,
210 replacing wco with wcm in Eq. (13) and inserting Eqs. (14) and (16)
211 simplifies the SODE for the longitudinal concrete displacements at
212 the interface to

ψAcEc
d2wciðxÞ
dx2

¼ τðuÞ
X

πϕs ð17Þ

213Equations for Steel

214Longitudinal displacements for steel were assumed uniform over its
215radius. And since the Poisson’s ratio for concrete was ignored and
216axisymmetry applied for circular steel rebars means that Eq. (18)

wsðR; xÞ ¼ wsðxÞ ð18Þ
217suffices in describing the displacement field for steel. The follow-
218ing normal strain was thus the only nonzero component in the strain
219tensor when Green strains for small deformations were applied:

εs ¼
dwsðxÞ
dx

ð19Þ

220Moreover, the Poisson’s ratio for steel was ignored (νs ¼ 0) as
221the lateral effects it had on bond were assumed to be included in the
222bond-slip curve. This led to the following normal stress being the
223only nonzero component in the stress tensor:

σs ¼ Esεs ð20Þ
224where Es is the Young’s modulus for steel. The equilibrium of steel
225in Fig. 2(c) yields

dFsðxÞ
dx

¼ −τðuÞX πϕs ð21Þ

226Furthermore, the steel force resultant was obtained as

FsðxÞ ¼
Z
As

σsdAs ¼ AsEs
dwsðxÞ
dx

ð22Þ

227when inserting Eqs. (20) and (19) successively. Finally, inserting
228Eqs. (22) in (21) yields

AsEs
d2wsðxÞ
dx2

¼ −τðuÞXπϕs ð23Þ

229which is the SODE for the steel displacements.

230Compatibility

231The slip was defined in terms of the displacement field depicted in
232Fig. 3 as

−uðxÞ ¼ wsðxÞ − wciðxÞ ð24Þ
233Differentiating Eq. (24) once and inserting Eqs. (2) and (19)
234provides the first derivative of the slip as

−u 0ðxÞ ¼ dwsðxÞ
dx

− dwciðxÞ
dx

¼ εs − εci ð25Þ

235Second Order Differential Equation for the Slip

236Inserting Eq. (23) in (17) provides

d
dx

�
dwciðxÞ
dx

þ ξ
dwsðxÞ
dx

�
¼ 0 ð26Þ

237where

ξ ¼ αeρs
ψ

ð27Þ

αe ¼
Es

Ec
ð28Þ

© ASCE 4 J. Struct. Eng.
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238 and

ρs ¼
As

Ac
ð29Þ

239 Inserting Eqs. (25) and (23) successively in Eq. (26) yields the
240 SODE for the slip as

d2uðxÞ
dx2

− χτðuÞ ¼ 0 ð30Þ

241 where

χ ¼
P

πϕs

AsEs
ð1þ ξÞ ð31Þ

242 By introducing

ζ ¼ τmðuÞ
τðu; θÞ ≤ 1 ð32Þ

243 where τm and τðu; θÞ is respectively the mean and the maximum
244 bond stress around the circumference of a steel bar in an arbitrary
245 cross section, and further multiplying χ in Eq. (30) by ζ from
246 Eq. (32) takes into account the bond stress τ not being constant
247 around the circumference of the steel bar in nonaxisymmetric cases,
248 such as when the cover to the steel surface varies in a cross section
249 as depicted in Fig. 2(d). In practice, this implies taking the distance
250 between rebars into account, a parameter acknowledged by the re-
251 search of Gergely and Lutz (1968) to be significant for the crack
252 width. This means that the solution of Eq. (30) with χ multiplied
253 by ζ from Eq. (32) involves transforming a cross section with an
254 arbitrary geometry into a circular cross section with a radius req
255 such that the area Ac remains the same.
256 The analytical solution of Eq. (30) depends on the choice of the
257 bond-slip law and a variety of choices can be found in the literature
258 (Rehm 1961; Nilson 1972; Martin 1973; Dörr 1978; Mirza and
259 Houde 1979; Hong and Park 2012). In this study, the local bond-
260 slip law recommended by MC2010 was used:

τðuÞ ¼ τmax

�
u
u1

�
α

ð33Þ

261 Eq. (33) and its parameters were originally derived on the
262 basis of pull-out tests of relatively short specimens, in which the
263 concrete was in compression, thus differing considerably from
264 the stress conditions in RC ties where the concrete is in tension
265 (Pedziwiatr 2008). However, the investigation by Tan et al. (2018b)
266 showed that Eq. (33) could be applied to represent the mean bond
267 transfer over the specimen length by using the predefined param-
268 eters τmax ¼ 5.0 MPa, u1 ¼ 0.1, and α ¼ 0.35 when comparing it
269 to the local bond-slip curves obtained from the FE analysis of sev-
270 eral RC ties, see Fig. 4. Bond-slip curves proposed by other authors
271 are also shown in the same figure. This means that inserting
272 Eq. (33) in Eq. (30) finally yields the SODE

d2u
dx2

− χ
τmax

uα1
uα ¼ 0 ð34Þ

273 Note that Eq. (34) has been derived and will be solved using the
274 simplified equations for concrete.

275Analytical Crack Width Calculation Model

276General Solutions

277Slip
278Eq. (34) is a nonlinear homogenous SODE and can be solved ana-
279lytically, by successively defining the second term as a function of
280the slip fðuÞ, moving it to the other side of the equals sign, multi-
281plying both sides with the first derivative of the slip u 0, applying the
282chain rule on the left-hand side of the equal sign and the substitu-
283tion rule on the right-hand side, and subsequently integrating once,
284the first derivative of the slip is provided as

u 0 ¼ du
dx

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγuβ þ CÞ

q
ð35Þ

285where C is an integration constant and

β ¼ 1þ α ð36Þ
286and

γ ¼ χ
τmax

βuα1
ð37Þ

287Only the negative sign is included in Eq. (35) for compatibility
288with Eq. (25). Separating the variables in Eq. (35) and integrating
289on both sides yields

x ¼ B − 1ffiffiffi
2

p
Z

ðγuβ þ CÞ−1
2du ð38Þ

290where B is an integration constant. The integral can now be solved
291using the method proposed by Russo et al. (1990) and Russo and
292Romano (1992) where the binomial in Eq. (38) is developed as an
293infinite series of functions in accordance with Newton’s binomial
294theorem and then integrating each term. This results in two different
295general solutions that converge at distinct intervals

F4:1Fig. 4. Local bond-slip curves according to Eq. (33) with adjusted
F4:2parameters proposed by Russo and Romano (1992), Balázs (1993),
F4:3Debernardi and Taliano (2016), and Tan et al. (2018b) compared with
F4:4theoretical local bond-slip curves obtained in the FE analysis of several
F4:5RC ties at different positions over the bar length in Tan et al. (2018b).

© ASCE 5 J. Struct. Eng.
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x ¼ B1 − 1ffiffiffi
2

p
X∞
k¼0

0
@− 1

2

k

1
Aγk

�
1

C

�	1
2
þk


u1þkβ

1þ kβ
for 0 < u < ud

ð39Þ

296 and

x ¼ B2 − 1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ
δ − kβ

for u > ud ð40Þ

297 where B1 and B2 are integration constants, and

δ ¼ 1 − α
2

ð41Þ

298 while

ud ¼
����Cγ

����
1
β ð42Þ

299 is the value discerning Eq. (39) from (40). Note that the general
300 solutions in Eqs. (39) and (40) imply that the longitudinal coordi-
301 nate x is a function of the slip value u as a consequence of splitting
302 the variables in Eq. (35).

303 Strains
304 Successively inserting Eqs. (2) and (19) in Eq. (26), integrating
305 once, and applying εci ¼ 0 and εs ¼ F=EsAs ¼ εs0 at the loaded
306 end (i.e., at x ¼ 0) yields

εci ¼ ξðεs0 − εsÞ ð43Þ

307 Inserting Eqs. (35) and (43) in Eq. (25) yields the steel strains

εs ¼
ξεs0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγuβ þ CÞ

p
1þ ξ

ð44Þ

308 while inserting Eqs. (44) in (43) provides the concrete strains

εci ¼ ξ
εs0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγuβ þ CÞ

p
1þ ξ

ð45Þ

309Boundary Conditions

310Boundary conditions must be established before calculating particu-
311lar solutions. These are established by considering the concepts of
312comparatively lightly loaded members (CLLM) and comparatively
313heavily loaded members (CHLM) depicted in Fig. 5. Russo and
314Romano (1992) were the first to introduce these concepts, which
315were later acknowledged by fib bulletin 10 ( fib 2000). Briefly
316summarized, the main difference is that steel and concrete strains
317become compatible, εs ¼ εci, at a certain distance xr from the loaded
318end in the case of CLLM, while the strains remain incompatible,
319εs ≠ εci, over the entire bar length in the case of CHLM. This fur-
320ther implies, in accordance with Eq. (24), that the slip becomes zero
321at distance xr from the loaded end in the case of CLLM and at the
322symmetry section xS in the case of CHLM. This yields the following
323boundary conditions in the case of CLLM behavior:

−ur ¼ 0

−u 0
r ¼ εs − εci ¼ 0 ð46Þ

324at x ¼ xr, and in the case of CHLM behavior:

−uS ¼ 0

−u 0
S ¼ εs − εci > 0 ð47Þ

325at x ¼ xS ¼ ðL=2Þ.

326CLLM

327Applying the boundary conditions in Eq. (46) for Eq. (35) yields

C ¼ 0 ð48Þ
328Inserting Eq. (48) in (38), integrating once, and applying the
329boundary conditions in Eq. (46) again yields the expression for the
330slip in the case of CLLM behavior

(a) (c)

(b) (d)

F5:1 Fig. 5. (a and b) Strain and slip distribution in CLLM; and (c and d) strain and slip distribution in CHLM.

© ASCE 6 J. Struct. Eng.
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u ¼ �
δ

ffiffiffiffiffi
2γ

p
ðxr − xÞ1δ ð49Þ

331 Inserting Eq. (48) in (44) and acknowledging that εs ¼ εs0 at
332 x ¼ 0, provides the maximum slip at the loaded end as

u0 ¼
�
ε2s0
2γ

�1
β ð50Þ

333 Furthermore, inserting Eq. (50) in (49) for x ¼ 0 yields the
334 transfer length as

xr ¼
1

δ

�
εs0

�
1

2γ

� 1
2δ
�2δ

β ð51Þ

335 Note that the transfer length increases with increasing steel
336 strains εs0 ¼ F=EsAs at the loaded end. Expressions for the steel
337 and concrete strains can be finally obtained by inserting Eq. (49)
338 in respectively Eqs. (44) and (45):

εs ¼
ξεs0 þ ð2γÞ 1

2δ½δðxr − xÞ� β2δ
1þ ξ

ð52Þ

εci ¼ ξ
εs0 − ð2γÞ 1

2δ½δðxr − xÞ� β2δ
1þ ξ

ð53Þ

339 One application of the particular solutions obtained could be in
340 the case of two consecutive cracks formed with a considerable dis-
341 tance between them. This means that a certain region, 2ðxs − xrÞ,
342 remains undisturbed as depicted in Figs. 5(a and b). This situation
343 occurs typically in the so-called crack formation stage, in which the
344 applied member load is relatively low and the distance between two
345 consecutive cracks formed is relatively large.

346 CHLM

347 Particular Solutions
348 Applying the boundary conditions in Eq. (47) in (35) yields

u 0
s ¼ − ffiffiffiffiffiffi

2C
p

ð54Þ
349 Acknowledging from Eq. (35) and Fig. 5 that u 0 is a real func-
350 tion yields

C > 0 ð55Þ
351 This means that the general solutions of Eqs. (39) and (40) apply
352 in the case of CHLM becauseC ≠ 0. Now, inserting Eq. (35) in (25)
353 and applying εci ¼ 0 and εs ¼ F=EsAs ¼ εs0 at the loaded end
354 (i.e., at x ¼ 0) yields

C ¼ ε2s0
2

− γuβ0 ð56Þ

355Furthermore, Eqs. (55) and (56) imply that the maximum slip at
356the loaded end must satisfy

u0;max ¼
�
ε2s0
2γ

�1
β ð57Þ

357Inserting Eq. (56) in (42) and acknowledging that Eq. (37) is a
358positive value provides

ud ¼
�
ε2s0
2γ

− uβ0

�1
β ð58Þ

359Now, applying the first condition in Eq. (47) to (39) yields

B1 ¼
L
2

ð59Þ

360Moreover, applying u ¼ u0 at x ¼ 0 for Eq. (40) yields that B2

361can be expressed with binomial coefficients as

B2 ¼
1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ0

δ − kβ
ð60Þ

362The particular solutions of Eqs. (39) and (40) are now obtained
363using the integration constants in Eqs. (56), (59), and (60). It should
364be noted, however, that the integration constants in Eqs. (56)
365and (60) depend on the slip at the loaded end u0, so they must be
366obtained iteratively. This can be done conveniently by considering
367the two cases shown in Fig. 6.

368Case 1
369The first case involves solving Eq. (39) with respect to the slip at the
370loaded end in its interval when u0 < ud in accordance with Fig. 6(a).
371Inserting Eq. (59) in (39) and applying u ¼ u0 at x ¼ 0 provides the
372function

f1ðu0Þ ¼
L
2
− 1ffiffiffi

2
p

X∞
k¼0

0
@− 1

2

k

1
Aγk

�
1

C

�	1
2
þk


u1þβk
0

1þ βk
¼ 0 ð61Þ

373which is valid for the interval

0 ≤ u0 <

�
ε2s0
4γ

�1
β ð62Þ

374when acknowledging that ud in Eq. (39) is given by Eq. (58).

(a) (b)

F6:1 Fig. 6. (a) Case 1: solution for the slip using Eq. (39), i.e., u0 < ud; and (b) Case 2: solution for the slip using Eq. (39) for 0 < u < ud and Eq. (40)
F6:2 for ud < u < u0.
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375 Case 2
376 Case 2 is where u0 > ud, which means that the solution for the slip
377 u depends on both Eqs. (39) and (40) due to the validity of the
378 equations at its respective intervals—see Fig. 6(b). In other words,
379 Eq. (39) is valid for slip values below ud while Eq. (40) is valid for
380 slip values above ud. Now, accepting that Eq. (39) is valid for the
381 slip value u ¼ ud − du at the location xd þ dx1 provides

xdþdx1 ¼
L
2
− 1ffiffiffi

2
p

X∞
k¼0

0
@−1

2

k

1
Aγk

�
1

C

�	1
2
þk


ðud−duÞ1þβk

1þβk
ð63Þ

382 Similarly, accepting that Eq. (40) is valid for the slip value u ¼
383 ud þ du at the location xd − dx2 and inserting Eq. (60) provides

xd − dx2 ¼
1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ0

δ − kβ

− 1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k ðud þ duÞδ−kβ

δ − kβ
ð64Þ

384 Note that du is an infinitesimal value for the slip, while dx1 and
385 dx2 are infinitesimal values along the bar length in accordance with
386 Fig. 6(b). Subtracting Eq. (64) from (63) provides the function

f2ðu0Þ ¼
L
2
− 1ffiffiffiffiffi

2γ
p ff21ðu0Þ − f22ðu0Þg − 1ffiffiffi

2
p f23ðu0Þ −Δx ¼ 0

ð65Þ
387 where

f21ðu0Þ ¼
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ0

δ − kβ
ð66Þ

f22ðu0Þ ¼
X∞
k¼0

0
@− 1

2

k

1
A

h	
C
γ


 k
δ−kβþ1

β þ du
	
C
γ


 k
δ−kβ

i
δ−kβ

δ − kβ
ð67Þ

f23ðu0Þ ¼
X∞
k¼0

0
@− 1

2

k

1
A γk

�
C

2−β
2βð1þkβÞ

	
1
γ


1
β − duC− 1

2
þk

1þkβ

�
1þkβ

1þ kβ
ð68Þ

388 and Δx ¼ dx1 þ dx2. Eq. (65) is valid for

u0 >

�
ε2s0
4γ

�1
β ð69Þ

389 when acknowledging that ud in Eq. (40) is given by Eq. (58).

390 Solution Strategy
391 Russo and Romano (1992) give a convenient way of determining
392 whether Case 1 or Case 2 governs by calculating Eq. (61) for a
393 value of u0 close to the upper limit value in Eq. (62), e.g., as

9394 u0check ¼ ðε2s0=4y − duÞ1=β . Case 1 governs if the value calculated
395 is negative. Case 2 governs if the value calculated is positive since
396 the nature of Eq. (61) invokes that u0 must increase to satisfy
397 Eq. (61), which implies that Eq. (69) governs.
398 Newton-Raphson iterations are used to calculate the value of u0
399 effectively after determining whether Case 1 or 2 governs

u0;iþ1 ¼ u0;i − fjðu0;iÞ
f 0
jðu0;iÞ

ð70Þ

400where index i represents the number of iterations and index j rep-
401resents the function in Eq. (61) for Case 1 or Eq. (65) for Case 2.
402Furthermore, it is suggested that an initial value of u0;init ¼
403ðε2s0=4y − duÞ1=β 10 11is used for Case 1 or u0;init ¼ ðε2s0=4yÞ1=β þ du
404is used for Case 2 to start the iterations in Eq. (70). The iterated
405value u0;iþ1, however, should never exceed Eq. (57) due to
406the requirement of Eq. (55). Convergence is achieved when
407ju0;iþ1 − u0;ij < Tol, at which Tol is a chosen tolerance value. Note
408that the derivatives of the functions in Eqs. (61) and (65) are needed
409to solve Eq. (70) and are provided in Appendix I. Once the value of
410u0 is obtained, the particular solutions of Eqs. (39) and (40) are
411used to obtain the corresponding x values for the slip u along
412the bar length. In summary, CHLM involves determining whether
413Case 1 or 2 governs using Eq. (61) before the slip at the loaded end
414u0 is calculated using Eq. (70).

415Strains
416The strain distributions for steel and concrete were obtained by
417using Eqs. (44) and (45) respectively. Moreover, inserting Eq. (45)
418in (15), and acknowledging that the maximum concrete strains will
419occur at the symmetry section (i.e., where the slip u ¼ 0) provides
420the maximum mean concrete strains as

εcm;max ¼ ψξ
εs0 −

ffiffiffiffiffiffi
2C

p

1þ ξ
< εct ð71Þ

421The violation of Eq. (71) implies that a crack has formed at the
422symmetry section, meaning a new member with length L=2 exists
423and that the CHLM response should be determined for the newly
424formed member.

425Conditions at Crack Formation

426The conditions at crack formation are shown in Fig. 7, where the
427transfer length increases with increasing load as highlighted for
428Eq. (51). The steel strain at the loaded end needed to extend the
429transfer length to the symmetry section is obtained by inserting
430xr ¼ L=2 in Eq. (51) so that

εs0;S ¼ ð2γÞ 1
2δ

�
L
2
δ

� β
2δ ð72Þ

431Furthermore, the maximum mean concrete strain at the end
432of the transfer length xr is obtained by inserting Eq. (53) in (15) at
433x ¼ xr so that

εcm;max ¼
ψξ

1þ ξ
εs0 ð73Þ

434It is assumed that a crack forms when εcm;max ¼ εct, which
435means that the corresponding steel strain at the loaded end is

εs0;cr ¼ εct
1þ ξ
ψξ

ð74Þ

436So inserting Eq. (74) in (51) yields the distance from the loaded
437end at which a new crack can form or, expressed more rigorously,
438the crack spacing

xcr ¼
1

δ

�
εct

1þ ξ
ψξ

�
1

2γ

� 1
2δ
�2δ

β ð75Þ

439Eqs. (72)–(75) are conceptually visualized in Fig. 7, providing
440two different conditions for the cracking response of a member. The
441continuous lines represent the steel strains, while the dashed lines
442represent the corresponding concrete strains. Note that the concrete

© ASCE 8 J. Struct. Eng.



P
R
O
O
F

O
N
L
Y

443 strain for εs0;S in Fig. 7(a) is unrealistic since the concrete tensile
444 strength is exceeded. It is only included to elucidate the physical
445 concept of Eq. (72). Condition 1 implies that a crack forms at a
446 distance from the loaded end shorter than half the member length,
447 i.e., xcr < xS, meaning that εs0;cr < εs0;S. This further implies that
448 the cracking response of the member is governed by CLLM behav-
449 ior as long εs0 < εs0;cr, while CHLM behavior governs the cracking
450 response as soon as εs0 > εs0;cr. Condition 2 implies that a crack can
451 form only at the symmetry section, xcr ¼ xs, because εs0;cr > εs0;S.
452 This means that a CLLM behavior governs the cracking response of
453 the member as long εs0 < εs0;S, while CHLM behavior governs the
454 cracking response as soon εs0 > εs0;S. The physical interpretation of
455 Condition 1 is that cracking can form at any location beyond xr due
456 to the unrestricted length of the member, while Condition 2 means
457 that cracking can form only at the symmetry section due to the lim-
458 ited length of the member. Appendix II provides guidelines for de-
459 termining which condition applies and whether CLLM or CHLM
460 behavior governs the cracking response based on the a priori loading
461 and the mechanical properties of the RC tie. For design purposes,
462 however, only Condition 1 is relevant for determining the cracking
463 response.

464 Crack Width

465 Finally, the crack width is obtained as

wcr ¼ 2

Z
xr

ðεs − εcmÞdx ð76Þ

466 Inserting Eqs. (15), (44), and (45) in Eq. (76) yields

wcr ¼ 2

�
1

1þ ξ

�
½ξεs0xrð1 − ψÞ þ u0ð1þ ψξÞ� ð77Þ

467 In summary, the crack width is a function of the applied load
468 εs0 ¼ F=AsEs, the transfer length xr, and the slip at the loaded
469 end u0. For design purposes, i.e., Condition 1, the crack width is
470 determined by calculating u0 and xr, which in the case of CLLM
471 behavior is obtained by the closed-form solutions in Eqs. (50)
472 and (51). A solution strategy is provided in subsection “Solution
473 strategy” to calculate u0 efficiently in the case of CHLM behavior,
474 but here xr is replaced with xcr=2, where xcr is the crack spacing
475 obtained using the closed-form solution in Eq. (75). Note that the
476 crack width obtained wcr applies to the face at the loaded rebar end,
477 i.e., as depicted in Fig. 1. This means that the calculation model
478 conservatively assumes that a crack has been formed before load-
479 ing, which allows for predicting crack widths regardless of the load
480 level.

481Comparison with Equivalent Calculation Models

482The calculation model described was evaluated against the equiv-
483alent models proposed by Russo and Romano (1992), Balázs
484(1993), and Debernardi and Taliano (2016). The models are equiv-
485alent in the sense that the SODE for the slip, i.e., Eq. (34), is solved.
486However, some significant differences should be highlighted. The
487models of Balázs (1993) and Debernardi and Taliano (2016) ne-
488glect the elastic shear deformation over the cover, i.e., they assume
489ψ ¼ 1 in Eq. (14). Another significant difference in Debernardi and
490Taliano (2016) is that the bond stress distribution over the bar
491length is altered locally by using a linear descending branch close
492to the primary crack, which complicates the solution of Eq. (34).
493These authors assume that internal inclined cracks form in this re-
494gion and continue to form towards the symmetry section as the load
495increases. The FE analysis by Lutz (1970) and by Tan et al. (2018b)
496on RC ties show that a buildup of bond stresses occurs close to a
497primary crack and that the peak of the bond stress distribution tends
498to move towards the symmetry section as the load increases, as as-
499sumed by Debernardi and Taliano (2016). However, this physical
500phenomenon is a consequence not of internal inclined cracks, but of
501internal splitting cracks forming close to the primary crack, which
502is reflected by the characteristic bond-slip curves at x≈ 0 in Fig. 4.
503In fact, the FE analysis showed that internal inclined cracks also
504formed beyond the bond stress distribution peak, which means they
505cannot occur in direct conjunction with the descending branch
506alone. This also means that a single bond-slip curve should suffice
507to represent the mean local bond-slip behavior over the bar length,
508as shown in Fig. 4 and discussed in section “Physical Behavior of
509RC Ties”, and should already include the total effect of both inter-
510nal splitting and internal inclined cracks have on reducing the bond
511transfer.
512The calculation model presented in this paper was particularly
513inspired by the work of Russo and Romano (1992). However, there
514are some significant differences: (1) a primary crack is assumed to
515form when, εcm ¼ εct, implying that concrete stresses are unevenly
516distributed even at the zero-slip section in accordance with the ob-
517servations 12in Fantilli et al. (2008) and Tan et al. (2018c); (2) the
518influence of the distance between steel bars can be accounted for
519by Eq. (32); and (3) a completely analytical solution strategy is
520provided to solve Eq. (34) for practical applications. In addition,
521the derivations using continuum mechanics formulation yield a me-
522chanically sound model that describes how the 3D behavior of RC
523ties can be simplified into a one-dimensional model when using a
524proper bond-slip law. However, the main advantage of the model
525presented in this paper, and that of Russo and Romano (1992), is
526that Eq. (34) is solved completely analytically, in contrast to Balázs
527(1993) and Debernardi and Taliano (2016), who only provide ana-
528lytical solutions in the case of CLLM behavior.

(a) (b)

F7:1 Fig. 7. (a) Condition 1; and (b) Condition 2.
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529 Using the bond-slip curve recommended by Tan et al. (2018b)
530 implies that the bond stresses should be related to the deformations
531 in the outer surface of the concrete rather than at the steel-concrete
532 interface, which contradicts the compatibility in Eq. (24). However,
533 the elastic shear deformation over the cover is normally considered
534 to be negligible, although it does seem to affect the elastic stress
535 and strain distribution (Braam 1990; Tan et al. 2018c). This justifies
536 the combined use of the chosen bond-slip curve, the compatibility
537 in Eq. (24), and the concept of ψ in Eq. (14).

538 Application

539 Comparison with Axisymmetric RC Ties

540 General
541 This section compares strains and crack widths obtained analytically
542 with the classical experiments of Bresler and Bertero (1968) and
543 Yannopoulos (1989), and the FE analysis of Tan et al. (2018b) on
544 cylindrical RC ties concentrically reinforced with a steel bar loaded
545 at the steel bar ends. The bond-slip parameters, τmax ¼ 5.0 MPa,
546 u1 ¼ 0.1 mm, and α ¼ 0.35 were chosen, while ψ ¼ 0.70 was
547 adopted in accordance with Tan et al. (2018c). The factor ζ ¼ 1
548 was chosen due to axisymmetry. The infinite series used for calcu-
549 lating the response in the case of CHLM behavior was truncated
550 after 10 terms, while the parametersΔx ¼ 0.1 and du ¼ 5.8 · 10−5
551 were chosen in accordance with Russo and Romano (1992).

552 Comparison with Experimental Data
553 Bresler and Bertero (1968) measured the strain distribution over the
554 bar length by mounting several strain gauges in a groove cut along
555 the center of several reinforcing steel bars. The reinforcing steel bars
556 were first cut longitudinally into two halves, after which the groove
557 was milled along the center of the two parts. After mounting the
558 strain gauges in this groove, the two halves were tack-welded to-
559 gether to minimize the impact on the exterior of the reinforcing bars.
560 The specimen investigated, denoted Specimen H, was 406.4 mm
561 (16 in) long and 152.4 mm (6 in) in diameter concentrically rein-
562 forced with a 28.7 mm (1.13 in) deformed steel bar. The length of
563 the specimen was chosen as twice the mean crack spacing of
564 203.2 mm (8 in) obtained from pilot studies conducted on 1,829 mm
565 (72 in) long RC ties with similar sectional properties. A notch was
566 cut around the circumference at midlength to induce cracking here.
567 The compressive strength, tensile strength, and Young’s modulus for
568 the concrete were reported as respectively 40.8 MPa (5.92 ksi),
569 4.48 MPa (0.65 ksi), and 33165 MPa (4810 ksi), while the yield

570strength and Young’s modulus for the steel were reported as
571413 MPa (60 ksi) and 205,464 MPa (29,800 ksi), respectively. The
572reduction of the steel area due to the groove was taken into account
573in the analytical calculations by using the reported steel area As ¼
574548 mm2 (0.85 in2), while the notch was taken into account by
575reducing the reported tensile strength by a factor of 0.7. This led
576to cracking at midlength in the analytical calculations for higher
577load levels as shown in Fig. 8(a). It should be noted that the ana-
578lytical steel strains represent the mean of the experimental steel
579strains.
580The six specimens investigated by Yannopoulos (1989) were
58176 mm in diameter concentrically reinforced with a 16 mm de-
582formed steel bar and were 100 mm long. The length of the spec-
583imens was based on the mean crack spacing of 90 mm obtained
584from pilot studies conducted on 800 mm long RC ties with similar
585sectional properties and was chosen to prevent new cracks from
586forming between the loaded ends. The compressive strength, tensile
587strength, and Young’s modulus for concrete were reported respec-
588tively as 43.4, 3.30, and 32,000 MPa, while the yield strength and
589Young’s modulus for steel were reported as 424 and 200,000 MPa,
590respectively. The specimen length in the analytical calculations was
591chosen to be similar to that in the experiments. Fig. 8(b) shows the
592average crack width development at the loaded ends reported for
593the six specimens investigated. The analytical calculations pre-
594dicted slightly larger crack widths. Nevertheless, the comparison
595shows good agreement.

596Comparison with FE Analysis
597Tan et al. (2018b) conducted NLFEA on four cylindrical RC ties
598denoted ϕ20c40, ϕ32c40, ϕ20c90, and ϕ32c90 using axisymmet-
599ric elements, with ϕ and c respectively indicating steel bar diameter
600and cover. The concrete was given material properties correspond-
601ing to a concrete grade C35 in accordance with MC2010 and a non-
602linear fracture mechanics material model based on total strain
603formulation with rotating cracks. The crack bandwidth was chosen
604to be dependent on the total area of the finite elements in line with
605the smeared crack approach. The steel was chosen to have linear
606elastic material properties with a Young’s modulus of 200,000 MPa
607and a Poisson’s ratio of 0.3. Furthermore, interface elements were
608used to allow for radial separation but no physical slip, as depicted
609in Fig. 1(b). In summary, the approach implied smearing out inter-
610nal inclined and splitting cracks that would have localized at the tip
611of each bar rib if they were modelled discretely. This was found to
612give good agreement in comparison with the steel strains, develop-
613ment of crack widths, and mean crack spacing observed in the
614experiments.

(a) (b)

F8:1 Fig. 8. (a) Comparison of steel strains predicted with steel strains reported in the experiments of Bresler and Bertero (1968) over the bar length;
F8:2 and (b) comparison of crack widths predicted with crack widths reported in the experiments of Yannopoulos (1989) using similar specimen length
F8:3 L ¼ 100 mm similar to that in the experiments.
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615 Fig. 9 shows the comparison of steel strain distributions over the
616 bar lengths at three different stress levels for the specimens, again
617 noting that the analytical model predicts the mean of the experi-
618 mental steel strains. The first stress level shows the CLLM behavior
619 just before a crack forms at a certain distance from the loaded end,
620 while the two higher stress levels show the CHLM behavior for
621 specimen lengths similar to the crack spacing obtained in the FE
622 analysis (see Table 1). Note that the strain distribution is shown for
623 only half the specimen length due to symmetry. In general, the ana-
624 lytical calculations make conservative predictions of the CLLM
625 behavior, which also is reflected in the comparison of the predicted
626 crack spacing in Table 1. The table also shows that the analytical
627 model predicts crack spacing consistently and on the conservative
628 side regardless of the bar diameter and cover size. The conservative
629 prediction of the crack spacing can be attributed to the bond-slip
630 parameters chosen. Fig. 10 shows the development of crack widths
631 in specimens with lengths similar to the FE analysis crack spacing
632 in Table 1 and indicates that the analytical model makes quite ac-
633 curate predictions of crack widths for a given specimen length.
634 Fig. 11 shows comparisons of the development of crack widths
635 based on specimen lengths similar to the crack spacing predicted
636 by the analytical model in Table 1. The analytical model yields

637Condition 2 and CHLM behavior in general, which allows for crack-
638ing at midlength at higher load levels and occurs for all of the spec-
639imens except ϕ20c90. The graphs also show that the analytical
640model predicts crack widths on the conservative side in general.

641Comparison with Nonaxisymmetric RC Ties

642The French research project CEOS.fr (2016) conducted experi-
643ments on two identical quadratic RC ties identified as Ties 4 and 5,
644which were pulled in tension. The ties were 355 mm in width and
645height, had a length of 3,200 mm, and were reinforced with eight
64616 mm rebars. A concrete grade C40/50 was used, while the yield
647strength and Young’s modulus of steel were reported as 529 and
648200,000 MPa, respectively. The cover to the rebars was 45 mm.
649Fig. 12(a) shows a comparison of the development of predicted
650crack widths with the maximum crack widths measured. The ana-
651lytical calculations were based on using specimen lengths similar to
652the crack spacing predicted analytically in Table 2. The factor ζ ¼ 1

653was chosen for simplicity. The deviation between Ties 4 and 5 in
654the maximum crack widths measured seems to be due to the differ-
655ence in maximum crack spacing reported in Table 2. Nevertheless,
656the maximum crack spacing predictions were conservative, and the
657crack widths predicted show relatively good agreement with the
658maximum crack widths measured.
659Tan et al. (2018a) conducted experiments on eight quadratic RC
660ties identified as X-ϕ-c, where X represents the loading regime the
661RC tie was exposed to, either at the crack formation stage (F) or
662the stabilized cracking stage (S), while ϕ and c represent the rebar
663diameter and cover respectively. The rebar diameter was either 20
664or 32 mm, while the cover was either 40 or 90 mm. The ties were
665400 mm in width and height, had a length of 3000 mm, and were
666reinforced with eight rebars. The concrete compressive and ten-
667sile strength were reported as 74.3 and 4.14 MPa, respectively,
668while the Young’s modulus was reported as 27.4 MPa. The yield
669strength and Young’s modulus of the steel were reported as 500
670and 200,000 MPa, respectively. Fig. 12(b) shows the comparison

(a) (b)

(c) (d)

F9:1 Fig. 9. Comparison of steel strains predicted with steel strains reported over the bar length in the FE analysis of Tan et al. (2018b):
F9:2 (a) specimen ϕ20c40; (b) specimen ϕ32c40; (c) specimen ϕ20c90; and (d) specimen ϕ32c90.

Table 1. Comparison of crack spacing predicted with mean crack spacing
reported in the experiments of Bresler and Bertero (1968) and Yannopoulos
(1989), and the FE analysis of Tan et al. (2018b)

T1:1 RC tie

Experimental and
FE analysis mean

(mm)

Predicted
analytical
(mm)

T1:2 Bresler and Bertero (1968) 203 301
T1:3 Yannopoulos (1989) 90 181
T1:4 ϕ20c40 105 224
T1:5 ϕ32c40 Tan et al. (2018b) 109 207
T1:6 ϕ20c90 260 470
T1:7 ϕ32c90 272 434
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(a) (b)

(c) (d)

F10:1 Fig. 10. Comparison of crack widths predicted (in specimens with lengths similar to FE analysis mean crack spacing reported in Table 1 with
F10:2 crack widths reported in the FE analysis of Tan et al. (2018b); (a) specimen ϕ20c40, L ¼ 105 mm; (b) specimen ϕ32c40, L ¼ 109 mm;
F10:3 (c) specimen ϕ20c90, L ¼ 260 mm; and (d) specimen ϕ32c90, L ¼ 272 mm.

(a) (b)

(c)

(e)

(d)

F11:1 Fig. 11. Comparison of crack widths predicted (in specimens with lengths similar to crack spacing predicted in Table 1 with crack widths reported in
F11:2 the experiments of Yannopoulos (1989) and the FE analysis of Tan et al. (2018b): (a) Yannopoulos (1989) specimen, L ¼ 181 mm; (b) specimen
F11:3 ϕ20c40, L ¼ 224 mm; (c) specimen ϕ32c40, L ¼ 207 mm; (d) specimen ϕ20c90, L ¼ 470 mm; and (e) specimen ϕ32c90, L ¼ 434 mm.
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671 of maximum crack widths measured w0.95 and crack widths pre-
672 dicted wcr using the concept of modelling uncertainty, i.e., as θ ¼
673 w0.95=wcr. The crack widths calculated were based on using speci-
674 men lengths similar to the crack spacing predicted analytically in
675 Table 2. The factor ζ ¼ 1 was again chosen for simplicity. Both the
676 crack widths and the crack spacing predicted are on the conser-
677 vative side except for F-32-90 and S-32-90, in which the maximum
678 crack widths predicted were slightly underestimated.

679 Discussion

680 The conservative predictions of the crack widths in Fig. 11 are due
681 to the nature of Eq. (75), which, together with the predefined bond-
682 slip parameters, provides an upper limit for the crack spacing or,
683 expressed more rigorously, for the maximum crack spacing. This is
684 equivalent to the concept of calculating the maximum crack widths
685 according to the semiempirical formulas in EC2 and MC2010.
686 However, unlike EC2 and MC2010, Eq. (75) is not assumed to vary
687 from once to twice this value. Furthermore, Figs. 8(b) and 10 show
688 the ability of the model to predict accurate crack widths given a
689 specimen length. The observations in Figs. 8(a) and 9 suggest that
690 the analytical model can predict the mean behavior of experimental
691 steel strains, which is a direct result of using just one local bond-slip
692 curve to represent the bond transfer over the specimen length. This
693 means that the effect internal inclined and splitting cracks has on
694 reducing the bond transfer locally is smeared over the specimen
695 length in the analytical model. The consequence of using only one
696 local bond-slip curve is that the bond stresses reach their maximum
697 at the cracked section (x ¼ 0), which contradicts the physical be-
698 havior of RC ties discussed previously. This is because the selected
699 bond-slip curve causes bond stresses to increase with increasing
700 slip as can be observed in Fig. 4. This is elucidated in Fig. 13,
701 which shows the corresponding bond stresses to the steel strains
702 predicted in Fig. 9. One solution to this problem would be to use

703different bond-slip curves depending on the location over the speci-
704men length, but this would substantially complicate the solutions to
705the analytical model. So, the use of just one local bond-slip curve
706provides a practical yet mechanically sound calculation model that
707has proven capable of predicting the development of crack widths
708and crack spacing consistently and on the conservative side, re-
709gardless of the mechanical properties and loading of the RC ties.
710Another advantage of using a bond-slip curve, as opposed to assum-
711ing a constant bond stress distribution e.g., in EC2 and MC2010,
712is that the mean bond stresses become dependent on the load level
713and the geometry of RC tie, thus conforming to the theoretical ob-
714servations made by Tan et al. (2018b). This should provide more
715realistic predictions of the crack spacing.
716Fig. 14 shows the corresponding concrete strains at the inter-
717face, εci, to the steel strains predicted in Fig. 9 at load levels
718250 and 400 MPa, whereas the dashed lines represent the resultant
719of concrete strains in a section according to Eq. (15), i.e., as εcm ¼
720ψεci. It is observed that both the concrete stresses at the interface
721and the resultants of concrete stresses increase with increasing load
722level. This is due to the increase of the bond transfer between the
723load levels of 250 and 400 MPa as represented by the increase of
724the areas under the curves shown in Fig. 13. Furthermore, this
725would cause a crack to form at the zero-slip section even in the
726case of CHLM behavior if the mean concrete strains exceed the
727tensile strength of concrete, as shown in Fig. 11. This conforms
728to the discussions of transient cracking of RC ties addressed in
729fib bulletin No. 10 ( fib 2000). This feature though, can easily
730be neglected in the calculation model for design situations as a
731conservative approach. The main reason for including ψ in Eq. (14)
732was to account for the fact that nonlinear strain profiles occur over
733the concrete cover (Tan 2018c), which is a mechanical improve-
734ment to the assumption of claiming that plane sections remain plane
735in RC ties as 13per (Saliger 1936; Balázs 1993; CEN 2004; fib 2013;
736Debernardi and Taliano 2016). It can be shown though, that differ-
737ent values of ψ in general have limited effect on the crack width
738predictions.
739Fig. 12 shows that the analytical model presented can be applied
740to predict crack widths in nonaxisymmetric RC ties as well. In these
741calculations, simple assumptions were made such as that the whole
742concrete area contributed in tension Ac;ef ¼ Ac and choosing ζ ¼ 1.
743This led to similar crack spacing predictions for RC ties with similar
744reinforcement ratios but different covers, which contradicts the
745experimental data in Table 2. It is well known that the cover has
746a significant influence on crack spacing, and therefore crack widths,
747as reported by Broms (1968), Gergely and Lutz (1968), Caldentey
748et al. (2013), and Tan et al. (2018a). One approach to taking the cover
749into account could be to use the provisions in EC2 and MC2010
750for calculating an effective reinforcement ratio, ρs;ef ¼ As=Ac;ef ,

(a) (b)

F12:1 Fig. 12. Comparison of crack widths predicted (in specimens with lengths similar to crack spacing predicted in Table 2) with crack widths reported in
F12:2 experiments: (a) CEOS.fr (2016); and (b) Tan et al. (2018a).

Table 2. Comparison of crack spacing predicted with crack spacing
reported in the experiments of CEOS.fr (2016) and Tan et al. (2018a)

T2:1 RC tie Study

Experimental Predicted
analytical
(mm)

T2:2 Mean
(mm)

Maximum
(mm)

T2:3 Tie 4 CEOS.fr (2016) 160 257 370
T2:4 Tie 5 — 188 318 370
T2:5 S-20-40 — 163 250 422
T2:6 S-32-40 Tan et al. (2018a) 178 240 361
T2:7 S-20-90 — 217 290 422
T2:8 S-32-90 — 266 320 361
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751 to predict the cracking behavior. This is exemplified in Table 3,
752 which shows the crack spacing predictions when the effective height
753 surrounding the rebars, i.e., hc;ef ¼ min½2.5ðcþ ϕ=2Þ; h=2�, is used
754 to determine the effective reinforcement ratios. Comparison of spec-
755 imens having similar geometrical reinforcement ratios, e.g., S-20-40
756 against S-20-90 and S-32-40 against S-32-90, shows that the crack
757 spacing predictions increase for specimens having larger covers
758 owing to the difference in effective reinforcement ratios. However,
759 the increase in crack spacing predictions for specimens with larger

(a) (b)

(c) (d)

F14:1 Fig. 14. Concrete strains corresponding to the steel strains predicted in Fig. 9: (a) specimen ϕ20c40; (b) specimen ϕ32c40; (c) specimen ϕ20c90; and
F14:2 (d) specimen ϕ32c90.

(a) (b)

(c) (d)

F13:1 Fig. 13. Bond stresses corresponding to the steel strains predicted in Fig. 9: (a) specimen ϕ20c40; (b) specimen ϕ32c40; (c) specimen ϕ20c90; and
F13:2 (d) specimen ϕ32c90.

Table 3. Comparison of crack spacing reported in the experiments of Tan
et al. (2018a) and crack spacing predicted using effective reinforcement ratios

T3:1RC tie

Experimental Predicted analytical
(mm) T3:2Mean (mm) Maximum (mm)

T3:3S-20-40 163 250 390
T3:4S-32-40 178 240 342
T3:5S-20-90 217 290 422
T3:6S-32-90 266 320 361
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760 covers is seen to be underestimated compared to the experimental
761 evidence. This could also be related to assuming ζ ¼ 1, which is
762 questionable particularly for RC ties with 90 mm cover because
763 the bond stress distribution surrounding the perimeter of the rebars
764 is probably not uniform, as elucidated in Fig. 2(d). However, deter-
765 mining a proper value for ζ is not straightforward and requires fur-
766 ther study, e.g., by conducting FE analysis of nonaxisymmetric RC
767 ties. Nevertheless, the model with the introduction of the factor ζ and
768 an effective reinforcement ratio based on the cover size shows great
769 potential in predicting the cracking behavior of nonaxisymmetric RC
770 ties as well.
771 The calculation model using the simplified equations for con-
772 crete can predict crack widths both in the crack formation stage
773 and the stabilized cracking stage through the concepts of CLLM
774 and CHLM, and is as such different from the calculation methods
775 recommended by EC2 and MC2010, which apply to the stabilized
776 cracking stage only. Furthermore, assuming ψ not equal to one im-
777 plies that the mean concrete strains over the section in general is
778 different from the concrete strains at the interface further implying
779 that the concrete stresses in each section are assumed unevenly dis-
780 tributed, even at the zero-slip section, a concept first introduced by
781 Edwards and Picard (1972). This means that a crack forms when
782 the resultant of concrete stresses at the zero-slip section is equal to
783 the mean value of the tensile strength as pointed out for Eq. (74).
784 Finally, using only one bond-slip curve means that bond stresses
785 are different from null at the cracked section. These assumptions
786 enabled a practical approach to solve the SODE for the slip.
787 The model allows for treating problems such as imposed defor-
788 mations, where the mechanical loading becomes directly dependent
789 on the crack pattern or, expressed more rigorously, the stiffness of
790 the member. Moreover, the authors of this paper are also currently
791 working on the application of the analytical model to more general
792 cases, such as noncylindrical RC ties, tensile zones in structural

793elements exposed to bending, and RC membrane elements exposed
794to biaxial stress states at which cracks form at a skew angle to an
795orthogonal reinforcement grid.

796Conclusions

797A new analytical crack width calculation model has been formu-
798lated to provide more consistent crack width calculations for large-
799scale concrete structures, where large covers and bar diameters are
800typically used. The calculation model was derived based on the
801uniaxial behavior of axisymmetric RC ties. Furthermore, the model
802includes the effect of internal cracking on the bond transfer, a non-
803uniform strain distribution over the concrete area and a nonuniform
804bond stress distribution surrounding the perimeter of the steel bar in
805nonaxisymmetric cases. The latter accounts for the effect of steel
806bar spacing in practice.
807The SODE for the slip has been solved completely analytically,
808yielding closed-form solutions in the case of CLLM behavior and
809non-closed-form solutions in the case of CHLM behavior. One sol-
810ution strategy and method for determining the complete cracking
811response has been provided for the purposes of facilitating a prac-
812tical applicable calculation model, the lack of which has been the
813major drawback in using previous equivalent models. The compari-
814son with experimental and finite-element results in the literature
815shows that the calculation model predicts an average strain distri-
816bution based on using a single local bond-slip curve to represent
817the bond transfer. The comparisons demonstrate the ability of the
818calculation model to predict crack widths accurately given a mem-
819ber length. Finally, the model has proven capable of predicting
820crack spacing and crack widths consistently and in general on the
821conservative side regardless of the bar diameter and cover, even for
822nonaxisymmetric RC ties.

823 Appendix I. Function Derivatives for CHLM

824 Function derivatives in the case of CHLM behavior for Case 1.

f 0
1ðu0Þ ¼ − 1ffiffiffi

2
p

X∞
k¼0

0
@− 1

2

k

1
Aγk

"
γβuβ−10

�
1

2
þ k

�
C−3

2
−k u1þkβ

0

1þ kβ
þ C−

	
1
2
þk


ukβ0

#
ð78Þ

825 Function derivatives in the case of CHLM behavior for Case 2.
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826 Appendix II. Procedure to Determine the
827 Cracking Response

828 A method for determining the complete cracking response is
829 shown in Fig. 15, in which εs0;s, εs0;cr, and xcr are determined
830 by Eqs. (72), (74), and (75) respectively, while εs0 is the steel strain
831 at the loaded end.14
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