Standing on the Feet of Giants - Reproducibility in AI

Odd Erik Gundersen
Norwegian Open AI Lab
Department of Computer Science
Norwegian University of Science and Technology

Abstract

Background: A recent study implies that research presented at top AI conferences is not documented well enough for the research to be reproduced. Objective: Investigate whether the quality of the documentation is the same for industry and academic research or whether there exist differences. Hypothesis: Industry and academic research presented at top AI conferences is equally well documented. Method: A total of 325 IJCAI and AAAI research papers reporting empirical studies have been surveyed. Of these, 268 were conducted by academia, 47 were collaborations and 10 were conducted by the industry. A set of 16 variables, which specifies how well the research is documented, was reviewed for each paper and analyzed individually. Three reproducibility metrics were used for assessing the documentation quality of each paper. Findings: Academic research scores higher than industry and collaborations between industry and academia on all three reproducibility metrics. Academic research also scores highest on 15 out of the 16 surveyed variables. The result is statistically significant for three out of the 16 variables, but none of the reproducibility metrics. Conclusion: The results are not statistically significant, but still indicate that the hypothesis probably should be refuted. This is surprising as the conferences use double blind peer-review and all research is judged according to the same standards.

Introduction

Traditionally, AI research has been conducted by academia, but lately there has been a shift towards the technology industry. One indication of this is the fact that leading academics, such as Geoffrey Hinton, Yann LeCun and Zoubin Ghahramani, double as academics and industry experts. Another indication is the amount of industry sponsors that the large AI conferences manage to secure. Large companies such as Google, Intel, Tencent, Facebook, Baidu, Microsoft, Disney, Sony, JP Morgan, Amazon, IBM and many more line up to sponsor conferences such as AAAI, IJCAI and ICML. Just compare IJCAI 2018 sponsors with those from 2011 or AAAI 2018 sponsors to those from 2012. There were more sponsors in 2018, and they were to a larger degree global rather than local companies. A third indication is how much harder it has become to hire and keep qualified people skilled in machine learning and artificial intelligence, as the demand for AI talent is decreasing while the supply flattens\(^1\). Finally, some of the recent results in AI research that have had a big impact on the society – and even mass media report on – are the result of industry research.

In theory, one could expect that this movement of the center of gravity of AI towards industry would lead to more secrecy and closed down AI research and that the industry would see the methods that they develop and use as competitive advantages. In practice, though, this is not the case. The AI and machine learning software that is most commonly used by the community is developed by the tech giants, such as Google, Facebook and Microsoft. Examples include PyTorch and Caffe which are developed by Facebook, TensorFlow which is developed by Google and Cognitive Toolkit which is developed by Microsoft. The software is free of charge and even open source. The tech giants do not only share the software they develop, they also publish the wide variety of research they conduct at top conferences and in journals. Topics range from deep reinforcement learning (Silver \textit{et al.} 2017), machine translation (Ott \textit{et al.} 2018; Lample \textit{et al.} 2018), vision to language for people who are blind (Salisbury \textit{et al.} 2018) to machines that learn and think for themselves (Botvinick \textit{et al.} 2017).

One of the main reasons that the industry is interested in AI is because of digitization and the huge growth in data generated by internet usage and sensors as well as the introduction of methods, mainly deep neural networks, that are capable of utilizing all the data that is owned by these companies. There is a saying that data is the new oil\(^2\), and hence a valuable asset. This could indicate that the industry is a bit less eager to share data than software, as machine learning software to a large degree only is as good as the data it is trained on. By sharing the software that is developed and used internally in a company, the companies do not only become thought leaders, but also prepare potential employees to become efficient workers even before they apply for a job. Allowing employees to publish research does not only keep the employees happy, it is also a marketing tool. The companies that publish research at top conferences are looked at

\(^1\)https://spectrum.ieee.org/view-from-the-valley/at-work/tech-careers/feeding-frenzy-for-ai-engineers-gets-more-intense

\(^2\)https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
as innovative and interesting companies to work for. Apple even changed their policy on not publishing research papers to be competitive when it comes to hiring AI and machine learning talents according to an article by Steven Levy in Wired. Hence, allowing employees to publish their research is a means for attracting top talent. Importantly, high quality research also builds the reputation of a company, which again could be used to increase sales. So, it is clear that sharing software and publishing research is advantageous while sharing data comes at a higher risk with regards to competitive advantage.

The industry research is submitted to the same tracks as academic research, and it is judged according to the same standards. This indicates that the quality of the documentation of the research should be the same for industry and academia. However, to maintain the edge over the competition, a strategy might be to keep some important details of the research from the research papers that are put into the public domain. By doing this, competitors might spend time and resources on pondering important details when trying to reproduce the results. Hence, it could be expected that the quality of the industry research documentation is lower than quality of academic research documentation, although academics also could have incentives for keeping some parts to themselves. This begs the question of whether the empirical research presented by academic and industry at the same conferences have the same quality of documentation. Is the quality of the documentation of AI methods presented by academia and industry the same or are there any differences? Do industry researchers share less data? Do industry specify the experiments and hyperparameter settings as well as academia? Do industry share the code for the experiments or do they only share the code implementing the AI methods?

Our objective is to investigate whether the quality of the documentation is the same for industry and academic research. Are there any differences between the experiment documentation made by industry and academia and if so what are these differences? We investigate the hypothesis that empirical research presented at top AI conferences are equally well documented whether the research is conducted by industry or academia. Given the analysis above, our prediction is that the documentation of academic research is better than industry research. Our contribution is a comparison of the documentation quality of AI research presented at four instalments of the top AI conferences IJCAI and AAAI and a discussion of the results.

Reproducibility

According to (Gundersen and Kjensmo 2018), reproducibility in empirical AI research is the ability of an independent research team to produce the same results using the same AI method based on the documentation made by the original research team. The key is that an independent research team should produce the same results as the original team based only on the documentation made by the original team.

Figure 1: The three degrees of reproducibility are defined by which documentation is used to reproduce the results.

Hence, the documentation is the enabler for the independent team to ensure that they actually conduct the exact same experiment as the original team. In AI research, the documentation has three components, which are the documentation of the AI method that the original research team has developed and want to test, the experiment description, which is both written as text and as code, and the data that is used for evaluating the AI method.

The grouping of the documentation allows (Gundersen and Kjensmo 2018) to define three degrees to which the original results can be reproduced:

R1: Experiment Reproducible The results of an experiment are experiment reproducible when the execution of the same implementation of an AI method produces the same results when executed on the same data.

R2: Data Reproducible The results of an experiment are data reproducible when an experiment is conducted that executes an alternative implementation of the AI method that produces the same results when executed on the same data.

R3: Method Reproducible The results of an experiment are method reproducible when the execution of an alternative implementation of the AI method produces the same results when executed on different data.

Figure 1 illustrates how the three degrees relate and which degree requires which documentation. When an independent research team conducts research based on a description of the AI method, the experiment implementation and the data provided by the original team, the results are less generalizable than if the independent team only get the description of the AI method from the original team and has to implement the method themselves and conduct the experiment on different data. There is a conflict between the incentives for the original and independent research teams, as an independent team has higher trust in research documented at a lower reproducibility degree while the original team would like independent researchers to reproduce the results with less documentation to prove generalizability. This conflict of interest is discussed in more detail in (Gundersen et al. 2018).

Several definitions of reproducibility exist in the literature. (Stodden 2011) distinguishes between replication and reproduction. Replication is seen as re-running the experiment with code and data provided by the author, while reproduction is a broader term implying both replication and the regeneration of findings with at least some independence.
“from the [original] code and/or data.” (Drummond 2009) states that replication, as the weakest form of reproducibility, can only achieve checks for fraud. Due to the inconsistencies in the use of the terms replicability and reproducibility, (Goodman et al. 2016) proposes to extend reproducibility into:

Methods reproducibility: The ability to implement, as exactly as possible, the experimental and computational procedures, with the same data and tools, to obtain the same results.

Results reproducibility: The production of corroborating results in a new study, having used the same experimental methods.

Inferential reproducibility: The drawing of qualitatively similar conclusions from either an independent replication of a study or a reanalysis of the original study.

Replication, as used by (Drummond 2009) and (Stodden 2011), is in line with methods reproducibility as proposed by (Goodman et al. 2016) while reproducibility seems to entail both results reproducibility and inferential reproducibility. (Peng 2011) on the other hand suggests that reproducibility is on a spectrum from publication to full replication. This view neglects that results produced by AI methods can be reproduced using different data or different implementations. Results generated by using other implementations or other data can lead to new interpretations, which broadens the beliefs about the AI method, so that generalizations can be made. Despite the disagreements in terminology, there is a clear agreement on the fact that the reproducibility of research results is not one thing, but that empirical research can be assigned to some sort of spectrum, scale or ranking that is decided based on the level of documentation.

The degrees proposed by (Gundersen and Kjensmo 2018) differs from the degrees suggested by (Stodden 2011; Goodman et al. 2016; Peng 2011) in that the degrees are based on the different types of documentation that document a computer science experiment. In this way, one can specify the information that is required of the different types of documentation in order to enable reproducibility. This can even be tested empirically. It also allows the research community to discuss what needs to be documented and in the end – maybe – agree on a specification of what needs to be documented in order for an experiment to be reproducible.

Research Method

We have conducted an observational experiment in form of a survey of research papers in order to generate quantitative data about the state of documentation quality of AI research. The research papers have been reviewed, and a set of 16 variables have been manually registered. In order to compare results between papers and groups of papers, we use three reproducibility metrics R1D, R2D, and R3D to score the documentation quality. We use the same research method and data (with some small revisions) that were used by (Gundersen and Kjensmo 2018). The revised data set and our code for analyzing the data are shared online.

<table>
<thead>
<tr>
<th>Conference</th>
<th>Population size</th>
<th>Sample size</th>
<th>MoE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJCAI 2013</td>
<td>413</td>
<td>100 (71)</td>
<td>8.54%</td>
</tr>
<tr>
<td>AAAI 2014</td>
<td>213</td>
<td>100 (85)</td>
<td>7.15%</td>
</tr>
<tr>
<td>IJCAI 2016</td>
<td>551</td>
<td>100 (84)</td>
<td>8.87%</td>
</tr>
<tr>
<td>AAAI 2016</td>
<td>549</td>
<td>100 (85)</td>
<td>8.87%</td>
</tr>
<tr>
<td>Total</td>
<td>1726</td>
<td>400 (325)</td>
<td>4.30%</td>
</tr>
</tbody>
</table>

Survey

In order to evaluate the hypothesis, we have surveyed a total of 400 papers where 100 papers have been selected from each of the 2013 and 2016 instalments of the conference IJCAI and from the 2014 and 2016 instalments of the conference series AAAI. With an exception of 50 papers from IJCAI 2013, all the papers have been selected randomly to avoid any selection biases. Table 1 shows the number of accepted papers (the population size), the number of surveyed papers (sample size) and the margin of errors for a confidence level of 95% for the four conferences. We have computed the margin of error as half the width of the confidence interval, and for our study the margin of error is 4.29%.

Factors and Variables

The three types of documentation Method, Data and Experiment are treated as factors that are specified by 16 different variables. The factors and variables that are used in the analysis are presented in Table 2. For each surveyed paper, we have registered the listed variables. All variables were registered as true (1) or false (0). When surveying the papers, we looked for explicit mentions of some of the variables: Problem, Objective, Research method, Research questions, Hypothesis and Prediction. For example, when reviewing the variable Problem, we have looked for an explicit mention of the problem being solved, such as “To address this problem, we propose a novel navigation system ...” (De Weerdt et al. 2013). The reasons for this choice are discussed in (Gundersen and Kjensmo 2018).

It should be noted that although both the variables and the factors are the same as in (Gundersen and Kjensmo 2018), we have moved three variables (hypothesis, prediction and experiment setup) from the factor Experiment to the factor Method. The reason for this change is based on the fact that reproducing results only based on the factor Method requires the experiment to be described in the textual documentation. This change affects the calculation of the reproducibility metrics.

Quantifying Reproducibility

We have defined three metrics to quantify whether an experiment e is R1, R2 or R3 reproducible and to which degree. The metrics $R1D(e)$, $R2D(e)$ and $R3D(e)$ measure how well the three factors Method, Data and Experiment, e are documented:

4https://github.com/kireddo/Standing_on_the_Feet_of_Giants
Figure 2: The three factors Method, Data and Experiment and the variables that specify them.

\[
R1D(e) = \frac{\delta_1 \text{Method}(e) + \delta_2 \text{Data}(e) + \delta_3 \text{Exp}(e)}{\delta_1 + \delta_2 + \delta_3}
\]

\[
R2D(e) = \frac{\delta_1 \text{Method}(e) + \delta_2 \text{Data}(e)}{\delta_1 + \delta_2}
\]

\[
R3D(e) = \text{Method}(e),
\]

where Method(e), Data(e) and Exp(e) are the weighted sums of the truth values of the variables listed under the three factors Method, Data and Experiment. The weights of the factors are \(\delta_1\), \(\delta_2\) and \(\delta_3\) respectively. This means that the value for \(\text{Data}(e)\) for experiment \(e\) is the summation of the truth values for whether the training, validation, and test data sets as well as the results are shared for \(e\). It is of course also possible to give different weights to each variable of a factor. We use a uniform weight for all variables and factors for our survey, \(\delta_i = 1\). For an experiment \(e_1\) that has published the training data and test data, but not the validation set and the results \(\text{Data}(e_1) = 0.5\). Note that some papers have no value for the training and validation sets if the experiment does not require either. For these papers, the \(\delta_i\) weight is set to 0.

Results

We have investigated how academic research compares to industry and collaborations between academia and industry. A total of 325 papers documenting empirical research was surveyed. Out of these, 268 documented research conducted by authors with academic affiliations, 10 were done by authors from industry alone and 47 were collaborations where some authors were from academia and some from industry, see Figure 3. As only 10 of the 325 papers were from industry, the errors in our analysis are high and the results are highly uncertain.

To reduce the uncertainty in the results, we grouped industry and collaborations in a group we called C+I. We interpret this group to represent the research in which indus-
try has partaken. This group include all collaborations between academia and non-academic entities of which private research institutions, such as Allen Institute for AI, government institutions, such as NY State Department of Health, and industry, such as IBM and Microsoft, are examples of. Only eight of the papers in the collaboration group are from collaborations between private research and government institutions. In our study, we present the results from collaboration studies and industry studies as well, despite small sample sizes.

Variables
Table 2 presents the mean values for the eight variables comprising the factor Method for each group of papers. Industry scores highest on the variables Problem description, Goal and Experiment setup, while the combination (C+I) of collaborations and industry have the same score as academic for Problem description. Academic research scores higher than industry, collaboration and the combination for Research method, Research question, Pseudo code and Prediction. None of these results are statistically significant. Academic research also scores highest on Hypothesis, and this is statistically significant.

Table 3 presents the mean values for the four variables comprising the factor Data for each of the groups of papers. Academic research has the highest score for Training data. The result for this variable is statistically significant when compared to industry and the combination. Academia also has the highest score for Validation data and Test data as well, but these results are not statistically significant. Industry has the highest score for Results, and C+I has lower score than academic. None of these findings are statistically significant.

Table 4 presents the mean values for the four variables comprising the factor Experiment for each of the groups of papers. Academic research scores highest on Hardware specification, and this result is statistically significant when compared to C+I. Industry has the best score on Method code, Experiment code and Software dependencies. However, the confidence is low as the error is very high. The scores for C+I are lower for all these variables when comparing to academic research.

Factors
Figure 4 shows three spider plots of the mean for the variables of each of the three factors for all the surveyed empirical research, while Figure 5 shows the same for the combination (C+I) and academic research. When comparing the outline of the spider plots for academia and all, one can see that they have very similar forms. This is no surprise as academic research comprises 81.5% of all papers. Figure 5 shows that academic research have higher or equal scores on all variables for the factors Method, Data and Experiment as the plots fully envelop the plots for the combined collaboration and industry research.

An observation is that most of the scores are quite low. The only variables scoring higher than 50% are Pseudo code, Experiment setup and Training data. Pseudo code is very good for conveying an AI method in a concise way, so this is very positive. The fact that 56% of the research papers share the training data is also very positive. Experiment setup is the highest scoring variable with a score of almost 70%. However, we have not checked whether the experiment can be reproduced based on the description of the experiment setup, so the descriptions of the experiments might not be complete.

Table 5 shows mean and median for the three factors grouped on research affiliations. The mean values indicate that the factor Experiment are documented at the same level as Data and that Method is documented significantly better for all the surveyed studies. However, the median values of the factors differ widely with Experiment and Data on one side and Method on the other, as the median value for Method is 0.25 while it is 0.00 for the other two. Hence, the distribution is positively skewed for Experiment and Data and almost symmetric for Method. It should be noted that the median values, surprisingly, are the same for all groups. The factor Method is on average best documented. This observation is supported by both mean and median values. According to the mean values, academic research is documented better than industry, collaborations and the combined group of collaborations and industry research. For the factor Experiment, the result when comparing academic and the combination between industry and collaborations is statistically significant.

Figure 6 shows one bar chart for each of the three factors. The y-axis of the bar charts is the frequency and the x-axis represents the mean value of the variables for each of the factors. The bar chart is not stacked so the frequency count starts at zero for all of them. Let us explain how to interpret the bar charts by looking at the bar chart for the factor Data.

The x-axis of the bar charts ranges from 0 to 1, and this range has been divided into five equally sized partitions, that is, one partition for each variable that the factor is comprised of and one partition for those papers that have documented none of the variables. As part of the survey, every paper has been scored on each of the four variables that comprises Data. This means that a paper that has only documented one of the four data variables will have a mean for the factor Experiment of 0.25. Hence, it will be put into the group [0.20, 0.40], and thus increase the frequency of this group with one. If a paper has documented all of the variables, the mean for the factor will be 1 and the paper will be put into the partition [0.8, 1.0]. The bar charts allows us to understand the distribution of the mean of the factors for all the papers that have been surveyed. As can be seen, the distributions are similar for all, academic and C+I papers. A total of 203 papers have not documented any of the variables for Experiment while 167 have not documented any of the variables of Data. Only 18 papers have not documented any of the variables of Method.

Reproducibility metrics
Table 6 presents the mean and median scores for each of the three reproducibility metrics, R1D, R2D and R3D. Academic research has the highest scores for all the three reproducibility metrics. Compared to C+I and collaborations, industry scores higher on R1D and R3D, but the confidence of
The three reproducibility metrics relate. As each dot that is drawn on top of each other. This plot allows are transparent, so that the color becomes less transparent for papers are plotted in red while C+I papers are blue. The dots and the R2D score on the y-axis. The size of each dot is each paper, a dot is plotted with its R1D score on the x-axis and the R2D score on the y-axis. There are no C+I papers in the range academic research is represented in the highest partitions. and then fewer and fewer for the following partitions. Only both academic and C+I have most papers in the lowest range for all, academic and C+I. For both R1D and R2D metrics, sized partitions of 0.2. The bar chart is not stacked. When reproducibility metric scores for each group of papers. The R2D and R3D are the same for C+I and academic research. are lower than for academic research while the median for statistically significant. The median of R1D for C+I and industry try is lower than the research conducted by academia. Given the assumption that it would be harder to reproduce research results that are poorly documented than results that are well documented, it would be easier to reproduce results from academia than from the C+I group. Out of the 16 variables that the survey covered, the academic papers have higher scores on 15 variables when compared to the C+I. The variable Problem description has the same score for academic and C+I. This means that academia scores better on 94% of the variables. Also, academia scores better on all three factors as well as the mean of the reproducibility metrics. The median is the same for academia and C+I on all the reproducibility metrics. To be fair, there is still much to desire when it comes to documentation quality of AI research accepted at the top conferences – whether the research is presented by academic researchers, collaborations or industry researchers.

Do academia share more of the data than industry? The answer is yes, academia scores higher than the C+I group for all the four variables describing the Data factor. The results, however, are not statistically significant, except for the variable training data. The scores for data sharing are relatively high though. academia shares the training data in over 60% of the papers while this is true for 40% of the papers in the C+I group.

Academia shared more code than industry as well, both method code (9% vs 5%) and experiment code (6% vs. 5%). Industry share the same amount of code whether it is for setting up the experiment or the code that implements the AI method. Academia share more AI method code than the

Table 2: The 95% confidence interval for the mean of all variables of the factor Method for the different types of papers. $\varepsilon = 1.96\sigma_{\bar{x}}$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$.

<table>
<thead>
<tr>
<th>Type</th>
<th>Prob. desc.</th>
<th>Goal</th>
<th>Res. meth.</th>
<th>Res. ques.</th>
<th>Pseudo code</th>
<th>Hypothesis</th>
<th>Prediction</th>
<th>Exp. setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.47 \pm 0.05</td>
<td>0.22 \pm 0.05</td>
<td>0.02 \pm 0.01</td>
<td>0.06 \pm 0.02</td>
<td>0.54 \pm 0.05</td>
<td>0.05 \pm 0.02</td>
<td>0.01 \pm 0.01</td>
<td>0.69 \pm 0.05</td>
</tr>
<tr>
<td>Academic</td>
<td>0.47 \pm 0.06</td>
<td>0.22 \pm 0.05</td>
<td>0.02 \pm 0.02</td>
<td>0.06 \pm 0.03</td>
<td>0.57 \pm 0.06</td>
<td>0.06 \pm 0.03</td>
<td>0.01 \pm 0.01</td>
<td>0.69 \pm 0.06</td>
</tr>
<tr>
<td>Collaboration</td>
<td>0.45 \pm 0.14</td>
<td>0.19 \pm 0.11</td>
<td>0.00 \pm 0.00</td>
<td>0.04 \pm 0.06</td>
<td>0.46 \pm 0.14</td>
<td>0.00 \pm 0.00</td>
<td>0.00 \pm 0.00</td>
<td>0.62 \pm 0.14</td>
</tr>
<tr>
<td>Industry</td>
<td>0.60 \pm 0.32</td>
<td>0.30 \pm 0.30</td>
<td>0.00 \pm 0.00</td>
<td>0.00 \pm 0.00</td>
<td>0.20 \pm 0.26</td>
<td>0.00 \pm 0.00</td>
<td>0.00 \pm 0.00</td>
<td>0.80 \pm 0.26</td>
</tr>
<tr>
<td>C+I</td>
<td>0.47 \pm 0.13</td>
<td>0.21 \pm 0.11</td>
<td>0.00 \pm 0.00</td>
<td>0.04 \pm 0.05</td>
<td>0.42 \pm 0.13</td>
<td>0.00 \pm 0.00</td>
<td>0.00 \pm 0.00</td>
<td>0.65 \pm 0.12</td>
</tr>
</tbody>
</table>

Table 3: The 95% confidence interval for the mean of all variables of the factor Data for the different types of papers. $\varepsilon = 1.96\sigma_{\bar{x}}$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$.

<table>
<thead>
<tr>
<th>Type of paper</th>
<th>Train</th>
<th>Validation</th>
<th>Test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.56 \pm 0.05</td>
<td>0.16 \pm 0.04</td>
<td>0.30 \pm 0.05</td>
<td>0.04 \pm 0.02</td>
</tr>
<tr>
<td>Academic</td>
<td>0.61 \pm 0.06</td>
<td>0.18 \pm 0.05</td>
<td>0.31 \pm 0.06</td>
<td>0.04 \pm 0.02</td>
</tr>
<tr>
<td>Collaboration</td>
<td>0.44 \pm 0.14</td>
<td>0.12 \pm 0.09</td>
<td>0.28 \pm 0.13</td>
<td>0.00 \pm 0.00</td>
</tr>
<tr>
<td>Industry</td>
<td>0.22 \pm 0.27</td>
<td>0.00 \pm 0.00</td>
<td>0.20 \pm 0.26</td>
<td>0.10 \pm 0.20</td>
</tr>
<tr>
<td>C+I</td>
<td>0.40 \pm 0.13</td>
<td>0.10 \pm 0.08</td>
<td>0.26 \pm 0.12</td>
<td>0.02 \pm 0.03</td>
</tr>
</tbody>
</table>
One of the questions we asked in the introduction was whether one could expect industry to more easily share code than data. The premise is that data holds the most value as it is used to generate machine learning models. Without the data, the value of the model is low. This is refuted. Interestingly, the difference between data sharing and code sharing for industry is large (40% vs 5%). How can this be so? Does this indicate that industry values the code used for running the experiments higher than the data? Is the code used when conducting the experiments code that will be used in production? This does not sound right. Typically, experiment code is used for prototyping. Different code that has been through proper quality assurance is typically deployed, especially for large companies. Startups might not follow this practice for obvious reasons. Is there something else that lies behind? Could it be that industry is less willing to spend time on maintaining the code or answer questions related to it than what academia is? Do industry have higher expectations for code quality than what academia has and do not want to share the code because of this? Or could it be that the code specifies the hyperparameters and other experiment settings, and hence renders the complete experiment transparent?

Why are industry researchers eight times more willing to share data than code? Is the data shared not that valuable for industry? Do industry share data that are relevant for proving their methods, but has little value to competitors? Do industry use open data shared by others to prove their methods and in this way share nothing – not the code and not their own data? We have not investigated these questions in our study.

Hyperparameters could be documented both as part of the experiment code and in the experiment description where the setup is explained. While the experiment code is not shared to a large degree (only 5% for C+I), the experiment setup is described for 63% of the papers in the C+I group. The result for experiment setup is higher for academia though, at 70%, but compared to the other variables this is a very good result. We have not checked in detail whether all settings actually have been shared. Hence, one could imagine that some variables are described in detail, but not all, so that companies appear to be sharing, but are really not, as the experiment setup code is not shared.

All research presented at the top AI conferences is judged according to the same standards. There is a double-blind peer review process where reviewers do not know who the authors are nor their affiliations. Hence, one should expect that there generally would be no differences in the documentation quality when comparing academic research and research that industry is involved in. The fact that there seems to be a pattern of research conducted by academia being documented better than industry research is intriguing. How come the AI research community is not able to hold industry research to the same standard as academic research in a double-blind peer review process?

Out of the 57 surveyed papers in the C+I group 32 involve the tech giants Microsoft, IBM, Baidu and Facebook (see Figure 9). This means that these five companies are in part responsible for 56% of the surveyed papers that involve industry and that Microsoft and IBM alone stands for 49%. One could interpret the tech giants or the researchers that publish at the top AI conferences as the giants. No matter what, we – the AI research community – are not standing on their shoulders. Given the documentation quality of the surveyed papers, it is more like we are standing on each other’s
Current incentives for conducting reproducible research are limited, and the time and effort required to make research reproducible is often not recognized. Why is this so? We have identified some barriers for individual researchers:

Time consuming: Conducting research that is reproducible is time-consuming. It takes time to document research properly, make code and data ready for sharing and share them. If the research is successful, other researchers want to actually try to use the data and code. They might ask questions regarding the research, code and data that take time to answer. Hence, it is not enough to share code and data. Typically, some type of maintenance (if errors are found) and support are required. The time and effort of conducting research is increased, but not only before presenting it. Time and effort are required even after the results are presented.

No incentives: Currently, there are few if any incentives for researchers to make their research reproducible. Publishers do not require that the research they publish is reproducible and neither do grant makers. Also, whether research is reproducible is most often not a part of evaluating candidates for research positions, such as professorships. So, why bother when it takes requires extra effort and is time consuming?

Risk future work: Sharing of data, code and detailed experiment procedures will enable independent researchers to quickly build on the published research. This might risk future research of the original researchers, and hence jeopardize possible new publications.

Given that most researchers are evaluated based on the number of research papers published in journals and presented at conferences, reducing the time it takes to publish papers is important. Therefore, cutting corners and avoiding giving away advantages are rational actions.

How to Overcome the Barriers

What can be done to mitigate the effects of these barriers?

Build infrastructure: The time required for extra work related to making research reproducible could be reduced, although probably not completely removed, by building public infrastructure for experiment descriptions, data, results, and code. A lot of work already is done; see for example (Gundersen et al. 2018). More work is required though.

Provide infrastructure: Publishers should provide infrastructure for data and code in addition to the infrastructure that is provided for publishing and sharing papers. Universities and other research institutions could provide infrastructure for sharing data and code maintained by their own staff. Grant makers could provide the infrastructure for the research they fund. In the era of open science, where publishers fear the competition of open journals, they could provide more than they used to and in this way meet the competition.

Eligibility requirements: Public funding sources could demand that the research that is conducted by their funding is accessible to the public. Hence, only researchers that

Table 5: Mean and median values for the factors Experiment, Data and Method grouped for the different groups of affiliations.

<table>
<thead>
<tr>
<th>Metric</th>
<th>All</th>
<th>Academic</th>
<th>Collab</th>
<th>Industry</th>
<th>C+I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Exp</td>
<td>0.14 ± 0.02</td>
<td>0.16 ± 0.03</td>
<td>0.06 ± 0.04</td>
<td>0.15 ± 0.13</td>
<td>0.08 ± 0.04</td>
</tr>
<tr>
<td>Mean Data</td>
<td>0.19 ± 0.03</td>
<td>0.19 ± 0.03</td>
<td>0.17 ± 0.06</td>
<td>0.12 ± 0.15</td>
<td>0.16 ± 0.06</td>
</tr>
<tr>
<td>Mean Method</td>
<td>0.26 ± 0.01</td>
<td>0.26 ± 0.02</td>
<td>0.22 ± 0.04</td>
<td>0.24 ± 0.08</td>
<td>0.22 ± 0.03</td>
</tr>
<tr>
<td>Median Exp</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Median Data</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Median Method</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Figure 5: Spider plots showing the variables of the three factors Method, Data and Experiment for the academic and combined collaboration and industry papers.
agree to produce reproducible results by sharing code and data could be made eligible for receiving grants and funding. There are of course many issues with such a requirement, as data cannot be shared in many cases because of privacy issues and issues related to disclosing intellectual property. A possibility is to reserve parts of the available funding to applicants that agree to share everything. Another possibility is to adjust funding according to how much is shared.

Reward sharing: When evaluating researchers for professorships or other research positions, the criteria could be expanded to include data sets and research software that have been published, as well as the quantity of research papers and quality of the journals in which they have been published. This is easier if the data sets and code are citable.

Reward reproducibility: As reproducibility of research is a corner stone of science, reproducibility should be rewarded in the review process and when assessing for scientific positions.

When it comes to reproducibility, academia could actually learn from industry - not necessarily from industry research practices, but from the software engineering practices that the industry follows. Software engineers focus on building quality software and continuously evaluating its performance. Software development methodologies including agile, such as Scrum and Kanban, test driven development and code reviews have been developed to help increase the quality of the software. The reason is that the performance of the software is directly related to how well the companies perform (and hence the earnings!), so reproducibility is a key concern together with proper performance evaluation. For companies that develop AI and machine learning software, this diligence in evaluating software extends to the AI and machine learning software. Versioning of code and data is required to ensure the capability of monitoring performance over time.

In science, reproducibility is key for ensuring that our beliefs regarding a concept, such as an AI program, are correct. It is through building and organizing the set of these beliefs that we expand our knowledge. As scientists, we should optimize for advancing knowledge. Therefore we should ensure that our results are correct, which means that we must be able to reproduce our own results while enabling independent researchers to do the same. As discussed above, the incentives for individual scientists are not necessarily aligned for this right now, and we need an open discussion on what can be changed to get there.

For companies, maintaining a competitive advantage is important and sharing could enable competitors to close the gap. Hence, all openness can be considered a net win for the AI research community. The fact that companies share methods, code and data should be applauded. However, given that there is a divide in documentation quality between industry and academia, how could we reduce
Figure 7: The three bar charts shows the frequency of the reproducibility metric scores (R1D, R2D and R3D respectively) for all papers, academic papers and papers that are either collaborations or industry, C+I.

Figure 8: Individual academic papers (red) and C+I papers (blue) are plotted as dots in scatter plots, separately and together, where the axes and sizes of the dots are individual papers’ scores on R1D, R2D and R3D reproducibility metrics.

Figure 9: The tech giants Microsoft, IBM, Baidu, Didi and Facebook published 32 of 57 papers in the group C+I. The total number of companies does not add to 57, as some papers have authors from more than one company.

or remove this gap? Based on what we know about reproducibility, should we make more detailed check-lists for peer-review that have check-boxes for whether the problem is described well enough, whether a hypothesis is stated or the code and data are shared? If so, it will become clear what is expected from an IJCAI or AAAI paper and that reproducibility is important for getting one accepted. Extending the acceptance criteria to include items related to reproducibility and making them explicit might help reduce the gap between industry and academia. However, if industry is required to share code or data, they might stop presenting their results at the conferences and journals that introduce such criteria. This is not a desired situation, so we should avoid it. Could we have authors register their research as R1, R2 or R3 reproducible research, so that it is clear what information the papers contain? This would require researchers to become aware of the documentation quality of their research – if they are not already. Also, one could imagine that a percentage of all accepted research is set for how much of the research could be R3 or R2 reproducible. Then, industry or any other researchers that would or could not share everything, could publish as much as they are able to. This would arguably make it harder to get the research accepted, so the incentives are to share.
In order to increase reproducibility of AI research, the culture must change. The high impact conferences and journals have the power to make this change together with the grant makers that funding research. Although low impact conferences and journals could see the need for reproducibility as an opportunity to get higher impact, they are afraid to scare researchers away from them.

Increased Interest in Reproducibility
In this survey, we have analyzed papers presented at IJCAI and AAAI between 2012 and 2016. However, over the last few years, the AI and machine learning communities have shown increased interest in reproducible research. A few workshops were organized before 2016, such as the Workshop on Reproducibility and Reusability in Natural Language Processing: From Data to Software Sharing\(^3\) at IJCAI in 2015, that had a focus or partial focus on reproducibility. In 2017, the workshop Reproducibility in Machine Learning Research\(^4\) was organized at the International Conference on Machine Learning (ICML 2017), and the workshop Enabling Reproducibility in Machine Learning ML-Train@RML\(^5\) was held at ICML 2018. The Reproducibility Challenge was organized at the International Conference on Learning Representation (ICLR 2018)\(^6\). We organized the AAAI 2019 workshop on Reproducibility in AI\(^7\) where the participants discussed how to improve the reproducibility of papers published by AAAI. At AAAI 2017 the tutorial Learn to Write a Scientific Paper of the Future: Reproducible Research, Open Science, and Digital Scholarship was given.

This increased interest has resulted in several very interesting and relevant papers, of which a few are mentioned here. (Sculley et al. 2018) discuss empirical rigour and stresses its importance for work that presents “methods that yield impressive empirical results, but are difficult to analyze theoretically.” (Mannarswamy and Roy 2018) suggest that we need to build AI software that can perform the verification task given a research paper that presents a technique and details on where to find the code and the data used in the paper. This could help mitigate the workload of reproducing research results. Exactly such a tool is presented by (Sethi et al. 2018) who has made software that auto-generates code from deep learning papers with a 93% accuracy. (Henderson et al. 2018) show that “both intrinsic (e.g. random seeds, environment properties) and extrinsic sources (e.g. hyperparameters, codebases) of non-determinism can contribute to difficulties in reproducing baseline algorithms.”

Conclusion
We are not standing on each other’s shoulders. It is more like we are standing on each other’s feet. The quality of documentation of empirical AI research must clearly improve.

Our findings indicate that the hypothesis that industry and academic research presented at top AI conferences is equally well documented is not supported. Academic research score higher on the three reproducibility metrics than research to which industry has contributed. Academia also scores higher on all three factors, but these results are not statistically significant. Furthermore, academic research score higher than the research industry is involved in on 15 out of the 16 surveyed variables while the two groups score the same on the last variable. The result is statistically significant for only three of the variables investigated. The difference in documentation quality between industry and academia is surprising as the conferences use double blind peer-review and all research is judged according to the same standards.

We discussed three barriers for individual researchers to make research reproducible: it is time consuming, there are no incentives and future work is put at risk. Some suggestions for how to overcome these barriers were made: infrastructure that reduce the time and effort of making research should be built and provided to researchers, funding sources could start demanding researchers to make the research conducted using the funding reproducible, sharing of code and data should be rewarded and so should making the research reproducible be. Some ideas for why there is a discrepancy between academia and industry in documentation quality were also discussed. The industry has many incentives to not share data or code, as both can be used by competitors to reduce the competitive advantages.

This study suggests that industry researchers are eight times more willing to share data than code. Why this is the case is not clear. One reason could be that the data that is shared is already open data. Investigating this potential future work as well as finding out how to ensure that industry and academic research accepted at the same conference has the same quality of documentation.

BIOGRAPHY
Odd Erik Gundersen (PhD, Norwegian University of Science and Technology) is the Chief AI Officer at the renewable energy company TrnderEnergi AS and an Adjunct Associate Professor at the Department of Computer Science at the Norwegian University of Science and Technology. Gundersen has applied AI in the industry, mostly for startups, since 2006. Currently, he investigates how AI can be applied in the renewable energy sector and for driver training and how AI can be made reproducible.

Acknowledgments
Thanks to Sigbjørn Kjensmo who collected most of the data while working on his Master thesis at the Norwegian University of Science and Technology and Rune Havnung Bakken who read and commented on a draft of the paper. This work has been carried out at the Norwegian Open AI Lab at the Norwegian University of Science and Technology, Trondheim, Norway.
References

