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A copula-based heuristic for scenario
generation

Michal Kaut
∗

September 2011, updated July 2013 and September 2014

This paper presents a new heuristic for generating scenarios for two-stage

stochastic programs. The method uses copulas to describe the dependence be-

tween the marginal distributions, instead of the more common correlations. The

heuristic is then tested on a simple portfolio-selection model, and compared to

two other scenario-generation methods.

Keywords: stochastic programming; scenario generation; copulas

Introduction
In most practical applications of stochastic programming, we have to approximate the prob-

ability distribution of the stochastic parameters by a discrete distribution, i.e. a list of realiza-

tions (scenarios) and their probabilities. The process of generating this discrete distribution

is usually referred to as ‘scenario generation’. As with any other approximation, the quality

of the scenarios is an important determinant of the quality of the solutions obtained from the

model—bad scenarios can ruin an otherwise �awless model. This issue is further complicated

by the fact that we typically want to keep the number of scenarios as low as possible, to be

able to solve the problem in a reasonable time.

There are many methods for generating scenarios, see Dupačová et al. (2000) for an over-

view. Some of these methods try to generate scenarios that match a given set of speci�cations

for their marginal distributions and the dependence between them, where the latter is almost

always speci�ed using the correlation (or variance-covariance) matrix. This is su�cient for

elliptical distributions such as normal or the Student’s t-distribution, but might fail in the

general case: it cannot, for example, model asymmetric dependence (a situation where the

dependence in down-turns di�ers from the up-turns) or tail dependence—phenomena known
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to exist in �nancial data (Hu, 2006; Longin and Solnik, 2001; Patton, 2004), or industries with

changing trends, such as the apparel industry (Vaagen and Wallace, 2008).

The e�ect of using correlations in such situations is investigated in Kaut and Wallace

(2011), which con�rms that correlations can indeed lead to sub-optimal solutions to the

stochastic model. The paper also shows that the problem can be addressed by modelling

the dependence using copulas instead of correlations, and describes how such scenario-

generation methods could work. It does not, however, present any new method for gen-

erating scenarios for the copula itself; the tests are done using sampling. In this paper, we

try to �ll this gap by presenting a heuristic for generating scenarios from a given copula. This

heuristic then forms a base for a new copula-based scenario-generation method. It should be

noted that the presented method is meant for two-stage stochastic programs.

The rest of the paper consists of the following parts: �rst, we describe copulas and their

potential for scenario generation, plus a general structure of the proposed method. To sim-

plify the presentation of the heuristic, we then discuss the bivariate case in Section 2, before

presenting the general method in Section 3. Section 4 presents several ways of converting

the resulting values from copulas to the speci�ed target distributions. Finally, we test the

scenarios produced by the presented method on a simple portfolio-optimization model in

Section 5, before concluding the paper.

1 Copulas and scenario generation
Copula is the joint cumulative distribution function (cdf) of any n-dimensional random vec-

tor with standard uniform margins, i.e. a function C : [0, 1]n→ [0, 1]. The Sklar’s theorem
(Sklar, 1996) states that for any n-dimensional cdf F with marginal distribution functions

F1, . . . , Fn, there exists a copula C such that

F (x1, . . . , xn) = C
(
F1(x1), . . . , Fn(xn)

)
.

Moreover, if all the marginal cdfs Fi are continuous, then C is unique. An immediate conse-

quence of the theorem is that, for every u = (u1, . . . , un) ∈ [0, 1]n,

C(u1, . . . , un) = F
(
F−11 (u1), . . . , F

−1
n (un)

)
,

where F−1i is the generalized inverse of Fi.
It follows that a multivariate cdf is fully determined by the marginal cdfs and the copula; in

other words, the copula is a full description of the dependence between the margins. This is

in contrast to correlations that measure only the level of linear dependence. Furthermore, it

shows that copulas, again unlike correlations, are independent on the marginal distributions,

so we can model the two independently.

This suggests the following two-step procedure for generating scenarios (Kaut and Wallace,

2007): �rst, generate scenarios for the desired copula. Since a copula is a multivariate dis-

tribution with standard uniform (U(0, 1)) margins, the margins of the scenario-distribution

will constitute a sample from the U(0, 1) distribution. In the second step, we thus only need
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Figure 1: Relation between a sample (left), its empirical copula in terms of ranks (center)

and the empirical copula with margins scaled to (0, 1] (right).

to transform the margins using the inverse cdfs, to get scenarios that have both the correct

copula and marginal distributions—and therefore the correct multivariate distribution.

While the second step is trivial, generating scenarios from a given copula is a more di�cult

task. The only available method we are aware of is sampling; there are readily available codes

for sampling from all the major copula families.
1

The problem with sampling, however, is that

one needs a lot of scenarios to get a reasonable approximation of the distribution and hence

reliable results from stochastic-optimization models using these samples. Moreover, there

are many applications where we simply cannot solve problems with the required number of

scenarios (Kaut and Wallace, 2007). We thus need a ‘smarter’ way of creating samples from

a given copula, which can achieve a comparable quality of solutions with fewer scenarios.

1.1 Measuring the distance of a copula sample from its cdf
For the purpose of this paper, a copula sample can be viewed as a sample with all the in-

formation about the original marginal distributions removed. It follows that the values of

the sample do not matter; as long as we do not change the order of the values, the copula

remains the same. One natural option is to change the values to the ranks of the values in

the sample, with 1 denoting the minimum and S the maximum. The copula sample is thus

equivalent to an assignment between the ranks of the margins, as illustrated in Fig. 1.

From now on, a copula sample means a set

C = {r = (r1, . . . , rn) : 1 ≤ ri ≤ S, ∀i ≤ n} , (1)

where each value appears exactly once in each dimension—it is an assignment. To get the

cumulative distribution function (cdf) of one sample point r ∈ C, we have to scale the values

back to the interval [0, 1]:

Cr(r) = C( r1
S
, . . . , rn

S
) = Pr

(
[0, r1

S
]× · · · × [0, rn

S
]
)

= 1
S

∣∣{r′ = (r′1, . . . , r
′
n) : r

′
i ≤ ri, ∀i ≤ n}

∣∣ , (2)

where Cr denotes the sample cdf with input in terms of ranks and C the sample cdf with the

sample values in [0, 1].

1
For some available codes, see, for example, http://www.mathfinance.cn/tags/copula.
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To assess the ‘quality’ of the sample, we compare these values to cdf of the target copula

C∗, denoted as C∗r (r) = C∗(r/S). In other words, we compute deviations

dev(r) = dev(r1, . . . , rn) = Cr(r1, . . . , rn)− C∗r (r1, . . . , rn) (3)

The overall quality is then computed as a function of the measured di�erences. We consider

the following two measures:

davg(C, C∗) =
1

Sn

S∑
r1=1

· · ·
S∑

rn=1

∣∣dev(r1, . . . , rn)∣∣ (4a)

dmax(C, C∗) = max
1≤ri≤S
i=1,...,n

∣∣dev(r1, . . . , rn)∣∣ (4b)

This approach has one obvious problem: to evaluate the quality of the sample, we need

to evaluate the copula at Sn grid points, which is not feasible for most practical problems.

Instead, we propose working only with bivariate copulas, i.e. specify the dependence struc-

ture pairwise. This will decrease the numerical complexity fromO(Sn) toO(n2 S2), a much

more manageable number.

The price we pay for this simpli�cation is that we no longer have a complete description of

the dependency—this approach will not model any higher-order dependencies. On the other

hand, it should be more powerful than using correlations, as we move from one number per

pair of random variables to one cdf per pair.

We will thus �rst focus on the bivariate case and present two di�erent methods for gen-

erating scenarios that minimize the bivariate versions of distances (4). We then extend these

methods to the multivariate case in Section 3.

In the rest of the paper, we assume that we know the target copulas. In reality, obtaining

the copulas is a nontrivial task, analogous to estimating distribution functions for sampling.

If we have enough data, the easiest option is to use the empirical copula, as illustrated in

Fig. 1, directly as the target. Otherwise, we have to use some parametric method, that is to

�rst �nd a matching copula model and then estimate its parameters—just as what we would

do when estimating distributions. This, however, is a complicated topic, out of the scope

of this paper. Interested readers can �nd more information in, for example, Nelsen (1998);

Bouyé et al. (2000); Romano (2002).

2 Generating scenarios for bivariate copulas
In the previous section, we have shown that the problem of �nding the best copula sample

can be expressed as an assignment problem in terms of ranks of the marginal distributions.

In the bivariate case, this can be easily formulated as a mixed-integer programming (MIP)

model, which we present next. Note that we change the notation slightly for the rest of this

section and use the usual (i, j) indices instead of (r1, r2) from the multivariate case.

4



2.1 MIP models for the bivariate problem
The assignment is modelled by binary variables xij that are equal to one if the j-th rank of

the second margin is assigned to the i-th rank of the �rst margin, i.e. if there is a scenario

with r=(i, j). The Cr function from (2) is then equal to

Cr(i, j) =
1

S

i∑
k=1

j∑
l=1

xkl

and deviation dev(r) from Eq. (3) becomes

dev(i, j) = Cr(i, j)− C∗r (i, j) . (5)

Next, we decompose the deviation into its positive and negative parts,

dev(i, j) =
1

S
(y+ij − y−ij) , (6)

which gives

S dev(i, j) =
i∑

k=1

j∑
l=1

xkl − S C∗r (i, j) = y+ij − y−ij (7)

and, consequently,

S
∣∣dev(i, j)∣∣ = y+ij + y−ij . (8)

The problem of minimizing the average absolute deviation davg from Eq. (4a), omitting the

scaling factor
1/S, can then be written as

min
S∑

i,j=1

(
y+ij + y−ij

)
(9a)

s. t.

S∑
i=1

xij = 1 ∀ j ∈ {1 . . . S} (9b)

S∑
j=1

xij = 1 ∀ i ∈ {1 . . . S} (9c)

i∑
k=1

j∑
l=1

xkl − y+ij + y−ij = S C∗r (i, j) ∀ i, j ∈ {1 . . . S} (9d)

y+ij ≥ 0, y−ij ≥ 0, xij ∈ {0, 1} ∀ i, j ∈ {1 . . . S} (9e)

The objective function (9a) and constraints (9d) come from Eqs. (7) and (8), while constraints

(9b) and (9c) de�ne the assignment by ensuring that each rank is used only once. Note,

however, that problem (9) di�ers from the standard assignment problem, so we cannot expect

polynomial solution time.

The problem of minimizing the maximum deviation dmax is very similar to minimizing

davg, we just add a new variable y for the maximum deviation, de�ned by constraints

y+ij + y−ij ≤ y ∀ i, j ∈ {1 . . . S} , (10)

and change the objective from (9a) into minimizing the new variable y.

5
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Figure 2: Solution times for problems (9) and (10), for two di�erent copulas. Series ‘ ’

shows the result of the default model with target cdfs rounded to the nearest

integer. Note the logarithmic scale one the value axis—a straight line means ex-

ponential growth.

Solution times

Both models were implemented in C++ using the FlopC++ library (Hultberg, 2007) and solved

using Cbc 2.5 (Forrest and Lougee-Heimer, 2005) on a 12-core 2.4 GHz AMD Opteron with

24 GB RAM, solving several instances simultaneously. We have tested also other solvers and

the results were qualitatively very similar.

An important observation is that for both models, all the coe�cients in the LP matrix are

integers, except for the target cdf valuesC∗r (i, j). It can thus be expected that the models will

solve faster if we round the target values to the nearest integer. This is con�rmed in our test

results, presented in Fig. 2: the rounding decreases the solution times dramatically, especially

in the case of minimizing the maximum deviation dmax. Yet even with the rounded targets,

the method is only practical for up to 35–50 scenarios, depending on model and copula type.

In addition, we have to remember that in the general n-dimensional case, these models

would have to be expanded to take into accounts the other margins, and we would have to

solve
n(n−1)

2
of them. It follows that the MIP-based approach does not work for problems of

even moderate size. As a result, we have developed a heuristic that solves the problem (9)

approximately.

6



1: I ← {1, . . . , S}; δr∗ ←∞ . . . . . . . . . . . . . . . . . . . . . . . . . initializations
2: for j ∈ {1, . . . , S} do
3: for i ∈ I do . . . . . . . . . . . . . . . . . . . . . . . loop through unused ranks
4: calculate the deviation δr(i, j)
5: if δr(i, j) < δr

∗ then . . . . . . . . . . . . . . . . . .new best assignment
6: i∗ ← i; δr

∗ ← δr(i, j)
7: end if
8: end for
9: rj ← i∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . assign rank j to rank i∗

10: I ← I \ {i∗} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mark i∗ as used
11: end for

Figure 3: Heuristic for constructing a bivariate copula sample with minimal davg.

2.2 Heuristic for the average-deviation problem
In this section, we present a heuristic for the bivariate case of the average-deviation problem.

Just like the MIP formulation (9) from the previous section, the heuristic works on the ranks

of the copula and uses the di�erence between the cdfs as a measure of distance between

the sample and the target. It is based on the observation from Eq. (2) that the rank cdf

Cr(i, j) depends only on points {(i′, j′) : i′ ≤ i & j′ ≤ j} of the grid. This means that

we can construct the sample ‘row-wise’: for each rank j, we compute the deviation caused

by its pairing to rank i, denoted δr(i, j),
2

as the sum of absolute values of deviations at grid

points (·, j):

δr(i, j) =
S∑
l=1

∣∣dev(l, j)∣∣ = S∑
l=1

∣∣Cr(l, j)− C∗r (l, j)∣∣ . (11)

We do this for all unused ranks i and then choose the one with the smallest deviation. The

resulting greedy heuristic is presented in Fig. 3.

The most time-critical part of the heuristic is the calculation of δr(i, j) on line 4: if we sim-

ply use the de�nition from Eq. (11), the calculation would require O(S) operations, making

the whole heuristic O(S3). Fortunately, this can be improved upon using the fact that, for

i > 1, we have

Cr(i, j) = Cr(i, j − 1) +

{
1
S

if we couple j to some i′ ≤ i

0 otherwise ,

2
In the published version of the paper, we did not introduce this extra notation for the pairing-based deviation

and continued using the existing symbol dev(i, j) instead.
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which, in combination with (11), gives

δr(i, j) =
S∑
l=1

∣∣Cr(l, j − 1) + if(l ≥ i, 1
S
, 0)− C∗r (l, j)

∣∣
=

i−1∑
l=1

∣∣Cr(l, j − 1)− C∗r (l, j)
∣∣+ S∑

l=i

∣∣Cr(l, j − 1) + 1
S
− C∗r (l, j)

∣∣
and therefore

δr(i−1, j) =
i−2∑
l=1

∣∣Cr(l, j − 1)− C∗r (l, j)
∣∣+ S∑

l=i−1

∣∣Cr(l, j − 1) + 1
S
− C∗r (l, j)

∣∣ .
Subtracting the two then gives

δr(i, j) = δr(i−1, j) +
∣∣Cr(i− 1, j − 1)− C∗r (i− 1, j)

∣∣
−
∣∣Cr(i− 1, j − 1) + 1

S
− C∗r (i− 1, j)

∣∣ , (12)

which is then initialized with

δr(0, j) =
S∑
l=1

∣∣Cr(l, j − 1) + 1
S
− C∗r (l, j)

∣∣ .
This recursive formula allows us to compute δr(i, j), except δr(0, j), in a constant number

of operations, so the heuristic becomesO(S2)—a big di�erence to the exponentially growing

solution time of the MIP formulations. In practice, this means that we can generate �ve

thousand samples in less than a second on the same hardware we used for the MIP models.

Note that the recursion implies that we have to evaluate δr(i, j) for all i ∈ {1, . . . , S}, instead

of using only i ∈ I as we do in the algorithm presented in Fig. 3.
3

3 Heuristic for the multivariate case
In this section, we extend the heuristic from a bivariate to a general multivariate case. This

is done by starting with two margins and then adding one margin at a time. The procedure

is best described in an inductive manner: assume that we have already generated values for

mmargins and want to add a new marginm+1, using the bivariate copulas of variable pairs

(1,m + 1), . . . , (m,m + 1) as targets. Unlike the bivariate case, we cannot simply connect

rows and columns, since we have to take into account that the m margins have already been

connected together. Instead, we assign the ranks of the new margin to scenarios; in other

words we assume that for the m processed margins, each rank has been connected with one

3
In the published version of the paper, we use a variant of (12) where the recursion is in the second argument:

δr(i, j) = δr(i, j−1) +
∣∣Cr(i− 1, j − 1)− C∗

r (i, j − 1)
∣∣

−
∣∣Cr(i− 1, j − 1) + 1

S − C
∗
r (i, j − 1)

∣∣ .
This formula has slightly di�erent properties than (12): on the plus side, we would only need to evaluate

δr(i, j) for the active rows i ∈ I, saving some running time. On the other hand, the formula uses δr(i, j−1)
from the previous column, which requires extra bookkeeping. For this reason, we use the form (12) in our

implementation, while the other form is left for future versions of the code.
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1: S ← {1, . . . , S}; δr∗ ←∞ . . . . . . . . . . . . . . . . . . . . . . . . . initializations
2: for j ∈ {1, . . . , S} do
3: for s ∈ S do . . . . . . . . . . . . . . . . . . . . loop through unused scenarios
4: for k ∈ {1, . . . ,m} do
5: calculate the deviation δr

k
(
rks , j

)
6: end for
7: δrs ←

∑m
i=1 δr

k
(
rks , j

)
. . . . . . . . . . dev. of putting j into scen. s

8: if δrs < δr
∗ then . . . . . . . . . . . . . . . . . . . . . new best assignment

9: s∗ ← s; δr
∗ ← δrs

10: end if
11: end for
12: rm+1

j ← s∗ . . . . . . . . . . . . . . . . . . . . . . . . assign rank j to scenario s∗

13: S ← S \ {s∗} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mark s∗ as used
14: end for

Figure 4: Step m of the multivariate heuristic, adding a new margin m+1 to the set of

already constructed margins 1, . . . ,m.

scenario. The goal of this step of the algorithm is thus to connect the ranks of margin m+1
to scenarios.

Since we now work with m di�erent bivariate copulas, instead of one, we need to extend

the copula notation by an additional superscript for margin. Hence, rks becomes the rank

of variable k assigned to scenario s, Cr
k

and C∗r
k

denote respectively the sample and target

cdfs of the bivariate copula of variables k and (m+1), and δr
k

the deviation function of this

copula, δr
k(i, j)=Cr

k(i, j)− C∗r k(i, j) .
The assignment is then done in analogously to the bivariate case: each rank j of the (m+

1)-st margin is assigned to the scenario s ∈ S causing the smallest deviation. The main

di�erence is that the deviation is de�ned as the sum of all bivariate deviations δr
k
(
rks , j

)
coming from copulas Cr

k
, for k ∈ {1, . . . ,m}. The resulting algorithm is presented in Fig. 4.

We can see that the bivariate heuristic from Fig. 3 is a special case of the new code, with

m=1 and r1s=s for all s. This means that we can use the new code for the whole scenario-

generation process: we �rst initialize the �rst margin, for example to r1s ← s, and then

execute the code from Fig. 4 for m ∈ {1, . . . , S − 1}.
Since the δr

k() functions at line 5 of the algorithm are the same as in the bivariate case, we

can again use the recursive formula from Eq. (12)—once more assuming that we adjust the

heuristic so that the deviations are calculated for all s ∈ {1, . . . , S}, instead of s ∈ S . This

way, the heuristic becomes O(nS2) for each margin and therefore O(n2 S2) in total.
4

Note that the heuristic in the form presented in Fig. 4 does not take into account the

possibility of several scenarios having the same deviation; in such a case, it would always

pick the �rst one. In our actual implementation, we instead store all the best scenarios found

4
This assumes that we match all the possible pairs; more generally, we can replace n2 by the number of

matched bivariate copulas. For example, if we specify copulas only for pairs of margins (i, j)with |i−j| ≤ k,

for some �xed k, the heuristic becomes O
(
nS2

)
.
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at line 8 and then choose one of them randomly at line 12.

4 Transformation to the target marginal variables
So far, we have been concerned only about generating scenario for the copula and ignored the

fact that these have to be transformed to the target variables. Fortunately, this is usually quite

easy, depending on the information we have about the marginal distributions. Assuming

we have generated scenarios in terms of rank couplings rs = (r1s , . . . , r
n
s ) for s ∈ S , with

1 ≤ ris ≤ S, we have at least the following options:

1. We know the cdfs Fi and they are invertible. In this case, we can choose between:

a) xsi = F−1i

( ris
S

)
would be the natural choice, but ris = S gives xsi =F

−1
i (1) that is

in�nite for distributions with unlimited support.

b) xsi = F−1i

( ris
S+1

)
is one way of avoiding the above problem.

c) xsi = F−1i

( ris−0.5
S

)
is another way; here, the resulting xsi values are conditional

medians of intervals

[
F−1i

( ris−1
S

)
, F−1i

( ris
S

)]
. This is our choice.

d) xsi = E
{
Xi | F−1i

( ris−1
S

)
≤ Xi ≤ F−1i

( ris
S

)}
, i.e. the conditional means of the

same intervals; this implies that the samples will have the correct means.

Note that out of the last three methods, method 1(c) produces the most extreme values

for most distributions, since F−1i ( 1
2S
) < F−1i ( 1

S+1
) and mean is above the median

because of the skewness of the tail distribution. However, the di�erence is noticeable

only for small values of S.

2. We have historical data and therefore the empirical cdfs Fei. Unfortunately, these are

not invertible, so we have to do something extra:

a) using the standard pseudo-inverse Fe
(−1)
i ; this could produce repeating values

because Fei are piece-wise constant functions.

b) interpolated/smoothed version of Fe
(−1)
i : with D data points, we would only use

the values at
k
D

, shifted to the left by
1
2D

to make the method consistent with the

continuous case. For all other values r, we would use some interpolation—in our

case cubic splines, but a simple linear interpolation should work just as well.

3. We have some other method for controlling the marginal distributions, such as the

moment-matching approach from Høyland et al. (2003). In this case, we can simply

generate the values of the margins, compute their ranks and then assign the values to

scenarios with corresponding ranks ris. This process is illustrated in Table 1, where the

output values ris and Xs,i correspond to the second and �rst plot in Fig. 1, respectively.

Of all the cdf-based methods above, only 1(d) guarantees that the scenarios will have the

correct expected values; the rest will produce scenarios with means slightly di�erent from

the correct values, with the error inversely proportional to the number of scenarios. Since

10



Table 1: Scenario generation using pre-generated margins. The left table presents the pre-

generated margin samplesMr,i, sorted for each margin i. The right table presents

the generated copula in terms of ranks ris and the resulting scenario values Xs,i.

r Mr,1 Mr,2

1 −1.28 0.36
2 −0.52 0.11
3 0.00 0.69
4 0.52 1.20
5 1.28 2.30

s r1s r2s Xs,1 Xs,2

1 1 5 −1.28 2.30
2 4 2 0.52 0.36
3 3 1 0.00 0.11
4 2 4 −0.52 1.20
5 5 3 1.28 0.69

stochastic-programming problems are typically sensitive to errors in the means, it is probably

a good idea
5

to shift the generated values to get the correct expected values µ∗i using xs,i ←
xs,i − µi + µ∗i , where µi denotes the actual mean of the i-th margin. We could extend this

to adjust variances as well, xs,i ← µ∗i +
σ∗
i

σi
(xs,i − µi), but the bene�t of such a correction is

likely to be case-dependent.

5 Test case: CVaR-based portfolio optimization model
We test the heuristic on a simple portfolio-optimization problem, using a conditional value-

at-risk (CVaR) as a risk measure. This is the model used in Kaut and Wallace (2011); we also

use the same data, so the results are directly comparable.

The model decides investments xi ≥ 0 into �nancial instruments i ∈ I , with stochastic

returns r̃i. The returns are modelled using discrete scenario values Rs
i with probabilities P s

,

for s ∈ S = {1, . . . , S}. The goal is to maximize the expected �nal wealth, given a constraint

on CVaR. We normalize the problem so that the initial wealth is equal to one.

We use the standard LP formulation of CVaR from Rockafellar and Uryasev (2000), using

auxiliary variables zs ≥ 0 for the shortfalls below the value of variable α, which in turn is

equal to the value-at-risk (VaR) at the optimum solution. The complete model is then:

max
xi

∑
s∈S

P s
∑
i∈I

Rs
i xi (13a)

s.t.

∑
i∈I

xi = 1 (13b)

zs +
∑
i∈I

Rs
i xi ≥ α , ∀s ∈ S (13c)

α− 1

1− β
∑
s∈S

P s zs ≥ γ , (13d)

where the left-hand side of (13d) is equal to CVaR at con�dence level β; in our case β = 0.95.

The CVaR model was written in the GNU MathProg language (Makhorin, 2013b) and solved

5
Except for distributions with limited support, where such a correction might give infeasible values.
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by glpsol, both parts of GNU Linear Programming Kit (GLPK); see Makhorin (2013a). The

data set used for the tests consists of 4476 daily prices of seven stock and three government

bonds, which gives 4455 monthly returns; the data was kindly provided by Kjetil Høyland

from DNB Nor, Oslo, Norway.

We use the model to compare three di�erent scenario-generation methods: sampling from

the historical data, the moment-matching algorithm from Høyland et al. (2003) and the heuris-

tic presented in this paper. For the heuristic, the margins were obtained from the generated

copula samples by applying an inverse of an interpolated version of the empirical cdfs, as

described in item 2(b) on page 10. After the inverse, we have used a linear transformation to

match the means and variances of the historical data; note that this makes a di�erence only

for small sample sizes, as mentioned in the previous section. The same scaling was applied

also to the sampled scenarios—without it, the sampled scenarios would perform signi�cantly

worse, even in the biggest test cases.

5.1 Test methodology
The three methods are compared in terms of in-sample and out-of-sample stability (Kaut and

Wallace, 2007): for each method, we generate 100 scenario sets and solve the model (13)

on each of them. We collect the resulting objective and CVaR values and look how much

they vary between the di�erent scenario sets—the less the better. This kind of stability is

important for reporting of the results: with perfect in-sample stability (no variation at all), it

would be su�cient to solve the model on one scenario set and report the obtained optimal

objective value. If, on the other hand, the values vary signi�cantly between the runs, we

would have to solve the models on many scenario sets and then report the distribution of the

obtained objective values—there would be no single optimal objective value.

If the tested scenario sets are small, the scenario-based objective function might not be

a good approximation of the ‘true’ objective function. To get a better estimate of the true

quality of the obtained solutions, one can evaluate them on some large reference tree: for

each such solution x∗, we �x the model variables to xi← x∗i and re-solve the model on the

reference tree; in our case, we have used the whole set of historical returns. This procedure

is referred-to as the out-of-sample tests. Again, we want the obtained objective values to

have as little variation as possible: with perfect out-of-sample stability, we know that it is

su�cient to solve the model once. With signi�cant instability, we would need to solve the

model on many scenario sets, estimate the true quality of all the obtained solutions and then

choose the best one.

Since our reference tree has less than �ve thousand scenarios, we can actually solve the

model on this tree as well. We then use the obtained solution as a proxy for the true optimum,

which gives us an even better way to evaluate the quality of the scenario-based solutions.

We have solved the reference model with varying values of the CVaR bound γ, which has

given us the ‘true’ e�cient frontier for model (13).
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5.2 Test results
We have tested the CVaR model with 50, 250, and 1000 scenarios. The new heuristic needed

respectively 0.1 s, 0.4 s and 6.1 s to generate the scenarios, using the same hardware as in the

previous tests. Note that with 10 random variables, there are 10×9/2 = 45 bivariate copulas

to match.

Results of the stability tests, comparing the new heuristic to sampling and the moment-

matching heuristic, are presented in Fig. 5. Each plot shows results of 100 scenario sets; the

reason there seems to be fewer points in the copula-based charts is the inherently low ran-

domness of the method: the only random element is tie-breaking at line 12 of the algorithm

in Fig. 4, as described at the end of Section 3.

From Fig. 5, we can see that the copula-based method is clearly the best one: it gives

better results with 50 scenarios than the other two methods achieve with 1000 scenarios.

This, however, does not mean that we should use only �fty scenarios; as we can see from

Fig. 6, we still need over one thousand scenarios to get consistently near-optimal solutions.

From the results with one thousand scenarios, we can also see that the moment-matching

method leads to a bias towards a more conservative solutions, i.e. solutions with smaller pro�t

and risk. This is caused by the fact that some of the data series have higher dependency in

the down-turns than in the up-turns, which is not captured by correlations, combined with

the fact that CVaR is sensitive to misrepresentation of the lower tail. It should be noted that

the sign of the bias is unpredictable; when tested with di�erent data, the moment-matching

heuristic led to solutions with too much risk and pro�t.

We have repeated the same tests for a di�erent value of the CVaR bound γ, as well as using

a completely di�erent data set, and received similar results. This increases our con�dence

in the quality of the presented heuristic, at least for this class of stochastic-programming

models.

Conclusions
In this paper, we have presented a heuristic for generating scenarios from distributions with

the dependence between the margins described pairwise using bivariate copulas. Compared

to using correlations, copulas give a better control of the dependencies. Our testing con�rms

that the scenarios generated using the presented method proved to be signi�cantly better

than scenarios generated with both sampling and a moment-matching method using corre-

lations: in our test case, the new method needs only �fty scenarios to obtain better solutions

than the other two methods produce with one thousand scenarios.

It remains to be seen how well the new heuristic performs for other types of stochastic-

programming models. We have therefore made the code freely available from the author’s

web page, http://work.michalkaut.net, so others can test it on their problems.
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Figure 5: CVaR model: stability results for three di�erent scenario-generation methods and

increasing number of scenarios. CVaR is on the horizontal axis, expected return

on the vertical. All values are in per cents, i.e. multiplied by 100.

Note how all the in-sample points ‘ ’ align along the vertical line CVaR = −0.2,

showing that the constraint (13d) is always active.
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