Keeping Connected When the
Mobile Social Network Goes Offline

@ystein Sigholt*, Besmir Tola’, and Yuming Jiang'
Department of Information Security and Communication Technology
NTNU-Norwegian University of Science and Technology
Trondheim, Norway
Email: oysteils@stud.ntnu.no*, {besmir.tola,yuming jiang} @ntnu.no’

Abstract—WiFi Direct is an embedded technology in a vast
majority of smartphone devices running the Android operating
system. As a result, it represents a promising technology that
can be exploited in re-establishing connectivity among user
devices in case of cellular network outages. A technique that
smart devices can use to restore connectivity in situations where
they are unable to connect to a cellular tower or access point,
but close enough to support device-to-device communication is
presented. The proposed technique envisions a combination of
security layers that ensure authentication, confidentiality, and
integrity of communications among end users. Each device is
issued a certificate by a central authentication entity at sign up
and when it is unable to connect to the server component, it
will attempt to form a group with nearby devices in the same
situation over WiFi Direct. Once a WiFi Direct group has been
formed, the group owner will temporarily assume the role of
the server, and each group member and the group owner will
verify each others identity and connect using mutual Transport
Layer Security (mTLS), facilitating secure communication. The
approach is validated through the implementation of a mobile
social application involving several mobile devices, and overheads
due to the additional security features are investigated.

Index Terms—Peer-to-peer Communications, WiFi Direct,
mTLS, Mobile Social Networks

I. INTRODUCTION

Broadband cellular networks are becoming the most domi-
nant means for mobile data access world-wide. According to
a recent mobility report by Ericsson [1], mobile data traffic is
expected to undergo an annual growth of around 31% over the
coming years. Among the top mobile application categories,
video traffic followed by social network applications cover
almost 75% of the total monthly data traffic. However, when
a mobile user moves out of cellular coverage, or is unable
to reach the central server of a service for any reason,
connectivity is lost. As a consequence, Internet-based mobile
applications will not be able to provide their services and the
end-users will become isolated until Internet connectivity is
restored, even if the users that are making use of the service,
are within a few meters of each other.

Modern smartphones are equipped with a number of radio
interfaces that enable wireless communication among devices
in close proximity. These capabilities can be used to establish
connectivity between neighboring devices even in the most
remote out-of-coverage locations and in cases where cellular
network outages are experienced.

WiFi Direct [2], a wireless technology allowing WiFi de-
vices to connect directly to each other in a Peer-to-Peer (P2P)
fashion, is one of the ways that nearby mobile devices can
establish connectivity. It is particularly widely available due
to it not requiring any specialized hardware apart from a
typical WiFi radio, and easy to use as addressing can be
done using the familiar Internet Protocol. In order to establish
communication, a common setup involves the formation of a
WiFi Direct group of peers where one of the peers acts as
a software Access Point (AP) to the remaining devices. This
device is referred to as the Group Owner (GO) and the other
devices associated to the GO represent the Group Members
(GMs). The group formation can be achieved in three different
procedures denoted as standard, autonomous, and persistent
group formation. During each of these procedures a number
of actions are taken by the WiFi Direct capable devices for
performing device discovery, GO negotiation, service discov-
ery, security provisioning and address configuration [3].

WiFi Direct connections entail WiFi Protected Setup (WPS)
as means to provide a secure connection among members
through some manual intervention like inserting a PIN or
PushButton Configuration (PBC). This way, users are able
to authenticate themselves in the network. However, there
are services that require stronger levels of security where
data confidentiality, integrity and authenticity are of utmost
importance. Mobile Social Networks (MSN) providing Instant
Messaging (IM) services necessitate enterprise and automated
authentication methods such as Extensible Authentication Pro-
tocol - Transport Layer Security (EAP-TLS).

Even though WiFi Direct can be used to reestablish con-
nectivity, a social application usually depends on a central
server that users trust. When connected to this server, users
have confidence that their messages are delivered to their
respective recipients and that no other users of the service
can access their private conversations. Without access to this
central server, a user in an out-of-coverage P2P context must
verify the authenticity of their peers themselves.

The scope of this work is therefore to propose, implement,
and experimentally validate a combination of upper layer
measures that can be used to securely and easily enable
authenticated communication in existing social applications,
also in situations with no Internet connectivity.

The remainder of this paper is the following. Section II

presents the related work. In Section III, we illustrate the
proposed system architecture, and the relative components for
enabling secure and trustworthy communication over WiFi
Direct. An implementation on a real testbed, composed of
several smart devices running the Android operating system
(OS), and how the system components interact with one an-
other are presented in Section IV. Successively, the validation
and experimental results analysis of the different security
layers adopted in the architecture are illustrated in Section V.
Discussion regarding overheads, incurred due to the additional
security levels, in terms of both computation and connection
times are presented in Section VI. The potential and limitations
of the proposed architecture in regard to connectivity, security,
user experience, and overhead are discussed in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

A number of commercial applications for P2P commu-
nication, applying various combinations of WiFi and Blue-
tooth, exist for the Android ecosystem. The most prominent,
FireChat, made headlines in 2014 when it accomplished half a
million downloads over a period of two weeks as Hong Kong
protestors used its P2P functionality to organize efficiently
even in areas with heavily congested network traffic [4].
An open source privacy-focused, decentralized, alternative to
FireChat, Briar, also uses Bluetooth and WiFi to communicate
in addition to the Tor network. It uses public key cryptography
to manage identities and secure the communications link, but
its decentralized nature and lack of a universally trusted entity
makes exchanging identities a difficult problem that in practice
requires the two parties to physically meet and manually
exchange keys before a connection can be made [5].

A large-scale research effort by the name of the Serval
Mesh aims to create an independent network by relying on
WiFi devices to form a mesh network based on WiFi ad-
hoc mode [6]. Unfortunately, WiFi ad-hoc mode is mostly
unavailable on consumer smartphones without modifications,
thus making it unsuitable for many use cases.

Shahin and Younis present a framework for P2P networking
of Android devices using WiFi Direct that covers discovery,
connection establishment, peer management and communica-
tion between peers in a single group [7].

Wong et al. noted that connecting Android devices with
WiFi Direct uses WiFi Protected Setup (WPS) which requires
manual user interaction to accept the connection prompt.
They propose using WiFi Direct to create APs that advertise
their Service-Set Identifier (SSID) and Pre-Shared Key (PSK)
using Network Service Discovery (NSD) instead of leveraging
fully fledged WiFi Direct connection establishment. Any WiFi
capable client can then connect to the WiFi Direct AP like they
would connect to any other WiFi AP (referenced as connecting
as a legacy client in WiFi Direct terminology) without the
need for users manual verification [8]. They do not however,
consider the authentication aspect covered by this work.

Root CA
Dedicated Server

Auth. Componem‘ ’Server Component

Root CA
Dedicated Server

Auth. Component‘ ’ Server Component

Certificate

Client

\ 4

Client

Signup: User receives a certificate from
the dedicated server's authentication
component

User uses certificate to authenticate to
the server component

Fig. 1. A client signing up to the service by obtaining a digital certificate
from the authentication component and using it to authenticate to the server
component.

III. SYSTEM ARCHITECTURE

A system consisting of three logical components is pro-
posed. These components can be implemented to facilitate
secure communication between users both when connected to
the Internet and when out-of-coverage.

A. The Authentication Component

The authentication component is the single mutually Trusted
Third Party (TTP) among the members of the social network
with the sole responsibility of managing the identities of the
users. This component is only available over the Internet, and
can therefore not be reached in out-of-coverage operation.

Figure 1 illustrates the signing up to the service process
which is done in the same fashion as in a traditional Public
Key Infrastructure (PKI) system. The client generates a key
pair and creates a Certificate Signing Request (CSR) that is
sent to the authentication component for signing. The CSR
contains the public key as well as the identity (or Distinguished
Name (DN)) that the certificate is for.

The DN should contain some human readable component
that users can later use to distinguish between their contacts.
This can for example be a username or an email address.

After the authentication component has approved the CSR,
the applicant is issued a signed X.509 digital identification
certificate that contains the DN, the users public key and a
signature that binds the public key to the DN. This means
that the authentication component has approved the public key
contained by the certificate as belonging to the specific DN
also contained in the certificate. The resulting certificate can
be used to authenticate to other entities in the system, offline
or not as shown in Figure 1. To revoke credentials after the
fact, a Certificate Revocation List (CRL) can be maintained
(see [9, Section 3.3]).

B. The Server Component

The server component is responsible for message forward-
ing to connected clients both over the Internet and during out-
of-coverage operation, i.e., WiFi Direct operation mode, and
accepts incoming TLS connections on a predefined port.

By exchanging certificates and verifying that they are issued
by the authentication component, both the client and the server
confirm that the other is a registered user of the service, and

learn the other party’s identity. The server component then
maintains a forwarding table linking the connected clients
identity (public key) to the appropriate socket.

1) Out-of-coverage Operation: The server component can
either run on the dedicated server (introduced in more detail
in Section IV-A) and be available over the Internet, or on a
user’s device in an out-of-coverage situation. When running
on a GO it is also the server component’s responsibility to set
up and manage P2P connectivity to nearby devices. Figure 2
shows how two devices form a P2P group and reestablish
connectivity if the dedicated server is unreachable.

If the user device is unable to locate any other nearby
P2P devices hosting an instance of the server component, the
server is instantiated on the device in out-of-coverage mode.
It will autonomously form a P2P device group (middle part of
Figure 2), and broadcast the information needed to connect to
said group using Wong et al.’s technique [8].

When the group is formed (bottom part of Figure 2), the
device will accept incoming connections from nearby devices
and the server component will manage message routing just
like it would during regular operation on the dedicated server.

If Internet connectivity were to be restored at any time,
a device will simply detect the connectivity change and
reconnect to the dedicated server, tearing down any open P2P
connections.

2) Message Routing: A message packet with the senders
public key, the recipients public key, a timestamp, a ciphertext
and a signature is transmitted by the clients to the server when
they wish to communicate with another user. The recipients
public key indicates which client the message should be
forwarded to and the signature (protecting the integrity of the
other fields) is verified using the attached public key belonging
to the sender.

Caching and retransmissions of messages are the responsi-
bility of the client, making the operation of the server rather
simple. If signature verification fails, the message is discarded.
If not, the server examines its active connections and checks
if a client has connected with the identity of the receiver.
Successively, the message is forwarded to the appropriate
client. If the server does not have an open connection to
the correct recipient, the packet is also discarded. Relying
on servers to cache messages would cause messages to never
make it to their intended recipients if a GO were to disconnect
before being able to forward it.

C. The Client Component

The client component is responsible for managing messag-
ing and connecting to and authenticating the server component.

1) Connectivity: The client component is expected to con-
nect to and disconnect from multiple server component in-
stances in a single session as a device might move in and out
of range of cellular coverage and P2P groups.

If not connected to a server component the client will first
attempt to establish a connection to the dedicated server via
the Internet. At the same time, it will start the device discovery
process to locate nearby P2P groups. If the dedicated server is

Certificate
Client B

Auth. Component| | Server Component (€ ===~ X1 Client Component

Connection failure: Client cannot reach
l the dedicated server

Certificate
Client B

Client Component

Certificate
Client A

Client Component

P2P group is formed

Certificate Certificate
Client A Client B

Client Component l Server Compcvnentf—> Client Component ‘

Client B connects to Client A that runs
the client component

Fig. 2. A client unable to reach the dedicated server establishes a connection
with a nearby device. Arrows from the certificates to the client and server
indicate authentication during connection.

not reachable and no group is found, it will set up an instance
of the server component and form its own P2P group.

The first device to form a group will advertise its connection
information so that nearby devices can discover and join the
P2P group. Upon joining a group, the client will attempt to
connect to the server component instance running on the GO,
instead of the dedicated server.

The client enforces secure connections and will only con-
nect to server components that offer identification certificates
issued by the the authentication component over TLS.

2) Messaging: Message packets are transmitted to any
server component as soon as possible. If the recipient does
not acknowledge the message, the client assumes it was
not delivered and caches it for retransmission. If the client
connects to another server component it will immediately
attempt to transmit all queued messages, otherwise it will
periodically attempt to retransmit them with an exponential
backoff strategy where the client periodically retransmits the
message with increasing delays between attempts.

IV. IMPLEMENTATION
A. The Dedicated Server

The dedicated server is a traditional server reachable using
the Internet. It implements both the server component to facil-
itate messaging and the authentication component to facilitate
sign-up.

B. The Client Application

The client application not only implements the client com-
ponent, but also the server component. It consists of two
primary activities and one debug activity to inspect messages
being sent and received.

1) The Main Activity: The main activity contains a list
of a user’s contacts and the current connection status. The
connection status has four distinct values representing different
stages of the application connection phase.

user3@test.com

Hello there user 1!

Hello yourself user 3!

Fig. 3. Two users chatting using the Chat Activity as seen by
userl@test.com.

o Setting up: The application is loading

o Connecting: Looking for a server to connect to

o Connected: Successfully connected to a server

o Hosting: Unable to connect, the server component has
been started and is hosting a group

Selecting one of the contacts in the list opens up the chat
activity for that particular user. Pressing the info circle in the
top right of the screen opens the debug activity.

2) The Chat Activity: The chat activity (seen in Figure 3)
allow users to send basic text messages to their contacts. It
shows messages sent/received in chronological order. Mes-
sages are only shown if the attached signature can be verified.

3) The Debug Activity: The debug activity (seen in Fig-
ure 4) show the messages being sent from/to, or being relayed
by a user. It loads the name of the users from the contact list if
an entry is found corresponding to the public keys contained
in the message.

It displays the state of the attached signature by verifying it
using the attached sender public key, and displays a checkmark
if the signature can be verified, and a cross if the verification
fails. It also decrypts the message ciphertext if it possesses the
private key corresponding to the recipient.

C. Cryptography

Elliptic Curve Cryptography (ECC) was selected based on
the fact that it requires relatively short keys to provide strong
security. It is based on the premise that it is difficult to find
the discrete logarithm of an elliptic curve point [10].

Elliptic Curve encryption was done using Elliptic Curve
Integrated Encryption Scheme (ECIES). To encrypt a message,
a key agreement function is used to create a shared secret
value based on a randomly generated ephemeral key pair
and the recipients public key. A key derivation function is
then used to generate symmetric keys for encrypting and
signing the message contents from the shared secret. The
actual message encryption is performed using a symmetric
encryption algorithm and a digest function is used with
the signing key to generate a Message Authentication Code
(MAC). The recipient can then obtain symmetric keys to verify
the MAC and decrypt the message by using the ephemeral
public key and recipient private key, along with the encrypted
message [11].

The MAC from ECIES only preserves the integrity of
the message itself, so the Elliptic Curve Digital Signature
Algorithm (ECDSA) was used to sign the entire message
frame including the sender and recipient fields. An ECDSA
signature is the elliptic curve variant of the Digital Signature
Algorithm (DSA). It is calculated using the senders private

key and a random value, and can be verified by knowing the
random value and the senders public key [12].

V. SECURITY VALIDATION

The following section covers an analysis of what can be
learned about the operation of the sample implementation and
its users by examining select network layers.

A. Data Link Layer Security

As messages are the only data frames transmitted in the
WiFi Direct group, it is trivial for an unauthenticated third
party monitoring the network to see which devices are trans-
mitting messages. If the aforementioned third party is able to
link the physical addresses of each device to an identity, it can
keep track of when messages are sent and to/from whom.

Using Wong et al.’s technique of broadcasting the PSK of
the formed network using NSD to allow devices to connect
to the WiFi network without the need for manual verification
prompts makes connection establishment considerably easier
for the user [8]. However, this also means that anyone can
use service discovery to learn the PSK. A user must therefore
not be considered trustworthy based only on their ability to
connect to the WiFi network.

Encrypting the PSK with a static secret as done in the
original paper would only make the key marginally more
difficult to recover, as the secret would need to be distributed
onto every users device, from which it could be recovered.

WiFi Direct connections between devices must therefore
be considered insecure channels, as an adversary must be
considered able to decode transmitted frames [13].

B. Transport Layer Security

As the data link layer security is not sufficient to protect
data over the air, the system relies on upper layer security.
On the transport layer, the data is transferred over TLS. A
number of attacks on TLS have been published that can
defeat this protection [14]. It is therefore vital that both the
server component and the connecting clients enforce the most
recent best practices for TLS [15]. With full control over the
implementation of both servers and clients, strict requirements
can be enforced without worrying about compatibility.

In addition to confidentiality and integrity protection, the
transport layer also provides the access control that is lacking
on the lower layers. As both connecting parties require authen-
tication of the other party using mTLS it is impossible for a
user to connect without an identity from the authentication
component. If attempting to connect without the appropriate
credentials, the TLS handshake will fail, and the device will
be unable to communicate with other users.

It can therefore be concluded that unauthorized clients are
prevented from communicating with users at the transport
layer, and that the data being carried is both confidential and
integrity protected due to the properties of TLS. It is however
important to note that the TLS connections are not End-to-End
(E2E), as they are terminated at the server component running
on the GO. Upper layer measures are therefore required to
protect users from a dishonest GO.

From

To
Ciphertext 0x69e68bbc
Plaintext <decryption failed>

Signature

From user1@test.com

To user3

Ciphertext 0x34fa9b58
Plaintext message not from user 1

Signature

Fig. 4. Message flow as seen by the GO user3@test.com.

C. Application Layer Security

As seen in Figure 4 (upper part), senders and recipients are
visible to the GO, and signatures may be verified, but message
contents cannot be deciphered without the appropriate private
keys, so the GO is unable to learn message contents (Plaintext
field).

A dishonest server component could potentially attempt
to modify the messages it is forwarding. At the bottom of
Figure 4, a malicious GO has modified the from field of a
message packet, but was unable to correctly sign the message
as it does not possess the private key of userl@test.com.
The recipient (user3Q@test.com) therefore discards the
message due to the signature verification failure.

In short, the message packet format successfully protects
the messages confidentiality and integrity E2E, but does not
protect the identity of the sender and recipient.

The GO can, however, choose not to deliver, delay or even
deliver messages multiple times. The latter, known as a replay
attack has an especially undesirable impact if used maliciously.
In a high security context, messages that are received long after
they were created should be discarded or the user should be
notified as a stale message could indicate malicious activity.
Duplicate messages should be discarded.

VI. OVERHEAD

The number of steps taken to secure reliable instant messag-
ing in this research add some overhead that must be considered
in the evaluation of the proposal.

A. Connection

In the event that the Internet connection fails, some amount
of time is required to reform connectivity using WiFi Direct.
Camps-Mur et al. [3] measured the group formation delay and
noted that the WiFi Direct discovery mechanism introduces
some randomness to the time it takes to connect to a group.

In our setup, timing of this delay was obtained by logging
the time it took one Nexus 6P running the sample implemen-
tation to connect to another which had already autonomously
formed a group and started broadcasting connection creden-
tials using NSD. The process was repeated 500 times by
a Bash script which power cycled each device, opened the
application on one device, and waited for it to become GO
before launching the application on the other device.

Figure 5 presents the CDF of the measurements. After a
group has been formed, it takes around five seconds (discovery

& 50
50 i
© 40 - ! b
30 - ! —— Discovery (NSD) ||
20 ! --- Connection b
10 i Total B
' L L T T
0 2 4 6 8 10 12
Time [s]

Fig. 5. CDF of the time to discover credentials over NSD and connect to a
WiFi Direct group as a legacy client.

Mean 1 | Median | Standard Deviation o
Discovery (NSD) | 3.42 3.07 1.17
Connection 2.03 1.90 0.46
[Total [545 [5.00 [154 |
TABLE T

SECONDS USED TO DISCOVER CREDENTIALS OVER NSD AND CONNECT
TO A WIFI DIRECT GROUP AS A LEGACY CLIENT.

delay plus connection delay) for the first GM to discover
the broadcasted credentials and join as seen in Table I. This
new client goes through the discovery process which can be
expected to take three to four seconds, and uses the credentials
discovered to connect to the group.

The test implementation experienced the same issues re-
garding undesirable NSD behavior mentioned in Wong et al.’s
original paper [8]. In some instances, one or more of the test
devices did not discover NSD broadcasts from other devices
until they had been power cycled. The client then sees the
already existing WiFi Direct group, but is unable to identify
it as a group offering the chat service and to obtain the PSK
required to connect. It then forms and advertises its own group
resulting in two isolated groups in the same area competing
for members.

B. Messaging

Using a message format with significant additional data
results in additional data transfer. Most of the overhead comes
from transmitting two full public keys (sender and recipient)
with every message. Il summarizes the size of a single message
packet of various key sizes assuming 32 bit time stamps and
fixed cryptographic parameters with compressed keys. The
transmitted message contains 29 bytes of data, representing
a typical instant message [16].

VII. DISCUSSION

Restoring connectivity by using WiFi Direct in the event of
an Internet outage does come with set up time, but may still
be suitable for asynchronous applications such as IM and file
transfers.

Issuing credentials to users in the form of digital certifi-
cates for use in asymmetric cryptography enables them to
successfully authenticate one another with TLS during out-
of-coverage operation. However, as it requires the user to be
online at the time of sign up so that their digital certificate
can be signed by the authentication component it might be
a hindrance that prevent a new user from starting to use the
application.

RSA Key Strength Message Size | EC Curve Message Size
2048 bit 1028 bytes secp224rl 192 bytes
4096 bit 2052 bytes
secp384rl 292 bytes
TABLE

MESSAGE PACKET SIZE IN BYTES GIVEN VARIOUS KEY SIZES SORTED BY
STRENGTH. THE NAMED CURVES ARE SPECIFIED IN SEC 2 [17].

The overhead introduced by using strong cryptography is
not insignificant, but this can be mitigated by choosing a
cryptosystem with smaller key sizes.

If the TLS connection was not terminated at the GO, but
GMs were allowed direct connections to each other, some of
the application layer measures designed to protect the client
from a dishonest server could have been avoided. However,
this would have added to the implementation complexity, as
the GO acting as a server makes out-of-coverage operation
very similar to online operation. The fact that the server
component code base can be used on both the dedicated server
and on the GO makes the proposed system easy to adopt, but
requires an application layer chat protocol.

The basic chat protocol that has been proposed provides
confidentiality, integrity, authentication and is resilient against
messages arriving out-of-order, but lacks more sophisticated
properties that further protect users in edge cases such as
private key compromise.

The chat protocol protects the contents of messages from
a malicious GO, but the system does not, in its current
state, attempt to detect a Denial of Service (DoS) type attack
where the GO refuses to forward messages. Detecting this
and electing a new GO automatically would make the system
more resilient and useable for example in the case where a
current Internet outage is a deliberate act aimed at disturbing
communications. We leave the investigation of these edge
cases as future work enhancements.

As WiFi Direct supports the same speeds as typical WiFi it
is assumed that it provides more than sufficient throughput
to carry a significant volume of these messages. In online
mode, however, a server might have a much larger number of
connected users. Keeping the message size low is therefore in
the best interest of a developer to minimize the costs associated
with bandwidth. Sending full public keys of both the sender
and recipient with every packet adds significant overhead that
could have been avoided by a different chat protocol design.

VIII. CONCLUSION

When smartphone applications are unable to connect to
the Internet, many useful services become unavailable. In
some cases, these services can be restored by communicating
with nearby devices in a P2P fashion. However, services
that exploit such technologies need to ensure security in the
communication between nearby devices.

This work proposes an approach that ensures authenticated
communication with confidentiality and integrity protection
among peers. The approach enables devices to fetch secu-
rity credentials in the form of digital certificates for use in
asymmetric cryptography during sign up to a service. When
unable to reach the centralized server, devices may use WiFi

Direct to discover and connect to nearby devices, and mTLS to
authenticate them while also setting up a secure data channel.
A messaging protocol that may rely on the user’s digital
certificates must be used to protect message confidentiality
and integrity during transfer over this channel.

This proposed design has been validated through imple-
mentation of a basic chat application for the Android OS.
It makes use of a simple chat protocol that protect message
confidentiality and integrity provided that the user’s credentials
are not compromised at any point in time. This has been
validated by examining the transmitted data at various layers
of the OSI model. The chat protocol lacks some advanced
cryptographic properties such as forward secrecy, raising the
question of whether or not current state of the art chat
protocols can be adapted to a P2P scenario.

The main drawback to the proposed system is that the user
is required to be online at the time of sign up, and that the
user must trust the centralized server to be honest and not
issue false credentials.

ACKNOWLEDGMENT

This research was funded by the joint EU FP7 Marie Curie
Actions Cleansky Project, Contract No. 607584.

REFERENCES

[1] Ericsson, “Ericsson Mobility Report,” november 2018.

[2] Wi-Fi Alliance, “Wi-Fi Simple Configuration Technical Specification
v2.0.6,” 2018.

[3] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with wi-fi direct: overview and experimentation,” /[EEE
wireless communications, vol. 20, no. 3, pp. 96-104, 2013.

[4] P. Shadbolt, “FireChat in Hong Kong: How an app tapped its way into
the protests,” CNN, 2014.

[5]1 “Briar User Manual,” accessed September 12, 2019. [Online]. Available:
https://briarproject.org/manual/

[6] P. Gardner-Stephen and S. Palaniswamy, “Serval mesh software-wifi
multi model management,” in Proceedings of the Ist International
Conference on Wireless Technologies for Humanitarian Relief. ACM,
2011, pp. 71-77.

[71 A. A. Shahin and M. Younis, “A framework for P2P networking of smart
devices using wi-fi direct,” in IEEE PIMRC 2014.

[8] P. Wong, V. Varikota, D. Nguyen, and A. Abukmail, “Automatic android-
based wireless mesh networks,” Informatica, vol. 38, no. 4, 2014.

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,

“Internet x.509 public key infrastructure certificate and certificate revo-

cation list (crl) profile,” IETF, RFC 5280, May 2008.

S. A. Vanstone, “Elliptic curve cryptosystem — the answer to strong,

fast public-key cryptography for securing constrained environments,”

Information security technical report., vol. 2, no. 2, pp. 78-87, 1997.

V. G. Martinez, L. H. Encinas, and C. S. Avila, “A survey of the elliptic

curve integrated encryption scheme,” Journal of Computer Science and

Engineering, vol. 2, pp. 7-13, 01 2010.

D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-

nature algorithm (ecdsa),” International journal of information security,

vol. 1, no. 1, pp. 36-63, 2001.

J. L. MacMichael, “Auditing wi-fi protected access (wpa) pre-shared key

mode,” Linux J., vol. 2005, no. 137, pp. 2—, Sep. 2005.

Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks

on transport layer security (TLS) and datagram TLS (DTLS),” IETF,

RFC 7457, 2015.

, “Recommendations for secure use of transport layer security (tls)

and datagram transport layer security (dtls),” IETF, RFC 7525, 2015.

R. Ling and N. S. Baron, “Text messaging and im: Linguistic comparison

of american college data,” Journal of language and social psychology,

vol. 26, no. 3, pp. 291-298, 2007.

Certicom Research, “SEC 2: Recommended elliptic curve domain pa-

rameters,” in Standards for Efficient Cryptography, 2000.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

