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The paper describes a model to predict and analyze the time-dependent

closure of a borehole drilled in a soft rock subjected to an initial isotropic

stress, and the build-up of stress on a rigid casing after contact with the de-

forming rock. The rock behaves as a viscoplastic material characterized by a

Mohr-Coulomb yield criterion and plastic potential, and by a time-dependent

stress-strain deviatoric response akin to a Bingham rheology. The model for-

mulation recognizes the particular structure of the solution, namely that the

borehole is encircled by an evolving viscoplastic annulus, itself surrounded by

an infinite domain, where the rock is either elastic or is unloading elastically.

Noting that the solution outside the viscoplastic boundary is given explicitly

by the Lamé solution, the evolution problem is formulated as an initial bound-

ary value problem in the viscoplastic region only, but with a free boundary

— the growing or shrinking interface between the viscoplastic and the elastic

domains. The equations governing the mechanical fields and the evolution of

viscoplastic boundary are spatially discretized on a moving mesh with a fixed
∗Corresponding Author: detou001@umn.edu
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number of nodes. The final system of equations is a set of first order ODEs

that are efficiently solved using the MATLAB routine ODE45. The numer-

ical simulations reveal (i) the time-dependent deformation and stress state

of rock in the viscoplastic annulus before and after the contact, (ii) the time

of first contact between the deforming rock and the casing, (iii) the effective

duration of the stress build-up on the casing, and (iv) the large time contact

pressure, which is well approximated by the elastoplastic solution.

1 Introduction

Potential leakage from deep oil and gas reservoirs through the casing annulus of bore-

holes, long after production has ceased, represents a serious environmental risk. However,

a tight contact between the rock and the casing resulting from the time-dependent de-

formation of shale around a borehole could in principle contribute to the establishment

of a physical barrier that would mitigate or even prevent leakage [Williams et al., 2009,

Norsok, 2013].

The critical issues that have to be addressed in regard to the potential seal provided by

the shale are the following. (i) How much time is elapsing between drilling and the first

contact between the deforming rock and the casing? (ii) What is the effective duration

of the stress build-up on the casing? (iii) What is the maximum contact pressure on

the casing? In conjunction with a realistic constitutive model of the shale, a theoretical

model of the time-dependent response of the rock to drilling and contact with the casing

can shed light on these questions.

The model investigated in this paper is constructed on the assumptions that the far-

field stress is isotropic, the rock is deforming under plane strain conditions, and the shale

behaves as a Bingham viscoplastic material governed by a Mohr-Coulomb criterion in its

deviatoric response. This last assumption implies the existence of a viscoplastic annulus

around the borehole where progressive failure of the rock takes place, if the yield limit
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is exceeded by the elastic stress field around the borehole. Indeed, the stress state in

the viscoplastic region can temporarily go beyond the yield criterion. This over-stress,

as defined by Perzyna [1966], progressively decreases with developing viscoplastic strain

under constant loading, to eventually vanish at large time.

The stress readjustment in the viscoplastic annulus leads to a continued expansion of

this region until further closure of the borehole is prevented by the rigid casing. After

contact, the build-up of pressure on the rock-casing interface causes a shrinkage of the

viscoplastic region, which eventually vanishes when the yield criterion is nowhere violated.

Such a large time asymptotic state is characterized by a plastic annulus around the

borehole. In the absence of a casing, an equilibrium state is also eventually reached, after

continued expansion of the viscoplastic region. A key feature of this problem is thus the

existence of a moving boundary that encloses a growing or shrinking viscoplastic annulus

depending on the boundary condition at the borehole wall. The moving boundary makes

the problem challenging to solve even under the simplifying assumptions of axisymmetry

and plane strain.

The assumed viscoplastic constitutive response of shale traces its origin to the Bingham

[1922] rheological model and to the Perzyna [1966] over-stress theory. In Perzyna’s theory,

the stress state can temporarily violate the yield criterion. Various extensions of the

original theory of Perzyna [1966] have been proposed, and only some of these works are

highlighted in the following (see the comprehensive reviews by Debernardi [2008] and by

Hashiguchi [2017]). In Cristescu [1988], the viscoplastic strain is determined as a function

of the irreversible stress work. Lemaitre and Chaboche [1990] proposed a viscoplastic

constitutive model that takes the strain-dependent hardening into consideration. In

their model, the viscoplastic yield criterion is identified with the hydrostatic axis in the

principal stress space, implying therefore a long-term equilibrium solution without any

shear stress. Malan [1999] described a viscoplastic constitutive model with two yield

criteria: one plastic yield criterion for the intact rock and the other viscoplastic yield
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criterion for the failed rock. The yield stress has to fulfill the plastic yield criterion

first so that the viscoplastic yield criterion can be active and the stress state can return

progressively to the viscoplastic yield criterion. Boidy [2002] extended Lemaitre’s work

by assuming that the viscoplastic yield criterion is a closed surface surrounding the

hydrostatic axis. Debernardi [2008] proposed a stress-hardening viscoplastic constitutive

model with a plastic yield criterion and a viscoplastic yield criterion (similar to the

Malan’s model). However, in contrast to Malan’s, the viscoplastic yield criterion is

always active in Debernardi’s model (the stress does not need to reach the yield criterion

first to activate the viscoplastic yield criterion).

Applications of the viscoplastic theory to tunnel and borehole problems have been

the subject of several investigations using both analytical and numerical techniques.

However, the handful of existing analytical solutions [Cristescu, 1988, Fritz, 1984] do not

take the evolution of the viscoplastic region into consideration. Most of the studies rely on

solving the problem numerically, using the finite difference or the finite element method

[Malan, 1999, Boidy et al., 2002, Bonini et al., 2007, Debernardi, 2008, Barla et al., 2012,

Moghadam, 2013, Bian et al., 2017]. Although the evolving viscoplastic region plays a

critical role in the progressive borehole closure problem, it was only discussed within

the context of the finite element method in a few publications [Gioda, 1982, Gioda and

Cividini, 1996]. Hence, to our knowledge, no papers describe a solution with an explicit

tracking of the moving boundary of the viscoplastic region.

The objective of this contribution is two-fold. First, it is to formulate a mathematical

model that enables an explicit tracking of the external radius of the viscoplastic annulus.

Such a formulation is the foundation for an efficient computational algorithm that only

requires solving for the mechanical fields in the viscoplastic region. Second to perform a

parametric analysis to understand the role of the key parameters controlling the borehole

closure and the pressure build-up on the casing.

The paper is organized as follows. Section 2 formulates the initial boundary value
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problem in the evolving viscoplastic zone. Section 3 introduces the scaling and a dimen-

sionless formulation of the model that relies on mapping the evolving viscoplastic region

onto a unit plane. Section 4 describes the finite difference scheme on a moving mesh used

to solve the field equations in the viscoplastic region. Section 5 illustrates the simulation

results both before and after the rock-casing contact. It also analyzes the influence of

a few parameters on the long-term casing contact pressure and on the time it takes to

reach the asymptotic value.

2 Mathematical model

2.1 Problem definition

We consider the time-dependent closure of a vertical borehole drilled through viscoplastic

rock, as well as the build-up of pressure at the rock-casing interface when the formation

closure is further prevented by a rigid casing. To calculate the progressive deformation

of the rock around the borehole and the subsequent build-up of pressure on the casing,

we assume an isotropic and homogeneous rock and an isotropic far-field stress σ0 in a

plane orthogonal to the borehole. After further assuming plane strain and axisymmetric

conditions in this plane (generally horizontal), the problem can be completely formu-

lated in terms of radial displacement u(r, t), principal radial stress σr (r, t) and principal

tangential stress σθ (r, t) as functions of radius r ≥ a, where a is the nominal borehole

radius, and time t ≥ 0. It is also assumed that the out-plane normal stress does not

affect the solution of this problem.

We are interested in two phases of this problem, before and after rock-casing contact.

The first phase deals with the progressive closure of the borehole before the rock-casing

contact. The borehole closure is triggered by drilling, which is modeled here by a sudden

drop of radial stress σr (a, t) at the borehole from the initial value σ0 (corresponding to

a uniform far-field stress in the plane) to a pre-assumed mud pressure pm (corresponding
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to the hydrostatic pressure of the mud column inside the borehole)

σr (a, t) = σ0 − (σ0 − pm)H (t) , (1)

with H (t) denoting the Heaviside function (positive stress is assumed in compression).

The drilling-induced unloading causes a stress concentration around the borehole. It is

assumed the radial stress drop σ0− pm is large enough, so that the corresponding elastic

stress state violates the yield criterion and thus induces a viscoplastic strain in the region

where the rock is over stressed. As discussed in details below, the progressive return of

the stress to the yield criterion causes a time-dependent inward displacement of the rock.

The second phase deals with the presence of a rigid casing that prevents further closure

of the borehole. In this phase, we are interested in the build-up of the contact pressure at

the rock-casing interface, as well as its asymptotic value corresponding to the vanishing

of the viscoplastic strain rate. The geometry of the borehole is shown in Fig. 1.

The neighborhood of the borehole, where the stress state violates the yield criterion,

is identified as the viscoplastic region a ≤ r ≤ b (t), where b (t) corresponds to the radius

at which the stress state exactly fulfills the yield criterion. The radial stress drop taking

place at t = 0+ triggers an elastic inward displacement, and the initial viscoplastic region

corresponds to the annulus a ≤ r ≤ b (0+), where the elastic stress state violates the yield

criterion. The progressive return of the stress state to the yield criterion is accompanied

by a viscoplastic deformation that is associated with failure of the rock.
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Figure 1: Viscoplastic annulus around the borehole

2.2 Constitutive response

An elasto-viscoplastic constitutive model in the spirit of Perzyna’s theory [1966] is adopted

to simulate the time-dependent response of soft rocks. It is motivated by the observa-

tion that progressive irreversible deformation takes place in laboratory creep test for such

rocks. This constitutive model is characterized by a Mohr-Coulomb (M-C) yield criterion

f (σr, σθ), a M-C non-associated plastic potential g (σr, σθ), and a Bingham viscoplastic

model for the deviatoric response of the rock. Since the principal directions remain fixed

in this problem, the constitutive response can directly be expressed in the cylindrical

coordinates system. The M-C yield criterion f (σr, σθ) and the M-C plastic potential

g (σr, σθ) are defined as

f = σθ − kσr − q σθ ≥ σr ≥ 0 (2)

and

g = σθ − kfσr (3)
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with

k = tan2

(
π

4
+
φ

2

)
, kf = tan2

(
π

4
+
ψ

2

)
,

where q, φ and ψ are defined as the unconfined compressive strength, the friction angle

and the dilation angle, respectively. The yield criterion f (σr, σθ) = 0 separates the

elastic and the viscoplastic region of the rock in the principal stress space. For f < 0,

the incremental response of the rock is purely elastic, while for f > 0, the strain rate has

both an elastic and a viscoplastic component

ε̇r,θ = ε̇er,θ + ε̇vpr,θ. (4)

The strain rate can advantageously be decomposed into a volumetric part ε = εr + εθ

and a deviatoric part er,θ as

ε̇r,θ =
ε̇

2
+ ėr,θ (5)

with

ε̇ = ε̇e + ε̇vp, ėr,θ = ėer,θ + ėvpr,θ. (6)

The elastic component satisfies Hooke’s law

2Gėer,θ = ṡr,θ,
G

1− 2ν
ε̇e = σ̇, (7)

where

σ =
σr + σθ

2
(8)

is the in-plane mean stress, and
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sr,θ = σr,θ − σ (9)

are the deviatoric stress components. The viscoplastic strain rates meanwhile satisfy the

non-associated flow rule (3)

ε̇vpr = −λ̇kf , ε̇vpθ = λ̇, (10)

with λ̇ denoting the viscoplastic strain rate multiplier.

It is convenient to introduce the deviatoric stress invariant s > 0 and deviatoric strain

invariant e > 0 as

s = sθ = −sr, e = eθ = −er. (11)

In view of (5) and (11), the viscoplastic strain rate in (10) can be expressed as

ε̇vpr = −
2kf
kf + 1

ėvp, ε̇vpθ =
2

kf + 1
ėvp. (12)

The volumetric viscoplastic strain rate deduced from (12)

ε̇vp = −
2 (kf − 1)

kf + 1
ėvp (13)

generally indicates dilation of the rock in the viscoplastic region as kf ≥ 1. Fig. 2 shows

the decomposition of the viscoplastic strain rate based on (5).
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Figure 2: Viscoplastic strain rate decomposition

The deviatoric invariant ėvp is taken to be proportional to the over-stress invariant ∆s

as

ηėvp = ∆s, (14)

with dynamic viscosity η. The over-stress invariant ∆s is defined as

∆s = s− sl (15)

with sl denoting the limiting value of the deviatoric stress invariant according to the M-C

yield criterion

sl =
k − 1

k + 1

(
q

k − 1
+ σ

)
. (16)

It can readily be shown that ∆s is given by (see Fig. 3)
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∆s =
σθ − kσr − q

k + 1
. (17)
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Figure 3: Deviatoric overstress and limiting deviatoric stress

With (12), (14) and (17) the viscoplastic response of the rock is fully determined for

the current stress state.

The assumed deviatoric viscoplastic behavior of the soft rock actually corresponds to

a Bingham rheological model (Fig. 4). This rheological model consists of a dashpot

representing the dynamic viscosity, and a frictional slider representing the M-C yield

criterion and the M-C non-associated plastic potential. The viscoplastic behavior is

derived from the parallel connection of the dashpot and the slider, which couples the

viscosity and the plasticity together. Referring to Fig. 3, while the deviatoric stress

invariant s is applied on this model, the dashpot is loaded by the over-stress invariant

∆s and the limiting deviatoric stress invariant sl is transmitted by the slider.
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Figure 4: Bingham rheological model

2.3 Field equations

The progressive closure of the borehole is assumed to be a quasi-static process and thus

the equilibrium equations are satisfied at all time. Accounting for plane strain and

axisymmetric condition, only one equilibrium equation remains

∂σr
∂r

+
σr − σθ

r
= 0. (18)

On account of no rotation of the principal stress, the rate form of Hooke’s law (7) together

with ε̇er,θ from (4) can be integrated to yield

σr,θ =
2G

1− 2ν

[
(1− ν)

(
εr,θ − εvpr,θ

)
+ ν

(
εθ,r − εvpθ,r

)]
, (19)

where

εvpr,θ =

∫ t

0
ε̇vpr,θdt. (20)

The total strain εr,θ is related to the radial displacement u according to

εr = −∂u
∂r
, εθ = −u

r
. (21)
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Equation (18)–(21) with the integration of (12) are then combined to yield the governing

differential equation for the displacement u

−∂
2u

∂r2
− 1

r

∂u

∂r
+
u

r2
+ α1

∂evp

∂r
+ α2

evp

r
= 0. (22)

Numbers α1 and α2 are defined as

α1 =
2 (kf (1− ν)− ν)

(1− ν) (kf + 1)
, α2 =

2 (1− 2ν)

1− ν
,

with α1 ∈ [0, 1.5] and α2 ∈ [0, 2] since ν ∈ [0, 0.5] and provided that kf is restricted to

the range [1, 3].

2.4 Initial condition, boundary conditions and free boundary condition

The governing equation (22) embeds an integral of the viscoplastic strain rate, itself a

function of the stress state. Its solution requires therefore an initial condition besides

two boundary conditions. An additional condition is also needed to locate the evolving

viscoplastic boundary.

Initial condition. The initial condition corresponds to the elastic state at t = 0+ result-

ing from the sudden pressure drop at the borehole wall (to mimic the drilling operation).

The instantaneous stress field and the displacement field around the borehole is given by

the Lamé solution (see, for instance, Fjaer et al. [2008])

σr
(
r, 0+

)
= σ0 − (σ0 − pm)

a2

r2
, σθ

(
r, 0+

)
= σ0 + (σ0 − pm)

a2

r2
, (23)

u
(
r, 0+

)
= −σ0 − pm

2G

a2

r
. (24)
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To guarantee that a viscoplastic region develops around the borehole, the stress drop

σ0 − pm must satisfy the condition

pm <
2σ0 − q
k + 1

(25)

If (25) is met, the initial viscoplastic boundary is located at r = b (0+)

b
(
0+
)

= a

√
(k + 1) (σ0 − pm)

q + (k − 1)σ0
. (26)

In other words, the elastic stress field (23) violates the M-C criterion in the annulus

a < r < b(0+).

Boundary condition at r = a. The nature of the boundary condition at r = a depends

on whether there is a rock-casing contact or not. After the initial radial stress drop at

t = 0+, the radial stress at the borehole is assumed to be constant until t = tc, when the

rock enters into contact with the casing

σ̇r (a, t) = 0 0+ ≤ t ≤ tc. (27)

For t ≥ tc, further closure of the borehole is prevented by the rigid casing. Hence

u̇ (a, t) = 0 t ≥ tc. (28)

The contact time tc is determined by the contact condition u (a, tc) = ac − a, where

u (a, tc) is computed based on the boundary condition (27) and ac denotes the outer

radius of the casing.

Boundary condition at r = b (t). Formulation of the boundary condition at the evolving

viscoplastic boundary r = b (t) first requires the definition of two different time derivatives

at r = b (t):
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1. Type I time derivative, denoted by ˙( ), is calculated at the fixed radius r at the mo-

ment when the viscoplastic boundary is at r, i.e., it is the rate of change perceived

by an observer located at r, when b (t) = r.

2. Type II time derivative, denoted by ∂( )
∂t , is evaluated on the evolving viscoplastic

boundary, i.e., it is the rate of change viewed by an observer sitting on b (t).

These two time derivatives at r = b (t) are connected by the chain rule

∂ ( )

∂t
= ˙( ) +

∂ ( )

∂r
ḃ. (29)

The M-C yield criterion (2) must be satisfied on the evolving viscoplastic boundary, i.e.,

f
(
σbr, σ

b
θ

)
= 0, where σbr,θ (t) = σr,θ (b (t) , t), so the corresponding rate form must be

fulfilled also

∂σbθ
∂t
− k∂σ

b
r

∂t
= 0. (30)

At r = b (t), ε̇vpr = ε̇vpθ = 0; hence, the two principal stress rates σ̇br and σ̇bθ must satisfy

the Lamé solution expressed in rate form, i.e.,

σ̇br + σ̇bθ = 0. (31)

Equation (30) and (31) depict the nature of the stress change at r = b (t) from the point

of view of two different observers. Combining (29)–(31) yields

σ̇br =

(
∂σbθ
∂r
− k∂σ

b
r

∂r

)
ḃ

(k + 1)
(32)

and

∂σbr
∂t

=

(
∂σbr
∂r

+
∂σbθ
∂r

)
ḃ

(k + 1)
, (33)
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where (33) is the general boundary condition on the evolving viscoplastic boundary.

When the viscoplastic region grows, the evolving viscoplastic boundary moves into the

elastic region, so the spatial derivative ∂( )
∂r on the expanding viscoplastic boundary can

be evaluated analytically on the elastic side from the Lamé solution. The Lamé solution

in (23) and (24) is modified by substituting pm → σbr and a→ b (t). Hence,

∂σbr
∂r

=
2
(
σ0 − σbr

)
b

,
∂σbθ
∂r

= −
2
(
σ0 − σbr

)
b

,
∂ub

∂r
=

(
σ0 − σbr

)
2G

. (34)

Substituting (34) into (33) yields the expanding viscoplastic boundary condition

∂σbr
∂t

= 0. (35)

In view of the chain rule (29), (35) implies that

σ̇br,θ = −
∂σbr,θ
∂r

ḃ if ḃ > 0. (36)

When the viscoplastic boundary is shrinking, the stress return to the yield criterion

indicates unloading, so
∂σbr,θ
∂t < 0. Fig. 5 illustrates the difference between the stress rate

when the viscoplastic boundary expands or shrinks.
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Figure 5: Stress rate and stress gradient on the expanding (left) and shrinking (right)
viscoplastic boundary. Left: Dash – previous; Solid – current. Right: Dash –
contact; Solid – current.

Free boundary condition. The displacement rate u̇b at the fixed radius r = b is derived

from the Lamé solution expressed in rate form

u̇b =
σ̇br
2G

b. (37)

Combined with (29) and (32), the above equation leads to the following expression for ḃ

ḃ =
1

b
2G(k+1)

(
∂σbθ
∂r − k

∂σbr
∂r

)
+ ∂ub

∂r

∂ub

∂t
, (38)

which represents the free boundary condition. For an expanding viscoplastic boundary

ḃ > 0, (38) can be simplified in view of (34) as

ḃ = − 2G

σ0 − σbr
∂ub

∂t
(39)

where ∂ub

∂t < 0.

In the first phase (before contact), the expansion of the viscoplastic annulus is due to
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the monotonic loading of the elastic region caused by the continued reduction of the over-

stress in the viscoplastic annulus (Fig. 6 – upper). In the second phase (after contact),

the contact pressure build-up results in the shrinkage of the viscoplastic annulus (Fig. 6

– lower).
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Figure 6: Changing viscoplastic and elastic domain before (upper) and after (lower) con-
tact

3 Scaling

Section 2 formulated a closed mathematical model that governs the evolution of the stress

and displacement field around a borehole following drilling. A dimensionless formulation

of this model requires the introduction of stress scale S, displacement scale U , time scale

T , and length scale a (the nominal borehole radius)

σ = Sσ̃ u = Uũ t = Tτ r = a (χδ + 1) (40)

with ˜( ) denoting the dimensionless field variable as function of scaled time τ and scaled

coordinate χ ∈ [0, 1]. The dimensionless thickness of the evolving viscoplastic region

δ (τ) is given by

δ =
b

a
− 1. (41)

Scales S, U and T are determined in the process of converting the dimensional mathe-

matical model to the dimensionless one. After introducing the scales, (14) can be written

as
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˙̃evp = G1
σ̃θ − kσ̃r
k + 1

− G2
1

k + 1
, (42)

and (19) as

σ̃r,θ = G3
(
−a3,4

δ

∂ũ

∂χ
− a4,3ũ

χδ + 1

)
+

2G4
kf + 1

(kfa3,4 − a4,3) ẽvp (43)

with

a3 =
2 (1− ν)

1− 2ν
a4 =

2ν

1− 2ν
.

The dimensionless groups G1–G4 appearing in the above two equations are defined as

G1 =
ST

η
G2 =

Tq

η
G3 =

GU

aS
G4 =

G

S
.

Setting G1, G2 and G3 to 1 and redefining G4 as the dimensionless shear modulus γ leads

to

S = q T =
η

q
U =

aq

G
γ =

G

q
(44)

where γ is typically of order O(102).

After scaling, (22) becomes

− 1

δ2
∂2ũ

∂χ2
− 1

(χδ + 1) δ

∂ũ

∂χ
+

ũ

(χδ + 1)2
+
α1γ

δ

∂ẽvp

∂χ
+
α2γẽ

vp

1 + χδ
= 0, (45)

which after differentiation with respect to τ at constant χ reads

− 1

δ2
∂3ũ

∂χ2∂τ
− 1

(χδ + 1) δ

∂2ũ

∂χ∂τ
+

1

(χδ + 1)2
∂ũ

∂τ
+
α1γ

δ

∂2ẽvp

∂χ∂τ
+

α2γ

1 + χδ

∂ẽvp

∂τ
+Aδ̇ = 0

(46)
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with

A =
2

δ3
∂2ũ

∂χ2
+

1

(χδ + 1) δ

(
χ

χδ + 1
+

1

δ

)
∂ũ

∂χ
− 2χũ

(1 + χδ)3
− α1γ

δ2
∂ẽvp

∂χ
− α2γχẽ

vp

(1 + χδ)2
,

and the differentiation of (43) yields

∂σ̃r,θ
∂τ

= −α3,4

δ

∂2ũ

∂χ∂τ
− α4,3

χδ + 1

∂ũ

∂τ
+

2γ (kfα3,4 − α4,3)

kf + 1

∂ẽvp

∂τ
+

(
α3,4

δ2
∂ũ

∂χ
+

α4,3χũ

(χδ + 1)2

)
δ̇.

(47)

The viscoplastic strain rate ∂ẽvp

∂τ is however unknown in (46) and (47). With the chain

rule

∂ ( )

∂τ
= ˙( ) +

χ

δ

∂ ( )

∂χ
δ̇, (48)

∂ẽvp

∂τ can be expressed as the sum of ˙̃evp, a known function of the current stress, and

an advective term χ
δ
∂ẽvp

∂χ δ̇ due to the mapping from the viscoplastic annulus to the unit

plane. Hence,

∂ẽvp

∂τ
= ˙̃evp +

χ

δ

∂ẽvp

∂χ
δ̇, (49)

∂2ẽvp

∂χ∂τ
=
∂ ˙̃evp

∂χ
+

1

δ

(
χ
∂2ẽvp

∂χ2
+
∂ẽvp

∂χ

)
δ̇. (50)

(49) and (50) can be substituted into (46) and (47) to yield

− 1

δ2
∂3ũ

∂χ2∂τ
− 1

(χδ + 1) δ

∂2ũ

∂χ∂τ
+

1

(χδ + 1)2
∂ũ

∂τ
+
α1γ

δ

∂ ˙̃evp

∂χ
+
α2γ ˙̃evp

χδ + 1
+ Bδ̇ = 0 (51)
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with

B =
2

δ3
∂2ũ

∂χ2
+

1

(χδ + 1) δ

(
χ

χδ + 1
+

1

δ

)
∂ũ

∂χ
− 2χũ

(χδ + 1)3

+
α1γχ

δ2
∂2ẽvp

∂χ2
+

α2γχ

(χδ + 1) δ

∂ẽvp

∂χ
− α2γχẽ

vp

(χδ + 1)2
,

and

∂σ̃r,θ
∂τ

= −α3,4

δ

∂2ũ

∂χ∂τ
− α4,3

χδ + 1

∂ũ

∂τ
+

2γ (kfα3,4 − α4,3)

kf + 1
˙̃evp

+

(
α3,4

δ2
∂ũ

∂χ
+

α4,3χũ

(χδ + 1)2
+

2γ (kfα3,4 − α4,3)χ

(kf + 1) δ

∂ẽvp

∂χ

)
δ̇. (52)

Based on Section 2.4, the initial condition, the boundary conditions and the free bound-

ary condition after scaling are given below.

Initial condition.

σ̃r
(
χ, 0+

)
= σ̃0 −

σ̃0 − p̃m
(χδ (0+) + 1)2

, σ̃θ
(
χ, 0+

)
= σ̃0 +

σ̃0 − p̃m
(χδ (0+) + 1)2

, (53)

ũ
(
χ, 0+

)
= − σ̃0 − p̃m

2

1

χδ (0+) + 1
. (54)

with δ (0+) given by

δ
(
0+
)

=

√
(k + 1)(σ̃0 − p̃m)

(k − 1)σ̃0 + 1
− 1 (55)

Boundary condition at χ = 0.

∂σ̃r (0, τ)

∂τ
= 0 0+ ≤ τ ≤ τc, (56)
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with

ũ (0, τc) = −ω (57)

and

∂ũ (0, τ)

∂τ
= 0 τ ≥ τc. (58)

Boundary condition (57) introduces another number, the dimensionless gap ω, defined

as

ω =
(a− ac)G

aq

Boundary condition at χ = 1.

∂σ̃r
∂τ

=

(
∂σ̃r
∂χ

+
∂σ̃θ
∂χ

)
δ̇

(k + 1) δ
, χ = 1, τ > 0, (59)

∂σ̃θ
∂τ
− k∂σ̃r

∂τ
= 0 χ = 1, τ > 0, (60)

with the special form of (59) before the rock-casing contact

∂σ̃r
∂τ

= 0, χ = 1, 0 < τ ≤ τc. (61)

Free boundary condition.

δ̇ =
1

δ+1
2(k+1)δ

(
∂σ̃θ
∂χ − k

∂σ̃r
∂χ

)
+ 1

δ
∂ũ
∂χ

∂ũ

∂τ
, χ = 1, τ > 0, (62)

with the special form of (62) before the rock-casing contact

δ̇ = − 2 (k + 1)

(k − 1) σ̃0 + 1

∂ũ

∂τ
, χ = 1, 0 < τ ≤ τc. (63)
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In summary, the mathematical model yields a solution S = {ũ, σ̃r,θ, ẽvp, δ, τc} of the

form

S = S (χ, τ ; γ, ν, k, kf , σ̃0, p̃m, ω) (64)

4 Numerical scheme

The partial differential equations (51) and (52) are semi-discretized on space by replacing

the spatial derivatives ∂2( )
∂χ2 and ∂( )

∂χ with finite differences. The interval χ ∈ [0, 1] is

discretized into a set of equidistant nodes χi, i = 0 · · ·n, with constant spacing ∆χ = 1
n ,

so that

χ0 = 0 · · · χi = i∆χ · · · χn = 1, (65)

where χ0 and χn are located at the borehole and the evolving viscoplastic boundary,

respectively. The subscript ( )i denotes the field variable at χi. The finite difference

schemes used to solve phase 1 and 2 differ slightly, to account for the different boundary

condition at χ = 0 before and after the casing/rock contact.

Before the rock-casing contact. The spatial derivatives of the displacement at χi,

i = 0 · · ·n, are evaluated with the central difference scheme

∂2ũ

∂χ∂τ

∣∣∣∣
χ=χi

' 1

2∆χ

(
dũi+1

dτ
− dũi−1

dτ

)
,

∂3ũ

∂χ2∂τ

∣∣∣∣
χ=χi

=
1

∆χ2

(
dũi+1

dτ
− 2

dũi
dτ

+
dũi−1
dτ

)
.

(66)

The Neumann boundary conditions (56) at χ = 0 and (59) at χ = 1 are applied via the

introduction of two ghost nodes at χ−1 = −∆χ and at χn+1 = 1 + ∆χ. When applying

(66) on (51) and (52) at χ0 and χn,
dũ−1

dτ and dũn+1

dτ , the displacement rates at the ghost

nodes, are calculated using the stress boundary condition at χ = 0 and χ =1. Combining
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Hooke’s law for ∂σ̃r
∂τ (52) with the spatial difference (66), enables to express dũ−1

dτ as

dũ−1
dτ

=
2α4δ∆χ

α3

dũ0
dτ

+
dũ1
dτ

+ F
(

˙̃evp, δ̇
)
, (67)

where the boundary condition (56) has been applied. Substituting (67) back to (51) with

the difference scheme (66) finally removes the ghost node term dũ−1

dτ . At the evolving

boundary, a similar approach is adopted.

The other spatial derivatives are evaluated based on a local interpolation of the field

based on Lagrangian polynomials



∂( )0
∂χ = 1

∆χ

(
−1

2 ( )2 + 2 ( )1 −
3
2 ( )0

)
∂( )1
∂χ = 1

∆χ

(
1
12 ( )4 −

1
2 ( )3 + 3

2 ( )2 −
5
6 ( )1 −

1
4 ( )0

)
∂( )i
∂χ = 1

∆χ

(
− 1

12 ( )i+2 + 2
3 ( )i+1 −

2
3 ( )i−1 + 1

12 ( )i−2
)

i = 2 · · ·n− 2

∂( )n−1

∂χ = 1
∆χ

(
1
4 ( )n + 5

6 ( )n−1 −
3
2 ( )n−2 + 1

2 ( )n−3 −
1
12 ( )n−4

)
∂( )n
∂χ = 1

∆χ

(
3
2 ( )n − 2 ( )n−1 + 1

2 ( )n−2
)

,

(68)



∂2( )0
∂χ2 = 1

∆χ2 (− ( )3 + 4 ( )2 − 5 ( )1 + 2 ( )0)

∂2( )1
∂χ2 = 1

∆χ2

(
− 1

12 ( )4 + 1
3 ( )3 + 1

2 ( )2 −
5
3 ( )1 + 11

12 ( )0
)

∂2( )i
∂χ2 = 1

∆χ2

(
− 1

12 ( )i+2 + 4
3 ( )i+1 −

5
2 ( )i + 4

3 ( )i−1 −
1
12 ( )i−2

)
i = 2 · · ·n− 2

∂2( )n−1

∂χ2 = 1
∆χ2

(
11
12 ( )n −

5
3 ( )n−1 + 1

2 ( )n−2 + 1
3 ( )n−3 −

1
12 ( )n−4

)
∂2( )n
∂χ2 = 1

∆χ2

(
2 ( )n − 5 ( )n−1 + 4 ( )n−2 − ( )n−3

)
.

(69)
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After the rock-casing contact. As before the contact, a similar approach is adopted to

remove dũn+1

dτ at χn. However, at the borehole, the Dirichlet boundary condition (58) can

be applied directly so removing dũ−1

dτ is avoided. The spatial derivative at the borehole

can be evaluated based on the Lagrange polynomial as

∂2ũ

∂χ∂τ

∣∣∣∣
χ=χ0

' 1

∆χ

(
dũ1
dτ
− dũ0

dτ

)
,

∂3ũ

∂χ2∂τ

∣∣∣∣
χ=χ0

=
1

∆χ2

(
dũ2
dτ
− 2

dũ1
dτ

+
dũ0
dτ

)
. (70)

For the other spatial derivatives on the boundary, the corresponding scheme in (68)

and (69) are still valid.

State-space method. The state-space method can be applied to any mathematical

model which can be described by first order differential equations for each of the state

variables. Let y denote the vector of state variables, which here corresponds to the

displacement, radial and tangential stress, viscoplastic strain at the nodes of the mesh

and to the thickness of the viscoplastic annulus

y = (· · · ũi · · · σ̃r,i · · · σ̃θ,i · · · ẽvpi · · · δ)
T

i = 0 · · ·n. (71)

The dimension of the state space variables is thus (4n+ 5) × 1. The system of the

first order differential equations is obtained by replacing the spatial derivatives by the

difference schemes (66)–(70) into governing equations (51), (52), (49), at each node χi,

as well as in the free boundary condition (62). The system of equations can be written

in a compact form as

M (y)
∂y

∂τ
= b (y) , (72)

where M is a (4n+ 5) × (4n+ 5) matrix of coefficients and b is a (4n+ 5) × 1 vector.

This system of first order ODE is integrated from the initial conditions at τ = 0+ using

the MATLAB function ODE45.
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5 Simulation

5.1 Benchmark simulation

In this section we show results of simulations conducted with the numerical algorithm

described in Section 4. Two cases are considered. For the first case, the borehole pressure

is kept constant following sudden unloading, so that the borehole deformation remains

uninhibited until it reaches a limit state. The objective of this simulation is to verify that

the long-term asymptotic solution is indeed in agreement with the classic elastoplastic

solution for a constant borehole pressure. For the second case, the borehole closure cannot

exceed a threshold corresponding to the placement of a rigid casing and the simulation

proceeds until the pressure at the casing/rock interface stabilizes. An alternative to this

simulation is also considered. It involves computing the borehole pressure required to

maintain the elastoplastic interface at the same position, once the closure reaches the

threshold set for the previous simulation. In this alternative, there is further but very

limited displacement at the borehole wall.

The initial solution following unloading of the borehole is given by Lamé solution

(53)–(55), while the large time asymptotic solution for the case of constant borehole

pressure p̃m corresponds to the classical elastoplastic solution [Detournay, 1986, Fjaer

et al., 2008]

σ̃rp = −σ̃0 +
s̃0l

k − 1

(
k + 1− 2ρk−1

)
, (73)

σ̃θp = −σ̃0 +
s̃0l

k − 1

(
k + 1− 2kρk−1

)
, (74)
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ũp = −1
2 s̃

0
l (1+δp)ρ

[
1 +

λ? + 2k + 2kf
(kf + 1) (k + kf )

(
ρ−(kf+1) − 1

)
+

λ?

(k − 1) (k + kf )

(
ρk−1 − 1

)]
,

(75)

δp =


2

k + 1

σ̃0 +
1

k − 1

p̃m +
1

k − 1



1

k − 1

− 1, (76)

with

ρ =
1 + χδp
1 + δp

; 0 ≤ χ ≤ 1,

s̃0l =
k − 1

k + 1

(
1

k − 1
+ σ̃0

)
,

λ? = (k − 1) (kf − 1) + (1− 2ν) (k + 1) (kf + 1) .

The values of the physical parameters on which the simulations are based are: a = 0.05

m, ac = 0.045 m, G = 0.37 GPa, ν = 0.35, q = 6 MPa, φ = 30°, ψ = 11.6°, σ0 = 30

MPa, and pm = 0. The rock viscosity is left as an open parameter, as it only affects the

time scale defined as T = η/q in (44). The corresponding numbers controlling the scaled

solution are thus given by ω = 6.17, γ = 61.7, k = 3, kf = 1.5, σ̃0 = 5, p̃m = 0, ν = 0.35.

The calculations were conducted using 400 nodes in the computational mesh. This

number, which was selected on the basis of a convergence study summarized in Appendix,

ensures a relative error of about 10−4 or less.
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Case 1. Fig. 7 shows several isochrones of the stress trajectory in the principal stress

space. The progressively reduced stress state evolves from the elastic (Lamé) solution at

τ = 0+ to the plastic solution at τ = ∞. Fig. 8 shows the same results but plots the

isochrones of the stress trajectory in the unit plane.

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

Figure 7: Case 1: Stress state in principal stress space. Upper dash – initial elastic
solution; Lower dash – asymptotic plastic solution. The time ratio between
each line is τi/τi−1 = 2.5.
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Figure 8: Case 1: Radial stress (lower part) and tangential stress (upper part) in the
unit plane. In each part: Upper dash – initial elastic solution; Lower dash –
asymptotic plastic solution.

Isochrones of the radial displacement field in the viscoplastic annulus are plotted in

Fig. 9. It can be observed that the displacement evolves from the elastic (Lamé) solution

to the plastic solution. Evolution of the displacement at the borehole wall and growth of

the thickness of the viscoplastic annulus are plotted in Fig. 10. For the set of parameters

selected in this numerical simulation, the asymptotic solution is approximately reached

at τ = 2, i.e., twice the time scale T in real time. The viscoplastic solution, ũ(0, τ) and

δ(τ) is seen to converge towards the elastoplastic solution ũp(0) and δp shown as dashed

lines in Fig. 10.
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Figure 9: Case 1: Displacement in the unit plane. Upper dash – initial elastic solution;
Lower dash – asymptotic plastic solution.
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Figure 10: Case 1: Gradually converged borehole displacement and evolving thickness of
the viscoplastic boundary. Dash – asymptotic solution.

Case 2. Here the borehole closure is restricted by a rigid casing, i.e. ũb+ω ≥ 0. Results

of the simulations are illustrated in Figs. 11–13, following the same format as for Case

30



1, but with the post-contact results shown in gray. Fig. 13 indicates that there is no

visible change to the displacement field in the viscoplastic annulus, once contact has

taken place, even though the stress continues to evolve until the limit state is reached as

can be observed in Figs. 11 and 12.

Figure 11: Case 2: Stress state in principal stress space. Black – before contact; Gray –
after contact; Upper dash – initial elastic solution; Lower dash – asymptotic
plastic solution. The time ratio between each line is τi/τi−1 = 2.5.
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Figure 12: Case 2: Radial stress and tangential stress in the unit plane. Black – before
contact; Gray – after contact. In each part: Upper dash – initial elastic
solution; Lower dash – asymptotic plastic solution.

Figure 13: Case 2: Displacement in the unit plane. Black – before contact; Gray – after
contact; Upper dash – initial elastic solution; Lower dash – asymptotic plastic
solution.
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Comparison. Figures 14–16 compare the evolution of the viscoplastic annulus, borehole

closure, and interface pressure for Case 1 and 2 and a third simulation where the condition

δ̇ = 0 is arbitrarily imposed for τ > τc with τc defining the time at which ũ(0, τc)+ω = 0.

For the latter simulation, all the convective terms in the system of ODE (72) vanish since

δ̇ = 0, thus leading to a simpler form of the equations. Fig. 14 shows that the motion of

the viscoplastic boundary is reversed after contact, thus causing some elastic unloading.

However, the shrinking of the viscoplastic annulus is quite limited. Plots of ũ(0, τ) and

σ̃r(0, τ) in Figs. 15 and 16 show that the rigid casing solution and the δ̇ = 0 solution are

relatively close.

Figure 14: Evolution of viscoplastic annulus for the three simulations
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Figure 15: Evolution of the displacement at the borehole for the three simulations.

Figure 16: Evolution of the contact pressure build-up at the borehole for the three sim-
ulations.
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5.2 Parametric analysis

Next we report results of a parametric study conducted to provide insight into the main

factors affecting the contact between the shale and the casing. We focus in particular on

the dependence of three quantities on the problem parameters, namely: (i) asymptotic

pressure σ̃∞r on the casing or increment ∆σ̃∞r = σ̃∞r − p̃m; (ii) contact time τc, which is

the time elapsed between drilling and first contact between the rock and the casing; and

(iii) asymptotic time τa, which is the time needed to reach 95% of the asymptotic state,

or alternatively ∆τ = τa − τc, a measure of the time needed for the contact pressure to

increase from p̃m to the 95% of the final value σ̃∞r .

5.2.1 Contact pressure

First consider the possible influence of mud pressure p̃m on the asymptotic pressure σ̃∞r

acting on the rigid casing. For these simulations, σ̃0 = 8.33 (instead of σ̃0 = 5 used

in the benchmark simulations) to enable exploring a relatively large range of values for

p̃m causing failure of the rock around the borehole. Fig. 17 shows both σ̃∞r and ∆σ̃∞r

as functions of p̃m ∈ [0, 1.46]. It can be seen that σ̃∞r depends only slightly on p̃m,

noting that additional unloading takes place with increasing shrinkage of the viscoplastic

annulus at lower p̃m. This result is confirmed by Fig. 18 illustrating the evolution of the

thickness δ(τ) of the viscoplastic annulus for several values of mud pressure p̃m ∈ [0, 1.46].

While the initial value δ(0+) of the annulus thickness, given by (55), indeed depends on

p̃m, the large time asymptotic value δ(∞) is slightly influenced by this parameter. In

fact, δ(∞) can be approximated reasonably well by the elastoplastic solution δp, obtained

by solving ũp(0) +ω = 0 with the displacement at the borehole wall evaluated according

to the classic elastoplastic solution (75). Fig. 18 confirms the good match between δ(∞)

and δp (here δp = 0.502 and represented by the dashed line).
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Figure 17: Asymptotic contact pressure σ̃∞r and its increment ∆σ̃∞r after contact with
respect to the initial borehole pressure p̃m.

Figure 18: The evolution of the thickness δ(τ) of the viscoplastic annulus at different
initial borehole pressure p̃m. From the severest to the mildest evolution of
the viscoplastic annulus, p̃m increases from 0 to 1.33 with increment 0.167.
The evolution of the viscoplastic annulus with p̃m = 1.46 indicates the situ-
ation δ (τ) approaching to the δp without contact. Dash – the width of the
viscoplastic annulus predicted by the elastoplastic solution.
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Furthermore, the large time contact pressure σ̃∞r for the viscoplastic model is also well

approximated by its elastoplastic counterpart σ̃rp, which is deduced from δp using (76)

with p̃m interpreted as σ̃rp (σ̃rp = 0 for the set of parameters used for the simulations).

The good match between these two quantities is confirmed in Fig. 19, where both σ̃∞r

and σ̃rp are plotted versus σ̃0. Figure 19 also indicates that for far-field stress below the

threshold σ̃0 = 3.53, there is no contact pressure build-up as the casing annulus remains

open.

Figure 19: Contact pressure predicted by the viscoplastic model (asymptotic solution
σ̃∞r ) and by the elastoplastic model (σ̃rp) with respect to in-situ stress. Solid
– σ̃∞r ; Dash – σ̃rp.

Although practically negligible, there is a difference between the large time viscoplas-

tic solution and the elastoplastic response. The latter solution is constructed on the

assumption of monotonic loading and thus of monotonic growth of the plastic region

with the loading parameter. On the other hand, as clearly seen in the plot of δ(τ) shown

in Fig. 18, the sign reversal in the rate of change of δ(τ) following contact between the

rock and the casing implies elastic unloading in the viscoplastic response. However, the

relatively small backward movement of the interface seen in Fig. 18 indicates that the
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plastic strain accumulated in the region where elastic unloading takes place is indeed

small. Hence the elastoplastic solution corresponding to ũp(0) + ω = 0 is expected to

provide a good approximation of the long-term viscoplastic solution.

The above observations have interesting consequences regarding the dependence of

σ̃∞r ' σ̃rp on the problem parameters. Since the link between σ̃∞r and σ̃0 is legislated

by δ∞ ' δp(ω, ν, k, kf ), we can conclude that σ̃∞r ' σ̃rp(σ̃0, ω, ν, k, kf ). This implies

that the elastic modulus and strength of the rock only affect σ̃∞r only via σ̃0 and the

dimensionless gap ω, which takes value only in the narrow range [0.9 ∼ 3.8].

5.2.2 Contact Time and Asymptotic Time

Figure 20 and 21 show the variation of contact time τc and asymptotic time τa with σ̃0

and p̃m, respectively. Both τc and τa decrease with σ̃0 but increase with p̃m. These trends

reflect the larger overstress and thus the larger viscoplastic strain rate associated with

a larger σ̃0 and/or a smaller p̃m. However, neither σ̃0 nor p̃m appear to affect the time

interval ∆τ = τa− τc, which gives a measure of the time needed to reach the equilibrium

state. Although there is no formal proof as to why ∆τ would be insensitive to σ̃0 and

p̃m, we note that a larger overstress state at the moment of contact indicates a longer

path to return to zero. On the other hand, a larger overstress is also responsible for a

quicker return. These two effects compete, apparently balancing each other so that ∆τ

hardly depends on σ̃0 and p̃m.

A parametric analysis shows that ∆τ is essentially a function of the dimensionless

shear modulus γ (Fig. 22), k and kf .
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Figure 20: Time duration of contact, asymptotic solution, and the increment affected by
in-situ stress, assuming p̃m = 0.

Figure 21: Time duration of contact, asymptotic solution, and the increment affected by
initial borehole pressure, assuming σ̃0 = 8.33.

39



Figure 22: Time duration for contact, asymptotic solution, and the increment affected
by γ (changing G), assuming q = 6 MPa.

6 Conclusions

This paper has described a model to predict and analyze the time-dependent closure of

a borehole drilled in a soft rock, as well as the build-up of stress on a rigid casing, once

the rock contacts the casing. The rock is assumed to behave as a viscoplastic material

in the spirit of Perzyna’s [1966] original theory, which allows the stress to temporarily

violate the yield criterion. Here a Mohr-Coulomb yield criterion and a plastic potential

are adopted and the stress-strain deviatoric response is akin to a Bingham rheological

model.

With the simplifying hypotheses of plane strain and axisymmetry, the latter one linked

to the assumption of an isotropic far-field stress, the field quantities only depend on

two independent variables, radial coordinate r and time t. Furthermore, the model

formulation recognizes the particular structure of the solution, namely that the borehole

is encircled by an evolving viscoplastic annulus, itself surrounded by an infinite domain,
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where the rock is either elastic or is unloading elastically. Noting that the solution outside

the viscoplastic boundary is given explicitly by the Lamé solution, the evolution problem

is formulated as an initial boundary value problem in the viscoplastic region only, but

with a free boundary — the growing or shrinking interface between the viscoplastic

and elastic domains. In other words, our formulation involves explicit tracking of that

interface.

This work has demonstrated how the mathematical framework and the computational

algorithm with a moving mesh can efficiently solve this class of problems. The set of

equations governing the mechanical fields and the evolution of viscoplastic boundary is

transformed by mapping the viscoplastic annulus to the interval [0, 1], resulting in the

replacement of radius r with moving coordinate χ as the independent spatial variable.

These new equations can then be spatially discretized on a moving mesh with a fixed

number of nodes. The final system of equations are first order ODEs that express the

rate of change of the state variables defined at the nodes of the mesh and the velocity of

the interface. This set of ODE is solved numerically using the MATLAB routine ODE45.

The high accuracy of the numerical solution has been confirmed by demonstrating that

the long-term solution, when the borehole pressure remains constant following unloading

due to drilling, matches the classical elastoplastic solution.

Numerical simulations based on the viscoplastic constitutive model indicate that some

reverse movement of the elasto-viscoplastic interface occurs once the rock contacts the

rigid casing, which is evidence of the development of an intermediate ring in between the

elastic and the viscoplastic region. In this ring, the rock experiences elastic unloading. In

fact, the final contact pressure reached when the viscoplastic strain rate field has vanished

is given to a good approximation by the classical elastoplastic solution corresponding to

an imposed borehole displacement consistent with the presence of a rigid casing.

The time taken for the deforming rock to contact the casing following drilling is of

order O (0.1T ∼ 1T ) with T denoting the characteristic time T = η/q; it decreases with
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the higher in-situ stress σ0/q but increases with the higher mud pressure pm/q. Noting

that the relative gap between the borehole wall and the casing is practically fixed, the

effective duration of the stress build-up on the casing is of order O (0.01T ) and appears

to be affected mainly by rock properties (the ratio G/q, the friction angle φ and the

dilation angle ψ) and to be insensitive to σ0/q and pm/q.

The above results are evidently tied to the assumed constitutive response of the rock.

Laboratory experiments should be conducted to assess the adequacy of this constitu-

tive representation or to develop a more realistic model of the time-dependent response

of shales. Nonetheless, the mathematical framework and the algorithmic procedure de-

scribed in this paper are the foundations of fast and accurate computer codes that can

readily be modified to include additional features of the constitutive response. The nu-

merical simulations presented here would hopefully still remain useful as simple bench-

marks for software based on the finite element method or related methods.
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Appendix – Convergence analysis

To assess the convergence rate of the algorithm, the relative error between the large time

displacement at the borehole if the absence of a casing and the elastoplastic solution, has

been calculated for various grid densities,

error =
1

n

√√√√ n∑
i=1

∣∣∣∣ ũ (χi,∞)− ũp (χi)

ũp (χi)

∣∣∣∣2 (77)

Fig. 23 illustrates the error as a function of the number of grid points. As can be observed

on this plot, the convergence rate of the algorithm is about 2.

2.38
1

Figure 23: Variation of error with number of grid points
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