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Abstract
Background: A recent study implies that research presented
at top AI conferences is not documented well enough for the
research to be reproduced. Objective: Investigate whether the
quality of the documentation is the same for industry and
academic research or whether there exist differences. Hy-
pothesis: Industry and academic research presented at top
AI conferences is equally well documented. Method: A total
of 325 IJCAI and AAAI research papers reporting empirical
studies have been surveyed. Of these, 268 were conducted
by academia, 47 were collaborations and 10 were conducted
by the industry. A set of 16 variables, which specifies how
well the research is documented, was reviewed for each pa-
per and analyzed individually. Three reproducibility metrics
were used for assessing the documentation quality of each pa-
per. Findings: Academic research scores higher than indus-
try and collaborations between industry and academia on all
three reproducibility metrics. Academic research also scores
highest on 15 out of the 16 surveyed variables. The result is
statistically significant for three out of the 16 variables, but
none of the reproducibility metrics. Conclusion: The results
are not statistically significant, but still indicate that the hy-
pothesis probably should refuted. This is surprising as the
conferences use double blind peer-review and all research is
judged according to the same standards.

Introduction
Traditionally, AI research has been conducted by academia,
but lately there has been a shift towards the technology in-
dustry. One indication of this is the fact that leading aca-
demics, such as Geoffrey Hinton, Yann LeCun and Zoubin
Ghahramani, double as academics and industry experts. An-
other indication is the amount of industry sponsors that the
large AI conferences manage to secure. Large companies
such as Google, Intel, Tencent, Facebook, Baidu, Microsoft,
Disney, Sony, JP Morgan, Amazon, IBM and many more
line up to sponsor conferences such as AAAI, IJCAI and
ICML. Just compare IJCAI 2018 sponsors with those from
2011 or AAAI 2018 sponsors to those from 2012. There
were more sponsors in 2018, and they were to a larger de-
gree global rather than local companies. A third indication
is how much harder it has become to hire and keep qualified
people skilled in machine learning and artificial intelligence,
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as the demand for AI talent is decreasing while the supply
flattens1. Finally, some of the recent results in AI research
that have a big impact on the society – and even mass media
report on – are the result of industry research.

In theory, one could expect that this movement of the cen-
ter of gravity of AI towards industry would lead to more
secrecy and closed down AI research and that the industry
would see the methods that they develop and use as com-
petitive advantages. In practice, though, this is not the case.
The AI and machine learning software that is most com-
monly used by the community is developed by the tech gi-
ants, such as Google, Facebook and Microsoft. Examples
include PyTorch and Caffe which are developed by Face-
book, TensorFlow which is developed by Google and Cogni-
tive Toolkit which is developed by Microsoft. The software
is free of charge and even open source. The tech giants do
not only share the software they develop, they also publish
the wide variety of research they conduct at top conferences
and in journals. Topics range from deep reinforcement learn-
ing (Silver et al. 2017), machine translation (Ott et al. 2018;
Lample et al. 2018), vision to language for people who are
blind (Salisbury et al. 2018) to machines that learn and think
for themselves (Botvinick et al. 2017).

One of the main reasons that the industry is interested in
AI is because of digitization and the huge growth in data
generated by internet usage and sensors as well as the intro-
duction of methods, mainly deep neural networks, that are
capable of utilizing all the data that is owned by these com-
panies. There is a saying that data is the new oil2, and hence
a valuable asset. This could indicate that the industry is a
bit less eager to share data than software, as machine learn-
ing software to a large degree only is as good as the data it
is trained on. By sharing the software that is developed and
used internally in a company, the companies do not only be-
come thought leaders, but also prepare potential employees
to become efficient workers even before they apply for a job.
Allowing employees to publish research does not only keep
the employees happy, it is also a marketing tool. The com-
panies that publish research at top conferences are looked at

1https://spectrum.ieee.org/view-from-the-valley/at-work/tech-
careers/feeding-frenzy-for-ai-engineers-gets-more-intense

2https://www.economist.com/leaders/2017/05/06/the-worlds-
most-valuable-resource-is-no-longer-oil-but-data



as innovative and interesting companies to work for. Apple
even changed their policy on not publishing research papers
to be competitive when it comes to hiring AI and machine
learning talents according to an article by Steven Levy in
Wired3. Hence, allowing employees to publish their research
is a means for attracting top talent. Importantly, high qual-
ity research also builds the reputation of a company, which
again could be used to increase sales. So, it is clear that shar-
ing software and publishing research is advantageous while
sharing data comes at a higher risk with regards to competi-
tive advantage.

The industry research is submitted to the same tracks as
academic research, and it is judged according to the same
standards. This indicates that the quality of the documen-
tation of the research should be the same for industry and
academia. However, to maintain the edge over the competi-
tion, a strategy might be to keep some important details of
the research from the research papers that are put into the
public domain. By doing this, competitors might spend time
and resources on pondering important details when trying to
reproduce the results. Hence, it could be expected that the
quality of the industry research documentation is lower than
quality of academic research documentation, although aca-
demics also could have incentives for keeping some parts
to themselves. This begs the question of whether the em-
pirical research presented by academic and industry at the
same conferences have the same quality of documentation.
Is the quality of the documentation of AI methods presented
by academia and industry the same or are there any differ-
ences? Do industry researchers share less data? Do industry
specify the experiments and hyperparameter settings as well
as academia? Do industry share the code for the experiments
or do they only share the code implementing the AI meth-
ods?

Our objective is to investigate whether the quality of the
documentation is the same for industry and academic re-
search. Are there any differences between the experiment
documentation made by industry and academia and if so
what are these differences? We investigate the hypothesis
that empirical research presented at top AI conferences are
equally well documented whether the research is conducted
by industry or academia. Given the analysis above, our pre-
diction is that the documentation of academic research is
better than industry research. Our contribution is a compari-
son of the documentation quality of AI research presented at
four instalments of the top AI conferences IJCAI and AAAI
and a discussion of the results.

Reproducibility
According to (Gundersen and Kjensmo 2018), reproducibil-
ity in empirical AI research is the ability of an independent
research team to produce the same results using the same
AI method based on the documentation made by the origi-
nal research team. The key is that an independent research
team should produce the same results as the original team
based only on the documentation made by the original team.

3https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-
and-machine-learning-work-at-apple/

Figure 1: The three degrees of reproducibility are defined by
which documentation is used to reproduce the results.

Hence, the documentation is the enabler for the independent
team to ensure that they actually conduct the exact same ex-
periment as the original team. In AI research, the documen-
tation has three components, which are the documentation
of the AI method that the original research team has devel-
oped and want to test, the experiment description, which is
both written as text and as code, and the data that is used for
evaluating the AI method.

The grouping of the documentation allows (Gundersen
and Kjensmo 2018) to define three degrees to which the orig-
inal results can be reproduced:

R1: Experiment Reproducible The results of an experi-
ment are experiment reproducible when the execution of
the same implementation of an AI method produces the
same results when executed on the same data.

R2: Data Reproducible The results of an experiment are
data reproducible when an experiment is conducted that
executes an alternative implementation of the AI method
that produces the same results when executed on the same
data.

R3: Method Reproducible The results of an experiment
are method reproducible when the execution of an al-
ternative implementation of the AI method produces the
same results when executed on different data.

Figure 1 illustrates how the three degrees relate and which
degree requires which documentation. When an independent
research team conducts research based on a description of
the AI method, the experiment implementation and the data
provided by the original team, the results are less general-
izable than if the independent team only get the description
of the AI method from the original team and has to imple-
ment the method themselves and conduct the experiment on
different data. There is a conflict between the incentives for
the original and independent research teams, as an indepen-
dent team has higher trust in research documented at a lower
reproducibility degree while the original team would like in-
dependent researchers to reproduce the results with less doc-
umentation to prove generalizability. This conflict of interest
is discussed in more detail in (Gundersen et al. 2018).

Several definitions of reproducibility exist in the litera-
ture. (Stodden 2011) distinguishes between replication and
reproduction. Replication is seen as re-running the experi-
ment with code and data provided by the author, while re-
production is a broader term “implying both replication and
the regeneration of findings with at least some independence



from the [original] code and/or data.” (Drummond 2009)
states that replication, as the weakest form of reproducibil-
ity, can only achieve checks for fraud. Due to the inconsis-
tencies in the use of the terms replicability and reproducibil-
ity, (Goodman et al. 2016) proposes to extend reproducibil-
ity into:
Methods reproducibility: The ability to implement, as ex-

actly as possible, the experimental and computational pro-
cedures, with the same data and tools, to obtain the same
results.

Results reproducibility: The production of corroborating
results in a new study, having used the same experimental
methods.

Inferential reproducibility: The drawing of qualitatively
similar conclusions from either an independent replica-
tion of a study or a reanalysis of the original study.

Replication, as used by (Drummond 2009) and (Stodden
2011), is in line with methods reproducibility as proposed by
(Goodman et al. 2016) while reproducibility seems to entail
both results reproducibility and inferential reproducibility.
(Peng 2011) on the other hand suggests that reproducibil-
ity is on a spectrum from publication to full replication.
This view neglects that results produced by AI methods can
be reproduced using different data or different implementa-
tions. Results generated by using other implementations or
other data can lead to new interpretations, which broadens
the beliefs about the AI method, so that generalizations can
be made. Despite the disagreements in terminology, there is
a clear agreement on the fact that the reproducibility of re-
search results is not one thing, but that empirical research
can be assigned to some sort of spectrum, scale or ranking
that is decided based on the level of documentation.

The degrees proposed by (Gundersen and Kjensmo 2018)
differs from the degrees suggested by (Stodden 2011; Good-
man et al. 2016; Peng 2011) in that the degrees are based on
the different types of documentation that document a com-
puter science experiment. In this way, one can specify the
information that is required of the different types of docu-
mentation in order to enable reproducibility. This can even
be tested empirically. It also allows the research community
to discuss what needs to be documented and in the end –
maybe – agree on a specification of what needs to be docu-
mented in order for an experiment to be reproducible.

Research Method
We have conducted an observational experiment in form of
a survey of research papers in order to generate quantitative
data about the state of documentation quality of AI research.
The research papers have been reviewed, and a set of 16 vari-
ables have been manually registered. In order to compare re-
sults between papers and groups of papers, we use three re-
producibility metrics R1D, R2D, and R3D to score the doc-
umentation quality. We use the same research method and
data (with some small revisions) that were used by (Gunder-
sen and Kjensmo 2018). The revised data set and our code
for analyzing the data are shared online4.

4https://github.com/kireddo/Standing on the Feet of Giants

Table 1: Population size, sample size (with number of em-
pirical studies) and margin of error for a confidence level of
95% for the four conferences and total population.

Conference Population size Sample size MoE
IJCAI 2013 413 100 (71) 8.54%
AAAI 2014 213 100 (85) 7.15%
IJCAI 2016 551 100 (84) 8.87%
AAAI 2016 549 100 (85) 8.87 %
Total 1726 400 (325) 4.30%

Survey

In order to evaluate the hypothesis, we have surveyed a to-
tal of 400 papers where 100 papers have been selected from
each of the 2013 and 2016 instalments of the conference IJ-
CAI and from the 2014 and 2016 instalments of the con-
ference series AAAI. With an exception of 50 papers from
IJCAI 2013, all the papers have been selected randomly to
avoid any selection biases. Table 1 shows the number of ac-
cepted papers (the population size), the number of surveyed
papers (sample size) and the margin of errors for a confi-
dence level of 95% for the four conferences. We have com-
puted the margin of error as half the width of the confidence
interval, and for our study the margin of error is 4.29%.

Factors and Variables

The three types of documentation Method, Data and Exper-
iment are treated as factors that are specified by 16 different
variables. The factors and variables that are used in the anal-
ysis are presented in Table 2. For each surveyed paper, we
have registered the listed variables. All variables were regis-
tered as true (1) or false (0). When surveying the papers, we
looked for explicit mentions of some of the variables: Prob-
lem, Objective, Research method, Research questions, Hy-
pothesis and Prediction. For example, when reviewing the
variable Problem, we have looked for an explicit mention of
the problem being solved, such as “To address this problem,
we propose a novel navigation system ...” (De Weerdt et al.
2013). The reasons for this choice are discussed in (Gunder-
sen and Kjensmo 2018).

It should be noted that although both the variables and the
factors are the same as in (Gundersen and Kjensmo 2018),
we have moved three variables (hypothesis, prediction and
experiment setup) from the factor Experiment to the factor
Method. The reason for this change is based on the fact that
reproducing results only based on the factor Method requires
the experiment to be described in the textual documenta-
tion. This change affects the calculation of the reproducibil-
ity metrics.

Quantifying Reproducibility

We have defined three metrics to quantify whether an exper-
iment e is R1, R2 or R3 reproducible and to which degree.
The metrics R1D(e), R2D(e) and R3D(e) measure how
well the three factors Method, Data and Experiment, e are
documented:



Figure 2: The three factors Method, Data and Experiment and the variables that specify them.

R1D(e) =
δ1Method(e) + δ2Data(e) + δ3Exp(e)

δ1 + δ2 + δ3
(1)

R2D(e) =
δ1Method(e) + δ2Data(e)

δ1 + δ2
, (2)

R3D(e) =Method(e), (3)

where Method(e), Data(e) and Exp(e) are the weighted
sums of the truth values of the variables listed under the three
factors Method, Data and Experiment. The weights of the
factors are δ1, δ2 and δ3 respectively. This means that the
value for Data(e) for experiment e is the summation of the
truth values for whether the training, validation, and test data
sets as well as the results are shared for e. It is of course also
possible to give different weights to each variable of a factor.
We use a uniform weight for all variables and factors for
our survey, δi = 1. For an experiment e1 that has published
the training data and test data, but not the validation set and
the results Data(e1) = 0.5. Note that some papers have no
value for the training and validation sets if the experiment
does not require either. For these papers, the δi weight is set
to 0.

Results
We have investigated how academic research compares to
industry and collaborations between academia and industry.
A total of 325 papers documenting empirical research was
surveyed. Out of these, 268 documented research conducted
by authors with academic affiliations, 10 were done by au-
thors from industry alone and 47 were collaborations where

Figure 3: Of the 325 empirical papers that were surveyed,
265 of them were written by researchers from academia
only, 47 were collaborations by academia and industry and
10 had authors from industry alone.

some authors were from academia and some from industry,
see Figure 3. As only 10 of the 325 papers were from in-
dustry, the errors in our analysis are high and the results are
highly uncertain.

To reduce the uncertainty in the results, we grouped in-
dustry and collaborations in a group we called C+I. We in-
terpret this group to represent the research in which indus-



try has partaken. This group include all collaborations be-
tween academia and non-academic entities of which private
research institutions, such as Allen Institute for AI, govern-
ment institutions, such as NY State Department of Health,
and industry, such as IBM and Microsoft, are examples of.
Only eight of the papers in the collaboration group are from
collaborations between private research and government in-
stitutions. In our study, we present the results from collab-
oration studies and industry studies as well, despite small
sample sizes.

Variables
Table 2 presents the mean values for the eight variables com-
prising the factor Method for each group of papers. Industry
scores highest on the variables Problem description, Goal
and Experiment setup, while the combination (C+I) of col-
laborations and industry have the same score as academic
for Problem description. Academic research scores higher
than industry, collaboration and the combination for Re-
search method, Research question, Pseudo code and Predic-
tion. None of these results are statistically significant. Aca-
demic research also scores highest on Hypothesis, and this
is statistically significant.

Table 3 presents the mean values for the four variables
comprising the factor Data for each of the groups of papers.
Academic research has the highest score for Training data.
The result for this variable is statistically significant when
compared to industry and the combination. Academia also
has the highest score for Validation data and Test data as
well, but these results are not statistically significant. Indus-
try has the highest score for Results, and C+I has lower score
than academic. None of these findings are statistically sig-
nificant.

Table 4 presents the mean values for the four variables
comprising the factor Experiment for each of the groups
of papers. Academic research scores highest on Hardware
specification, and this result is statistically significant when
compared to C+I. Industry has the best score on Method
code, Experiment code and Software dependencies. How-
ever, the confidence is low as the error is very high. The
scores for C+I are lower for all these variables when com-
paring to academic research.

Factors
Figure 4 shows three spider plots of the mean for the vari-
ables of each of the three factors for all the surveyed empiri-
cal research, while Figure 5 shows the same for the combina-
tion (C+I) and academic research. When comparing the out-
line of the spider plots for academia and all, one can see that
they have very similar forms. This is no surprise as academic
research comprises 81.5% of all papers. Figure 5 shows that
academic research have higher or equal scores on all vari-
ables for the factors Method, Data and Experiment as the
plots fully envelop the plots for the combined collaboration
and industry research.

An observation is that most of the scores are quite low.
The only variables scoring higher than 50% are Pseudo code,
Experiment setup and Training data. Pseudo code is very
good for conveying an AI method in a concise way, so this is

very positive. The fact that 56% of the research papers share
the training data is also very positive. Experiment setup is
the highest scoring variable with a score of almost 70%.
However, we have not checked whether the experiment can
be reproduced based on the description of the experiment
setup, so the descriptions of the experiments might not be
complete.

Table 5 shows mean and median for the three factors
grouped on research affiliations. The mean values indicate
that the factor Experiment are documented at the same level
as Data and that Method is documented significantly bet-
ter for all the surveyed studies. However, the median values
of the factors differ widely with Experiment and Data on
one side and Method on the other, as the median value for
Method is 0.25 while it is 0.00 for the other two. Hence, the
distribution is positively skewed for Experiment and Data
and almost symmetric for Method. It should be noted that the
median values, surprisingly, are the same for all groups. The
factor Method is on average best documented. This observa-
tion is supported by both mean and median values. Accord-
ing to the mean values, academic research is documented
better than industry, collaborations and the combined group
of collaborations and industry research. For the factor Ex-
periment, the result when comparing academic and the com-
bination between industry and collaborations is statistically
significant.

Figure 6 shows one bar chart for each of the three factors.
The y-axis of the bar charts is the frequency and the x-axis
represents the mean value of the variables for each of the
factors. The bar chart is not stacked so the frequency count
starts at zero for all of them. Let us explain how to interpret
the bar charts by looking at the bar chart for the factor Data.

The x-axis of the bar charts ranges from 0 to 1, and this
range has been divided into five equally sized partitions, that
is, one partition for each variable that the factor is com-
prised of and one partition for those papers that have doc-
umented none of the variables. As part of the survey, ev-
ery paper has been scored on each of the four variables that
comprises Data. This means that a paper that has only doc-
umented one of the four data variables will have a mean for
the factor Experiment of 0.25. Hence, it will be put into the
group [0.20, 0.40), and thus increase the frequency of this
group with one. If a paper has documented all of the vari-
ables, the mean for the factor will be 1 and the paper will
be put into the partition [0.8, 1.0]. The bar charts allows us
to understand the distribution of the mean of the factors for
all the papers that have been surveyed. As can be seen, the
distributions are similar for all, academic and C+I papers. A
total of 203 papers have not documented any of the variables
for Experiment while 167 have not documented any of the
variables of Data. Only 18 papers have not documented any
of the variables of Method.

Reproducibility metrics
Table 6 presents the mean and median scores for each of
the three reproducibility metrics, R1D, R2D and R3D. Aca-
demic research has the highest scores for all the three repro-
ducibility metrics. Compared to C+I and collaborations, in-
dustry scores higher on R1D and R3D, but the confidence of



Table 2: The 95% confidence interval for the mean of all variables of the factor Method for the different types of papers.
ε = 1.96σx̄ and σx̄ = σ̂√

N
.

Type Probl. desc. Goal Res. meth. Res. ques. Pseudo code Hypothesis Prediction Exp. setup
All 0.47± 0.05 0.22± 0.05 0.02± 0.01 0.06± 0.02 0.54± 0.05 0.05± 0.02 0.01± 0.01 0.69± 0.05
Academic 0.47± 0.06 0.22± 0.05 0.02± 0.02 0.06± 0.03 0.57± 0.06 0.06± 0.03 0.01± 0.01 0.69± 0.06
Collab. 0.45± 0.14 0.19± 0.11 0.00± 0.00 0.04± 0.06 0.46± 0.14 0.00± 0.00 0.00± 0.00 0.62± 0.14
Industry 0.60± 0.32 0.30± 0.30 0.00± 0.00 0.00± 0.00 0.20± 0.26 0.00± 0.00 0.00± 0.00 0.80± 0.26
C+I 0.47± 0.13 0.21± 0.11 0.00± 0.00 0.04± 0.05 0.42± 0.13 0.00± 0.00 0.00± 0.00 0.65± 0.12

Table 3: The 95% confidence interval for the mean of all variables of the factor Data for the different types of papers. ε = 1.96σx̄
and σx̄ = σ̂√

N
.

Type of paper Train Validation Test Results
All 0.56± 0.05 0.16± 0.04 0.30± 0.05 0.04± 0.02
Academic 0.61± 0.06 0.18± 0.05 0.31± 0.06 0.04± 0.02
Collaboration 0.44± 0.14 0.12± 0.09 0.28± 0.13 0.00± 0.00
Industry 0.22± 0.27 0.00± 0.00 0.20± 0.26 0.10± 0.20
C+I 0.40± 0.13 0.10± 0.08 0.26± 0.12 0.02± 0.03

the industry scores are low. None of these results are statis-
tically significant. The median of R1D for C+I and industry
are lower than for academic research while the median for
R2D and R3D are the same for C+I and academic research.

In Figure 7, the frequency of papers is plotted against re-
producibility metric scores for each group of papers. The
reproducibility metric scores are divided into five equally
sized partitions of 0.2. The bar chart is not stacked. When
it comes to the three metrics, the distribution is very similar
for all, academic and C+I. For both R1D and R2D metrics,
both academic and C+I have most papers in the lowest range
and then fewer and fewer for the following partitions. Only
academic research is represented in the highest partitions.
The R3D distribution differs with most papers in the [2, 4)
range. There are no C+I papers in the range [0.6, 1.0] while
there are a few academic papers in the [0.6, 0.8) range and
none in the [0.8, 1.0] range.

Figure 8 shows three scatter plots. Academic papers are
plotted to the left, C+I papers are plotted in the middle and
both groups are plotted in the same chart to the right. For
each paper, a dot is plotted with its R1D score on the x-axis
and the R2D score on the y-axis. The size of each dot is
scaled according to the R3D score for that paper. Academic
papers are plotted in red while C+I papers are blue. The dots
are transparent, so that the color becomes less transparent for
each dot that is drawn on top of each other. This plot allows
us to see the distribution of individual papers and see how
the three reproducibility metrics relate. As R3D ⊂ R2D ⊂
R1D, generally, papers with a high R1D score will have a
high R2D score and R3D score and papers with a high R2D
score will have a high R3D score. High R3D score does not
correlate with high scores on R1D and R2D, as high scoring
R3D papers are spread all over the area covered by R1D
and R2D. The spread of the C+I papers is smaller than for
academic papers, meaning that the variability of academic
papers is higher. All the highest scoring papers at the top
right corner are academic papers. While both groups have
the highest concentration at the lower scores, there are more

dark-colored dots at higher scores for academic papers. It
should be noted that 18 of the papers have 0.0 score on the
R3D metric, which means that they vanish from the plot as
they have no area.

Discussion
The results, although not statistically significant, paint a
clear picture: the quality of research conducted by indus-
try is lower than the research conducted by academia. Given
the assumption that it would be harder to reproduce research
results that are poorly documented than results that are well
documented, it would he easier to reproduce results from
academia than from the C+I group. Out of the 16 variables
that the survey covered, the academic papers have higher
scores on 15 variables when compared to the C+I. The vari-
able Problem description has the same score for academic
and C+I. This means that academia scores better on 94% of
the variables. Also, academia scores better on all three fac-
tors as well as the mean of the reproducibility metrics. The
median is the same for academia and C+I on all the repro-
ducibility metrics. To be fair, there is still much to desire
when it comes to documentation quality of AI research ac-
cepted at the top conferences – whether the research is pre-
sented by academic researchers, collaborations or industry
researchers.

Do academia share more of the data than industry? The
answer is yes, Academia scores higher than the C+I group
for all the four variables describing the Data factor. The re-
sults, however, are not statistically significant, except for the
variable training data. The scores for data sharing are rela-
tively high though. Academia shares the training data in over
60% of the papers while this is true for 40% of the papers in
the C+I group

Academia shared more code than industry as well, both
method code (9% vs 5%) and experiment code (6% vs. 5%)
Industry share the same amount of code whether it is for
setting up the experiment or the code that implements the
AI method. Academia share more AI method code than the



Table 4: The 95% confidence interval for the mean of all variables of the factor Experiment for the different types of papers.
ε = 1.96σx̄ and σx̄ = σ̂√

N
.
Type of paper Method code Exp. code HW spec. SW dependencies
All 0.08± 0.03 0.06± 0.02 0.27± 0.05 0.16± 0.04
Academic 0.09± 0.03 0.06± 0.03 0.30± 0.06 0.18± 0.05
Collaboration 0.04± 0.06 0.04± 0.06 0.13± 0.10 0.04± 0.07
Industry 0.10± 0.20 0.10± 0.20 0.20± 0.26 0.20± 0.26
C+I 0.05± 0.06 0.05± 0.06 0.14± 0.09 0.07± 0.07
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Figure 4: Spider plots showing the variables of the three factors Method, Data and Experiment for all empirical papers.

code used for setting up the experiment.
One of the questions we asked in the introduction was

whether one could expect industry to more easily share code
than data. The premise is that data holds the most value as
it is used to generate machine learning models. Without the
data, the value of the model is low. This is refuted. Interest-
ingly, the difference between data sharing and code sharing
for industry is large (40% vs 5%). How can this be so? Does
this indicate that industry value the code used for running
the experiments higher than the data? Is the code used when
conducting the experiments code that will be used in pro-
duction? This does not sound right. Typically, experiment
code is used for prototyping. Different code that has been
through proper quality assurance is typically deployed, es-
pecially for large companies. Startups might not follow this
practice for obvious reasons. Is there something else that lies
behind? Could it be that industry is less willing to spend
time on maintaining the code or answer questions related to
it than what academia is? Do industry have higher expec-
tations for code quality than what academia has and do not
want to share the code because of this? Or could it be that
the code specifies the hyperparameters and other experiment
settings, and hence renders the complete experiment trans-
parent?

Why are industry researchers eight times more willing to
share data than code? Is the data shared not that valuable for
industry? Do industry share data that are relevant for proving
their methods, but has little value to competitors? Do indus-
try use open data shared by others to prove their methods
and in this way share nothing – not the code and not their
own data? We have not investigated these questions in our
study.

Hyperparameters could be documented both as part of the

experiment code and in the experiment description where the
setup is explained. While the experiment code is not shared
to a large degree (only 5% for C+I), the experiment setup
is described for 63% of the papers in the C+I group. The
result for experiment setup is higher for academia though, at
70%, but compared to the other variables this is a very good
result. We have not checked in detail whether all settings
actually have been shared. Hence, one could imagine that
some variables are described in detail, but not all, so that
companies appear to be sharing, but are really not, as the
experiment setup code is not shared.

All research presented at the top AI conferences is judged
according to the same standards. There is a double-blind
peer review process where reviewers do not know who the
authors are nor their affiliations. Hence, one should expect
that there generally would be no differences in the documen-
tation quality when comparing academic research and re-
search that industry is involved in. The fact that there seems
to be a pattern of research conducted by academia being
documented better than industry research is intriguing. How
come the AI research community is not able to hold indus-
try research to the same standard as academic research in a
double-blind peer review process?

Out of the 57 surveyed papers in the C+I group 32 involve
the tech giants Microsoft, IBM, Didi, Baidu and Facebook
(see Figure 9). This means that these five companies are in
part responsible for 56% of the surveyed papers that involve
industry and that Microsoft and IBM alone stands for 49%.
One could interpret the tech giants or the researchers that
publish at the top AI conferences as the giants. No matter
what, we – the AI research community – are not standing on
their shoulders. Given the documentation quality of the sur-
veyed papers, it is more like we are standing on each other’s
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Figure 5: Spider plots showing the variables of the three factors Method, Data and Experiment for the academic and combined
collaboration and industry papers.

Table 5: Mean and median values for the factors Experiment, Data and Method grouped for the different groups of affiliations.
Metric All Academic Collab Industry C+I
Mean Exp 0.14± 0.02 0.16± 0.03 0.06± 0.04 0.15± 0.13 0.08± 0.04
Mean Data 0.19± 0.03 0.19± 0.03 0.17± 0.06 0.12± 0.15 0.16± 0.06
Mean Method 0.26± 0.01 0.26± 0.02 0.22± 0.04 0.24± 0.08 0.22± 0.03
Median Exp 0.00 0.00 0.00 0.00 0.00
Median Data 0.00 0.00 0.00 0.00 0.00
Median Method 0.25 0.25 0.25 0.25 0.25

feet. The key is to improve the documentation of course.
What are the barriers that impede us?

Barriers to Reproducibility
Most results in AI and machine learning research could be
made reproducible, as they are conducted on computers.
Still, as follows from our study, most results seem not to
be. Why is this so? We have identified some barriers for in-
dividual researchers:

Time consuming: Conducting research that is reproducible
is time-consuming. It takes time to document research
properly, make code and data ready for sharing and share
them. If the research is successful, other researchers want
to actually try to use the data and code. They might ask
questions regarding the research, code and data that take
time to answer. Hence, it is not enough to share code and
data. Typically, some type of maintenance (if errors are
found) and support are required. The time and effort of
conducting research is increased, but not only before pre-
senting it. Time and effort are required even after the re-
sults are presented.

No incentives: Currently, there are few if any incentives for
researchers to make their research reproducible. Publish-
ers do not require that the research they publish is repro-
ducible and neither do grant makers. Also, whether re-
search is reproducible is most often not a part of evaluat-
ing candidates for research positions, such as professor-
ships. So, why bother when it takes requires extra effort
and is time consuming?

Risk future work: Sharing of data, code and detailed ex-
periment procedures will enable independent researchers

to quickly build on the published research. This might
risk future research of the original researchers, and hence
jeopardize possible new publications.

Given that most researchers are evaluated based on the
number of research papers published in journals and pre-
sented at conferences, reducing the time it takes to publish
papers is important. Therefore, cutting corners and avoiding
giving away advantages are rational actions.

How to Overcome the Barriers
What can be done to mitigate the effects of these barriers?

Build infrastructure: The time required for extra work re-
lated to making research reproducible could be reduced,
although probably not completely removed, by building
public infrastructure for experiment descriptions, data, re-
sults, and code. A lot of work already is done; see for
example (Gundersen et al. 2018). More work is required
though.

Provide infrastructure: Publishers should provide infras-
tructure for data and code in addition to the infrastructure
that is provided for publishing and sharing papers. Univer-
sities and other research institutions could provide infras-
tructure for sharing data and code maintained by their own
staff. Grant makers could provide the infrastructure for the
research they fund. In the era of open science, where pub-
lishers fear the competition of open journals, they could
provide more than they used to and in this way meet the
competition.

Eligibility requirements: Public funding sources could de-
mand that the research that is conducted by their funding
is accessible to the public. Hence, only researchers that
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Figure 6: The three bar charts show the frequency distribution for all papers plotted against the mean value for the three factors
Experiment, Data and Method (left to right).

Table 6: Metrics for the 325 papers reporting empirical research grouped by affiliation.
Metric All Academic Collab Industry C+I
Mean R1D 0.20± 0.01 0.20± 0.02 0.15± 0.03 0.17± 0.07 0.15± 0.03
Mean R2D 0.22± 0.01 0.23± 0.02 0.20± 0.03 0.18± 0.09 0.19± 0.03
Mean R3D 0.26± 0.01 0.26± 0.02 0.22± 0.04 0.24± 0.08 0.22± 0.03
Median R1D 0.17 0.17 0.17 0.13 0.13
Median R2D 0.19 0.19 0.19 0.16 0.19
Median R3D 0.25 0.25 0.25 0.25 0.25

agree to produce reproducible results by sharing code and
data could be made eligible for receiving grants and fund-
ing. There are of course many issues with such a require-
ment, as data cannot be shared in many cases because of
privacy issues and issues related to disclosing intellectual
property. A possibility is to reserve parts of the available
funding to applicants that agree to share everything. An-
other possibility is to adjust funding according to how
much is shared.

Reward sharing: When evaluating researchers for profes-
sorships or other research positions, the criteria could be
expanded to include data sets and research software that
have been published, as well as the quantity of research
papers and quality of the journals in which they have
been published. This is easier if the data sets and code
are citable.

Reward reproducibility: As reproducibility of research is
a corner stone of science, reproducibility should be re-
warded in the review process and when assessing for sci-
entific positions.

When it comes to reproducibility, academia could actu-
ally learn from industry - not necessarily from industry re-
search practices, but from the software engineering practices
that the industry follows. Software engineers focus on build-
ing quality software and continuously evaluating its perfor-
mance. Software development methodologies including ag-
ile, such as Scrum and Kanban, test driven development and

code reviews have been developed to help increase the qual-
ity of the software. The reason is that the performance of the
software is directly related to how well the companies per-
form (and hence the earnings!), so reproducibility is a key
concern together with proper performance evaluation. For
companies that develop AI and machine learning software,
this diligence in evaluating software extends to the AI and
machine learning software. Versioning of code and data is
required to ensure the capability of monitoring performance
over time.

In science, reproducibility is key for ensuring that our be-
liefs regarding a concept, such as an AI program, are correct.
It is through building and organizing the set of these beliefs
that we expand our knowledge. As scientists, we should op-
timize for advancing knowledge. Therefore we should en-
sure that our results are correct, which means that we must
be able to reproduce our own results while enabling indepen-
dent researchers to do the same. As discussed above, the in-
centives for individual scientists are not necessarily aligned
for this right now, and we need an open discussion on what
can be changed to get there.

For companies, maintaining a competitive advantage is
important and sharing could enable competitors to close
the gap. Hence, all openness can be considered a net win
for the AI research community. The fact that companies
share methods, code and data should be applauded. How-
ever, given that there is a divide in documentation qual-
ity between industry and academia, how could we reduce
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Figure 7: The three bar charts shows the frequency of the reproducibility metric scores (R1D, R2D and R3D respectively) for
all papers, academic papers and papers that are either collaborations or industry, C+I.
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Figure 8: Individual academic papers (red) and C+I papers (blue) are plotted as dots in scatter plots, separately and together,
where the axes and sizes of the dots are individual papers’ scores on R1D, R2D and R3D reproducibility metrics.
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Figure 9: The tech giants Microsoft, IBM, Baidu, Didi and
Facebook published 32 of 57 papers in the group C+I. The
total number of companies does not add to 57, as some pa-
pers are have authors from more than one company.

or remove this gap? Based on what we know about repro-
ducibility, should we make more detailed check-lists for

peer-review that have check-boxes for whether the problem
is described well enough, whether a hypothesis is stated or
the code and data are shared?

If so, it will become clear what is expected from an IJ-
CAI or AAAI paper and that reproducibility is important
for getting one accepted. Extending the acceptance crite-
ria to include items related to reproducibility and making
them explicit might help reduce the gap between industry
and academia. However, if industry is required to share code
or data, they might stop presenting their results at the con-
ferences and journals that introduce such criteria. This is not
a desired situation, so we should avoid it. Could we have
authors register their research as R1, R2 or R3 reproducible
research, so that it is clear what information the papers con-
tain? This would require researchers to become aware of the
documentation quality of their research – if they are not al-
ready. Also, one could imagine that a percentage of all ac-
cepted research is set for how much of the research could
be R3 or R2 reproducible. Then, industry or any other re-
searchers that would or could not share everything, could
publish as much as they are able to. This would arguably
make it harder to get the research accepted, so the incentives
are to share.



In order to increase reproducibility of AI research, the cul-
ture must change.The high impact conferences and journals
have the power to make this change together with the grant
makers that funding research. Although low impact confer-
ences and journals could see the need for reproducibility as
an opportunity to get higher impact, they are afraid to scare
researchers away from them .

Increased Interest in Reproducibility
In this survey, we have analyzed papers presented at IJCAI
and AAAI between 2012 and 2016. However, over the last
few years, the AI and machine learning communities have
shown increased interest in reproducible research. A few
workshops were organized before 2016, such as the Work-
shop on Replicability and Reusability in Natural Language
Processing: From Data to Software Sharing5 at IJCAI in
2015, that had a focus or partial focus on reproducibility.
In 2017, the workshop Reproducibility in Machine Learn-
ing Research6 was organized at the International Confer-
ence on Machine Learning (ICML 2017), and the work-
shop Enabling Reproducibility in Machine Learning ML-
Train@RML7 was held at ICML 2018. The Reproducibility
Challenge was organized at the International Conference on
Learning Representation (ICLR 2018)8. We organized the
AAAI 2019 workshop on Reproducibility in AI9 where the
participants discussed how to improve the reproducibility of
papers published by AAAI. At AAAI 2017 the tutorial Learn
to Write a Scientific Paper of the Future: Reproducible Re-
search, Open Science, and Digital Scholarship was given.

This increased interest has resulted in several very inter-
esting and relevant papers, of which a few are mentioned
here. (Sculley et al. 2018) discuss empirical rigour and
stresses its importance for work that presents “methods that
yield impressive empirical results, but are difficult to ana-
lyze theoretically.” (Mannarswamy and Roy 2018) suggest
that we need to build AI software that can perform the veri-
fication task given a research paper that presents a technique
and details on where to find the code and the data used in the
paper. This could help mitigate the workload of reproducing
research results. Exactly such a tool is presented by (Sethi
et al. 2018) who has made software that auto-generates code
from deep learning papers with a 93% accuracy. (Henderson
et al. 2018) show that “both intrinsic (e.g. random seeds,
environment properties) and extrinsic sources (e.g. hyperpa-
rameters, codebases) of non-determinism can contribute to
difficulties in reproducing baseline algorithms.”

Conclusion
We are not standing on each other’s shoulders. It is more
like we are standing on each other’s feet. The quality of doc-

5http://nl.ijs.si/rrnlp2015/
6https://sites.google.com/view/icml-reproducibility-

workshop/home?authuser=0
7https://mltrain.cc/events/enabling-reproducibility-in-machine-

learning-mltrainrml-icml-2018/
8https://www.cs.mcgill.ca/ jpineau/ICLR2018-

ReproducibilityChallenge.html
9https://w3id.org/rai

umentation of empirical AI research must clearly improve.
Our findings indicate that the hypothesis that industry and

academic research presented at top AI conferences is equally
well documented is not supported. Academic research score
higher on the three reproducibility metrics than research to
which industry has contributed. Academia also scores higher
on all three factors, but these results are not statistically sig-
nificant. Furthermore, academic research score higher than
the research industry is involved in on 15 out of the 16 sur-
veyed variables while the two groups score the same on the
last variable. The result is statistically significant for only
three of the variables investigated. The difference in docu-
mentation quality between industry and academia is surpris-
ing as the conferences use double blind peer-review and all
research is judged according to the same standards.

We discussed three barriers for individual researchers to
make research reproducible: it is time consuming, there are
no incentives and future work is put at risk. Some sugges-
tions for how to overcome these barriers were made: infras-
tructure that reduce the time and effort of making research
should be built and provided to researchers, funding sources
could start demanding researchers to make the research con-
ducted using the funding reproducible, sharing of code and
data should be rewarded and so should making the research
reproducible be. Some ideas for why there is a discrepancy
between academia and industry in documentation quality
were also discussed. The industry has many incentives to
not share data or code, as both can be used by competitors
to reduce the competitive advantages.

This study suggests that industry researchers are eight
times more willing to share data than code. Why this is the
case is not clear. One reason could be that the data that is
shared is already open data. Investigating this is potential
future work as well as finding out how to ensure that indus-
try and academic research accepted at the same conference
has the same quality of documentation.
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