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A B S T R A C T

The modified cracked membrane model (MCMM) presented in this paper was formulated to facilitate a mechan-
ical calculation model that predicts crack widths in reinforced concrete (RC) structures subjected to in-plane
loading for all cracking stages. It was formulated using the basic concepts of the existing cracked membrane
model (CMM). Furthermore, a generalized approach for predicting the tension stiffening normal to a crack was
formulated, an approach currently lacking in Eurocode 2 and fib Model Code 2010. A simplified approach for
predicting the cracking behaviour of RC membranes was also proposed. Comparison with a total of 101 max-
imum crack widths measured experimentally on 37 test specimen from the literature showed that the MCMM
provided good and consistent crack width predictions even for the cases of large rebars and covers, at which the
CMM was seen to struggle. The results in this paper suggests that both the MCMM and the simplified approach
show great potential for yielding reliable crack width predictions in RC membranes.

Nomenclature

List of notations
Ac sectional area
As area rebar
cb center of Mohr’s circle of concrete stresses between

cracks
dx differential element in an RC tie
Ec Young’s modulus concrete
Ep Young’s modulus prestressing steel
Eph Young’s modulus prestressing steel after yielding
Es Young’s modulus rebar
Esh Young’s modulus rebar after yielding
fcm compressive strength concrete
fct tensile strength concrete
fpu ultimate strength prestressing steel
fpy yield strength prestressing steel
fsu ultimate strength rebar
fsy yield strength rebar
Gf tensile fracture energy concrete

kc reduction factor for compressive strength of concrete
due to tensile strains

L bar length
rb radius of Mohr’s circle of concrete stresses between

cracks
Scr crack spacing at biaxial stress conditions
Scrx crack spacing in x-direction at biaxial stress conditions
Scry crack spacing in y-direction at biaxial stress conditions
Scrx0 maximum crack spacing in x-direction
Scry0 maximum crack spacing in y-direction
Scr0 crack spacing at uniaxial stress conditions
Sr transfer length at biaxial stress conditions
Sr0 transfer length at uniaxial stress conditions
Srx0 transfer length in x-direction
Sry0 transfer length in y-direction
u slip
ur,CHLM slip at the crack for CHLM
ur,CLLM slip at the crack for CLLM
u' derivative of slip
wcr crack width predicted
wcr,CMM crack widths predicted by the cracked membrane model
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wcr,MCMM crack widths predicted by the modified cracked mem-
brane model

wcr,simp crack widths predicted by the simplified approach
wmax crack width measured experimentally
x coordinates in x-direction
y coordinates in y-direction
ε1 mean maximum principle strains
εc concrete strains
εc0 concrete strains corresponding to the compressive

strength of concrete
εc1 mean maximum principle strains in concrete
εct concrete strains corresponding to tensile strength of

concrete
εcx concrete strains in x-direction
εcy concrete strains in y-direction
εc,max maximum concrete strains
εcm mean concrete strains
εcmx mean concrete strains in x-direction
εcmy mean concrete strains in y-direction
εm mean strains
εp prestressing steel strains
εpy prestressing steel strains at yielding
εpu prestressing steel strains at ultimate strength
εs rebar strains
εsm mean rebar strains
εsmx mean rebar strains in x-direction
εsmy mean rebar strains in y-direction
εsr rebar strains at the crack
εsr,y rebar strains at the crack at yielding
εsx rebar strains in x-direction
εsy rebar strains in y-direction
εs,y rebar strains at yielding
εsu rebar strains at ultimate strength
γxy shear strains
γcxy shear strains in concrete
ψ factor accounting for plane sections not remaining

plane in RC ties
ρsx rebar ratio in x-direction
ρsy rebar ratio in y-direction
σc stresses in concrete
σc1 normal stresses in concrete normal to the crack
σc1b maximum principle stresses in concrete between cracks
σc2 normal stresses in concrete parallel to the crack
σcx normal stresses in concrete in x-direction
σcy normal stresses in concrete in y-direction
σp normal stresses in prestressing steel
σprx normal stresses in prestressing steel at crack in x-direc-

tion
σpry normal stresses in prestressing steel at crack in y-direc-

tion
σs normal stresses in rebar in an RC tie
σsr rebar stresses at crack
σsrx rebar stresses at crack in x-direction
σsry rebar stresses at crack in y-direction
σx normal stresses in x-direction
σy normal stresses in y-direction
τ bond stresses at the interface between concrete and

steel
τb0 bond stresses at the interface between concrete and

steel prior to yielding
τb1 bond stresses at the interface between concrete and

steel after the onset of yielding
τc12 shear stresses in concrete at crack

τm,y bond stresses at the interface between concrete and
steel at the onset of yielding of rebar at the crack

τxy shear stresses
θ modelling uncertainty
θcr angle between a unit vector normal to the crack and

x-direction
ϕs rebar diameter

1. Introduction

There are many approaches for predicting crack widths in rein-
forced concrete (RC) structures exposed to uniaxial stress conditions
and a comprehensive summary of them is provided in Borosnyói and
Balász [7]. These calculation methods can be used to predict the crack-
ing behaviour of one-way bearing structural elements such as RC ties,
beams and slabs. However, they become inadequate for more compli-
cated structural elements such as orthogonally RC membranes, two-way
bearing slabs and shells. Such structural elements can in most practi-
cal cases be treated as components subjected to in-plane loading thus
necessitating more comprehensive calculation methods, e.g. the modi-
fied compression field theory (MCFT) developed by Vecchio and Collins
[64], Collins and Mitchell [11], Bentz [4] and Bentz et al. [5], the rotat-
ing angle softened-truss-model (RA-STM) developed by Hsu [30], Pang
and Hsu [50], Hsu and Mo [31] and Bernardo et al. [6] and the cracked
membrane model (CMM) developed by Kaufmann [37], Kaufmann and
Marti [38], Foster and Marti [24], Dabbagh and Foster [12] and Pi-
mentel et al. [51]. The three models have all proven to predict defor-
mations and ultimate load capacity of structural elements subjected to
in-plane loading, such as orthogonally RC membranes quite convinc-
ingly. Common for the models is that equilibrium of stresses is obtained
iteratively in terms of the mean strains. The main differences between
the models are that (i) equilibrium was formulated in terms of aver-
age stresses and average strains between cracks for the MCFT and the
RA-STM, while equilibrium of stresses was formulated at the cracks for
the CMM and (ii) tension stiffening was incorporated using empirical
constitutive laws for the MCFT and the RA-STM, while tension stiffening
was incorporated using the fully mechanical based tension chord model
(TCM) developed by Marti et al. [44] for the CMM. Nonetheless, all
three models could potentially predict crack widths under the presump-
tion of assuming that a finite crack pattern had formed. In other words,
the models can in principle predict crack widths in RC membranes for
the stabilized cracking stage only.

The semi-empirical calculation methods for predicting crack widths
recommended by Eurocode 2 (EC2) [8] and fib Model Code 2010
(MC2010) [26] were partially based on the same mechanical concept
as the TCM [57]. However, EC2 and MC2010 do not provide com-
plete guidelines for predicting cracking widths in RC membranes, i.e.
they only offer a way of predicting the crack spacing but not the ten-
sion stiffening normal to the crack. There have been some proposals
for this in the literature, though without avoiding incorporating tension
stiffening in an empirical manner [9,27]. Using empirical constitutive
laws for the tension stiffening can limit the models’ range of applic-
ability as it in general depends on the bond behaviour between con-
crete and steel, and is further governed mechanically by the cover, di-
ameter of the reinforcing steel bars (rebars), rebar spacing and load
level [41,28,47,17,46,56,34,61,58]. Further comparing the comprehen-
sive calculation methods shows that the CMM offers the possibility of al-
tering the basic components that govern its mechanical behaviour quite
conveniently. It can thus be argued that the CMM offers greater poten-
tial in predicting the cracking behaviour of RC membranes subjected to
in-plane loading than the MCFT and RA-STM. A statement also acknowl-
edged by the state-of-the-art French research project CEOS.fr [2].
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This study is part of an ongoing research project with the overall
objective of improving crack width calculation methods for large-scale
concrete structures planned for the coastal high-way route “Ferry-free
E39” in Norway. Use of large covers being up to 130mm is specified
by the Norwegian Public Roads Administration (NPRA) guidelines N400
[48] for marine structures. In addition, large rebar diameters, often in
bundles and over several layers, are typically used for the cross-sections
of such large-scale concrete structures. It was shown by Tan et al. [57]
that Eurocode 2 with German National Annex [16], which essentially is
similar to the TCM, predicted maximum crack widths inconsistently and
in average on the nonconservative side particularly for the combination
of large rebars and covers. This led to formulating the modified tension
chord model (MTCM), which has proven to predict the cracking behav-
iour of RC ties more consistently and on the conservative side regardless
of cover and rebar size [60]. In this paper, the CMM is used to formu-
late a new calculation model for predicting the response of orthogonally
RC membranes, later referred to as the modified cracked membrane model
(MCMM). In shortness, the MCMM incorporates tension stiffening using
the MTCM instead of the TCM to account for the cracking behaviour in
the crack formation stage and the stabilized cracking stage, as well as af-
ter yielding of reinforcement. Tan et al. [58] showed that the crack for-
mation stage could be governing even at relatively large steel stresses in
cases with large covers.

First, the basic principles in the CMM are discussed after which the
MTCM is derived and incorporated in the MCMM together with a set
of chosen constitutive models for concrete, reinforcing steel and pre-
stressing steel. Based on the MCMM, a simplified approach for predict-
ing crack widths in RC membranes is proposed. Then, crack widths pre-
dicted by the MCMM, CMM and the simplified approach are compared
to a total of 101 maximum crack widths measured from experiments on
37 test specimen reported in the literature. Finally, the modelling uncer-
tainty for the three models is discussed.

2. Cracked membrane model

2.1. The basic principles

The equilibrium equations of stresses at cracks can be obtained by
e.g. orienting the unit vectors n and e in the direction of the inflicted
stresses σx, σy and τxy [32] as shown in Fig. 1

(1)

Fig. 1. (a) Cracked RC membrane. (b) and (c) Equilibrium of stresses at the crack in x- and y-direction. (d) Stresses, deformations and slip for a differential element in an RC tie.
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(2)

(3)

where σc1 are concrete stresses normal to the crack, σc2 are concrete
stresses parallel to the crack, τc12 are shear stresses at the crack, σsrx and
σsry are rebar stresses at the crack in x and y-direction respectively, ρsx
and ρsy are steel reinforcement ratios in x and y-direction respectively,
σprx and σpry are prestressing steel stresses at the crack in x and y-direc-
tion respectively, ρpx and ρpy are prestressing steel ratios in x and y-di-
rection respectively and θcr is the angle between a unit vector normal
to the crack and the global x-direction. The cracks are assumed free to
rotate implying null shear stresses at cracks, i.e. , and that the
cracked plane is coincident with the plane of principal strains. Internal
stresses in Eqs. (1)–(3) are finally obtained through a set of chosen con-
stitutive models for concrete, steel and tension stiffening in terms of the
global mean strains εx, εy and γxy.

2.2. Tension chord model

The second order differential equation (SODE) for the slip u was de-
rived by considering equilibrium, compatibility and linear elastic mater-
ial laws for steel and concrete for a differential element in an RC tie, see
Fig. 1(d), or e.g. as discussed by Saliger [54], Russo and Romano [53],
Balász [1], Khalfallah [35], fib bulletin No. 52 [25] and Debernardi and
Taliano [15]

(4)

where τ was the bond stress at interface between concrete and steel,
while was a constant with ϕs, As and Es being the di-
ameter, area and the Young’s modulus respectively for the rebar. Fur-
thermore, the other constants were defined as ,
and , with Ac being the sectional area of the RC tie and Ec
the Young’s modulus for concrete, while ψ ≤ 1.0 was a factor account-
ing for that plane sections do not remain plane in RC ties [19]. Ba-
sically, ψ≠1.0 modifies the equilibrium equations for concrete and ac-
counts for the fact that the strain profile over the cover is not constant
in RC ties [59]. In general, Eq. (4) has to be solved using a bond-slip law

often necessitating numerical integration techniques, e.g. as pro-
posed by, [1,15]. As a simplification, Marti et al. [44] developed the
TCM, which was based on solving Eq. (4) for the stabilized cracking
stage using a simple stepped, rigid-perfectly plastic bond-slip law where
τ(u) = τb0 = 2fct for steel stresses prior to yielding and τ(u) = τb1 = fct
after the onset of yielding with thus assuming a constant strain
profile over the cover. The CMM was formulated using the TCM to de-
termine steel stresses at the cracks in terms of the mean strains [37,38].
The problem was that the response could not be predicted for lower
steel stresses typically occurring at the crack formation stage. Seelhofer
[55] partially solved this issue by including a formulation in the TCM
that accounted for the behaviour at lower steel stresses, however, still
under the assumption that a fixed crack pattern had formed.

3. Modified cracked membrane model

3.1. Modified tension chord model

3.1.1. General
The modified tension chord model (MTCM) is a tension stiffening

model based on solving the SODE for the slip in Eq. (4) completely an-
alytically using the bond-slip law of Eligehausen et al. [20] and later
adopted by MC2010

(5)

Here, , and being the chosen
bond-slip parameters to account for the behaviour of RC ties according
to the recommendations in Tan et al. [58]. The conceptual difference
between the TCM and MTCM is visualized in Fig. 2(a) for steel stresses
prior to yielding, in which the continuous and dashed lines represent
steel strains εs and the corresponding concrete strains εc respectively.
The linear curves show that the strains vary over the bar length with a
constant slope of for the TCM, while nonlinear strains in general
are observed for the MTCM. Furthermore, the tension stiffening can be
subdivided into three regimes depending on if the steel stresses over the
bar length are; (1) below yielding, (2) partially below and above yield-
ing or (3) above yielding as pointed out by Kaufmann [37] and Kauf-
mann and Marti [38], see Fig. 2(b). An output from the MTCM is usu-
ally the mean steel strains εsm as a function of the steel stresses σsr at
the crack similar to the concept of any other tension stiffening model,
e.g. EC2, MC2010 or the TCM. The challenge, however, is to “go the
other way around” and determine the steel stresses at the crack σsr as
a function of mean strains εsm instead. For solving this inverse prob-
lem for Regime 1, the analytical solutions to the SODE for the slip fully
provided in Russo and Romano [53] and Tan et al. [60] are used. For
Regime 2 and 3, the closed form solutions provided by Kaufmann [37]
and Kaufmann and Marti [38] are used, however, with modifications for
the stepped, rigid-perfectly plastic bond-slip law to avoid abrupt change
in stiffness between Regime 1 and 2. Moreover, the factor was
for the MTCM adopted according to the recommendations in Tan et al.
[59], which was seen to remain constant and equal to this value except
for a region close to the loaded end, regardless of the cover size, rebar
diameter, load level and even material properties in the case of axisym-
metry.

3.1.2. Regime 1
The response in Regime 1 is grouped into two concepts as compar-

atively lightly loaded members (CLLM) and comparatively heavily loaded
members (CHLM), which in principle are analogous to the crack forma-
tion stage and the stabilized cracking stage respectively. The concept of
CLLM is depicted in Fig. 3(a) and (b) in which the transfer length Sr0
denotes the abscissa where steel and concrete strains become compati-
ble and the slip becomes zero. It moves towards the symmetry section

upon increasing the load and a new crack is formed at the loca-
tion where the concrete strains exceed the tensile strength of concrete,
i.e. if . Here, , fct being the ten-
sile strength of concrete, while Scr0 is the crack spacing. The concept
of CHLM governs thereafter the response for the newly cracked mem-
ber in which it is observed that steel and concrete strains remain in-
compatible over the entire crack spacing although the slip is zero at
the symmetry section as depicted in Fig. 3(c) and (d). In summary, the
main difference between the two concepts is that strains become com-
patible at a certain location over the bar length for CLLM, while strains
remain incompatible over the entire bar length for CHLM. This provided
two sets of boundary conditions yielding closed form solutions for CLLM
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Fig. 2. (a) Steel and concrete strains distribution over the bar length. Linear strains represent the concept of TCM, while nonlinear strains represent the concept of MTCM. (b) Regime 1
represents steel stresses over the bar length prior to yielding. Regime 2 represents steel stresses over the bar length that partially are below and above yielding. Regime 3 represents steel
stresses over the entire bar length that are above yielding.

and non-closed form solutions for CHLM. General expressions for the
steel strains and concrete strains independent of the concept were ob-
tained as

(6)

(7)

in which was the derivative of the slip and was
the steel strain at the crack. The expressions for mean steel strains and
mean concrete strains are for CLLM obtained by integrating Eqs. (6) and
(7) respectively over the transfer length Sr0

(8)

(9)

in which the transfer length was defined as

(10)

while the slip at the crack was obtained as, see Fig. 3(b)
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Fig. 3. (a) Steel and concrete strains distribution over the bar length for the concept of CLLM. (b) Slip over the bar length for the concept of CLLM. (c) Steel and concrete strains distribu-
tion over the bar length for the concept of CHLM. (d) Slip over the bar length for the concept of CHLM.

(11)

with the constants , and . Insert-
ing Eqs. (10) and (11) in (8), substituting εsm with a known value for
the mean strains εm and multiplying with the Young’s modulus for steel
yields an expression for the steel stresses at the crack as

(12)

An expression for the steel stresses at the crack as a function of the
mean strains is derived conveniently due to the closed form solution of
the slip at the crack provided for CLLM. This is not the case for CHLM
since the slip at the crack ur,CHLM only could be obtained iteratively as
a function of εsr. Thus, a solution to obtain εsr for CHLM for a known
value of the mean strain εm is by assuming

(13)

where is chosen initially. The expressions for mean steel strains
and mean concrete strains are obtained in a similar fashion as for

CLLM, however, this time around by integrating Eqs. (6) and (7) over
half the crack spacing according to Fig. 3(c)

(14)

(15)

in which the theoretical maximum crack spacing was defined as

(16)

The maximum slip ur,CHLM is determined iteratively as a function of
εsr using the solution strategy provided in [60]. If εsm≠εm, new values
of , εsr using Eq. (13) and εsm using Eq. (14) are calcu-
lated. Finally, steel stresses at the crack are obtained by multiplication

6
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of Eq. (13) with the Young’s modulus for steel

(17)

3.1.3. Regime 2 and 3
Regime 2 and 3, which represent steel stresses over the crack spacing

after the onset of yielding, is in general not relevant in terms of service-
ability but are needed to properly account for cases where the reinforce-
ment ratio in one direction differs greatly from the other direction. This
could cause yielding for the reinforcement with lowest reinforcement ra-
tio while the other remains elastic. The expressions for the steel stresses
provided in the TCM [37,38] are used as a simplification. However,
one important modification in relation to the stepped, rigid-perfectly
plastic bond-slip law is applied. Instead of directly relating the mean
bond stresses to the tensile strength of concrete as τ(u) = τb0 = 2fct
and τ(u) = τb1 = fct, they are rather taken as the mean bond stress
τm,y of the bond stress distribution τy at the onset of yielding of the
rebar at the crack, i.e. when where fsy is the yield
stress. This means that for steel stresses prior to yielding and

for steel stresses after the onset of yielding, see Fig. 2(b).
This is mainly to avoid abrupt change in stiffness in the transition be-
tween Regime 1 and 2. The expression for Regime 2 becomes

(18)

for , while the expression for Regime 3
becomes

(19)

for .

3.1.4. Constitutive model
The stress-strain curves for the constitutive models of MTCM, TCM

and naked steel are plotted in Fig. 4 with two different reinforce-
ment configurations. Fig. 4(a) applied to an RC tie with ρs = 2.93%
, , and , while Fig. 4(b)
applied to an RC tie with ρs = 0.97%, ,
and . The Young’s modulus for steel was set to

, while the cylinder strength, tensile strength and the

Young’s modulus for concrete was set to ,
and respectively in both cases. The bar length was
set equal to the crack spacing determined by the MTCM and TCM
as 265mm and 161mm respectively in Fig. 4(a) and as 286mm and
311mm respectively in Fig. 4(b). It is observed that the TCM is slightly
stiffer in its response than the MTCM. Furthermore, it is noticed a drop
of steel stresses for the MTCM at εm≈1·10 - 3 in Fig. 4(a), which can be
explained by the fact that the CHLM behaviour allows for a crack to
form at the centre of the crack spacing if the concrete strains at this lo-
cation exceed the tensile strength of concrete, i.e. when ,
as recommended by Russo and Romano [53] and Tan et al. [60].

3.2. Modified tension chord model at biaxial stress conditions

3.2.1. General
The MTCM at biaxial stress conditions caused by in-plane load-

ing is discussed by considering the development of maximum principle
stresses of concrete between cracks. The consideration of Mohr’s cir-
cle of concrete stresses at cracks and between cracks depicted in Fig. 5
yields an expression for the development of maximum principle stresses
in the concrete as

(20)

under the assumption that θcr and τxy remain the same, where
and . In general,

(21)

where εc,max are maximum concrete strains at the end of the transfer
length Sr0, see Fig. 3(a), in which the expression according to Russo and
Romano [53] and Tan et al. [60] is adopted

(22)

Here, εsr is determined from Eq. (12) implying that λ becomes a
value dependent on the steel stresses at the crack. The limiting value in
Eq. (21) is chosen such that the transfer length Sr0 never is larger than
the crack spacing Scr0 in the uniaxial direction. Furthermore, it can be
proven that the limit state in Eq. (20), i.e. when σc1b = fct, only is at-
tained for . This also means that the cracking response in bi-
axial stress conditions is determined either by the concept of CLLM or
CHLM similar to uniaxial stress conditions as depicted in Fig. 6.

Fig. 4. (a) Stress strain curve for an RC tie with ρs = 2.93%, , and . Bar lengths are set to 265mm and 161mm for the MTCM and the TCM
respectively. (b) Stress strain curve for an RC tie with ρs = 0.97%, , and . Bar lengths are set to 286mm and 311mm for the MTCM and
TCM.
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Fig. 5. Figure of Mohr’s circle of stresses for the concrete at cracks and between cracks
inspired by Kaufmann and Marti [38].

3.2.2. CLLM
The concept of CLLM at biaxial stress conditions implies that λx < 1

, λy < 1 and σc1b < fctm, meaning only a distinct region to each
side of the crack experiences incompatibility in strains, see Fig. 6(a). By
geometry, two conditions for the transfer length apply

(23)

in which Srx0 and Sry0 are determined from Eq. (10), while steel stresses
at the crack are determined using Eq. (12).

3.2.3. CHLM
It is assumed that the concept of CHLM governs as long as either

λx = 1, λy = 1 or σc1b = fct occur. The choice means that the rein-
forcement in one direction can be governed by CLLM behaviour (λ < 1
), while the other can be governed by CHLM behaviour ( ), which
typically occur in cases with orthotropic reinforcement configurations
and for load situations with low shear stresses compared to the normal

stresses. This means that CHLM governs as long as one of the rein-
forcement directions is governed by CHLM behaviour. Fig. 6(b) shows
the case when λx = 1, λy = 1 and σc1b = fct occur simultaneously. By
geometry and the fact that the limit state, i.e. , only is attained
for λx = 1 and λy = 1 yields two conditions for the crack spacing that
is chosen to apply

(24)

or as

(25)

meaning that the skew crack spacing simply is governed by the an-
gle θcr and the theoretical maximum crack spacing in uniaxial di-
rections determined from Eq. (16). Fig. 6 shows the case where
Srx0cos|θ| > Sry0sin|θ| and Scrx0cos|θ| > Scry0sin|θ|, in which it is no-
ticed that line AB in Fig. 6(a) later forms to a crack in Fig. 6(b). Steel
stresses at the crack are determined in a similar fashion as discussed
for Eq. (17), however, by substituting the crack spacing Scr0 in Eq. (14)
with Scrx and Scry. Similar substitution applies for Eqs. (18) and (19) in
Regime 2 and 3.

3.2.4. Crack width
The crack width is for the concept of CLLM determined as

(26)

and for the concept of CHLM as

(27)

where ε1 and εc1 are mean maximum principle strains for the RC mem-
brane and the concrete respectively determined as

Fig. 6. (a) CLLM at biaxial stress conditions. (b) The limit state and CHLM at biaxial stress conditions.
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(28)

(29)

Conservatively neglecting the concrete shear strains γcxy and sub-
tracting Eq. (29) from (28) yields

(30)

which is approximately the same as

(31)

The expression in Eq. (31) was formulated with the purpose of serv-
ing as a generalized approach for predicting tension stiffening in skew
cracks, an expression currently lacking in EC2 and MC2010. The expres-
sion is thus dependent on (i) the difference between the mean strains,

, making it compatible with any other tension stiffening model
for uniaxial stress conditions and (ii) the shear strains γxy known from
equilibrium.

3.3. Steel

Bilinear material behaviour is assumed for both reinforcing steel and
prestressing steel as shown in Fig. 7.

3.4. Concrete

The constitutive model elaborated in Foster and Marti [24] is here
adopted for the compressive behaviour of concrete, see Fig. 8(a). Briefly
summarized, the compressive curve by Thorenfeldt et al. [62] was
adopted using the calibrated decay factor proposed by Collins and Po-
rasz [10] for the post peak behaviour of conventional and high strength
concrete. Furthermore, the stress and strain peak was adjusted by the
factor kc, which was obtained using the model of Vecchio and Collins
[64] to account for weakening of concrete when subjected to biaxial
tension compression, i.e. kc ≤ 1. The effect of confinement, i.e. when
kc > 1, is by the authors of this paper conservatively neglected.

Tension softening is in general neglected, except for the condition
when both principle strains are positive, i.e. ε1 ≥ ε2 > 0. This can oc-
cur in load situations with low shear stresses compared to the normal
stresses and is recommended to be included only to ensure numerical
stability since combining tension softening with tension stiffening can
appear inconsistent. The exponential curve recommended by the Dutch
guidelines for nonlinear finite element analyses (NLFEA) of concrete
structures [3,29] is chosen for the tension softening of concrete, see
Fig. 8(b). Here, where it is for simplicity
assumed that the fracture energy is smeared over the maximum crack
spacing in either x or y direction.

Fig. 7. (a) Bilinear behaviour of reinforcing steel bars. (b) Bilinear behaviour of prestressing steel.

Fig. 8. (a) Compressive behaviour of concrete using the constitutive model of Foster and Marti [24]. (b) Tensile behaviour of concrete using the exponential curve recommended by the
Dutch guidelines for NLFEA (Hendriks et al., 2017).
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3.5. Constitutive relationships

The equilibrium in Eqs. (1)–(3) can be written as

(32)

in which the equilibrium in Eq. (32) is determined iteratively by updat-
ing the material elasticity tensor using the se-
cant stiffness. Here,

(33)

where T is the strain transformation tensor to the principal plane and

(34)

is the concrete elasticity tensor adopted from [13,24]. Here, νc12 and
νc21 were the Poisson’s ratio’s taken as zero after cracking, and

. The secant modules

are determined from the chosen constitutive laws for concrete as
and . The elasticity tensors for reinforcing and

prestressing steel are

(35)

in which the secant modules are determined as ,
, and . Tension stiffening is ne-

glected for the prestressing steel.

4. Simplified approach to calculate crack widths for RC
membranes

The MCMM should provide more realistic estimates of the crack
widths and deformations at a given load level. However, this would re-
quire some local iterations within the equilibrium iterations in the case
of CHLM as discussed for Eq. (17), which might increase the calcula-
tion time. If the crack widths are of primary interest, a simplification
to eliminate the local iterations would be to treat rebars as unbonded,
i.e. using the constitutive law for naked reinforcing steel in Fig. 7a) in-
stead of the MTCM to determine the equilibrium in Eq. (32). The tension
stiffening is a posteriori accounted for by assuming that steel strains at
the crack are and in determining λx and λy from Eqs.
(21) and (22), after which the mean strains εsmx and εsmy are deter-
mined from the concept of either CLLM or CHLM to predict the crack
width. This approach is analogous to predicting crack widths using the
steel stresses at a cracked section, similar to as one would have done in

a practical design situation for uniaxial stress conditions. The approach
is conservative compared to using the MCMM.

5. Comparison with experimental results

5.1. General

Experimental results and predictions by the MCMM, the CMM using
the TCM of Seelhofer [55] and the simplified approach are compared in
the following. A similar comparison was conducted by [39]. The frame-
work presented in Section 3 was used for the MCMM predictions, mean-
ing that tension stiffening using the MTCM was accounted for in obtain-
ing the equilibrium in Eq. (32) and thus the load-deformation response.
Tension softening was excluded in the predictions of the MCMM, CMM
and the simplified approach.

5.2. Predicted response of shear panels

The response predicted by the MCMM is now compared to a se-
lection of experimental results of orthogonally RC panels available in
the literature [63,36,43,65,40], see Table 1 for a summary of the ma-
terial parameters. In summary, the selection consisted of panels with
isotropic and anisotropic rebar layout, high strength concrete, prestress-
ing and even unique loading conditions. The panels were loaded in
pure shear except for PV25, which additionally was loaded in axial
compression proportional to the shear stress level as
, and PV28, which additionally was loaded in axial tension propor-
tional to the shear stress level as . Furthermore, PP2
was prestressed in x-direction with prestressing steel ratio ,
yield stress , Young’s modulus and an ap-
plied initial strain of , while panel TA2 was prestressed
in x-direction with prestressing steel ratio , yield stress

, Young’s modulus and an applied initial
strain of . Note that TA2 was not reinforced with rebars
in x-direction. The variety of panels selected for comparison was cho-
sen mainly to investigate the ability of the MCMM to predict consistent
load-deformation responses.

Comparison of experimental results and model predictions are
shown in Fig. 9. As mentioned previously, the simplified approach does
not include for tension stiffening in determining the equilibrium and
yields thus larger deformations compared to the MCMM and CMM. It
is also observed that there in general are small discrepancies between
the MCMM and CMM, although the response after yielding of rebars
looks to be slightly improved for the MCMM. Nevertheless, consistent
and good predictions of the deformations and the ultimate load capacity
are in general observed for both MCMM and CMM.

5.3. Crack widths

Comparison of crack widths predicted by the models are now com-
pared to a selection of experimental results available in the literature
at which the maximum crack widths measured were documented prop-
erly. The selection consisted of the test series by Tan et al. [57] on the
RC ties X-20-40, X-32-40, X-20-90 and X-32-90, S and CS test series by

Table 1
Material parameters for selected RC panels.

Panel Ref. fcm [MPa] εc0 [‰] ϕsx [mm] ρsx [%] fsyx [MPa] Esx [MPa] ϕsy [MPa] ρsy [%] fsyy [MPa] Esy [MPa]

PV25 Vecchio and Collins [63] 19.3 1.8 6.35 1.78 466 200 6.35 1.78 466 200
PV28 19 1.85 6.35 1.78 483 200 6.35 1.78 483 200
SE6 Khalifa [36] 40 2.5 19.5 2.93 492 200 11.3 0.32 479 200
PP2 Marti and Meyboom [43] 28.1 2.38 16 1.29 486 200 11.3 0.64 480 200
VA3 Zhang and Hsu [65] 94.6 2.45 19.5 3.41 455 200 19.5 3.41 455 200
TA2 Laskar et al. [40] 41.3 1.9 – – – – 12.8 0.77 415 192
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Fig. 9. Comparison between responses predicted by the MCMM, CMM and the simplified approach with experimental results.

Dyngeland [18], panel PP1 by Marti and Meyboom [43], A and B test
series by Pang [49] and KS test series by Proestos [52]. A summary
including loading, reinforcement layout, maximum crack widths mea-
sured experimentally wmax and crack widths predicted wcr is given in
Table 2. Further details regarding material properties, mechanical prop-
erties and test setup were else fully provided in the respective refer-
ences. The axially loaded RC ties were included mainly to investigate
how well the MCMM and the CMM captures the effects of large rebars
and covers. Moreover, it is noticed that the S and CS panels were axially
loaded only, however, with varying inclination for the orthogonal rebar
grid in which αs denotes the angle counter clockwise between the longi-
tudinal reinforcement and the global x-direction. This was conveniently
accounted for in the calculations by obtaining steel stresses at the crack
in terms of the mean strains in the αs-direction for the tension stiffening
of the longitudinal reinforcement and the mean strains normal to the αs
-direction for the tension stiffening of the transversal reinforcement.

Fig. 10(a) shows comparison of mean and maximum crack widths
measured experimentally and crack widths predicted by the models for
six of the panels in Table 2. Corresponding load deformations responses
are also included in Fig. 10(b). It is in general observed good agreement
between maximum crack widths measured and crack widths predicted
as well as between load deformation responses. The exception is CS2,
at which the models yield quite conservative predictions. This can be
explained by the fact that transversal pressure was applied normal to
the loading direction, which would have beneficial effect on the tension
stiffening as discussed by Dyngeland [18]. Similar was observed in the
experiments by Dörr [17] at which it was seen that the tension stiffen-
ing enchanced with increasing confining pressure for uniaxially loaded
specimens. This beneficial effect is not captured by the MCMM nor the
CMM since the bond-slip curves adopted were based on the behaviour of
uniaxial loaded RC ties in tension. Similar trend was observed for PV25.
Furthermore, the discontinuity observed for the MCMM and the simpli-
fied approach is caused by the transition between the CLLM and CHLM.

5.4. The modelling uncertainty for crack width predictions

The modelling uncertainty for crack widths predicted, i.e.

(36)

was investigated for the MCMM, CMM and the simplified approach. The
statistical properties of θ were obtained using the method of Engen et al.
[23] and Tan et al. [57], which implied assuming log-normal distribu-
tion for the modelling uncertainty in accordance with the recommenda-
tions in JCSS Probabilistic Model Code [33] This means that the natural
logarithm of θ is assumed normal distributed. Values for θ are shown
in Table 2, presented graphically in Fig. 11 and summarized in Table
3 showing the statistical properties for the modelling uncertainty such
as mean, variance, standard deviation SD, coefficient of variation COV
, minimum and maximum values for θ and the number of observations
n(θ > 1) at which the crack widths measured exceed the crack widths
predicted. A total of 101 observations for θ were obtained from Table
2. The summary suggests that the MCMM and the simplified approach
show greater potential for predicting crack widths than the CMM.

6. Discussion

The results show that the simplified approach provided most con-
servative predictions, as expected. This can be explained by the fact
that the simplified approach predicts crack widths using shear strains
γxy when tension stiffening is neglected. Furthermore, it is observed
that the CMM yielded a mean value for the modelling uncertainty on
the nonconservative side while being more inconsistent in its predic-
tions than the MCMM and the simplified approach which is reflected
by the observations that it has the largest SD and COV. Table 2 shows
that the CMM in particular underestimated the crack widths consider-
ably for RC ties with the combination of large rebar and cover, e.g.
X-32-90. The MCMM, on the other hand, provided a mean closest to
one on the conservative side and yielded more consistent predictions in
comparison which can be observed by the fact that it exhibits the low-
est COV. This statement can also be backed up from a mechanical point
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Table 2
Crack widths for investigated specimen.

Dimension Panel τxy σx σy αs Cover ϕsx ϕsy ρsx ρsy wmax wcr,MCMM wcr,CMM wcr,simp θMCMM θCMM θsimp

[mm] [MPa] [deg] [mm] [mm] [%] [mm]

3000×400×400 X-20-40 – 3.14 – 0 40 20.00 – 1.57 – 0.13 0.24 0.11 0.24 0.55 1.25 0.55
– 3.25 – 0.13 0.26 0.12 0.26 0.52 1.14 0.52
– 4.17 – 0.16 0.37 0.19 0.37 0.44 0.85 0.44
– 5.05 – 0.22 0.42 0.28 0.42 0.51 0.78 0.51

X-32-40 – 4.71 – 0 40 32.00 – 4.02 – 0.08 0.15 0.05 0.15 0.55 1.58 0.55
– 4.64 – 0.07 0.14 0.05 0.14 0.47 1.38 0.47
– 6.33 – 0.10 0.18 0.09 0.18 0.53 1.09 0.53

X-20-90 – 3.66 – 0 90 20.00 – 1.57 – 0.21 0.30 0.15 0.30 0.68 1.42 0.68
– 3.59 – 0.21 0.30 0.14 0.30 0.72 1.51 0.72
– 4.60 – 0.31 0.43 0.23 0.43 0.72 1.33 0.72
– 6.27 – 0.40 0.56 0.40 0.56 0.72 1.01 0.72

X-32-90 – 5.03 – 0 90 32.00 – 4.02 – 0.16 0.16 0.06 0.16 0.99 2.76 0.99
– 5.03 – 0.17 0.16 0.06 0.16 1.04 2.91 1.04
– 6.28 – 0.21 0.18 0.09 0.18 1.16 2.42 1.16
– 7.51 – 0.24 0.23 0.12 0.23 1.05 2.05 1.05
– 8.52 – 0.27 0.27 0.14 0.27 1.00 1.89 1.00

630×630×100 S1 – 3.76 – 0 10 8.00 8.00 1.12 – 0.15 0.21 0.18 0.21 0.72 0.84 0.72
S2 – 3.56 – 0 1.12 – 0.14 0.19 0.16 0.19 0.72 0.86 0.72
S3 – 3.80 – 45.00 1.12 1.12 0.29 0.33 0.40 0.40 0.87 0.72 0.72
S4 – 3.49 – 45.00 1.12 1.12 0.30 0.30 0.35 0.37 1.00 0.85 0.82
S5 – 2.67 – 45.00 0.56 1.12 0.41 0.83 0.45 1.74 0.49 0.90 0.23
S6 – 3.41 – 18.40 1.12 1.12 0.17 0.27 0.19 0.35 0.64 0.90 0.49
S7 – 3.45 – 18.40 1.12 0.37 0.32 0.81 0.49 1.04 0.40 0.65 0.31
S8 – 3.41 – 18.40 1.12 1.12 0.16 0.27 0.19 0.35 0.60 0.84 0.46
CS1 – 3.74 −4.67 0 1.12 – 0.08 0.20 0.21 0.20 0.40 0.38 0.40
CS2 – 3.74 −9.34 0 1.12 – 0.08 0.20 0.21 0.20 0.40 0.38 0.40
CS3 – 3.74 −4.67 45.00 1.12 1.12 0.30 0.34 0.35 0.39 0.89 0.86 0.76
CS4 – 3.74 −9.34 45.00 1.12 1.12 0.42 0.36 0.37 0.41 1.17 1.14 1.01
CS6 – 3.74 – 0 1.12 1.12 0.14 0.20 0.21 0.20 0.69 0.66 0.69

1626×1626×287 PP1 1.72 – – 0 22 19.50 11.30 1.94 0.65 0.16 0.23 0.18 0.45 1.35 1.23 0.68
2.15 – – 0.20 0.34 0.26 0.41 1.39 1.05 1.19
2.64 – – 0.25 0.44 0.37 0.54 0.77 0.65 0.79
3.04 – – 0.29 0.53 0.46 0.63 0.76 1.21 0.49
3.71 – – 0.42 0.67 0.61 0.79 1.05 1.10 0.88
4.14 – – 0.58 0.89 0.72 1.09 0.62 0.59 0.54

1400×1400×178 A2 1.58 – – 0 22 16.00 16.00 1.19 1.19 0.24 0.18 0.20 0.36 1.25 1.33 1.21
2.78 – – 0.50 0.36 0.47 0.42 0.56 0.67 0.51
4.06 – – 0.50 0.65 0.77 0.63 0.55 0.71 0.53

A3 1.46 – – 0 19 19.50 19.50 1.77 1.77 0.10 0.13 0.08 0.20 0.74 0.94 0.72
2.76 – – 0.25 0.24 0.23 0.29 0.67 0.84 0.65
4.30 – – 0.25 0.41 0.42 0.46 0.43 0.39 0.33
7.06 – – 1.02 0.81 0.77 0.84 0.42 0.38 0.37

A4 4.69 – – 0 13 25.20 25.20 2.95 2.95 0.16 0.28 0.24 0.31 0.53 0.46 0.45
6.55 – – 0.25 0.46 0.35 0.48 0.76 0.71 0.63
8.69 – – 0.46 0.62 0.49 0.64 1.26 1.16 0.97
10.55 – – 0.51 0.76 0.60 0.78 0.96 1.49 0.63

B1 1.82 – – 0 22 16.00 11.30 1.19 0.59 0.15 0.34 0.38 0.44 0.34 0.36 0.30
2.28 – – 0.21 0.50 0.55 0.57 0.23 0.24 0.21
2.71 – – 0.33 0.62 0.72 0.73 1.48 1.49 1.33
3.23 – – 0.66 0.87 0.94 1.05 1.69 1.80 1.38
3.71 – – 1.66 1.32 1.43 1.70 1.22 1.12 1.05

B2 1.68 – – 0 19 19.50 16.00 1.77 1.19 0.21 0.22 0.14 0.33 1.65 2.07 0.99
3.86 – – 0.18 0.52 0.50 0.59 1.57 1.71 1.36
4.28 – – 0.14 0.59 0.57 0.66 0.89 1.19 0.80
4.93 – – 1.02 0.69 0.68 0.77 0.75 0.91 0.66
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Table 2 (Continued)

Dimension Panel τxy σx σy αs Cover ϕsx ϕsy ρsx ρsy wmax wcr,MCMM wcr,CMM wcr,simp θMCMM θCMM θsimp

[mm] [MPa] [deg] [mm] [mm] [%] [mm]

B3 1.89 – – 0 19 19.50 11.30 1.77 0.59 0.57 0.34 0.32 0.41 0.72 0.86 0.65
3.12 – – 0.75 0.62 0.67 0.72 0.56 0.65 0.51

B4 1.58 – – 0 13 25.20 11.30 2.95 0.59 0.37 0.22 0.18 0.37 0.76 0.97 0.77
2.96 – – 0.77 0.49 0.45 0.56 1.14 1.44 1.09

B5 2.54 – – 0 13 25.20 16.00 2.95 1.19 0.24 0.27 0.20 0.30 1.28 1.65 0.66
3.75 – – 0.32 0.42 0.35 0.48 1.11 1.31 0.94
4.31 – – 0.36 0.49 0.41 0.55 0.66 0.83 0.64
5.46 – – 0.36 0.65 0.56 0.71 0.72 0.91 0.37
6.13 – – 0.62 0.81 0.64 0.81 0.59 0.78 0.50
6.55 – – 0.99 0.87 0.69 0.91 0.55 0.67 0.46

B6 2.17 – – 0 13 25.20 19.50 2.95 1.77 0.20 0.16 0.12 0.30 0.55 0.64 0.47
2.97 – – 0.25 0.23 0.19 0.27 0.62 0.68 0.53
6.14 – – 0.40 0.60 0.48 0.63 0.66 0.81 0.53

1626×1626×355 KS1 2 – – 0 54 16 12.8 2.09 1.35 0.20 0.18 0.08 0.29 1.11 2.37 0.69
4 – – 0.35 0.36 0.27 0.44 0.97 1.31 0.80
6 – – 1.10 0.63 0.46 0.71 1.74 2.37 1.54

KS2 2 0.8 0.8 0 54 16 12.8 2.09 1.35 0.10 0.28 0.14 0.47 0.35 0.70 0.21
3 1.2 1.2 0.30 0.37 0.28 0.45 0.81 1.09 0.66
4 1.6 1.6 0.65 0.57 0.41 0.65 1.15 1.59 1.01

KS3 3 −1.2 −1.2 0 54 16 12.8 2.09 1.35 0.15 0.17 0.08 0.26 0.87 1.84 0.57
6 −2.4 −2.4 0.35 0.34 0.25 0.42 1.02 1.40 0.84
9 −3.6 −3.6 0.65 0.61 0.45 0.69 1.06 1.46 0.94

KS4 2 – – 0 54 16 16 1.57 1.04 0.20 0.30 0.16 0.50 0.67 1.29 0.40
4 – – 0.60 0.67 0.49 0.79 0.90 1.21 0.76
6 – – 1.10 1.07 0.86 1.22 1.02 1.27 0.90

KS5 2 0.8 0.8 0 54 16 16 1.57 1.04 0.15 0.47 0.25 0.81 0.32 0.59 0.19
3 1.2 1.2 0.55 0.70 0.49 0.84 0.78 1.11 0.65
4 1.6 1.6 1.10 0.99 0.74 1.15 1.11 1.48 0.96

KS6 2 −0.8 −0.8 0 54 16 16 1.57 1.04 0.15 0.15 0.07 0.24 0.99 2.12 0.62
5 −2 −2 0.50 0.44 0.32 0.58 1.12 1.58 0.86
7 −2.8 −2.8 0.75 0.77 0.54 0.90 0.98 1.38 0.84
9 −3.6 −3.6 1.30 1.04 0.78 1.19 1.25 1.66 1.09

KS7 2 – – 0 54 16 12.8 2.09 1.35 0.20 0.18 0.08 0.29 1.12 2.54 0.69
5 – – 0.65 0.52 0.35 0.60 1.24 1.85 1.08
7 – – 0.80 0.78 0.55 0.87 1.03 1.46 0.92
9 – – 1.20 1.14 0.75 1.20 1.05 1.59 1.00

KS8 2 0.8 0.8 0 54 16 12.8 2.09 1.35 0.10 0.28 0.13 0.47 0.36 0.75 0.22
3 1.2 1.2 0.50 0.38 0.26 0.47 1.33 1.90 1.07
5 2 2 0.90 0.75 0.53 0.85 1.20 1.70 1.06

KS9 2 – – 0 54 16 16 1.57 1.04 0.15 0.29 0.11 0.49 0.52 1.31 0.30
4 – – 0.60 0.63 0.39 1.38 0.95 1.55 0.43
6 – – 1.10 1.19 0.74 1.40 0.93 1.49 0.78

KS10 2 −0.6 −0.6 0 54 16 16 1.57 1.04 0.40 0.18 0.07 0.30 2.23 5.75 1.35
5 −1.5 −1.5 0.60 0.55 0.32 1.16 1.09 1.88 0.52
8 −2.4 −2.4 1.00 1.13 0.70 1.33 0.88 1.44 0.75
9 −2.7 −2.7 1.50 1.30 0.83 1.51 1.15 1.82 0.99
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Fig. 10. (a) Comparison between mean and maximum crack widths measured experimentally and crack widths predicted by the MCMM, CMM and the simplified approach. (b) Compari-
son between corresponding load deformation responses predicted by the MCMM, CMM and the simplified approach with experimental results.

of view since the MCMM accounts for all cracking stages through the
concepts of CLLM and CHLM behaviour, whereas the CMM in principle
applies to the stabilized cracking stage only. Also, solving the SODE for
the slip using the MC2010 bond-slip law in the MTCM is a mechani-
cal improvement to the TCM, and should better account for the effects
of large rebars and covers as well as rebar spacing, thus offering wider
range of applicability as discussed by Tan et al. [60].

It is noticed from Table 3 that the COV is relatively large in com-
parison with the COV for the modelling uncertainty of the ultimate
load capacity reported in e.g. [5,51]. Relatively large COV for the mod

elling uncertainty of crack widths predicted have also been reported
in recent studies [21,57,22]. This is first and foremost owing to the
large scatter in tensile strength of concrete and its influence on gener-
ating a random crack pattern as discussed by Barre et al. [2] and Tan
et al. [58]. Secondly, the modelling uncertainty for predicting the max-
imum crack widths becomes sensitive to the many physical uncertain-
ties related to the chosen measuring technique. Most simply measure
the maximum crack widths by the eye, others use more refined measur-
ing techniques such as image analysis or digital image correlation while
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Fig. 11. Maximum crack widths measured experimentally versus crack widths predicted by the MCMM, CMM and the simplified approach for the 101 observations for the modelling
uncertainty.

Table 3
Modelling uncertainty for crack width predictions.

Model Mean Variance SD COV Min Max

MCMM 0.88 0.19 0.40 0.45 0.23 2.23 36
CMM 1.28 0.27 0.72 0.56 0.24 5.75 61
Simplified 0.73 0.21 0.35 0.48 0.19 1.54 19

some use statistics to determine the 95%-quantile of the maximum crack
widths measured. Another important physical aspect is related to where
the maximum crack widths measured apply at the specimen surface,
since they in general vary significantly depending on if they are mea-
sured over the rebar or between two adjacent rebars as discussed by Da-
wood and Marzouk [14], not to mention the uncertainties related to the
calculation model itself [42,45].

All three models can be extended to predict the cracking behaviour
of RC shell sections, e.g. by implementation to a layered approach. The
authors of this paper are currently working on such an approach. It is
also recommended to conduct further probabilistic analysis on the mod-
elling uncertainty for crack width predictions to better understand the
main parameters influencing the cracking behaviour. Such studies can
be important in developing crack width calculation models in general.

7. Conclusions

The modified cracked membrane model (MCMM) presented in this
paper was formulated to facilitate a mechanical calculation model that
is able to predict crack widths in orthogonally reinforced concrete (RC)
membranes subjected to in-plane loading. It was formulated using the
basic concepts of the cracked membrane model (CMM), the essential
difference being a replacement of the tension chord model (TCM) with
the modified tension chord model (MTCM). A generalized expression
to determine the tension stiffening normal to the crack in RC mem-
branes was formulated, a feature currently missing in Eurocode 2 and
fib Model Code 2010. Also, a simplified approach for predicting crack
widths in RC membranes was proposed. The crack widths predicted by
the MCMM, the cracked membrane model (CMM) and the simplified ap-
proach were compared to a total of 101 maximum crack widths mea-
sured experimentally on 37 test specimens to discover the modelling
uncertainty. The CMM showed a mean value for the modelling uncer-
tainty on the nonconservative side and yielded more inconsistent crack
width predictions in particular for the combination of large rebars and
covers. The MCMM, on the other hand, provided a mean closest to one
on the conservative side and was observed to be more consistent in
terms of having the lowest coefficient of variation in comparison with
the CMM, which could be attributed to its mechanical improvement,
hence, offering a wider range of applicability. The simplified approach

yielded in average most conservative predictions as expected. Finally,
the results in this paper suggests that both the MCMM and the simplified
approach show great potential for yielding reliable crack width predic-
tions in RC membranes, whereas the MCMM showed good predictions
of deformations and ultimate capacity as well.
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