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ABSTRACT

In several pattern recognition problems, e↵ective graph matching is of paramount importance. In this
paper, we introduce a novel framework to learn discriminative cost functions. These cost functions
are embedded into a graph matching-based classifier. The learning algorithm is based on an open-set
recognition approach. An open-set recognition describes a problem formulation in which the training
process does not have access to labeled samples of all classes that may show up during the test phase.
We also investigate a set of measures to characterize local graph properties. Performed experiments
considering widely used datasets demonstrate that our solution leads to better or comparable results to
those observed for several state-of-the-art baselines.

c� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In several pattern recognition tasks, objects are often rep-
resented by means of two main approaches [1]: statistical or
structural. In the former, objects are represented as points in
n-dimensional space; while in the latter, objects are represented
through data structures, which encode their components and re-
lationships. The literature related to classification and retrieval
tasks encompasses many more statistical representations. How-
ever, structural representations are more powerful, as they pro-
vide a single formalism on components and their relations [2].
In this work, we use graphs, one of the most adopted struc-
tural representation. In the field of structural pattern recogni-
tion, the graph comparison problem is of first importance. Un-
fortunately, due to the wide variability of patterns, the graph
comparison problem is not a trivial task, as it often turns into
an error-tolerant graph matching problem. The error-tolerant
graph matching problem [3], in turn, is an NP-hard problem
[4]. Therefore, there are no exact methods that guarantee to
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solve the problem in polynomial time.
One successful tool to model the error-tolerant graph match-

ing problem relies on the graph edit distance (GED) [5]. GED
is an error-tolerant paradigm to define the similarity between
two graphs through the minimum number of edit operations
necessary to transform one graph into the other. A sequence
of edit operations is called edit path between two graphs. To
quantify the modifications implied by an edit path, a cost func-
tion is defined to measure the changes proposed by each oper-
ation. Consequently, we can define the edit distance between
graphs as the edit path with minimum cost. Usually, cost func-
tions are manually designed for each problem, being domain-
dependent. Domain-dependent cost functions can be tuned by
learning weights associated with them. In this paper, we tackle
a more general problem. What can we learn if the cost func-
tions are not given by an expert? Can we extract information
from the data to fit a specific goal given by the user?

Di↵erent papers address the edit cost learning problem. The
contribution presented in [6] is the most related to our proposal.
In their work, the authors represent the node assignment as a
vector of 24 features. These features are extracted from a node-
to-node cost matrix that is used for the original matching pro-
cess. Then, the assignments derived from the exact graph edit
distance computation is used as ground truth. Each node as-
signment computed is labeled as correct or incorrect where an
SVM with a Gaussian kernel classify the assignments computed
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by the approximation as correct or incorrect. This work oper-
ates at the matching level. All prior works rely on predefined
cost functions adapted to fit an objective of matching accuracy.
Little research has been focusing on automatically designing
generic cost functions in a classification context.

Recent initiatives have been focusing on the proposal of
graph representation based on heat-kernel embeddings [7, 8],
deep-learning methods [9], quantum walk [10], and generative
models [11]. Some of them are detailed below.

Xiao et al. [7] proposed the characterization of the properties
of a graph by means of the flow of information across edges.
The rate of flow is computed through the Laplacian of the graph.
They explored three approaches computed from the heat ker-
nel matrix: zeta function of the heat kernel trace, derivative of
the zeta function, and heat-content invariants. Xiao et al. [8]
also exploited a heat-kernel formulation based on the Laplacian
graph transformation. They presented an embedding scheme to
construct a generative model for graph structure. They mapped
the nodes of the graphs as points in a vector space, and then
computed the correspondence matrix between these points with
the Scott and Longuet-Higgins alignment algorithm. Later, they
captured any variations in the graph structure through a covari-
ance matrix of the embedding points, so they can construct a
point-distribution model using the eigenvalues and eigenvectors
of this matrix. This model can be used to measure the distance
between a pair of graphs.

Bai et al. [10] developed new graph kernels where the graph
structure is examined by means of discrete-time quantum walk.
They simulated the evolution of the quantum-walk on each
graph, computing their associated density matrix. Later, for
a pair of graph, they compute the kernel by the negative expo-
nential of Jensen-Shannon of their density matrix, using a min-
imum spanning tree of a sparser version of the original graph.
Han et al. [11] focused on the problem of representing graphs
by edge connectivity. They aimed to learn a generative model
to describe the distribution of structural variations present in
graphs. Their proposal learns a generative supergraph by the
probability distribution over the occurrence of nodes and edges.
They encoded the complexity measurement using a Von Neu-
mann entropy, and later they used an EM algorithm to minimize
the criterion of correspondence between graphs.

Bai et al. [9] proposed a work to combine graph complexity
measures and deep learning networks. Their goal is to com-
pute a representation for each vertex. Later, a single graph
feature vector is computed by averaging vertices’ representa-
tions. For that, they first decompose the graph structure into
a family of expansions subgraphs rooted at a vertex, and mea-
sured the entropy-based complexities, which is used to build
the complexity trace, i.e., the depth-based representation of the
root vertex. Next, they perform a clustering using k-means to
find prototype representations, which are used to train a deep
neural network.

In this paper, we propose to learn a discriminative cost func-
tion between the nodes of graphs with no restriction on the
graph type, nor on labels for a classification task. On a training
set of graphs, a feature vector is extracted from each node of
each graph, describing local information on the nodes. Node

dissimilarity vectors are obtained by comparing pairs of fea-
ture vectors and labeled according to the node pair belonging
to graphs of the same class or not. On this basis, a classifier
is trained on these node dissimilarity vectors. At the decision
stage, when comparing two graphs, a new node pair is given as
an input of the classifier, and the class membership probabil-
ity is output. We use these adapted costs to fill a node-to-node
similarity matrix, which encodes our learned matching costs.
Based on these costs, we reduce the graph matching problem to
a Linear Sum Assignment Problem (LSAP) between the nodes
of two graphs. The LSAP aims at finding the maximum weight
matching between the elements of two sets and this problem
can be solved by the Hungarian algorithm [12] in O(n3) time.
Instead of dealing with the graphs as a whole, we exploit their
elements (e.g., their node attributes) to guide the weight learn-
ing process. Thus, as we increase the number of elements that
we use for learning, we can take advantage of only a few graphs
in the training process. Our method is, therefore, suitable for
problems, which handle small-size training sets, either because
they are di�cult to obtain, or hard to label.

This paper extends the work presented in [13], by provid-
ing a theoretical overview of the introduced graph distance
learning framework, as well as by detailing performed exper-
iments related to the parametric evaluation of the proposed ap-
proach. We also present an original approach based on an open-
set recognition problem formulation, in which the training step
does not contain all classes because they are ill-sampled or un-
known [14]. The goal is to learn the costs to match nodes from
di↵erent graphs. The method is based on node-signatures, dis-
similarities between node-signatures, a classifier to determine a
cost matrix, and a Hungarian algorithm to compute similarities
between graphs. Furthermore, this paper presents and discusses
for the first time experiments related to the use of open-set
classifiers in weight-learning problems associated with graph-
classification tasks. To the best of our knowledge, this is the
first work to perform such evaluation in the open-set scenario.
Finally, another novelty of this work relies on the investigation
of complex network measurements in the characterization of
local properties of graphs.

Open-set scenario, di↵erently from the closed-set scenario,
does not have, a priori, training samples from all classes, as
these classes might appear in the testing step [15]. Open-set
classifiers consider that not all classes are known a priori at
training time. Therefore, a test sample can belong to a class
from the training or it can belong to a class not “seen” dur-
ing training, i.e., this sample can be considered as “unknown.”
In this paper, we take advantage of this formulation by map-
ping the distance vector related to nodes belonging to di↵erent
classes as “unknown.” By doing that, learned cost functions
are expected to encode more properly existing relations among
nodes of vertices of the same class, leading to more discrimi-
nant graph matching.

2. Graph Distance Learning Framework

We propose a new framework to learn a discriminative cost
function for computing the bipartite graph edit distance be-
tween two graphs. In our method, we describe each graph
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Fig. 1. Schematic overview of the Graph Distance Learning framework.

from a training set using a local descriptor. We extract fea-
ture vectors from each node of each graph. Next, we compute
node dissimilarity vectors pair-wisely, generating feature vec-
tors. These node dissimilarity vectors are then labeled accord-
ing to the node pair. If the node pair belongs to the same graph
class, the dissimilarity vector received the same label; if not, it
is labeled as belonging to an “unknown” class. Later, a distance
learning classifier is trained according to the distance vectors.
At the decision phase, a graph from the testing set is compared
to a graph from the training set. All its nodes are described by a
local descriptor and it is computed the dissimilarity vector be-
tween test and training samples. These vectors are the input of
the distance learning classifier, which returns the class member-
ship probability. These probabilities are the adapted costs used
to fill a node-to-node similarity matrix between the two graphs.
We use these learned matching costs to approximate the prob-
lem of matching graphs as a Linear Sum Assignment Problem
(LSAP) between the nodes of two graphs. The LSAP, which
aims to find the minimum cost matching between elements of
two sets, can be solved by the Hungarian Algorithm [12] in
O(n3) time. Figure 1 shows a schematic view of the proposed
Graph Distance Learning framework. In the following, we de-
scribe each component of this framework.

2.1. Local descriptor

To describe the graphs of the training and testing sets, we
propose the use of local descriptors to characterize local prop-
erties of all graph nodes. Then, we can compare them pair by
pair, and calculate the matching cost to transform a set of nodes
from one graph to the set of nodes of the other graph.

Given a general graph G = (V, E), a local description is de-
fined as:

�(G) = {�(v) | 8v 2 V}, (1)

where �(v) is a local descriptor which encodes local properties
of vertex v into a vector.

2.2. Distance vector

Our proposed approach for graph matching consists in find-
ing a minimum distance to transform a local description from
one graph into a local description from another graph. To per-
form that, we use a function to calculate the distance between
two local descriptors.
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Fig. 2. Illustration of the creation of a distance vector based on node prop-
erties of four graphs. When the nodes belong to graphs of the same class
(same color – blue and pink distance vectors – in the figure), the distance
vector receives the same label. Alternatively, when the nodes belong to
graphs of di↵erent classes, the distance vector is labeled as “unknown”
(white distance vectors).

Let GI and GJ be two graphs, vi and v j two nodes from these
graphs, and �(vi) and �(v j) be two local descriptions of these
nodes. We define a function E that, using �(vi) and �(v j) as
inputs, returns a feature vector (d) representing the distance be-
tween these two local descriptions.

E(�(vi), �(v j)) = di j (2)

To each distance vector di j, we assign a class label defined in
set L. The set containing possible labels (classes) is defined as:

L(di j) ⇢ L(GI) [L(GJ) [ {unknown} (3)

Figure 2 illustrates the computation of distance vectors based
on the properties of vertices belonging to four graphs (graphs
GA, GB, GC , and GD in the figure) and their labeling process.

2.3. Distance learning component
This component of our Graph Distance Learning framework

is responsible for learning a cost value related to each distance
vector received as input. We propose this component as a func-
tion F , in which we obtain the probability of the desired class:

F : D! R|L| (4)

where D is the set of all distance vectors computed from ver-
tices of two input graphs.

2.3.1. Hungarian matrix and classification
After we obtain the cost output from the distance learning

method, we use these values to populate a cost matrix relative
to the combination of each testing graph with each graph from
the training set. The cost matrix contains the local description
from one testing graph in the rows and the local description
from one training graph in the columns. Thus, each entry of
the matrix is the cost to transform the description from the row
to the description of the column. Thus, the Hungarian algo-
rithm finds the minimum cost assignment between the two sets
of signatures.
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Finally, the test sample is classified using the k-nearest neigh-
bor (kNN), where the similarity between two graphs is defined
by the Hungarian algorithm.

3. Graph Distance Learning Implementation

In this section, we provide an instantiation of the proposed
framework, detailing implementation choices.

3.1. Local Descriptor

To describe local information of the graphs in this work, we
use information of a graph and their nodes following the node
signature:

�(v) = {↵G
v , ✓

G
v ,�

G
v ,⌦

G
v }, (5)

where G = (V, E) is a graph defined by vertices in V and edges
in E, v 2 V , and ↵G

v , ✓Gv , �G
v , and ⌦G

v are, respectively, the
attributes of the node v, the degree of node v, the set of degrees
of adjacent nodes to v, and a set of attributes of the incident
edges of v [13, 16].

In this paper, we also investigate the use of complex network
measurements in the characterization of graph local properties.
We use the following complex network measurements:

• Vulnerability (Vn), which presents the di↵erence in per-
formance when the node is removed from the graph [17]:
Vv =

E�Ev
E , where E is the global e�ciency of the graph,

and Ev is the global e�ciency after the removal of node v;

• Clustering coe�cient (Cv), which is the fraction of possi-
ble triangles that exist including the node [18]: Cv =

N�(v)
N3(v) ,

where N�(v) is the number of triangles with node v and
N3(v) is the number of connected triples with v as central
node;

• Cyclic coe�cient (⇥v), which measures how cyclic a
graph is, defined by the average of the inverse of the sizes
of the smallest cycles formed by the node and its neigh-
bors [19]: ⇥v =

2
nv(nv�1)

P
w>u

1
S uvw

auvavw, where nv is the
number of neighbors of node v, S uvw is the size of small-
est circle that passes through nodes u, v,w, and auv are the
elements of adjacency matrix;

• Subgraph centrality (S Cv), which considers the number of
subgraphs that constitute a closed walk starting and ending
at the given node [20]: S Cv =

P
1

k=0
(Ak)vv

k! , where (Ak)vv is
the vth diagonal element of the kth power of adjacency
matrix A, and k! assures the convergence of the sum and
that smaller subgraphs have more weight;

• the average neighbor degree [21]. The degree of a vertex v
is the number of edges incident to v.

3.2. Distance vector
Our proposed approach for graph matching consists in find-

ing a minimum distance to transform a node signature from
one graph into a node signature from another graph. To per-
form that, we first need to define a function to calculate the
distance between two node signatures, and in our case, a func-
tion that is capable of dealing with both numeric and symbolic
attributes. We selected the Heterogeneous Euclidean Overlap
Metric (HEOM) [22] which deals with these attributes, and
adapted for our graph local descriptor.

The default HEOM distance function is defined as follow:

HEOM(di, d j) =
sX

a

�(dia, d ja)2 (6)

for di and d j two heterogeneous feature vectors, where a is each
attribute of the vector. �(dia, d ja) is also defined as:

�(dia, d ja) =

8>>>>>>>><
>>>>>>>>:

1 if dia or d ja is missing,
0 if a is symbolic and dia = d ja,
1 if a is symbolic and dia , d ja,
|dia�d ja |

rangea
if a is numeric

(7)

Considering the node signature local descriptor, we define
the HEOM distance between two signatures as follow. Consid-
ering A = (Va, Ea) and B = (Vb, Eb) two graphs, va 2 Va and
vb 2 Vb nodes from these graphs. According to Equation 5, the
node signatures of these nodes are: �(va) = {↵A

va
, ✓A

va
,�A

va
,⌦A

va
}

and �(vb) = {↵B
vb
, ✓B

vb
,�B

vb
,⌦B

vb
}. Then, the distance ✏ between

two node signatures is:

✏(�(va), �(vb)) =HEOM(↵A
va
,↵B

vb
) + HEOM(✓A

va
, ✓B

vb
)+

HEOM(�A
va
,�B

vb
)+

P|⌦A
va |

i=1 HEOM(⌦A
va

(i),⌦B
vb

(i))
|⌦A

va
|

(8)

The goal of the Graph Matching Learning framework is to
learn the edit distance between two graphs. For that, we need to
define the distance vector that will be used in the cost learning
process [13]. The function E, which defines the distance vector,
is based on the ✏ function. Instead of summing the distance of
all attributes, E considers each attribute distance as a bin of the
vector. Therefore, we can present the function E as:

E(�(va), �(vb)) = [HEOM(�(va)i, �(vb)i)],
8i 2 {0, · · · , |�(v)|} | �(v)i is a attribute of �(v).

(9)

Using complex network measures, the node signature is defined
as: �(va) = {↵A

va
, ✓A

va
,�A

va
,⌦A

va
,VA

va
,CA

va
,⇥A

va
, S CA

va
, AVGA

va
}, and

Equation 9 is adapted accordingly.
Later, we label these distance vectors to guide our learning

process. We proposed the following formulation [13]. Let
Y = {y1, y2, · · · , yl} be a set of l labels associated with the graphs
according to the target graph classification problem. In this for-
mulation, a label yi is assigned to each distance vector built
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Fig. 3. Di↵erences in the classification of the “X”-shaped test graph from
the closed set (upper) and open-set (bottom) approaches. From the closed-
set perspective, the test graph is labeled as belonging to the purple class.
For the open-set perspective, the same test set is labeled as “unknown”.

based on the node signatures of graphs belonging to the same
class yi. On the other hand, when a distance vector is built
from node signatures of graphs belonging to di↵erent classes,
an “unknown” label (e.g., yi+1) is adopted (see Figure 2).

3.3. Distance Learning Component
In this paper, we present two proposals for learning the graph

edit distance between two graphs, using closed-set and open-set
formulations.

Figure 3 illustrates graph classification tasks from both the
closed-set and open-set perspectives. The test sample is the
“X”-shaped graph. From the closed-set perspective, the test
graph is labeled as belonging to the purple class, i.e., all test
samples will receive one of the labels considering at the training
stage. On the other hand, from the open-set perspective, the
same test set is labeled as “unknown”, i.e., test samples, which
are not “close” enough to labeled samples seen at training stage,
are considered to belong to an “unknown” category.

3.3.1. Closed-set Formulation
The first approach, the closed-set one, aims to learn how to

classify the distance vectors obtained in the previous step. For
that, after obtaining the pairwise distance vectors, the vectors
from the training set are used to learn a classifier. In this work,
we learn the Support Vector Machine (SVM) margin that sepa-
rates samples of the training set from di↵erent classes.

With the margin, we can predict the classes of the graphs in
the testing set. First, we extract the local descriptor of each
graph of the testing set. Next, we compute the distance vec-
tors considering the node signatures from the test graph with
the node signatures from the graphs of the training set. These
vectors are projected into the learned feature space and we ob-
tain the probability of a test sample belongs to the training set
classes considering the SVM separation hyperplane.

3.3.2. Open-set Formulation
Our second approach is based on an open-set formulation, in

which we can classify as “unknown” samples that do not belong
to the di↵erent class available during the training step.

Scheirer et al. [14] presented a formalization for recognition
problems from the open-set perspective. This formalization
aims to find a function f , which minimizes the combination

Train

OSNN1

OSNN2

T

t

s

v

u

t

s

v

u

t

s

v

u

Fig. 4. Di↵erences between OSNN1 and OSNN2 open-set recognition ap-
proaches when selecting training neighbors. The OSNN1 approach con-
siders the two closest training neighbors. If they are from the same class,
the test sample (in black) is labeled as belonging to this class, otherwise,
as “unknown”. For the OSNN2 approach, the two nearest neighbors from
di↵erent classes are selected, and if the ratio of the distances to them is be-
low a threshold defined in the training step, the test sample is labeled with
the label of the closest class. Otherwise, it is labeled as “unknown”.

of the open space risk RO and the empirical risk RE, the later
regularized by a constant �r:

argmin{RO( f ) + �rRE( f )} (10)

In this paper, we investigate the use of two recently pro-
posed open-set-based learning methods [15]: Open-Set Near-
est Neighbors 1 (OSNN1) and Open-Set Nearest Neighbors 2
(OSNN2).

In the OSNN1 method, during the prediction phase, the two
training-set nearest neighbors (s and u) of an input test sample
t are selected. If they have the same label, this label is assigned
to the test sample, otherwise, the test sample is unknown, i.e.,
to the test sample the unknown label is assigned.

The OSNN2, in turn, labels an input test sample t as follows:
it first finds the two training-set nearest neighbors of di↵erent
labels (s and v, being s the nearest), and then calculates the ratio

R =
d(t, s)
d(t, v)

(11)

and assign the label according to the following condition:

label(t) =

8>><
>>:

label(s), if R  threshold,
unknown, if R > threshold.

(12)

Figure 4 shows the di↵erence between the two open-set ap-
proaches when selecting the closest training neighbors.

4. Experiments

In this section, we present the research questions addressed in
our experiments, the datasets used, and the adopted evaluation
protocol adopted for each research question.

4.1. Datasets

We select traditional and widely used datasets of the litera-
ture to perform our experiments. Each dataset is detailed next.
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• MAO: Monoamine Oxidase dataset1 is a dataset that con-
sists of 68 molecules, with 38 molecules that inhibit the
monoamine oxidase and 30 that do not. The standard eval-
uation protocol adopted for this dataset relies on a Leave-
one-out cross-validation, where 67 graphs are used for
training and the remaining sample is used for testing.

• PAH: The Polycyclic Aromatic Hydrocarbons dataset [23]
is composed of 94 graphs representing molecules com-
posed only of carbon atoms. All bound in these molecules
are aromatics. The typical evaluation protocol used for this
dataset relies on a 10-fold cross-validation procedure. In
this protocol, we have ⇡ 84 graphs per fold.

• GREC: The GREC dataset [24] consists of graphs repre-
senting architectural and electronic drawings. The nodes
are ending points in the drawings, and the graph edges are
the lines and arcs. It contains 1100 graphs divided into
22 classes. The default evaluation protocol of this dataset
consists of 286 graphs for training, 286 graphs for valida-
tion, and 528 graphs for testing.

4.2. Research Questions and Experimental Protocol
In this work, we use di↵erent experiment protocols for ad-

dressing each research question.
Q1 What is the impact of the training set size and normal-

ization procedures in the e↵ective performance of the evaluated
learning methods?
In the first question, we want to assess the robustness of the dif-
ferent learning methods with regard to di↵erent parameter set-
ting. Recall that our Graph Distance Learning framework relies
on the computation of multiple pairwise distance vectors, being
therefore computationally costly. We decided, then, to perform
experiments using only a subset of the available training sets
in our parameter setting investigation. In order to assess the
e↵ective performance of the methods for di↵erent training set
sizes, let s be the number of graphs per class. We vary s in the
set {2, 5, 10, 20}. Also, we use only 10% of the available test-
ing set. The graphs used for training and testing were defined
randomly. Our reported results refer to the average e↵ective
performance, considering 20 runs using the di↵erent randomly
selected samples. We also want to assess the impact of di↵er-
ent normalization strategies on the e↵ectiveness performance of
the evaluated methods. We used the min-max normalization, in
which the vectors are normalized between 0 and 1 according to
minimum and maximum values observed; and the zscore nor-
malization, in which we use the mean and standard deviation to
normalize distance score values. In the Graph Distance Learn-
ing method, the selected parameters for the SVM closed-set ap-
proach was the default ones (RBF kernel with C = 0). Open-set
approaches OSNN1 and OSNN2 do not have any parameters to
setup. Experiments related to Q1 considered the MAO and PAH
datasets, and e↵ectiveness results refer to the average normal-
ized accuracy in the graph classification problems defined for
each dataset.

1
https://brunl01.users.greyc.fr/CHEMISTRY/index.html (As

of Jan. 2019).

Fig. 5. Evaluation of the di↵erent weight learning strategies with regard to
the use of normalization procedures and di↵erent training set sizes.

Q2 Which learning method leads to better e↵ectiveness per-
formance?
Our goal here is to compare the open-set formulations with
the SVM-based closed-set solution in the weight cost learn-
ing problem. Our evaluation regarding Q2 also considers the
use of complex network measurements in the characterization
of graph local properties. The experimental protocol is similar
to the one described in the previous item. The di↵erences are:
we only use the variations of the methods with the best per-
formance observed in the previous experiments, an additional
dataset (GREC) is used in our comparisons.

Q3 How e↵ective are the proposed methods when compared
to state-of-the-art solutions?
Our goal here is to demonstrate that the proposed learning
methods yield better or comparable results to those observed
for state-of-the-art baselines for di↵erent datasets. In order to
compare our approach with baselines in the MAO dataset, we
consider the evaluation protocol usually employed in the as-
sessment of methods using this dataset (see Section 4.1). We
also perform experiments to compare the performance of the
incremental increase in the size of the training set.

5. Results and Analysis

5.1. Q1: Impact of normalization and the size of training sets

Figure 5 presents the results observed for the evaluated
weight learning methods, considering di↵erent normalization
strategies (e.g., min-max, and zscore). In this figure, we also as-
sess the robustness of the method with regard to the size of the
training set size. The first and the second lines of Figure 5 refer
to the MAO and the PAH datasets, respectively. Good results
are obtained with just a few graph examples from the training
set and as we can observe 10 graphs per class is a good com-
promise for the open-set methods. Related to the normalization,
the min-max normalization obtained the overall best results in
our experiments, thus, we will be using this normalization in
the next experiments.
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Table 1. Best results observed for the di↵erent weight learning strategies in
terms of normalized accuracy. In all cases, 10 graphs are used for training.

MAO PAH GREC
SVM 80.38 70.11 23.52
OSNN1 83.88 63.56 56.25
OSNN2 88.25 72.33 58.98

Table 2. Best results observed for the di↵erent weight learning strategies
in terms of normalized accuracy, considering the use of complex network
measurements in the characterization of graph local properties. In all
cases, 10 graphs are used for training.

MAO PAH GREC
SVM 79.13 55.33 44.20
OSNN1 90.13 93.67 49.66
OSNN2 95.38 84.11 73.52

5.2. Q2: Identification of the best learning methods

Table 1 presents the best results observed for the SVM,
OSNN1, and OSNN2 learning methods for the MAO, PAH, and
GREC datasets, considering only 10 randomly graphs for train-
ing. As we can observe, the OSNN2 classifier obtained the best
accuracy score considering all datasets. As the OSNN2 classi-
fier considers the distance relation between two classes, it can
have a better separation of the classes, leading to a high accu-
racy score.

We also performed some experiments in which we consider
the use of complex network measurements in the local proper-
ties of the graph. Table 2 shows that improving the local rep-
resentation of the nodes, the overall accuracy increases, espe-
cially for the OSNN2 classifier.

5.3. Q3: Comparison with state-of-the-art baselines

In this comparison with the state of the art, we perform a few
experiments considering the same evaluation protocol used by
the literature, and a simple modification using fewer graphs per
training. Table 3 presents the obtained results of our solution
and state-of-the-art approaches in the MAO dataset. We have
slightly modified the leave-one-out protocol to assess the im-
pact of di↵erent training set sizes. OSNN2(X-Y), in the table,
refers to the use of the OSNN2 method, training with X sam-
ples of class 0 and Y samples of class 1. As we can see, our
results have not yet beaten the state of the art, but it comes as
a close third best using only 17 graphs per class in the training
set. Our result with all graphs of the training is a little further in
the table. This happens mainly because our approach to find the
combination of all node signatures results in an overtraining for
our classifier, because of the unbalance of the training classes.
However, as we can see in Table 1 and 2, we can achieve close
or better results using fewer graphs for training.

5.4. Computational complexity and runtimes

Let n be the number of training graphs and vn the total num-
ber of vertices in the training graphs. Similarly, let m be the
number of testing graphs and vm, the total number of vertices in
the testing graphs.

Table 3. Comparison of our approach with the same evaluation protocol
defined in [25] using the MAO dataset.

MAO
El-Atta et al. [26] 98.5

Mahé et al. [27] [25] 96
Gaüzère et al. Treelet Kernel [25] 94

OSNN2 (17-17) 92.65
OSNN2 (15-15) 91.12

Riesen et al. [28] [25] 91
Neuhaus and Bunke [29] [25] 90

Gaüzère et al.
Normalized Graph Laplacian Kernel [25] 90

Gaüzère et al.
Normalized Fast Graph Laplacian Kernel [25] 90

OSNN2 (18-18) 89.71
OSNN2 (10-10) 88.24
OSNN2 (38-30) 83.82

Vishwanathan et al. [30] [25] 82
Suard et al. [31] [25] 80

OSNN2 (5-5) 76.47

At the training phase, the computation complexity of the pro-
posed method depends on the (a) computation of the vertex fea-
ture vector representation (local descriptor computation); (b)
computation of the distance vectors; and (c) the distance learn-
ing. The computational costs of each step of the training phase
can be defined as:

(a) Local Descriptor computation: O(vn);
(b) Distance Vector computation: O(v2

n);
(c) Distance Learning method: O(v4

n) as pointed out in [32]
for the SVM classifier (closed scenario).

The worst case complexity for training is, therefore, O(v4
n)

The test phase comprises (a) the local descriptor computation
for the test set; (b) computation of distance vectors considering
test and training graphs; (c) population of the Hungarian matrix
using the trained classifier; and (d) computation of the Hungar-
ian Algorithm. The computational costs of each step of the test
phase can be defined as:

(a) Local Descriptor computation: O(vm);
(b) Distance Vector computation: O(vn ⇥ vm);
(c) Population of the Hungarian matrix: O(c ⇥ n ⇥ m), where

c stands for the probability score computation cost defined
by the classifier.

(d) Computation of the Hungarian Algorithm: the Hungarian
algorithm computation takes O(p3) where p is the maxi-
mum dimension of the input Hungarian matrix [33]. As
this computation is performed n⇥m, the worst complexity
is O(n ⇥ m ⇥ p3).

Considering the complexity calculated above, we present a
few runtimes of our experiments. Table 4 shows the mean run-
times of each iteration in the MAO dataset with Leave-One-Out
protocol.

Our proposed approach is somewhat costly because it consid-
ers the local descriptions of the graphs to learn the Hungarian
matrix cost function. Also, the computation of the Hungarian
algorithm itself is quite expensive.
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Table 4. Mean runtimes of each iteration in the MAO dataset with the
Leave-One-Out protocol.

Method Runtime (s)
OSNN2 (17-17) 2680 ± 439
OSNN2 (18-18) 3607 ± 671
OSNN2 (20-20) 5384 ± 458
OSNN2 (38-30) 74 391 ± 2029

6. Conclusions

In this work, we introduced new approaches to learn dis-
criminative costs for a bipartite graph edit distance computa-
tion between two graphs. We present a generic framework, and
then we describe di↵erent methods, based on both closed-set
and open-set learning paradigms, used to implement the pro-
posed framework. To the best of our knowledge, this is the first
work to model the cost function learning process as an open-set
recognition problem. Another novelty of this work relies on the
investigation of complex network measurements in the charac-
terization of graph local properties, aiming to obtain more ef-
fective cost function matrices. Performed experiments consid-
ered widely used datasets and evaluation protocols. Achieved
results demonstrate that the proposed framework is e↵ective,
leading to comparable and better e↵ectiveness results in di↵er-
ent graph classification problems when compared with several
baselines. One positive property of our solution relies on its
capacity of leading to e↵ective results, even when only a few
samples (⇡ 10 graphs) are used for training.

In our future work, we intend to deepen the investigations
of the use of other complex network measurements in the lo-
cal characterization of graph properties [34]. We also plan to
extend our investigation regarding the use and combination of
other open-set recognition approaches [35].
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