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1 SAMMENDRAG 
Magnet resonans tomografi baserte teknikker som diffusjon tensor avbildning og blod-oksygen-

nivå-avhengig funksjonell avbildning er moderne undersøkelsesmetoder for henholdsvis 

mikrostruktur i hvitsubstans og hjerneaktivitet. Ved å utvikle tilpassede paradigmer og 

analysemetoder kan disse to avbildningsteknikker gi oss ny innsikt og forståelse av hjernens 

struktur og funksjon. I dette arbeidet er fokus applikasjon av diffusjon tensor avbildning og blod-

oksygen-nivå-avhengig funksjonell avbildning i personer som har vært utsatt for alvorlig traumatisk 

hjerneskade. 

 

Hos pasienter med traumatisk hjerneskade, kan diffusjon tensor avbildning påvise diffus aksonal 

skade i hjernens hvite substans som ikke er synlige med konvensjonell magnet ressonans tomografi 

teknikker. Ved å bruke avanserte postprosesseringsteknikker som traktografi, kan store hvit 

substans baner i hjernen visualiseres og undersøkes for å vise effekt av traumatisk hjerneskade. Ved 

å ta i bruk blod-oksygen-nivå-avhengig funksjonell avbildning, er det funnet et mer utbredt 

aktiveringsmønster som involverer ekstra hjerneområder hos pasienter sammenlignet med friske i 

planlegging, arbeidshukommelse og dobbeloppgavehåndtering. Denne metoden ble også brukt til å 

undersøke romslig navigasjon hos friske. Nevral aktivitet i flere hjerneområder inkludert medial 

temporal lappen ble observert. I tillegg ble det funnet ingen korrelasjon mellom signaler fra blod-

oksygen-nivå-avhengig funksjonell avbildning og diffusjon tensor avbildning målinger. 
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2 SUMMARY 
Magnetic resonance imaging techniques (MRI) techniques such as diffusion tensor imaging (DTI) 

and blood oxygen level dependent functional imaging (BOLD fMRI) are modern tools for mapping 

brain structure and function, respectively. In this work, the focus is on the application of DTI and 

BOLD fMRI in chronic severe traumatic brain injury (TBI) survivors. 

 

In TBI survivors, DTI can detect diffuse axonal injury in white matter which may not be visible 

using conventional MRI methods. By using advanced post processing techniques such as 

tractography, major white matter tracts in the brain can be visualized and investigated for damage 

and deformity following injury. By using BOLD fMRI, a more dispersed activation pattern 

involving additional cerebral areas was found in patients when compared to healthy controls in 

planning, working memory and dual tasking. This method was also used to study spatial navigation 

in healthy controls. Neural activity in multiple cerebral areas including the medial temporal lobe 

was observed. In addition no correlation was found between signal in BOLD fMRI and DTI 

measurements.  
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RBG: Red Blue Green 

RFX: Random Effects 

ROI: Region of Interest 

SNR: Signal to Noise Ratio 

TBI: Traumatic Brain Injury 

ToL: Tower of London 

VBM: Volume Based Morphometry 

VLPFC: VentroLateral PreFrontal Cortex 

WM: White Matter 
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7 INTRODUCTION 
7.1 History of Neuroimaging  
Neuroimaging is the science of imaging and studying the brain’s structure and function in humans 

and animals. The first step towards present-day neuroimaging was made by Wilhelm Röntgen with 

the discovery of X-ray in 1895 (Röntgen 1896). The same year, he published an X-ray image of his 

wife’s hand with a ring (figure 1). Using X-ray for brain imaging, cerebral pathology could be 

detected if they contained calcifications and/or dislocated calcified landmarks due to the lower X-

ray penetrability of the calcifications. In the following decades, several methods for imaging the 

brain using X-rays were explored and put into clinical practice. In 1918, the American 

neurosurgeon Walter Dandy pioneered a procedure called ventriculography (Dandy 1918) which 

imaged the ventricular system with X-ray by first filling them with air via the spinal canal. It was an 

extremely painful procedure, but provided vital information about axial shift of the brain that might 

reflect potential intracranial hemorrhage or tumor growth. In 1927, the Portuguese neurologist Egas 

Moniz successfully imaged the internal carotid artery using a technique called cerebral angiography 

(Moniz 1931). It was done by injecting iodine as a contrast agent in the internal carotid artery and 

then imaging the brain using X-rays. 

 
Figure 1: Hand mit Ringen, print of Wihelm Röntgen’s x-ray image of his wife’s hand 

 

Another big step in neuroimaging was the invention of computer aided tomography (CAT) by 

Godfrey Hounsfield (Hounsfield 1973) and Allan McLeod Cormack (Cormack 1976) in the 1970s. 

A CAT scan works by taking a sequence of X-ray images of an object, for instance a brain, from 

different angles and then using a computer for calculation and generation of a virtual 3D 

representation of the object. The scanned and digitalized brain can then be cut into thin slices giving 

doctors and neuroscientists a chance to virtually browse through it. Using CAT scan, the contour of 
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the cerebral parenchyma can be visualized. Despite the limited quality of these early CAT images 

compared to those of later innovations, the combination of multiple X-ray images in CAT still 

provided better anatomical details than one single X-ray image.  

 

In addition to CAT, another technique, positron emission tomography (PET) also became available 

for studying the brain in the 1970s. The concept of transmission tomography was introduced by 

David Kuhl and Roy Edwards (Kuhl and Edwards 1963), and medical imaging based on 

annihilation radiation was first demonstrated by Gordon Brownell (Brownell and Sweet 1953). 

Similar to CAT, PET also relies on computers to calculate 3D representation of an object based on 

multiple 2D images, but instead of using X-rays, PET utilizes radioactive tracers. Radiotracers are 

chemical compounds such as glucose, water or neurotransmitter substances tagged with radioactive 

isotopes with short half life such as 11carbon, 13nitrogen or 15oxygen. As a result of their radioactive 

properties, the radiotracers emit positrons. In the body, these particles collide with electrons, 

thereby annihilate each other, producing two beams of gamma-ray radiating in opposite directions. 

Using gamma-ray cameras, the beams can be detected and subsequently used for image generation. 

One of the most used radiotracer is fluorodeoxyglucose (FDG) (Ido, Wan et al. 1978), an analog to 

glucose. It has been used to describe the close coupling between cerebral activity and glucose 

metabolism (Sokoloff 1977). Alternatively radiolabeled water containing oxygen-15 can be used as 

a diffusible tracer for studying cerebral blood flow (Raichle, Martin et al. 1983). In addition, 

neurotransmitters can be radiolabeled. This method allows the detection and study of changes in the 

serotonergic, dopaminergic and GABAergic systems in the brain. 

  

In the 1970s, a new imaging technique called magnetic resonance imaging (MRI) emerged. In 

contrast to other imaging methods, MRI does not require ionizing radiation or the use of a 

radiotracers. Instead, it is based on the physical phenomenon called nuclear magnetic resonance 

(NMR) first discovered by Isidor Rabi in 1938 (Rabi 1938), later refined by Felix Bloch (Bloch 

1946) and Edward Mill Purcell (Purcell 1946). Block and Purcell received the Nobel Price in 

physics in 1952 for their development of new methods for nuclear magnetic precession 

measurements, but it was not until the 1970s that the NMR was adapted for medical imaging by the 

combined efforts of Paul Lauterbur (Lauterbur 1973) and Peter Mansfield (Mansfield and Maudsley 

1977), who also received a Nobel Prize in medicine in 2003.  

 

The advent of MRI scanners marked a new chapter in neuroimaging. It enabled the distinction 

between different cerebral tissues such as white and gray matter, and allowed for the manipulation 

of contrasts through the use of various imaging sequences. For studying brain functions, MRI 
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scanning also provided increased spatial resolution compared to PET. Today MRI has established 

itself as an indispensable tool in modern image diagnostics and brain research for investigating 

many different properties of tissues. It can be used to detect structural pathology in multiple 

sclerosis (Guo, MacFall et al. 2002), volumetric change in Alzheimer (Medina, DeToledo-Morrell 

et al. 2006; Duara, Loewenstein et al. 2008), white matter integrity in traumatic injury (Arfanakis, 

Haughton et al. 2002; Huisman, Schwamm et al. 2004), biophysical properties such as cerebral 

blood flow (Ogawa, Lee et al. 1990) and many other aspects of the brain anatomy and physiology.  

 

7.2 MRI  

MRI relies on the physical phenomenon called nuclear magnetic resonance (NMR). It is based on 

the quantum mechanical magnetic properties of an atom’s nucleus. All nuclei that contain odd 

numbers of protons and neutrons have an intrinsic magnetic moment called spin, and this 

phenomenon is utilized in MRI. The most commonly measured spin in MRI is that originating from 

hydrogen (H+) (the proton) which can be found abundantly in water and all organic molecules. 

When exposed to a powerful static magnetic field, the spin directions of the protons align 

themselves with the external magnetic field. The protons can either be in parallel or anti-parallel 

alignment with the external magnetic field. The distribution is almost at equilibrium, but there is a 

slight excess of nuclei parallel to the external magnetic field at room temperature. This small 

alignment imbalance is the source of MRI signal.  

 

By applying a radio frequency pulse at a particular frequency, the Larmor frequency, the spin 

direction of protons can be changed in a process called excitation. The Larmor frequency depends 

on the strength of the static magnetic field and the type of the nucleus to be excited. At a field 

strength of 3 Tesla (T), the Larmor frequency for hydrogen nucleus is 127.74 MHz (formula 1). 

0BF �� �  

Formula 1: F = Larmor frequencies; �: gyro magnetic ratio; B0: field strength 

 

After excitation the protons are not aligned parallel to the magnetic field as they are in a high 

energy state. This state is unstable and the nuclei will return to the more stable low-energy state by 

realigning with the external magnetic field either in parallel or anti-parallel after the radio frequency 

pulse is removed. This process is called relaxation. During relaxation, excessive energy is given 

either to neighboring protons or to the lattice as a whole, and as a result the magnetization in the 

system changes. The lattice is the magnetic and thermal environment through which nuclei 

exchange energy. The changing magnetic field will induce voltage changes in a coil and these 

voltage changes are the signal from which the MRI images are made (figure 2). 
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Figure 2: A typical MRI scanner (www.magnet.fsu.edu) 

 

Several different types of images can be generated from the same biological material utilizing 

different contrast mechanisms in different MRI sequences. Contrast is the relative differences 

between the signal intensities in two adjacent voxels of an image. In MRI, contrast is based mainly 

on three intrinsic features of the tissues (Bloembergen and Purcell 1948). First the proton density 

(PD), which is the number of excitable spins per unit volume, determines the maximum obtainable 

signal from a given tissue. Second the T1 or spin-lattice relaxation time which is the time it takes 

for excited spins to recover and be available for next excitation. Third the T2 or spin-spin relaxation 

time which is the decay rate of the MR signal after excitation. In term of quantum mechanics, the 

T1 reflects recovery of longitudinal magnetization, while T2 describes decay of transverse 

magnetization. 

 

Different tissues have different PD, T1 and T2 properties. They form the basis for contrasts between 

tissue types and make tissue differentiation possible. In T1-weighted MRI images, fat has relatively 

high signal intensity and appears bright, whereas water has low signal intensity and appears dark. In 

T2-weighted images, fat is dark and water is bright. Besides T1 and T2 weighted imaging, endless 

other contrasts may be generated through careful manipulation of gradients and relaxation 

phenomena. Each contrast reflects a different property of the underlying tissue. Two types of 

contrast generating mechanisms are of particular interest for this work: Diffusion-weighted contrast, 

which explores the microscopic water diffusion and blood-oxygen-level-dependent contrast 

mechanism, which is a T2*-weighted contrast based on susceptibility variations in the blood caused 

by changes in ratio between oxygenated and deoxygenated hemoglobin. 
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7.3 Diffusion Tensor Imaging (DTI) 
DTI (Basser, Mattiello et al. 1994) is a further development of diffusion-weighted imaging (DWI). 

The diffusion weighted images are T2-weighted images based on a spin echo sequence and 

sensitized to diffusion by the application of diffusion gradients for example those demonstrated by 

Stetsjkal and Tanner (Stejskal and Tanner 1965).  

 

7.3.1 Diffusion 

All molecules in a fluid (or gas) that has temperatures above zero degrees Kelvin undergo a 

constant random thermal motion, called Brownian motion, or diffusion. The mean displacement (in 

3D) of a particle with no diffusion restrictions (free diffusion) is given by Einstein (Einstein, 1905) 

(formula 1) 
2 6r Dt�  

Formula 1: <r2>: average value for the square of the distance; D: diffusion coefficient; t: time 

 

During diffusion-weighted imaging, the amount of diffusion weighting is determined by the b-

factor which summarizes the influence of applied gradients including the gradient amplitude and 

application timing of the gradients. The microscopic Brownian movements of water molecules 

cause a signal loss, which gives an indirect measurement of their diffusion distance (formula 2).  
bDeSS �� 0  

Formula 2: S: signal, S0: signal without diffusion weighting, b: diffusion weighting, D: apparent diffusion coefficient 

 

In practice, diffusion imaging produces in vivo images that are weighted with the local micro-

structural characteristics of water diffusion. In biological materials, free and unrestricted water 

diffusion is impeded by the existence of cells and extra cellular matrices. The micro-architecture of 

a particular tissue type also influence the direction of water diffusion. Cerebral white matter are  

made of axon bundles that often run in parallel, as a result water diffusion perpendicular to the 

axonal trajectory will be more restricted than water diffusion parallel to the axonal tract. In 

comparison, the densely packed cells in cerebral gray matter have less directional restriction; 

therefore water diffusion will be less directional. The directionality of diffusion can be described as 

isotropic, i.e. non-directional diffusion which can be seen in cerebrospinal fluid, and anisotropic 

diffusion, i.e. fully directional diffusion which can be seen in corpus callosum.  
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Figure 3: the difference between isotropic diffusion (free diffusion) and anisotropic diffusion  

 

7.3.2 ADC 

Based on diffusion weighted images, we can calculate the apparent diffusion coefficient (formula 

3). The ADC is a measure of diffusivity or freedom of diffusion. It describes molecular motion of 

water molecules in a given environment such as the brain where cellular size and integrity may 

interfere. In gray matter ADC is low because neurons are densely packed therefore making an 

efficient omnidirectional diffusion barrier. In white matter ADC is higher in some directions 

because axons are organized in parallel bundles. As a result water diffusion perpendicular to the 

axons will be more restricted than diffusion along the axons (figure 3). ADC can only be measured 

in the direction of which the diffusion gradients are applied. But by averaging ADC in all gradient 

direction applied a better estimate of diffusivity can be obtained, called ADCmean.  

b
SS

ADCD
)/ln( 0��  

Formula 3: D: apparent diffusion coefficient, S: signal with diffusion weighting, S0: signal without diffusion weighting, 

b: diffusion weighting 

 

7.3.3 Tensor 

DWI is sufficient to describe isotropic diffusion, but DTI is required to measure the anisotropy of 

diffusion in order to estimate the largest diffusion direction.  In DTI, at least six gradient directions 

are used for computing a diffusion tensor (formula 4). It can be described using a fully 

diagonalizable 3×3 matrix; as a result only six measurements are needed. The eigenvectors and 

eigenvalues (�1, �2, �3) of the tensor describes the three perpendicular axes in an ellipsoid with the 

longest axes (�1) in parallel with the main diffusion direction of the underlying voxel.  
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Formula 4: A 3×3 matrix describing the diffusion tensor.  

 

7.3.3 Mean diffusivity 

Based on the tensor model, mean diffusivity can be calculated. It is similar but not equal to 

ADCmean (formula 5).  

1 2 3

3
MD

� � � 
�  

Formula 5: MD: mean diffusivity,  �:  eigenvalue of the tensor matrix D 

 

7.3.4 Fractional Anisotropy 

The FA (formula 6) is a measure of the “directionality” of water diffusion, it is assigned a value 

between 0 and 1 (Basser and Pierpaoli 1996). A FA value of 0 reflects isotropic diffusion, and a FA 

value of 1 reflects maximally anisotropic diffusion. FA values close to 1 can be observed in tightly 

packed neuronal bundles such as the corpus callosum. In an isotropic medium, such as a glass of 

water, water molecules move randomly according to Brownian motion (Brown 1828; Einstein 

1905). In biological tissues, however, the diffusion is restricted and is anisotropic. For example a 

water molecule inside the axon has a low probability of crossing the myelin sheets and therefore the 

water molecule will move along the axon and thus making the main direction of diffusion parallel 

to the axonal trajectory (figure 3). 

2
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���
�FA  

Formula 6: FA: fractional anisotropy,  �: eigenvalue of the tensor matrix D 

 

For practical and visualization purposes FA-maps can be colored coded using red, green and blue 

(RGB) to present the direction of the principal eigenvectors, red indicating main diffusion along the 

X axis: right-left, green indicating diffusion along the Y axis: posterior-anterior and blue indicating 

diffusion along the Z axis: superior-inferior (figure 4C). By using color-coded FA-map radiologists 

can more easily identify individual neuronal bundles, or tracts, in the brain. Different tracts run in 

different direction, thus giving them separate color-coding, as shown in figure 5. In figure 5A, the 

difference between cerebrospinal fluid (white) and brain parenchyma (grey) can clearly be seen, 

while the boundary between white and grey matter within the brain parenchyma is harder to spot. In 

figure 5B, the difference between white matter (white) and grey matter (grey) is more clearly 
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visible. In figure 5C, three major tracts have been identified (corpus callosum in red, corticospinal 

tract in blue and superior longitudinal fasciculus in green).  

 
Figure 4: different contrasts that can be achieved using DTI (ADC: apparent diffusion coefficient; FA: Fractional 

anisotropy; RBG-Color-coded FA-map 

 

Both ADC and FA are frequently used as parameters for probing white matter properties such as 

restriction, hindrance, tortuosity and multiple compartments (LeBihan 1995). In healthy white 

matter DTI can be used to follow cerebral maturation in children and adolescence as increment in 

FA (Barnea-Goraly, Menon et al. 2005). In pathologic conditions structural barriers to water 

diffusion in white matter might be subjected to alterations of permeability or geometry, as a result 

ADC and FA might be changed when compared to unaffected and healthy white matter. After 

traumatic brain injury, diffuse axonal injury might occur and cause lower FA and higher ADC. 

These measurements may indicate histological abnormalities such as cytoskeletal misalignment, 

lobulation and axonal disconnection (Arfanakis, Haughton et al. 2002). Higher ADC and lower FA 

values are also seen in multiple sclerosis caused by edema, demyelination, inflammation and axonal 

loss (Filippi, Cercignani et al. 2001), and in Alzheimer’s disease which is likely caused by 

Wallerian degeneration and gliosis (Medina, DeToledo-Morrell et al. 2006). 
 

7.3.1 Tractography 
Tractography is a visualization technique for cerebral axonal bundles based on DTI measurements 

(Bihan, Mangin et al. 2001; Mori, Frederiksen et al. 2002). Based on the tensor for each voxel, three 

perpendicular eigenvectors can be calculated, each describing diffusion in one direction. The largest 

eigenvector is considered to represent the primary diffusion direction of the underlying axons in 

voxels in white matter. By sequentially piecing together discrete and connecting estimates of the 

principal eigenvectors, the axon bundles may be visualized.   
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In recent years, several tracking algorithms have been developed such as probabilistic tractography 

(Behrens, Woolrich et al. 2003; Parker, Haroon et al. 2003) and deterministic tractography (Mori, 

Crain et al. 1999). The goal of probabilistic tractography is to obtain a connectivity index along 

white matter pathways that reflects fiber organization (figure 5A) giving a statistical likelihood for 

the connection from a certain area in the brain to another predetermined region. Deterministic 

tractography, on the other hand, follows the direction of the largest eigenvector in each voxel, and 

virtually reconstructs a tract. One of the deterministic tracking algorithms is the fiber assignment by 

continuous tracking (FACT) algorithm (Mori, Crain et al. 1999) (figure 5B). It utilizes a method 

called fast marching tractography (Basser and Pierpaoli 1996) to find the axonal bundles in the 

brain. FACT initiates tracking in all voxels in a given data set at once and does not require a seed 

point to proceed. The reconstructed tracts can be used as a mask to select a region of white matter 

for analysis. In the current work, a deterministic tractography method was used.   

 
Figure 5A: probabilistic tracking of the optical radiation showing the probability of connection between the lateral gen 

body and the visual cortex. The brighter color indicates higher statistic likelihood of connection. 5B: Deterministic 

tracking of Inge’s corpus callosum, shows the spatial location of the tract inside a head. 

 

During FACT initial tracking, initiation and termination criteria are required. The initiation criterion 

is the lowest FA-value of a voxel in which tracking will proceed. Tracking terminates if the FA-

value in a voxel falls below or the angle between two eigenvectors in two adjacent voxels rise 

above predetermined values. The initial tracking results in all traceable fiber bundles in the brain 

being reconstructed. Next, Boolean operators are used to manually isolate the desired fiber bundles. 

Usable operators for fiber selection include the OR, AND and NOT. The OR is the first operator to 

be used, which selects all fibers that comes through a marked region. After “OR-ing”, a 

combination of AND and NOT are used to manually fine tune and trim the selection based on visual 
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inspection. The AND operator discards fibers that do not go through the marked region, and NOT-

operator rejects all fibers that pass through the marked region (figure 6). It is therefore relatively 

straightforward to segment and virtually reconstruct prominent white matter structures such as the 

corpus callosum, the corticospinal tract, the optic radiation and the longitudinal fascicles (figure 

5B).  

 
Figure 6: procedure for selecting the desired fiber bundle using Boolean operators. The colors of the ring depict 

different operator. Green: OR; Yellow: AND; Red: NOT. 

 

7.4 DTI limitations and considerations 
DTI together with T2-weighted FLAIR and T2* imaging methods are tools for in vivo study of 

white matter anatomy and structural connectivity in a non-invasive manner. Previously axonal 

structures can only be studied using a technique pioneered by Klingler (Klingler 1935) which 

involved repeatedly freezing and thawing the brain post mortem before dissection for axonal sub-

structures. DTI as a method is imperfect; limitations exist and will be discussed briefly in the 

following section. 

 

DTI-MRI measurements are extremely prone to motion related artifacts caused by head movement 

and physiological noise such as cardiac pulsations and respiratory movements (Wirestam, Greitz et 

al. 1996). Also, the DTI sequence itself gives rise to image distortions since it relies on heavy 

gradient pulses which induce eddying currents in the antenna coils. Furthermore, magnetic field 

inhomogeneity is a concern in regions with tissues of differing magnetic susceptibility such as in 

regions with soft tissue and air interfaces (Frahm, Merboldt et al. 1988). Several solutions to these 

problems have been suggested. The duration of the experiment should be kept at minimum as 

lengthy experiments increase the risk of head movements. During scanning light physical 

constraints should be applied and cardiac and respiratory gating may be used for minimizing 

physiological noise (Skare and Andersson 2001). Intra-scan head-motion and eddy current artifacts 
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can be corrected using mathematical algorithms (Rohde, Barnett et al. 2004). It is possible to reduce 

susceptibility artifacts by placing diamagnetic passive shims in the roof of the mouth (Wilson, 

Jenkinson et al. 2002) or more elegantly by using B0-field map correction (Anderson and Gore 

1994; Jezzard and Balaban 1995). 

 

Limitations also apply to DTI data analysis. In tractography, the common voxel size is a cube a few 

cubic millimeters large, which might contain tens of thousands of axonal sections. Tractography is 

therefore an inaccurate method in regions with crossing fibers and for small and winding pathways 

(Johansen-Berg and Behrens 2006). One way to solve the crossing fiber problem (Mori and van Zijl 

2002) is to use advanced diffusion imaging techniques such as high-angular (Tuch, Reese et al. 

2002) and Q-ball imaging (Tuch, Reese et al. 2003; Tuch 2004). In addition to imaging related 

artifacts, brain pathology such as lesions and edema makes tractography even more challenging. 

Although tractography allows for virtual dissection of white matter tracts, it must not be confused 

with anatomical dissection as substantial difference in tract locations are observed between tracts 

derived from DTI and histology (Dauguet, Peled et al. 2007). It should also be noted that 

tractography is a subjective procedure still missing a standardized approach, and therefore highly 

dependent on the analyst’s experience and competence. The interpretation of the results is also 

dependent on the observer’s understanding of the shortcomings of the method.   

 

Another challenge in DTI data analysis is brain size variations among subjects (Allen, Damasio et 

al. 2002) particularly in voxel based morphometry (VBM) where the image volume is compared 

across brains at every voxel (Ashburner and Friston 2000). Therefore, before any group-wise 

statistical analysis is carried out, the subjects’ brains have to be made spatially compatible in a 

process called normalization. One normalization approach is spatial transformation and 

registeration of subjects’ brains to a template brain (Friston, Ashburner et al. 1995). The template 

can be an average of brains of multiple subjects such as the Montreal Neurological Institute (MNI) 

template (Montreal, Quebec, Canada) or a single subject defined as being “standard” such as the 

Talairach template (Talairach and Tournoux 1988). The accuracy of normalization is often 

jeopardized by the presence of cerebral pathology. Therefore it can be advantageous to improve 

precision by making a customized template. First, subjects’ brains are normalized to pre-made 

templates such as MNI-template, then the normalized brains are averaged in order to create a 

custom template which serves as the new target brain for the subjects’ brains during the second 

normalization (Ashburner and Friston 2000).  Despite all efforts, no normalization process is 

perfect, and therefore any group-wise co-localization is inherently pseudo-accurate and this may 

reduce the chance of detecting statistically significant difference between groups. It is possible to 
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use other methods for statistic inference which do not rely on normalization, one being region of 

interest (ROI) analysis. The ROIs can be selected manually as 3D geometric figures according to 

predetermined anatomical localization criteria in each individual, or be chosen semi-automatically 

through for instance tractography where each region corresponds to a white matter tract or a section 

of it. It should be emphasized that any manual or semi-automatic region selection is subjective and 

depends on the analyst’s experience and competence. Furthermore, using a ROI approach, only 

predetermined regions are investigated, this might lead to other regions with significant group 

differences being overlooked.  

 

7.5 Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging  
BOLD fMRI is based on a presumed coupling between neural activity and cerebral blood flow 

(CBF) (Raichle 1987). Neuronal activity can be recorded electrophysiologically using invasive 

electrodes placed in neural tissue. The input and local processing in the neurons can be observed as 

local field potentials (LFP) which integrate signals over a couple of millimeters (Legatt, Arezzo et 

al. 1980). The output from the neurons can be recorded as multi-unit spiking activities which 

combine signals over a few hundred micrometers. Studies have shown that BOLD fMRI signals 

correlate strongly with LFP and to a lesser extend with spiking activity (Logothetis, Pauls et al. 

2001; Mukamel, Gelbard et al. 2005), therefore the BOLD signals predominantly reflects the input 

and local processing rather than output from the neurons. Neural activity also increases CBF and 

causes an oversupply of oxygenated hemoglobin that exceeds local metabolic requirement. The 

lowering of the amount of deoxygenated hemoglobin is detectable using susceptibility-weighted 

MRI (Ogawa, Lee et al. 1990) since deoxygenated hemoglobin acts as an endogenous paramagnetic 

contrast agent (Pauling and Coryell 1936). The most commonly used BOLD-fMRI technique is 

based on a T2*-weighted gradient echo sequence combined with echo planar imaging (Mansfield 

1977) which can sample the whole brain in a few seconds. It is similar to T2-weighted images as 

both measure the spin-spin relaxation or decay rate of a MR signal after exication, but in T2* the 

inhomogeneities of the local magnetic field is also taken into consideration. As a result T2* time is 

shorter than T2, and T2* weighting is more sensitive to field inhomogeneities caused by for 

example changes in oxygenated/deoxygenated hemoglobin ratio. The possibility to indirectly detect 

changes in neural activity using BOLD fMRI was rapidly embraced by neuroscientists and the 

method is now widely used.  

 

Most commonly during BOLD fMRI experiments, subjects perform certain tasks inside the scanner, 

and the difference in the BOLD signal during performance of the task and baseline, or task A and 

task B, can subsequently be analyzed. In task-dependent fMRI the tasks, often called paradigms, 
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can be motor tasks, e.g. hand movements, or cognitive tasks, such as planning, memory or spatial 

navigation. The tasks are usually presented and stimulus collected using a software program like E-

prime, or in-house designed programs. The participants view the task on an LCD screen or via a 

projector mounted outside the scanner bore. The subjects can view the screen through a mirror 

placed on the head coil or in goggles. Most commonly the stimuli are presented according to an 

epoch-related design (Deyoe, Bandettini et al. 1994) inspired by earlier works on PET (Raichle 

1987), or event-related design inspired by ElectroEncephaloGraphy (EEG) and 

MagnetoEncephaloGraphy (MEG) studies (Picton, Lins et al. 1995). The epoch-related design is 

easy to implement and analyze and have a high signal-to-noise ratio (SNR). Each individual task 

stimulus usually lasts 14-50 seconds and they are interleaved with control conditions of varying 

length. The event-related design is more complicated to implement and analyze and have a lower 

SNR. Each individual task stimulus usually lasts 1-10 seconds spaced apart with control and/or 

baseline task periods of varying length. Compared to epoch-related design, event-related design 

yields higher specificity in the neural correlates of the cognitive task being investigated, but with 

lower SNR. It is also possible to implement self-paced tasks, in which duration of each stimulus is 

not predetermined. Furthermore, predetermined timing of each task condition can be avoided by 

employing alternative model free analysis methods such as individual component analysis (ICA). 

It should be noted that there is also task independent fMRI, i.e. resting state fMRI, where the person 

is resting during fMRI scanning. However, this method was not used in this work and will not be 

discussed further see the work by Gusnard and colleagues for details (Gusnard and Raichle 2001). 

 

During data analysis, the collected BOLD fMRI data is first preprocessed using digital filters such 

as motion correction algorithms and noise-removal filters to improve detection of the true BOLD 

signal (see also section 7.5 for more details). Thereafter the BOLD fMRI data-set is aligned to a T1-

weighted image of the brain. If group-wise comparison involving multiple subjects is needed, the 

T1-weighted images of the brains have to be normalized. It is commonly implemented using whole 

brain template based methods, similarly as in DTI group analysis (see also section 7.5 for more 

details). It is also possible to do cortex based alignment (CBA) (Dale, Fischl et al. 1999; Goebel, 

Esposito et al. 2006). The CBA utilizes the hemispherical curvature information to minimize the 

spatial difference between the subjects’ individual brains. CBA is a time-consuming technique 

requiring segmentation and reconstruction of each subject’s hemispheres (Dale, Fischl et al. 1999). 

The reconstructions are then inflated and transformed to a sphere, which serves as the starting point 

for the alignment process. Upon completion of the alignment, the spheres are transformed and 

deflated back to its original shape. Alternatively the spheres can be transformed back without 

deflation and cut and flattened to form a flat map of the hemispheres (Fischl, Sereno et al. 1999). 
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Finally, the BOLD signal variations are convolved with a hemodynamic response (HDR) function  

which reflects the assumed temporal fluctuation of the BOLD signal due to changing neural 

activity.  

 

The HDR also introduces temporal smoothing and delays when compared to the actual neural 

activity that is supposed to arise in response to the presented stimuli/task performance. Then a 

statistical parametric map based on the general linear model is calculated from the measured BOLD 

signal changes convolved with the HDR (Friston, Holmes et al. 1994). The calculations are often 

done using two main approaches, the single-voxel approach which tests each voxel separately, and 

the region of interest (ROI) approach which performs statistical analysis on time course of a ROI. 

Alternatively, using model free analysis methods, such as ICA (Comon 1994; McKeown, Makeig et 

al. 1998), no assumptions of the underlying BOLD signal fluctuations are made, therefore there is 

no need to implement an HDR . Instead, ICA explores the data and tries to identify spatio-temporal 

patterns in a data driven manner.  

 

7.6 BOLD fMRI Limitations and considerations 
BOLD fMRI has rapidly become a standard method for studying brain activity. Still, the method 

has several limitations and shortcomings that must to be taken into consideration to properly 

interpret results. In the following text, methodological issues will be discussed 

 

7.6.1 BOLD signal 

The measured BOLD signal changes are not a direct reflection of neural activity. Instead it depicts 

regions with increased blood flow presumed to be caused by increased neural activity. The signal 

maximum is delayed from the onset of stimulus due to the time required for production and 

diffusion of vascular signal substances which dilates the vascular bed and causes a washout of 

deoxygenated hemoglobin (Marota, Ayata et al. 1999). Therefore, temporal resolution in BOLD 

fMRI is inferior compared to EEG and MEG. On the other side BOLD fMRI has better spatial 

localization than EEG and MEG, thus being a complementary brain studying technique. Patterns of 

neural activity derived from BOLD fMRI experiments only show the relative differences in neural 

activity between task conditions. When a task condition is compared to a non-task or baseline 

condition, the results describe the neural activity that is statistically different from the latter. The 

baseline condition reflects resting state neural activity. Different task conditions can also be 

compared in order to identify regions subserving specific components of for example a cognitive 

task. The theoretical model for this approach is called cognitive subtraction and was first described 

by Donders (Donders 1868). It assumes that cognitive processes happen sequentially and 
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individually without any mutual interference. The idea of independent cognitive processes or pure 

insertion has been a subject of substantial skepticism, as the brain is a highly nonlinear system and 

does not conform to additive or linear principles (Friston, Price et al. 1996). Alternatively, event-

related paradigm design, which does not completely rely on cognitive subtraction can be used 

(Postle, Zarahn et al. 2000). Another confounding phenomenon is the underlying task-independent 

differences in measured BOLD signal among different subject groups. These differences can be 

caused by cerebrovascular disease (Roc, Wang et al. 2006), white matter inflammation (Langkilde, 

Frederiksen et al. 2002), age-related changes in cerebrovasculature and autoregulatory mechanisms 

(D'Esposito, Zarahn et al. 1999), pharmacological effects (Liu, Behzadi et al. 2004) and psycho-

stimulant drug use (Friedman, Turner et al. 2008). These BOLD signal differences might make 

group-wise comparisons between patients and healthy controls inaccurate since an inherent signal 

differences are already present independent of the task. These factors should be taken into account 

in BOLD fMRI experiments where subjects belonging to different groups, for instance a healthy 

control group versus a group with pervasive brain pathology, are compared directly. 

 

7.6.2 Measurement and analysis of BOLD signal 

The ability to detect BOLD signal changes is often measured using signal to noise ration (SNR) 

which is the relationship or power ratio between the signal and the background noise. The 

magnitude of BOLD signal changes induced by brain activity is weak usually in the range of 1-6% 

of the total signal. It is more robust for primary visual, motor and sensory functions than in higher 

cognitive functions such as memory, planning etc. (Huettel and Song 2003). BOLD sequence is 

based on a T2*-weighted gradient echo imaging sequence which is vulnerable to distortions and 

artifacts caused by several factors. First susceptibility artifacts may arise in regions close to air 

filled spaces or sinuses. These regions include orbitofrontal cortex, parahippocampal/hippocampal 

cortices and the temporal lobes. Second, motion or physiology related artifacts can be caused by 

subject motion, cardiac pulsation or respiration. Third artifacts or distortions may be the results of 

field inhomogeneity of the scanner. Some methods for combating these problems have been briefly 

discussed previously (see section 7.5) 

 

SNR can be increased with higher static magnetic field strength which yields higher net 

magnetization and thereby larger BOLD signals change (Yang 1999; Krasnow 2003). It also 

increases possible spatial resolution and reduces partial volume effect by allowing smaller voxels 

and at the same time maintaining sufficient SNR for signal detection. In addition higher static field 

alters T2*-relaxation time and causes BOLD signals to increases faster in the extravascular 

components of small vessel than larger vessel. Smaller vessels are more likely to be colocalized 
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with the studied neural activity. Therefore increased statistic magnetic field improves the spatial 

specificity of the BOLD signal (Huettel, Song et al. 2003). 

 

During data analysis, the ability to detect BOLD signal related to neural activity can be improved 

by several means. Motion correction can partially removes the effects of subject motion and the 

associated signal variability. Spatial smoothing with a Gaussian filter can facilitate the detection of 

true BOLD signal in statistic analysis by reducing noise (Oppenheim 1978) and improves the fit of 

the data to the general linear model (Adler 1981). High and low-pass filter (Friston, Holmes et al. 

1995) can remove noise in temporal domain such as physiological noise. Alternatively, cardiac 

pulsation and respiration can be monitored and modeled as effects of non-interest during data 

analysis (Biswal, DeYoe et al. 1996). The ability to detect BOLD signal is further affected by 

statistical analysis method. Activation maps calculated from single-voxel based analysis are 

inherently limited by the SNR of the individual voxel. In ROI based approach some of the low SNR 

can be overcome, but at the cost of possible overlooking activities in other brain regions than those 

pre-defined. Also, it is essential to ensure adequate normalization of brains during group-wise 

comparisons using single-voxel based analyze methods. The normalization can be done using 

template based approach or CBA. Comparing these two methods, CBA provides better overlap of 

functional areas with similar sulci topology across subjects such as the visual and motor areas than 

template based methods (Fischl, Sereno et al. 1999), while other areas, such as subcortical grey 

matter, may have no “sulcal” topology, which makes the advantage of CBA less obvious (Brett, 

Johnsrude et al. 2002).  

 

7.8.3 Paradigm Design 

The performance of any tasks inside the scanner should not involve movement of large muscle 

groups since any excessive motion will lead to head motion and motion related artifacts. The 

difficulty of the paradigm has to be adapted to suit the cognitive and motor ability of the test 

subjects to ensure adequate success rate. The duration of each paradigm should be kept short to 

prevent subject fatigue. Lengthy experiments can be divided into separate sessions to allow proper 

restitution in-between. By doing so new problem might be introduced, but these topics are outside 

the scope of this thesis. The equipment required for task completion such as response buttons and 

screen for viewing the task has to be MRI compatible in order to function properly, safely and 

without disturbing the MRI signal significantly. In term of sensory modalities, it is easiest to present 

visual stimuli and difficult to receive oral response from the test subject. As a result standard 

neuropsychological tasks such as the Wisconsin card sorting (Berg 1948) and Tower of London 

(Shallice 1982) have to be adapted and carried out virtually, which alters the task from its original 
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intended version. In addition, all subjects are scanned in the supine position, which is an uncommon 

position for performance of most tasks. Indeed, this position might cause nausea when combined 

with visual stimuli such as spatial navigation (Slater, Usoh M et al. 1995).  

 

In an fMRI paradigm, the stimuli or task is the independent variable and the measured BOLD signal 

is the dependent variable. Additional variables might be present in the paradigm and may correlate 

with the dependent and independent variable. These variables are called confounding factors and 

might cause incorrect data interpretation. Methods to minimize these effects include 

counterbalancing and randomization. In counterbalanced experiments, the confounding factors are 

present in all conditions and will cancel each other out during comparison. For example during 

visual experiments which involve pictures in task conditions, a scrambled version of the same 

picture containing the exact same number of pixels of each color can be presented during the rest 

conditions. In randomized experiments, individual conditions are presented randomly to mitigate 

the effect of habituation, a psychological process in which psychological and behavioral response 

decreases as a result of repeated exposure to same or similar task condition over long time 

(Thompson and Spencer 1966; Sokolov 1990). It has for instance been shown in humans that 

habitation causes reduced neural activities in amygdala (Fischer, Furmark et al. 2000; Wright, 

Fischer et al. 2001).  Despite the advantages of randomization, there are factors which advice 

against its usage. In BOLD fMRI experiments containing task conditions of varying difficulties, it 

might be favorable to perform the most challenging task first to avoid fatigue or if the result of that 

first task condition serves as the input of the next one. Particular attention should be paid to patients 

with brain disorders who often experiences difficulties in understanding and following instructions. 

 

Another factor that needs consideration during paradigm design is the timing of individual task and 

rest conditions. In epoch based and event related paradigm designs, timing is predetermined and 

therefore remains constant across subjects. Timing in epoch based paradigms can also be allowed to 

vary between subjects by terminating the task conditions automatically upon completion thus 

making the conditions self-paced. By doing so, the onset of the conditions will vary with TR and 

data sampling will be distributed in time contributing to reduced bias and increased sensitivity in 

the final results (Veltman, Mechelli et al. 2002). Also self-pacing reduces neuropsychological 

effects such as fatigue and habituation by making individual task conditions more different and 

perhaps more interesting. Other favorable effects of self-pacing include the increased likelihood of 

achieving similar performance in two groups with differences in for instance processing speed. This 

is done by allowing subjects in each group to use different but sufficient amounts of time to 

compete the tasks. As a result, this reduces the impact of performance as a possible confounding 
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factor and ensures comparable neural processes taking place in both groups. The difference in the 

duration of the task conditions reflects subject performance can be used as regressor in later data 

analysis. Self-paced conditions also involve technical challenges. First the task itself have to be 

“self-paceable” which means that the completion of the task can be monitored using algorithm 

incorporated in the paradigm software itself, or recorded by allowing subjects to respond when they 

are finished for example by pressing a button. During analysis, self-paced conditions require 

individual HDR  reflecting the assumed fluctuation in BOLD signal to be made before convolving 

with the real observed BOLD signal variations. It is a time consuming step prone to human errors. 

Alternatively to epoch based and event related design, ICA can be used to completely avoid the 

need for timing.  

 

7.7 BOLD- and DTI in TBI survivors 
7.7.1 Epidemiology of TBI  

Traumatic brain injury (TBI) is a common cause of disability. In Norway, 7-8% of all patients 

treated for injury in the emergency room or hospital have head injuries (NEL 2009). While the 

majority of these patients only sustain concussion or mild head injury, there are still 450-500 head 

injury related fatalities annually. Men are twice as likely as women to experience head injury and 

young people under 30 years are at particular risk. Each year 10.000 are admitted to Norwegian 

hospitals with a head injury. In total, these amount to 80.000 days of hospitalization and contribute 

to a considerable health expense (NEL 2009). The total annual cost for a bed at a specialized 

rehabilitation center is estimated to be 3 million NOK (Sosial-_og_helsedirektoratet 2005). 

  

7.7.2 Clinical findings in TBI survivors 

Trauma leading to TBI can be either penetrating such as those caused by firearms or edged 

weapons, or non-penetrating such as those caused by motor vehicle accidents with extreme 

acceleration and deceleration forces, falls, or blunt weapons. The type of injury can be divided into 

focal, diffuse and a combination of both. The primary mechanism for focal injury is direct impact of 

the brain. For diffuse injury, it is the shear-strain deformation, a change in brain shape but without 

volume change (Arfanakis, Haughton et al. 2002). Focal brain injury can manifest as epidural, 

subdural, contusion and traumatic intra-cerebral hematomas. Diffuse injury can result in diffuse 

axonal injury, diffuse brain edema and hypoxic brain injury. 

  

The clinical outcome following TBI ranges from no functional deficit to death. The severity of the 

traumatic brain injury is initially commonly assessed using the Glasgow coma scale (GCS) 

(Teasdale and Jennett 1974), and measures consciousness level according to verbal and motor 
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responses. The GCS ranges from 3 till 15 with lower score indicating more severe reduction in 

consciousness, the grading of TBI patients based on GCS is shown in table 1. The outcome after 

TBI can be evaluated using the extended Glasgow outcome scale (GOS-E) (Jennett and Bond 1975; 

Wilson, Pettigrew et al. 1998) which assesses degree of recovery in multiple areas of function such 

as behavior, cognitive and physical, and separates patients into eight outcome categories. 

Investigation of the outcome in TBI survivors in Norway 10 years after the accident (Andelic, 

Hammergren et al. 2009) showed that the overall mean GOS-E score among the survivors was 6.4 

points; 48% had good recovery, 44% had moderate disability and 8% had severe disability. Post-

traumatic epilepsy was present in 19%, depression in 31%, and the employment rate went from 

81% at the time of injury to 45% 10 years after. Healthy related quality of life measured using 

questionnaires from SF-36 (Ware and Sherbourne 1992) was reduced compared to the normal 

population.  

TBI grading GCS Score 
Mild >13 
Moderate 9-12 
Severe <8 

Table 1: TBI grading based on GCS score 

 

7.7.3 Imaging DAI in TBI survivors 

Diagnostically, DAI can be detected on both CT and MRI. On CT, hemorrhagic injury can be seen 

as small punctuate lesions in areas at the junction between gray and white matter. For non-

hemorrhagic TBI, CT has poor sensitivity. Therefore, in difficult cases, MRI is suggested to be a 

better choice. Both T2*-weighted and fluid attenuated inversion recovery (FLAIR) techniques are 

sensitive to hemorrhagic and non-hemorrhagic injuries in DAI. The MRI grading of DAI is as 

shown in table 2 (Gentry 1994). As a complement to T2* and FLAIR based techniques, DTI has 

been shown to be sensitive in detecting diffusion changes in DAI (Arfanakis, Haughton et al. 2002; 

Huisman, Schwamm et al. 2004), because damage of the white matter in DAI disrupts the well-

organized and parallel cellular architecture and alters the water diffusion, changing it from 

directional or anisotropic to less directional or isotropic. In addition, DTI can also be used to 

visualize damage to major white matter tracts using tractography.  

Grade Lesion location 
Grade 1 Cerebral hemispheres 
Grade 2 Corpus callosum 
Grade 3 Brain stem 

Table 2: MRI grading of DAI 
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7.9.5 Cognitive deficit in TBI survivors 

The disability of TBI survivors often manifests as sensory-motor and cognitive impairments such as 

reduced speed of information processing, working memory, focused attention and dual-task 

performance (Vanzomeren and Vandenburg 1985; Sarno, Buonaguro et al. 1986; Dikmen, Ross et 

al. 1995; Blatter, Bigler et al. 1997). These dysfunctions limit TBI survivors’ ability to successfully 

handle daily activities, cause reduced quality of life, and prevent them from returning to school or 

work (Vanzomeren and Vandenburg 1985; Vilkki, Ahola et al. 1994; Brouwer, Verzendaal et al. 

2001). Although tests are available to quantify functional deficit, their neural correlates remain 

unclear. Cognitive deficit may be prominent despite otherwise good neurological recovery 

(Dikmen, Ross et al. 1995).  

 

Working memory and focused attention are part of the executive functions, which also include 

planning, decision making and error correction (Schneider and Shiffrin 1977; Shallice 1982). Most 

of our everyday situations require executive involvement. Executive functions are recruited during  

planning, which can be tested using the Tower of London (ToL) test, a task adapted from Tower of 

Hanoi (Anzai and Simon 1979). It has been found that ToL engages prefrontal cortices, parietal and 

occipital lobe (Morris, Ahmed et al. 1993; van den Heuvel, Groenewegen et al. 2003; Rasser, 

Johnston et al. 2005). Two studies have shown significant differences in ToL performance between 

TBI survivors and healthy controls (Owen, Downes et al. 1990; Ponsford and Kinsella 1992), but 

these findings were not supported by another study (Cockburn 1995). Furthermore, executive 

functions are evoked when the required responses differ from the automatic response, or the learned 

response. The Stroop test (Stroop 1935) is an execllent example here. In this test the subject reads 

words such as blue, green and red printed in other color than the words’ semantic value. Finally, 

executive functions are activated when resisting strong habitual response and impulsivity. It can be 

tested using Conner’s continous performance task II (CPT-II) (Multi-Healthy Systems, North 

Tonwanda, NY, US) which is responding to “target” stimuli, while refraining from responding to 

the other stimuli presented. Studies have shown that TBI survivors score poorly on both Stroop 

(Perret 1974) and CPT-II (Galbiati, Recla et al. 2009) when compared to healhty controls. 

 

Impairment in executive functions can also be reflected in poor dual task ability (Park, Moscovitch 

et al. 1999; Leclercq, Couillet et al. 2000; Brouwer, Verzendaal et al. 2001). Two tasks can be 

carried out without performance penalty or dual task cost if they are well practiced such as walking 

and talking. The dual task cost is attributed to the limited resources in working memory and/or 

attention available for execution of two tasks simultaneously (Norman and Shallice 1986; Shallice 

and Burgess 1996; Marois and Ivanoff 2005). Studies have showed a strongly link between dual 
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tasking and prefrontal cortex activity (D'Esposito, Detre et al. 1995; Koechlin, Basso et al. 1999). 

The idea that prefrontal cortex is the primary site for dual tasking is challenged by another 

hypothesis, which suggests that dual tasking recruits additional brain regions already activated by 

each individual task, and does not need additional activation of the executive system (Smith, Geva 

et al. 2001; Erickson, Colcombe et al. 2005). This controversy may be explained by the lack of 

standardized clinical test for evaluating dual task performance.  

 

In addition, TBI survivors may show spatial navigation deficits (Skelton, Ross et al. 2006; 

Livingstone and Skelton 2007) as a result to injury to the medial temporal lobe (MTL). Successful 

navigation is a complex task requiring several cognitive components. Initially the environment has 

to be learned by making a mental representation either allocentrically which is view point 

independent, or egocentrically which is view point dependent (Jordan, Schadow et al. 2004). When 

required to navigate, this previously acquired representation is retrieved from memory and 

interpreted for route calculation. This sequence of cognitive processes can be divided into phases 

including self-localization, target localization and route execution (Spiers and Maguire 2006; 

Shipman and Astur 2008). Animal studies have shown the importance of the MTL in spatial 

navigation by detecting place cell (Okeefe and Dostrovs.J 1971), grid cell (Fyhn, Molden et al. 

2004), head direction cell (Sargolini, Fyhn et al. 2006) and border cell (Solstad, Boccara et al. 2008) 

in that region. Modern neuroimaging studies have shown that an extended cortical and subcortical 

network is engaged during spatial navigation with the MTL playing a pivotal role (Jordan, Schadow 

et al. 2004; Spiers and Maguire 2006; Shipman and Astur 2008). 

 

7.9.6 Neuroplasticity in TBI survivors 

The neural correlates of cognitive deficit and impairment detected using BOLD fMRI have been 

shown as difference in activity pattern between TBI survivors and healthy controls (McAllister, 

Saykin et al. 1999; Christodoulou, DeLuca et al. 2001; Scheibel, Pearson et al. 2003). The source of 

the differences is believed to be primarily caused by neuroplastic changes in the brain after injury 

(Johansen-Berg, Dawes et al. 2002). The principle of neuroplasticity was first hypothesized by 

William James in 1890. It is the brain’s ability to make structural and functional changes to better 

adapt to the environment and increase survivability. These changes are influenced by experience, 

learning, aging or pathology (Emerit, Riad et al. 1992; Nitsche, Liebetanz et al. 2005). In the cortex 

two neurotransmitters are of particularly importance, they are glutamate and GABA, which induce 

morphological and structural changes in the synapses by promoting neural sprouting and increasing 

the number of synaptic buttons (Gil-Loyzaga 2009). It should also be noted that the global 

projection neurons, containing the monoamine neurotransmitters (serotonin, noradrenalin, 
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acetylcholine and dopamine), play a role in neuroplasticity as seen in for example memory and 

learning (Rasmusson 2000). Following TBI there is an improvement of cognitive function even as 

the structural changes continue to develop negatively, for instance increasing atrophy (Wilde, 

Bigler et al. 2007; Sidaros, Skimminge et al. 2009). This could be viewed as a paradox, and can be 

regarded as an internally driven “brain repair” process aimed at regaining a certain functional level 

by altering brain processing. Several types of changes have been shown to take place that may play 

a larger or smaller role in these functionally adaptive changes seen after TBI. Axonal sprouting and 

synaptogenesis (Laurberg and Zimmer 1981), unmasking or reorganization (Bachyrita 1981), 

diaschisis (Von Monakow 1914) and neurogenesis (Eriksson, Perfilieva et al. 1998). Although adult 

neurongenesis exists, as demonstrated by neuronal progenitor cells in the dentate gyrus of adult 

humans which can divide and generate new neurons (Eriksson, Perfilieva et al. 1998) its role in 

neuroplasticity remains elusive. In comparison, other modes of neuroplastic repair are considered to 

be more frequent. In collateral sprouting, uninjured axons branches to assume territory of injured 

axons. In reorganization or unmaksing, healthy neural structures not formerly used for a given 

purpose are reassigned to do functions formerly subserved by the injured area. Similarity can be 

drawn to redundant design in engineering where critical components of a system are duplicated to 

increase the reliability of the system in the case of a backup or fail safe. At a cellular level, 

unmasking happens by activation of previously “silent” synapses after injury to primary functional 

synapses. As a result an alternative neuronal route is established indicating that neural circuitry is 

not hardwired and can to some extent be rerouted. In diaschisis, damage to one specific location in 

the brain causes functional deficits in another distant but undamaged site since the “normal” input 

to the distant site is lost. But gradually, the distant site may recover its function. The neuroplastic 

potential is also dependent on the type of tissue. In visual cortex, the talamo-cortical neuroplasticity 

is extremely limited following injury to the early components of the visual system. The major 

contributor to functional improvement is cortico-cortical neuroplasticity (Dariansmith and Gilbert 

1994; Chow, Groszer et al. 2009). Also different cortical regions have different degrees of ability to 

reorganize, the motor cortex is for instance much less plastic than the somatosensory cortex 

(Castroalamancos, Donoghue et al. 1995). The structural adaptations in the brain are reflected 

functionally through substitution and compensation. In substitution, additional cortical areas within 

the same functional network are recruited. In compensation, additional areas outside the same 

functional network are recruited. 
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8 AIMS 
The aims of the studies were to apply and evaluate two modern MRI imaging techniques; DTI and 

BOLD fMRI for studying axonal microstructure and cognitive functions in TBI survivors. 

 

The DTI study (paper 2) was performed in order to explore the potential of DTI in mapping changes 

in white matter following TBI. The BOLD fMRI studies (paper 1 and paper 3) investigated neural 

correlates for executive functions such as planning (paper 1) and dual-tasking (paper 3) which are 

known to be impaired in severe TBI survivors. The purpose of these two papers was to study the 

neural correlates behind planning and dual-tasking, explore the neuroplasticity following TBI and 

evaluate the feasibility of tasks for differentiation of TBI from healthy controls. Also a spatial 

navigation study using virtual reality (VR) (paper 4) was carried out in healthy controls to 

investigate the neural correlates of MTL during varying navigational scenarios. The ultimate 

purpose of this study is to implement a variant of the task in TBI survivors to study neural 

correlates in the brain, particularly the MTL, during spatial navigation at a later time point. Finally 

DTI and BOLD fMRI were combined (paper 5) to investigate the effect of axonal damage on the 

HDR and to validate the fMRI BOLD findings in the other papers (paper 1 and paper 3) 
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9 MATERIALS AND METHODS 
9.1 Participants 
Paper 1 

Ten male patients with chronic TBI were recruited from an outpatient rehabilitation follow-up 

group at Munkvoll Rehabilitation Center (St. Olav’s Hospital, Trondheim, Norway). All patients 

had initial GCS below 8 indicating severe injury. For controls ten healthy volunteers were included. 

Neither of the controls had a history of head trauma or neurological disorders, nor a history of 

DSM-IV axis I diagnosis of psychiatric illness.  

 

Paper 2 

Nine male patients with chronic TBI were recruited from an outpatient rehabilitation follow-up 

group at Munkvoll Rehabilitation Center (St. Olav’s Hospital, Trondheim, Norway). All patients 

had initial GCS below 8 indicating severe injury. For controls eleven healthy volunteers were 

included. None of the controls had a history of trauma to the head or neurological disorders, nor a 

history of DSM-IV axis I diagnosis of psychiatric illness.  

 

Paper 3 

Ten male patients with chronic TBI were recruited from an outpatient rehabilitation follow-up 

group at Munkvoll Rehabilitation Center (St. Olav’s Hospital, Trondheim, Norway). Nine patients 

were severe TBI (GCS<8) and one had moderate TBI (GCS=9). For controls, eleven age-matched 

healthy male volunteers were recruited among the patients’ friends and first siblings. None of the 

controls had a history of neurological disorders or current DSM-IV axis I diagnosis of psychiatric 

illness.  

 

Paper 4 

Twenty male healthy volunteers with no history of neurological disorders, head trauma, or current 

DSM-IV axis I diagnosis of psychiatric illness were recruited from the NTNU university campus.  

 
Paper 5 

Ten male patients with chronic TBI were recruited from an outpatient rehabilitation follow-up 

group at Munkvoll Rehabilitation Center (St, Olav’s Hospital, Trondheim, Norway). All patients 

were severe TBI survivors with GCS below eight, and had white matter abnormalities diagnosed as 

DAI. For controls, nine age-matched healthy male volunteers were recruited among the patient’s 
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friends and first siblings. None of the controls had a history of neurological disorders or current 

DSM-IV axis I diagnosis of psychiatric illness.  

 

9.2 Ethical Approval 
All studies were approved by the local ethical committee for clinical research. All patients and 

healthy controls gave their written informed consent after the procedure had been explained and 

opportunities to ask questions given. All image data, questionnaires and other collected data were 

made anonymous and handled according to the Helsinki convention.  

 

9.3 MRI Scanning 
MRI scanning was performed on two different scanners at St Olavs Hospital, Trondheim, Norway. 

Only scan parameters for BOLD fMRI and DTI sequences will be listed here.  

 

Scanner I (Paper 1, 2, 3 and 5) 

Scanning was performed on a Philips 3 Tesla MRI Scanner (Philips Medical Best, Netherlands), 

with a quasar dual gradient system yielding a maximum of 80 mT/m and a SENSE head coil using 

parallel imaging (MRI Devices/InVivo, Orlando, Florida, USA). 

 

All BOLD fMRI was done using single shot echo-planar-imaging (EPI) sequence with SENSE 

reduction factor = 2.2. Scan parameters for paper 1 were: 41 slices, TR=3000 ms, TE=35 ms and 

2.4×2.4×2.4mm voxel size; for paper 3: 40 slices, TR=3000 ms, TE=35 ms and 1.8×1.8×2.5mm 

voxel size; and for paper 5: 23 slices, TR=1500 ms, TE=35 ms and 1.8×1.8×2.3mm voxel size. All 

DTI imaging was done using a spin-echo EPI sequence with SENSE reduction factor = 1.5. Full 

brain volumes were collected using 55 slices with 32 spatial independent directions. Cardiac 

triggering was applied with a systolic trigger delay of 150 msec with TR of 15 R-R intervals giving 

a TR of 13-16 sec. Other major scan parameters were b-factor = 800 sec/mm2, TE=50 msec and 

1.80×1.80×1.72mm voxel size.  

 

Scanner II (Paper 4) 

Scanning was performed on a Siemens Trio 3 Tesla MRI Scanner (Siemens, Erlangen, Germany), 

with a 12 channel head matrix coil (Siemens, Erlangen, Germany). BOLD fMRI was done using an 

echo-planar imaging pulse sequence. The scan parameters were: TR=2600 ms, TE=30ms and 

3.0×3.0×3.0 mm voxel size. The slices were positioned as close to 90o on the anterior-posterior 

direction of the hippocampus as possible without causing fold-in from the neck.  
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9.4 fMRI Stimulus design, presentation and response collection 
Stimuli for papers 1, 3 and 5 were compiled in E-Prime 1.1 (Psychology Software Tools, 

Pittsburgh, Pennsylvania, USA). For paper 4 it is made using Torque Game Engine (Garage Games, 

Eugene, Oregon, USA) in close collaboration with Terra vision (TerraVission, Trondheim, 

Norway). All stimuli were presented in a block design. In paper 1, the block duration was 

predetermined and remained constant. In paper 3 and 4 the block duration varied depending on the 

performance of the subject. A time limit was applied to control the maximum duration. 

 

For papers 1, 3 and 5, the stimuli were presented using a liquid crystal display (Philips Medical 

Best, Netherlands) placed behind the magnet bore which the subjects viewed through a tilted mirror 

mounted on the head coil. The responses were collected using response grips (Nordic Neuro lab, 

Bergen, Norway). For paper 4, an organic light-emitting diode based video goggle (Nordic Neuro 

lab, Bergen, Norway) was used for better subject visual field of view coverage giving a more 

submerged experience. The subject carried out the experiment using a joystick (Current Designs, 

Philadelphia, USA) and the task performance related data was logged by the Torque Game Engine.  

 

9.5 Data Analysis 
9.5.1 DTI 

Analysis of DTI images involved several software packages. Pre-processing was done using FSL 

3.3 (Analysis Group, FMRIB, Oxford, UK) (Smith et al., 2004), creation of FA-maps, ADC-maps 

and tractography was done using DTI-Studio (Laboratory of Brain Anatomical MRI, John Hopkins 

Medical Institute, Baltimore, USA) (Jiang et al., 2006) based on the fiber assignment by continuous 

tracking (FACT) algorithms (Mori et al., 1999). Group-based analysis of FA and ADC-maps was 

done using SPM2 (Wellcome Department of Imaging Neuroscience, London, UK). Skull stripping 

and ROI drawing was done with MRIcro (Rorden & Brett, 2000). 

 

9.5.2 BOLD fMRI 

Analysis of structural and BOLD fMRI image data for paper 1 and 3 was performed using Brain 

Voyager QX 1.4.10 (Brain Innovation, Maastricht, The Nederlands). Using this software suite, the 

BOLD fMRI image data were corrected for motion, smoothed over a 4-mm full width at half 

maximum kernel, removed for linear trend and high-pass filtered. Then all brains were segmented 

and reconstructed based on the structural MRI data. The reconstructed brains formed the basis 

normalization using CBA (see section 6 for details). All statistical analyses of BOLD fMRI image 

data were carried out using contrasts according to the GLM and group activation maps generated 

using random effect analysis. Conditions were modeled according to a boxcar stimulus function 
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convolved with a two-gamma HDR function. The group statistical parametric maps were corrected 

for false positives using the false discovery rate (for details see papers). 

 

For paper 4 and 5, the analysis of structural and BOLD fMRI image data was performed using FSL 

4.0 (Analysis Group, FMRIB, Oxford, UK) (Smith et al., 2004). First, the BOLD image data were 

corrected for motion, smoothed over a 5-mm full width at half maximum kernel and high pass 

filtered. Then all brains were segmented based on the structural MRI data. The resulting brains 

formed the basis for normalization using template based approach (see section 7.5 for details) with 

MNI standard template. All statistical analyses of BOLD fMRI image data were carried out using 

contrasts according to the GLM and group activation maps generated using a mixed effects model 

of variance, as implemented in FLAME1 (FMRIB’s Local Analysis of Mixed Effects). Conditions 

were modeled according to a boxcar stimulus function convolved with a two-gamma HDR function 

(for details see papers). 

 

9.5.3. Behavioral data 

Excel (Microsoft, Redmond, Washington, USA) and SPSS (SPSS, Chicago, Illinois, USA) were 

used to perform statistical analyses of group characteristics and behavioral performance. 



 36

10 SYNOPSES OF PAPERS 
10.1 Paper 1 
Brain activation measured using functional magnetic resonance imaging during the Tower of 

London task 

Rasmussen I-A Jr, Antonsen IK, Berntsen EM, Xu J, Lagopoulos J, Håberg AK. 

ACTA NEUROPSYCHIATRICA 18 (5) 216-225 OCT 2006 

 

The aim of this study was to assess the patterns of regional brain activation in response to the 

Tower of London task (ToL) in chronic TBI survivors using BOLD fMRI. ToL is a well-described 

executive task considered to specifically tap planning which is frequently impaired in TBI. 

 

In this paper ten patients and ten age-matched controls underwent fMRI while performing a 

modified ToL task. The analysis of the performance data indicated no difference in response 

accuracy between the groups. The statistic analysis of the BOLD data was done using RFX GLM 

model and FDR corrected. The results revealed that TBI patients recruited additional and larger 

cerebral regions than healthy controls. These regions included additional functional area in the 

parietal and frontal lobes, and a larger increased right-lateralization of activity especially in the 

prefrontal lobe. In addition a parametric analysis with task difficulty as independent variable was 

conducted. It did not show any significant between group differences.  

 

The results of this study pointed to a cortical reorganization inside the executive system of vigilance 

and working memory in survivors of severe TBI. Both parietal and prefrontal areas were recruited 

to compensate for damaged brain tissue. The TBI patients also showed a greater degree of right 

lateralization. The lack of between group differences in the parametric model might indicate that 

both groups recruited similar brain regions as task difficulty increases. 
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10.3 Paper 2 
Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution 

diffusion tensor imaging 

Xu J, Rasmussen IA, Lagopoulos J, Håberg A 

JOURNAL OF NEUROTRAUMA 24 (5) 753-765 MAY 2007 

 
The aim of this study was to investigate whether diffusion tensor imaging (DTI) offered additional 

information as to the extent of damage not visualized with standard magnetic resonance imaging 

(MRI) in patients with severe traumatic brain injury (TBI).  

 

In this paper nine chronic severe TBI patients and eleven matched controls were scanned using 

DTI. Based on the DTI data, FA- and ADC-maps were calculated and compared between the 

groups. The comparisons were carried out first using voxel based morphometry (VBM), followed 

by a region of interest based approach (ROI), and finally complemented by a tractography based 

method. The ROI were placed in the following regions: anterior and posterior corpus callosum, 

anterior and posterior periventricular, deep frontal, medial orbitofronal, occipital and posterior limb 

of internal capsule. The tractograms included the corpus callosum and corticospinal tracts. Results 

from VBM revealed significantly reduced FA and increased ADCmean in major white matter tracts 

in TBI patients when compared to healthy controls. These findings were confirmed by both ROI 

and tractography based analyses in the investigated regions. 

 

The results of this study suggested widespread white matter injuries following severe TBI. In 

addition it also illustrated that DTI holds great promise as a diagnostic tool to identify and quantify 

the degree of white matter injury in TBI patients. 
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10.5 Paper 3 
Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury 

patients, but not in controls 

Rasmussen IA, Xu J, Antonsen IK, Brunner J, Skandsen T, Axelson DE, Berntsen EM, Lydersen S, 

Håberg A 

JOURNAL OF NEUROTRAUMA 25 (9) 1057-1070 SEP 2008 

 
The aim of this study was to investigate the cost of dual tasking in chronic severe TBI patients 

using BOLD-imaging. Dual tasking is the ability to carry out two tasks simultaneously. Its cost is 

the decreased performance on one or both tasks. The dual task ability is specifically impaired after 

traumatic brain injury.  

 

In this paper, ten TBI patients and eleven matched healthy controls were scanned using BOLD 

techniques while performing two tasks. They were a visual search task and a simple two-button 

press motor task. Analysis of the performance data demonstrated significant dual task interference 

in both groups, and increased performance variability in TBI patients. Analysis of the BOLD data 

showed significantly reduced activation in TBI patients in the single task conditions compared to 

healthy controls. For both single task conditions, the activity was reduced in the occipital and 

posterior cingulated cortices, and for the visual task also in the thalami. A reversed pattern was 

observed when comparing BOLD data from dual task condition. Significantly increased activity 

was observed in TBI patients in prefrontal-anterior midline-parietal network, predominantly 

lateralized to the left. The increase in activation occurred within regions shown by other studies to 

be associated with increased dual task cost in healthy controls. 

 

The results of this study pointed to neural substitution and more effortful processing in TBI 

survivors while carrying out two tasks simultaneously. Recruitment of additional prefrontal regions 

may be connected to serial rather than parallel processing in low level dual tasking. Therefore in 

severe TBI survivors, low level dual task performance depends on increased attentional and 

executive guidance.  
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10.6 Paper 4 
Persistent posterior and transient anterior medial temporal lobe activity during navigation 

Xu J, Evensmoen HR, Lehn H, Pintzka CWS, Håberg AK 

SUBMITTED NEUROIMAGE  2009 

 

The aim of this study was to explore the activity within MTL subregions in the initial phase of 

navigation, i.e. self-localization, target localization and path planning, compared to the execution 

phase. In addition, the effect of environmental manipulations on MTL activity was investigated. 

 

In this paper twenty male healthy controls were scanned using BOLD fMRI while navigating in a 

virtual environment that resembled an office with numerous complex landmarks. In total three task 

(normal, without, block) and one baseline (line) conditions were included. Each condition was 

divided into two phases, initial and execution. The volunteers learned the environment before 

scanning through free and structured exploration. The analysis of the data showed that different 

regions within an extended neuronal network are recruited. The initial phase engaged anterior MTL 

regions including bilateral rostral and caudal entorhinal cortex and bilateral anterior hippocampus. 

Also right anterior parahippocampal cortex was significantly more active during the initial phase. 

Activity in the very anterior aspect of the right hippocampus correlated positively with navigational 

success. The whole navigation phase recruited right posterior hippocampus and parahippocampal 

cortex. Hippocampal activity was only detected when the virtual environment remained unaltered in 

condition normal. Navigational success was positively correlated with activity in the anterior 

hippocampus for the whole block.  

 

The results of this study indicated a functional segregation within the MTL with regard to 

navigational phase, i.e. initial versus execution phase. Based on the current findings it appears that 

the anterior part of MTL completes associations related to the environment at large, and the 

posterior part keeps track of current location. Moreover, hippocampal activity depended on 

environmental features, e.g. presence or absence of landmarks and blockings.  
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10.7 Paper 5 
Reduced fractional anisotropy does not change the shape of the hemodynamic response in 

survivors of severe traumatic brain injury 

H. S. Palmer, B. Garzon, J. Xu, E.M. Berntsen, T. Skandsen, A. Håberg 

SUBMITTED JOURNAL OF NEUROTRAUMA 2009 

 

The aims of the present study were to describe the HDR in visual cortex, and to examine its 

relationship with the microstructure of the optical radiation in severe TBI survivors and controls.  

 

In this paper, ten TBI survivors without visual impairments, but with known diffuse axonal injury 

and nine healthy controls were scanned using DTI and BOLD fMRI during brief visual stimuli at 

randomized intervals. For each individual the optical radiations were identified from DTI using 

diffusion tensor tractography. Fractional anisotropy (FA) and mean apparent diffusion coefficient 

(ADCmean) values for these tracts were calculated. BOLD signal changes for each subject were 

estimated in V1, and group HDR curves produced. Standard between-group analysis of BOLD 

activation in V1+V2 was performed. The data analysis showed group HDR curves from visual 

cortex were fully transposable between TBI survivors and healthy controls despite a significant 

reduction in FA in the optical radiation in the TBI group. A significant correlation between BOLD 

signal beta values in the visual cortex and FA values in the optical tract was present in controls, but 

not TBIs. Between-group contrast showed TBI survivors had a greater area of activation, especially 

in V2 during visual stimulation compared to controls.  

 
The results of this study indicated an intact HDR in traumatic white matter damage. There was a 

loss of thalamo-cortical input to the visual cortex, and the increase in area of activation in the visual 

cortex in TBI probably stemmed from cortico-cortical neuroplasticity. This study supports the 

validity of using standard fMRI methodology to study neuroplasticity in TBI.   
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11 DISCUSSION 
In this thesis DTI and BOLD fMRI methods were applied in studying axonal microstructure and 

cognitive functions in severe chronic TBI survivors.  

 

The DTI study (paper 2) showed that severe TBI survivors had widespread white matter axonal 

abnormality when compared to healthy controls. These structural pathologies were reflected as 

changes in FA and ADCmean in the major white matter tracts in the TBI survivors. Such white 

matter injuries are considered to be a contributor to cognitive deficits (Sidaros, Engberg et al. 

2008). The impact of TBI on brain activity in response to cognitive tasks was investigated in two 

BOLD fMRI studies (paper 1 and paper 3). In these two studies, paradigms inferring executive 

functions such as planning and dual-tasking were successfully designed and applied. Both 

paradigms successfully differentiated TBI survivors from healthy controls in neural activity. Only 

the paradigm in paper 3 produced significant different behavior separating the groups. The results 

from the two BOLD fMRI studies provided evidence for neuroplastic changes in the brain in TBI 

survivors in the chronic phase. These neural modifications could be seen as changes in cerebral 

activation pattern, which included increased area of activation, recruitment of additional areas, and 

shift in lateralization. The physiological effect of white matter pathologies on the HDR was 

examined in paper 5. The results indicated that significantly altered white matter axonal structure 

does not lead to changes in HDR. Thus strengthening the between-group BOLD fMRI results in the 

two fMRI studies included in this thesis (paper 1 and paper 3). 

 

Finally a spatial navigation task (paper 4) were designed and carried out in healthy controls. 

Experiences from this study showed the feasibility of a spatial navigation task and provided 

framework for understanding neural correlates during spatial navigation in future studies on TBI 

survivors. Contusions in the anterior part of the MTL is frequent in TBI, and even more 

interestingly hippocampal atrophy is seen even without the presence of focal injury to the MTL 

(Wilde, Bigler et al. 2007). Paper 4 also demonstrated the possibility of differentiate neural activity 

related to different phases of spatial navigation. By applying a similar experimental set-up to TBI 

patients with focal and/or more generalized lesions in the MTL, it should be possible to gain 

increased understanding of the neuronal correlates leading to behavioral deficits following TBI, the 

compensatory mechanisms following various degree of focal and local injury, and finally to 

evaluate hypotheses relating specific navigational functions to specific regions in the MTL by 

specifically examine patients with different types of lesions to the MTL.      
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In the text to follow, a more detailed discussion of the findings and the limitations of the studies 

will be given.  

 

11.1 DTI in TBI survivors 
WM axonal structures in TBI survivors were investigated using DTI in paper 2. The results from 

both VBM and ROI based analysis yielded significantly reduced FA and increased ADCmean in TBI 

survivors when compared to healthy controls indicating the presence of DAI. Both inter-

hemispheric tracts such as corpus callosum and intra-hemispheric tracts such as internal and 

external capsule, superior and inferior longitudinal fascicles, and periventricular white matter were 

significantly affected. These findings reflect large scale changes in the connectivity between 

cortical, subcortial regions and the hemispheres.  

 

Decreased anisotropy and both increased (Gupta, Saksena et al. 2005; Salmond, Menon et al. 2006; 

Kraus, Susmaras et al. 2007) and decreased (Liu, Maldjian et al. 1999; Nakahara, Ericson et al. 

2001; Shanmuganathan, Gullapalli et al. 2004) diffusivity have been reported earlier in TBI 

survivors. Inconsistency regarding diffusivity might be caused by differences in the interval 

between MRI and the primary insult in the different studies. This temporal gradient in FA and 

diffusivity changes supports the idea that the pathophysiological processes in DAI are dynamic and 

evolve over time (Barzo, Marmarou et al. 1997; Sidaros, Skimminge et al. 2009). Reduced FA may 

reflect misalignment of the cytoskeletal network and lobulation of the axons during early stage of 

DAI and later axonal loss. While increased ADCmean indicates expansion of extracellular space 

associated with neuronal or glial loss, and increased axolemmal permeability at a later stage. The 

inconsistent findings in diffusivity might also be related to the MRI sequence being used. The 

studies reporting decreased diffusivity were based on DWI which measures diffusivity along one or 

a few gradient direction. This might give a less complete and sensitive measurement unable to fully 

detect the underlying changes in cellular architecture and is hence not directly comparable to 

ADCmean and MD derived from DTI.  

 

In paper 2 the reported ADCmean changes were more widespread and significant than FA, indicating 

that ADCmean is a more sensitive parameter for detecting DAI. This idea was not supported by 

Arfanakins et al (Arfanakis, Haughton et al. 2002) and Huisman et al (Huisman, Schwamm et al. 

2004), that reported FA to be more sensitive. This disagreement might be explained by temporal 

evolvement of pathophysiological processes in DAI. All patients were scanned within 24 hours for 

Arfarnakins et al and 7 days for Huisman et al, too short time interval for processes leading to 

changes in diffusivity to be completed. The ADCmean and FA changes in paper 2 were more 
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prominent on the right side, consistent with similar right sided patterns of focal pathology observed 

on conventional MRI scans of these TBI survivors. Previous studies have reported reduced 

anisotropy in the right internal capsule and right optic radiation (Wieshmann, Symms et al. 1999; 

Rugg-Gunn, Symms et al. 2001). One possible explanation to the right lateralized pattern might be 

attributed to rotational forces charactering motor vehicle accidents happening in countries such as 

Norway with right-side driving custom. In addition to detecting structural pathologies, several 

studies have established significant correlations between DTI parameters and different aspects of 

outcome for TBI survivors. FA has been shown to positively correlate with clinical  outcome (Ptak, 

Sheridan et al. 2003), cognitive function (Kraus, Susmaras et al. 2007) and negatively to injury 

severity (Huisman, Schwamm et al. 2004). MD has been found to correlate negatively with memory 

and learning (Salmond, Menon et al. 2006). To my knowledge no study has investigated the 

correlation between executive functions and diffusion parameters in TBI survivors. But one study 

on ischemic leukoaraiosis patients showed that diffusivity, and not FA, correlates with executive 

function (O'Sullivan, Morris et al. 2004). Unfortunately, the TBI survivors included in the present 

work did not complete the same battery of psychological tests due to the lack of test standards. 

Therefore we were unable to look into the relationship between FA and diffusivity and higher 

cognitive functions. It should also be noted that the relatively small group size in paper 2, and the 

variation in location and amount of structural changes is not ideal for such a correlation analysis. 

 

The results in paper 2 are consistent with the idea that TBI is accompanied by DAI. By using DTI 

changes in WM microstructure could be detected in areas where it was not evident on conventional 

CT or MR images. Despite the advantages of DTI in detecting WM pathology in TBI survivors, the 

method is still not used for routine diagnostics due to its labor intensiveness and hard-to-use 

software. Progresses are being made both in software and hardware to allow DTI to become part of 

the clinical toolbox.  

 

11.2 fMRI in TBI survivors 
11.2.1 fMRI Paradigm Design 

In paper 1 and paper 3, fMRI paradigms considered to tap functions known to be impaired in many 

TBI survivors were selected and modified for investigating the neuronal correlates to these test 

following TBI. The paradigms used here were in paper 1 based on a modified standard 

neuropsychological test (paper 1), and in paper 3 custom built from scratch (paper 3).  

 

In paper 1, the paradigm was designed according to ToL, a standard psychological test for planning. 

By conforming to the standards, our results were compatible with other ToL experiments. In the 
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original version subjects physically manipulated the beads. In some computerized ToL experiments 

(Morris, Downes et al. 1988; Owen, Downes et al. 1990), the physical movements have been 

replaced by virtual movements. In our version no physical or virtual manipulation of the beads was 

required. Instead subjects performed the transformation between the start and target configuration 

mentally. They subsequently responded by choosing between three numbers indicating the least 

required number of moves. By altering the ToL test in this manner, we believe that the requirements 

on several cognitive processes might be altered and possibly increased. These processes include 

working memory for keeping the number for moves and previous states online from start to task 

completion, mental rotation for manipulation of the beads, and linguistic comprehension skill for 

understanding instructions and keeping them available during task performance. Therefore to 

ensure subject compliance, a training session was given and scanning did not proceed until 

satisfactory training results were achieved. By choosing between three alternatives, there is 33% 

chance of guessing the correct answer. Thankfully, the success rate was 83.6% for TBI survivors 

and 87.5% for healthy controls, which was above chance. Furthermore, the between group 

difference was not significant. The similarity in success rate indicates that all subjects understood 

and were able to perform the paradigm, and any difference in neural activation was therefore not 

dependent on success rate. In paper 1, the timing of the paradigm was predetermined, hence 

collecting data on completion time was impossible. During image analysis, we detected significant 

between group differences in the activation patterns. This supports the idea that our ToL paradigm 

is able to detect and differentiate TBI survivors from healthy controls and describe the neural 

correlates for planning following TBI.  

 

In paper 3 we investigated dual task ability. There is no standard test for dual task function, the dual 

task paradigms in the literature vary greatly from psychological refractory period experiments 

(Tombu and Jolicoeur 2003) via two motor tasks (Bekkering, Adam et al. 1994) to two executive 

tasks (Pashler 1994). Our paradigm was custom designed and composed of a visual search task and 

motor task. Both components are non-executive and functionally unrelated. To ensure subject 

compliance, pre scanning training was given. In addition the paradigm was not randomized in order 

to ensure that the TBI survivors were not fatigued during the dual task performance. Behavioral 

data revealed same success rate in both groups, but significant difference in completion time which 

was collected in this self-paced paradigm design. The success rate indicated that sufficient subject 

compliance was achieved, and the differences in completion time separated the groups and 

indicated difference in dual task cost. Later during image analysis, we found significant between 

group difference in neural activity, and correlation between neural activity and motor response 

rhythm. 
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As showed in paper 3, we were able to successfully design and apply a novel paradigm for 

investigating dual task ability. These custom paradigms are projects of their own, requiring hours of 

programming, bug fixing and piloting before MRI data can be collected. Unfortunately novelty 

might not always be easily accepted by the psychological community as robust tests for assessing 

cognitive abilities. Psychologists usually prefer standard tests, which might tap several cognitive 

functions simultaneously. As a result the sensitivity is high for detecting functional deficits, but the 

specificity is poor for studying specific cortical functions. By customizing new tasks with clever 

design and well-funded hypothesis, the specificity can be improved thus making the new tests better 

suited for conducting cognitive studies using fMRI. It can therefore be argued that inter-study 

compatibility with regard to results and validity should be sacrificed for better functional 

specificity. We strongly believe that more novelty and less convention is need to obtained new 

knowledge about the brain. 

 

11.2.2 Behavior difference between severe TBI survivors and healthy controls 

In paper 1 and 3 subjects were studied using paradigms assessing executive functions. Behavioral 

data were collected and can be divided into two categories, performance (success vs failure) and 

processing speed (completion time). The performance was similar in TBI survivor and healthy 

controls in both papers. However, significant between group difference was detected in 

performance in paper 3. In paper 1 data on processing speed was not collected due to epoch-related 

design with predetermined timing. We believe our data corroborates the observation that TBI 

survivor may perform satisfactorily on standard tests of IQ (Shallice and Burgess 1991), despite 

experiencing considerable difficulty in processing executive functions (Cockburn 1995). The IQ 

resembles the performance, and the processing difficulty is comparable to the processing speed. 

From a neurocognitive perspective, the increased completion time may indicate impairments in 

speed of information processing, working memory and attention (Felmingham, Baguley et al. 2004; 

Fong, Chan et al. 2009) . In paper 5, a visual paradigm assessing response to brief visual stimuli 

was used. Again the performance measured as accuracy was similar between the groups, but the 

processing speed measured as response time was significantly prolonged. In this study we also 

found reduced white matter integrity, as indicated by reduced FA, in the optical radiation among 

TBI survivors comparing to healthy controls. Based on the findings in these three papers, we 

therefore hypothesize that disruption of  axonal integrity have a negative effect on transmission 

between cortical regions and leads to reduced speed of information transfer which is reflected in 

increased completion time,  in TBI survivors. The maintained performance level, on the other hand, 

may result from the altered cortical processing as revealed by fMRI. It should be noted that no 

correlation was found between reaction time and FA in the optical radiation, thus the link between 
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increased response time and reduced white matter integrity may still require further research to 

solidify, maybe with a larger sample size.  

 

From a data analysis point of view, the statistical power of our studies is reinforced by the similar 

performance and weakened by the differences in processing speed. We were able to avoid one 

confounding factor, performance, but the other factor, completion time, remained. But difference in 

behavior data can be can be exploited in a constructive way. In paper 3, significant correlation was 

found when using motor response rhythm as a regressor.  

 

11.2.3 Functional difference between severe TBI survivors and healthy controls 

In paper 1 and 3 significant differences in neural activity between TBI survivors and healthy 

controls were found using fMRI paradigms investigating executive functions. The functional 

differences showed two characteristic patterns, i.e. increased dispersion and changes in 

lateralization of activity.  

 

Dispersion or increased spatial extend of the neural activity was evident in both paper 1 and paper 

3. In paper 1 we used ToL, a planning task. TBI survivors showed a dispersed activation pattern in 

the parietal and the ventrolateral prefrontal cortical areas compared to the healthy controls. The 

ventrolateral prefrontal cortex (VLPFC) is generally associated with emotional, working memory 

and higher order sensory processing. The VLPFC role in working memory includes the ability to 

hold and compare sequences of items in short-term working memory (Owen 1997; Petrides 2000). 

Based on this observation, we suggest that increased VLPFC in TBI survivors is the result of 

inadequate ability in keeping track of information being held in spatial working memory, and leads 

to recruiting additional cortical resources. In paper 3, we used a dual task paradigm including a 

visual search and a simple motor task. Dispersion was again detected, but more differentiated than 

in paper 1. First dispersion was detected in TBI survivors when compared to healthy controls only 

during dual task conditions, and included prefrontal structures such as midline anterior superior 

frontal gyrus and cingulate cortex. The pattern was actually reversed during single task conditions. 

Second, dispersion during dual task conditions was also present in healthy controls when compared 

to TBI survivors, but in different cortical areas. Healthy controls recruited additional neural 

resources within the regions employed by each component tasks as seen in other studies in healthy 

controls (Smith, Geva et al. 2001). TBI survivors recruited additional cortical resources outside the 

regions already employed by each component tasks, but remained inside the same functional 

network. These additional regions corresponded to regions used by healthy controls in more 

difficult visual search tasks (Collette, Olivier et al. 2005).  
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Based on the results in paper 1 and paper 3, several hypothesizes about the cause of dispersion of 

activation can be made. First, since dispersion was present in the dual task condition, but not single 

task condition, reduced or impaired modulation of activity involving the global projecting neurons 

may play a role. A similar pattern of increased activity in healthy controls compared to TBI 

survivors during simple tasks and the opposite during more challenging tasks have been detected by 

Bayer and colleagues (Braver, Cohen et al. 1997) during a visual N-back letter task. They suggested 

that relative subtle group differences in frontal activation might reflect difficulty in modulating or 

allocating cognitive resources according to working memory load in TBI survivors. Second, 

dispersion points to substitution as the mechanism for functional reorganization in TBI survivors. 

Substitution is the recruitment of additional cerebral regions within the same partially restored 

functional network. The addition cerebral regions also might indicate inefficient processing going 

from parallel to serial. 

 

In addition to dispersion, the neural activity was also more lateralized in TBI survivors. The neural 

activity was more prominent on the right side in paper 1 and on the left side in paper 3. Earlier 

studies support these findings. One study showed that in mild TBI survivors effective verbal 

working memory results in left lateralized BOLD activations, while poor performance causes a 

more right-lateralized activation pattern (McAllister, Saykin et al. 1999). Other study reported that 

in TBI survivors, there is significant negative correlation between diffusivity and memory function 

lateralized to the left (Salmond, Menon et al. 2006). Based on these finding it is possible that TBI 

survivors utilize a right-lateralized network also found in healthy controls, but not used by the 

highly skilled or proficient individuals. In addition our ToL paradigm also required large amount of 

mental rotation, which is predominantly lateralized to the right hemisphere (Hermsen, Haag et al. 

2009). In paper 3, a dual task paradigm was used. One study has reported a similar left-sided fronto-

parietal network in healthy volunteers in response to dual task performance of two tasks not 

dependent on prefrontal resources (Collette, Olivier et al. 2005). The disagreement in lateralization 

between paper 1 and 3 is confusing, and no study has systematically investigated changes in 

lateralization with regard to type of task and clinical data describing for instance severity of TBI, 

time from injury, functional outcome etc. in TBI survivors. Therefore we propose two possible 

mechanisms. First, changes in lateralization of function may be arbitrary, depending on lesion 

location and time from initial incident. This idea is supported by Feydy and colleagues who found 

that lateralization of motor function after stroke depends on the site of lesion and time after insult 

(Feydy, Carlier et al. 2002). Second, the lateralization pattern may be connected to extent of white 

matter injury in the corpus callosum and within the hemisphere(s). It is possible that damage to 

major inter-hemispheric neural pathway leads to separation of previously connected inter-



 48

hemispheric functional networks. After disconnection, information is no longer processed in 

parallel with the entire network participating. Instead information is processed in a more serial 

fashion by each hemisphere. It can be speculated that part of the network in one hemisphere will 

assume the dominant role, and process the majority of the information, and as a result give rise to 

more extended neural activity. Functional or material-specific lateralization in prefrontal areas is 

well established principle. Neural activity is lateralized to the left for verbal tasks and to the right 

for the non-verbal tasks (Wagner, Poldrack et al. 1998). It is also interesting no note that the 

lateralization in neural activity seen in paper 1 and paper 3 does not agree with the right lateralized 

prominence of white matter injury found in paper 2. This observation further strengthened the belief 

that an internal driven “brain repair” independent of structural deterioration such as increasing 

atrophy and reduction in FA.  

 

The characteristic difference in neural activity between TBI survivors and healthy controls is likely 

attributed to neuroplastic changes in the brain. After brain injury basic developmental neuronal 

growth processes are released and potentiated due to disturbance in the dynamic balance between 

growth-stimulating and growth-suppressing factors (Finger and Almli 1985). These changes in 

signals will often results in plastic changes such as neural rearrangement involing axonal sprouting,  

synaptogenesis and highly  unlikely neoneurogenesis. These developmental changes together with 

changes in input may lead to other more passive plastic changes such as unmasking and diaschisis.  

All these plastic processes will take place during “brain repair”, therefore it is difficult if not 

impossible to determine the exact correlation between repair mechanisms and neural activity 

pattern. In paper 1 and paper 3 we observed dispersion and changes in lateralization of neural 

activity. We believe dispersion is the result of unmasking and axonal sprouting in cortex after 

injury. During this process, the sprouting neurons will interact with other neurons than before 

injury, thus extend its spatial influence which can be observed as dispersion. Unmasking can be 

connected to changes in local processing within a restricted region of the cortex due to changes in 

for instance lateral inhibition and /or local input, but also to unmasking of white matter pathways of 

lesser importance in the healthy brain. For instance, interruption of major intra- or inter-hemispheric 

connection can lead to the use of alternative neural routes in an attempt to resume proper function. 

The relationship between brain activity changes as revealed with fMRI, the underlying neuronal 

plasticity responsible for these changes and their clinical significance are still undetermined.  

 

The changes in processing speed and in distribution of activity in TBI survivors raise an interesting 

question about the validity of the statistical comparisons used fMRI analyses. In order for a direct 

comparison between the two groups the HDR has to be comparable in TBI survivors and healthy 
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controls. In paper 5 we explored the relationship between FA and the BOLD response in an attempt 

to investigate the effects of structural pathology on the neurovascular coupling. Imaging results 

based on DTI showed significant changes in FA and ADCmean of the optical radiation in TBI 

survivors compared to healthy controls. Interestingly these changes were not reflected in HDR 

measured in the visual cortex. It appears that white matter damage secondary to TBI is insufficient 

to alter HDR. Therefore we are confident that HDR is robust even in the face of microstrucural 

changes in white matter, and thus basic BOLD fMRI experiment using standard methods and 

models will be valid in TBI survivors with known white matter pathologies such as DAI.  

 

11.3 Navigation in VR 
In addition to executive functions, spatial navigation is another essential but often impaired ability 

in TBI survivors, as the MTL injury is common (Umile, Sandel et al. 2002). Therefore in paper 4 

we established a MRI compatible navigation task, using a complex virtual reality environment in 

which subjects can move actively. Today no standard test for spatial navigation ability in humans 

exist, some studies use passive viewing of images or movies (Aguirre, Detre et al. 1996; Maguire, 

Burgess et al. 1998; Groen, Wunderlich et al. 2000), while others are based on active navigation 

inside a virtual environment of varying complexity (Aguirre and Desposito 1997; Maguire, 

Woollett et al. 2006). We believe that an environment rich in detail that resembles our daily 

encounters with the world is needed to sufficiently reflect the complex nature of spatial navigation. 

Our environment mimics the inside of a modern office building with rooms, corridors and open 

areas of various sizes, but lacks exterior windows. Fifty-six distinct landmarks, made up of 195 

objects and 60 pictures are placed at different locations. Wall structure, ceiling, carpeting and 

lighting of the interior are similar throughout the environment, modeled to make it as realistic as 

possible.  

 

Unfortunately due to the time constraints, the environment was only tested in healthy controls, no 

TBI survivors were included. But based on the image results, we achieved robust activation in the 

MTL including caudal and rostral entorhinal cortex, anterior hippocampus and parahippocampal 

cortex during the initial phase of navigation, which involves self-localization, target-localization 

and route planning. For successful performance the components of initial navigation requires a 

mental representation of the virtual environment at large. It is therefore reasonable to hypothesize 

that poor spatial navigation in TBI survivors might be caused by the inability of making such a 

comprehensive representation of previously learned environment due to injuries to the anterior 

portion of the MTL. We plan to answer this question in future studies. 
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11.4 Limitations and consideration  
In the following text, several key limitations of the studies included in this thesis will be discussed. 

 

11.4.1 Patient inclusion and number of subjects 

One major limitation of this study is the small sample size, which makes it difficult to draw 

generalized conclusions based on statistical significant findings using GLM in BOLD fMRI 

(Schafer, Mostofsky et al. 2003). Still, the studies included in this thesis were able to detect 

significant findings despite the small groups of 10-12 subjects using random effects. One reason 

was probably the homogeneity of severity and injury mechanisms, predominantly DAI, among the 

subjects. In addition the subjects were matched on sex, ethnicity and socioeconomical background, 

and to some degree with regard to age, and time from accident The small sample size also preclude 

analyzes of variation in brain activity with lesion location or type of lesion as regressor.  

 

Other issues needing consideration are the criteria used for selecting TBI survivors for studies. In 

this study we used GCS, which measures brain function at time of the accident. It does not 

necessarily reflect degree of structural pathology and similar GCS can be caused by completely 

different underlying pathology. By using GCS, comparison with other studies is made easier since 

GCS is one of the most commonly used selection criteria. In addition GCS allows structurally 

unbiased selection of subjects, favorable in structural studies such as paper 2. But the lack of 

structural homogeneity in subjects may introduce challenges in data analysis such as difficulties in 

normalization. Alternatively subjects can be selected based on similar radiological findings, or on 

neuropsychological outcome data. Selecting participants based on similarity of lesion location and 

extent is extremely difficult as these vary considerably. The option of selecting subjects by 

neuropsychological outcome was not available as TBI survivors had not undergone the same battery 

of tests, making it impossible to select on basis of such criteria.  

 

11.4.2 Imaging data acquisition and processing 

All essential issue in DTI and BOLD fMRI data acquisition is subject compliance which includes 

the ability to remain physically still, to mentally comprehend the instruction, and to perform the 

tasks at a certain level. All these abilities can be jeopardized in any subject, but TBI survivors will 

be at higher risk. Non-compliance can result in excessive movements which lead to image distortion 

and subsequent data exclusion. Movement related image artifacts can also interfere with data 

analysis and increase the likelihood of showing false positives or negatives in the between group 

analysis. Precautions were taken to ensure adequate subject compliance. In addition to compliance 

related problems, structural variability may also directly or indirectly affect the results. First, 
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anatomical abnormality increases data variance in DTI studies and has a direct impact on results. In 

paper 2, sub-cortical lesions such as enlarged ventricle, atrophies of the corpus callosum, and focal 

or diffuse lesions were masked out in order to successfully and accurately drive spatial 

normalization for the VBM-based-analysis method. Being one of the most frequently used approach 

for DTI data analyses, the VBM-method provides a good overview of structural differences. One of 

the major controversies of the VBM-method is the necessity of accurate spatial normalization. 

Slight misalignment may produce spurious difference in the diffusion measures. Therefore to 

complement the VBM approach, two ROI-methods were applied in our study. The ROIs were either 

geometric representing a 7 voxel 3D cross or tractogram of the entire tract. Both ROI-methods 

revealed white matter changes similar to the VBM results. Using ROI-methods, the inherent low 

SNR in individual voxels can be overcome, and the number of statistical comparison can be 

reduced and therefore making detection of false positive or negative less probable. The two ROI-

methods differentiate mainly in the way the ROIs are selected. Using tractography, the ROIs are 

selected semi-automatically and usually involve larger volumes than conventionally marked ROIs. 

This makes tractography based ROI-method less subjective and prone to measurement errors. In 

addition tractograms can also help in understanding the extent of white matter injury in TBI 

survivors by providing intuitive visual reconstructions. Each analyze method has its pros and cons. 

The individual methodical weaknesses can be mitigated by combining all the methods which will 

provide more solid and robust results that better reflect the underlying structural changes and 

therefore substantiate the final conclusion. 

 

Second, in BOLD fMRI studies structural variance may complicates spatial normalization and 

indirectly cause inaccuracy in the resulting statistical map depicting neural activity (Crinion, 

Ashbumer et al. 2007). The most commonly used methods for spatial normalization are the 

template-methods (e.g. MNI or Talairach template). These methods rely on both cortical and sub-

cortical anatomy to align the brains. In TBI survivors, lesions often challenge template-methods, 

making the results less accurate (Crinion, Ashbumer et al. 2007). The problem associated with 

template-methods can to some extend be mitigated by CBA-method. CBA-method relies on cortical 

anatomy; therefore sub-cortical abnormalities will not be considered during normalization, but  

cortical lesions and imperfections need to be manually corrected and masked out before CBA-

method can be successfully run. In study 1 and 3 we were able to achieve good normalization 

results using the CBA-method despite sub-cortical lesions. Also, using CBA-method, only the 

cortex will be sufficiently aligned. Therefore BOLD fMRI analysis based on normalization using 

CBA-method should be spatially confined to the cortex. In TBI survivors, DAI is a common 

determinant for functional outcome (Fork, Bartels et al. 2005; Scheid, Walther et al. 2006), 
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therefore interaction between cortical and sub-cortical grey matter regions is of great interest. In an 

attempt to answer this call, we normalized the BOLD fMRI data in paper 3 using both CBA and 

template-method and then analyzed separately.  
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12 CONCLUSION 
In summary the work presented in the present thesis show that severe chronic TBI survivors have 

significant changes in white matter integrity. The extent of such differences can be explored using 

DTI, and this method allows for many different approaches with regard to analysis and presentation 

of the information derived from the DTI.  In addition to changes in white matter, the TBI survivors 

had distinct changes in the brain activity pattern compared to healthy controls. These changes 

indicated neuroplastic changes following traumatic injury to the brain. All paradigms used here 

were able to successfully separate the groups on the basis of brain activity patterns. Both dual task 

and brief visual stimuli at randomized intervals paradigms showed the well described slowing in 

processing speed following TBI. Moreover we showed that changes in DTI parameters implying 

altered white matter integrity did not affect the HDR validating between group difference in neural 

activity detected using BOLD fMRI in the other papers. Finally, we successfully applied a virtual 

navigation paradigm and detected strong neural correlates in several brain regions including the 

MTL in healthy controls. In addition, the papers in this thesis also serve as technical demonstrations 

illuminating issues concerning DTI and BOLD fMRI during data acquisition and analysis, and 

suggest some applicable solutions.  
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ABSTRACT  
The aim of this study was to explore the activity within medial temporal lobe (MTL) subregions in 
the initial phase of navigation, i.e. self-localization, target localization and path planning, compared 
to the execution phase. In addition, the effect of environmental manipulations on MTL activity was 
investigated. To this end we combined fMRI at 3T and navigation in a learned large-scale virtual 
office landscape with numerous complex landmarks.  
The initial phase specifically engaged the anterior MTL. Increased activity was found in rostral and 
caudal entorhinal cortex bilaterally. This is, to our knowledge, the first report of entorhinal activity 
in virtual navigation detected in a direct comparison. Also bilateral anterior hippocampus and right 
anterior parahippocampal cortex were significantly more active during the initial phase. Activity in 
the very anterior aspect of the right hippocampus correlated positively with later navigational 
success.  
 
Activity lasting through out the navigational period was found in right posterior hippocampus and 
parahippocampal cortex. Hippocampal activity was only detected when the virtual environment 
remained unaltered. Navigational success was positively correlated with activity in the anterior 
hippocampus for the whole block.  
These results suggest a functional segregation within the MTL with regard to navigational phase, 
i.e. initial versus execution phase. Based on the current findings it appears that the anterior part of 
MTL completes associations related to the environment at large, and the posterior part keeps track 
of current location. Moreover, hippocampal activity depended on environmental features, e.g. 
presence or absence of landmarks and blockings.  
 
INTRODUCTION 
An extended cortical and subcortical network is engaged during spatial navigation in virtual 
environments (Spiers and Maguire, 2006). Neuroimaging studies have demonstrated that depending 
on navigational strategy (Doeller et al., 2008; Jordan et al., 2004), changes in navigational demands 
(Rauchs et al., 2008; Wolbers et al., 2007) and the phase of navigation (Shipman and Astur, 2008; 
Spiers and Maguire, 2006) different regions within this network are recruited. Regions in the medial 
temporal lobe (MTL), including the hippocampal formation and the parahippocampal, perirhinal 
and entorhinal cortices, are pivotal for the ability to navigate. It has been known for several decades 
that place cells in the hippocampus fire in response to certain locations within an environment 
(Ekstrom et al., 2003; O'keefe and Dostrovsky, 1971). More recently, entorhinal cortex has been 
attributed a central role in navigation, based on the discovery of the entorhinal grid cells (Fyhn et 
al., 2004), head direction cells (Sargolini et al., 2006), and border cells (Solstad et al., 2008). 
Furthermore, the parahippocampal cortex is considered important for topographical memory, 
perception of the current scene, and object-place associations (Epstein, 2008). Still, the specific 
roles of  MTL subregions in different phases of navigation remain largely unexplored in humans. 
The aim of the current study was to identify the subregions within the MTL that support the initial 
phase of navigation, which involves self-localization, target localization and planning how to reach 
target (Jeffery, 2007), as compared to the execution phase of navigation. Two previous imaging 
studies of navigation have revealed activation in the anterior part of the hippocampus during 
planning and target localization (Shipman and Astur, 2008; Spiers and Maguire, 2006). Another 
region in the anterior part of the MTL, the entorhinal cortex, has been shown to be active during 
mental navigation (Ghaem et al., 1997; Mellet et al., 2000), which may share features with 
navigational planning. Moreover, activity in enthorhinal cortex has also been demonstrated to 
correlate positively with increasing distance to target (Spiers and Maguire, 2007). In addition, 
entorhinal activity was observed in retrieval of landmark sequence from learned routes within a 
virtual environment (Janzen and Weststeijn, 2007). Based on these reports we hypothesized that the 
anterior part of the MTL, i.e. the anterior hippocampus and entorhinal cortex, is specifically 
involved in the initial phase of navigation independent of upcoming navigational demands. In order 
to explore this hypothesis we designed a large-scale, realistic virtual office landscape with 
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naturalistic textures, lightening and 56 complex landmarks, made up of 195 objects and 60 pictures. 
It has been demonstrated that navigational performance is correlate with how closely a virtual 
environment resembles a real environment (Lessels and Ruddle, 2005; Ruddle et al., 1997), and 
with the degree of presence felt (Witmer and Singer, 1998). Also the spatial strategies used in the 
virtual environment become increasingly similar to real world strategies with more realistic virtual 
environments (Lessels and Ruddle, 2005). The use of texture in virtual environments increases the 
optic flow, and has been demonstrated to aid navigation and facilitate path integration (Kearns et 
al., 2002; Kirschen et al., 2000). From these behavioral findings, it is evident that the design of the 
virtual environment is important if this methodology is to be used to infer human brain activity in 
response to navigation. In the present study the subject could be positioned at any predetermined 
location within the environment, and for each individual the path for each trial was continuously 
plotted and visualized in a separate file, thus giving full experimental control which is difficult 
using commercially available games. The subject learned the environment outside the scanner. 
Brain activity during navigation in the learned environment was investigated using functional 
magnetic resonance imaging (fMRI) under different conditions. The size of the environment and the 
large number of landmarks allowed for no repetition of tasks performed during the structured 
learning phase and during navigation in the scanner. During scanning the participants were placed 
at a new location within the environment and presented with a target landmark (Fig 1), thus forcing 
the subjects to self-localize, localize target landmark and formulate a navigation plan at the 
beginning of each trial. The participants navigated in the unaltered virtual environment (condition 
Normal), in the same environment but with all landmarks removed except start and target 
landmarks (condition Without), or in the unaltered environment but with blockades present 
(condition Blocked). As reviewed above, we predicted that the initial phase of navigation, i.e. self-
localization, target localization, and plan of pathway to target, specifically engages the anterior 
hippocampus and the entorhinal cortex.  
 
METHODS 
Participants 
Twenty men (21-30 years, mean 24.2 years) with no history of neurological disorders, head trauma, 
or current DSM-IV axis I diagnosis of psychiatric illness including substance abuse were recruited 
from the university campus. They were all right handed, ascertained with the Edinburg Handedness 
Inventory with mean score 89.7%. All participants provided written informed consent prior to 
participation and received 500,- NOK as reimbursement. The study was approved by the National 
Committee for Medical Research Ethics in Midt-Norge, Norway. 
 
Virtual Environment 
The virtual environment was developed in collaboration with Terra Vision AS (Terra Vision, 
Trondheim, Norway) using Torque game engine (Garage Games, Eugene, Oregon, USA). The 
environment is 115.28 by 138.46 units of size, with player moving speed fixed to 3.73 unit/sec. It 
mimics the inside of a modern office building with rooms, corridors and open areas of various sizes, 
but lacks exterior windows. All doors inside the environment are “locked”, i.e., subjects are only 
allowed to navigate through the corridors and open areas. Fifty-six distinct landmarks, made up of 
195 objects and 60 pictures are placed at various locations (Fig. 1). Wall structure, ceiling, 
carpeting and lighting of the interior are similar throughout the environment, modeled to make it as 
realistic as possible.   
 
Pre-scanning 
Using a standard desktop computer and a sidewinder pro joystick (Logitech, Romanel-sur-Morges, 
Switzerland) participants first explored the virtual environment freely for 2x12 minutes. Between 
the sessions, the participants filled out a computerized version of the sense of direction 
questionnaire-short form (SDQ-S) (Takeuchi, 1992). SDQ-S scores range from 17 to 85, and a high 
score indicates a preference for allocentric strategies during everyday navigation. The translated 
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questionnaire has previously been administrated to a group (n=51) of male students at NTNU, 
giving an score of 59.7�10.2, which is similar to the score reported in an equivalent Japanese male 
population, 58.6�15.6 (Ohnishi et al., 2006). Participants were then given structured navigation 
tasks in order to ensure that all participants had seen every landmark. In this task starting landmarks 
and target landmarks were all positioned in the east-west direction of each other, and the order of 
task was randomized between subjects. Participants were excluded if they were not able to finish 
the structured learning session within 60 min.  
Subsequently the participants performed three computer-based tests to ascertain their level of 
proficiency of the virtual environment: recognition of landmarks, judgments of distance, and 
judgments of direction between landmarks.  
Finally participants were given a brief demonstration of each task condition in the fMRI 
experiment, and practiced one of each task type. Before MRI participants were given a 30-min 
break.  
 
Scanning Procedure 
Scanning was performed on a 3T Siemens Trio scanner with a 12-channel Head Matrix Coil 
(Siemens AG, Erlangen, Germany). Foam pads were used to minimize head motion. The fMRI 
stimuli were presented using MRI compatible LCD goggles with 640x480 resolution (Nordic 
Neuron Lab, Bergen, Norway). Subjects moved inside the environment using a MRI compatible 
joystick (Current Designs, Philadelphia, USA).   
The participants were first allowed to familiarize themselves with the presentation equipment and 
joystick, and then completed four practice trials, one from each experimental condition. Scanning 
was commenced when complete task compliance was ensured.  
 
fMRI paradigm 
The fMRI paradigm was a variable length block design with alternating blocks of navigation (30±2 
s) and rest (i.e. fixation; 10±2 s). There were three navigation and one baseline conditions. In the 
three navigation conditions participants navigated towards specific targets. All combinations of 
starting positions and targets were unique for the fMRI experiment, and had not been presented 
during the learning phase. In condition Normal, the environment was unchanged, in condition 
Without all landmarks except start and target landmarks were removed, and in condition Block all 
landmarks were in place, but some corridors very close to the target landmark were blocked. The 
blockage, a stop sign, was not visible before the subject came upon it.  
In all navigation conditions, participants were placed at a different landmark at the start of each 
block and an image of a target landmark was inserted at the bottom center of the screen (Fig. 1). 
The participants were instructed to move as fast and accurately as possible to this landmark. If the 
participant reached the landmark before the block ended, a new target landmark was presented. 
Based on pilot studies, the tasks were designed so that arrival at the first landmark could be 
achieved well within the time limit of the block, while the second landmark was always beyond 
range. The baseline condition was, condition Line, designed to control for motor and visual 
components of navigation. Here participants were asked to move in the environment  by following a 
yellow line on the floor. In this condition, all landmarks were removed from the environment, 
including the start and target landmarks. This was done to avoid that subjects used this condition to 
try to learn the environment better, which was observed during pilot studies. The four navigation 
conditions were separated by 10s (� 2 s) of fixation, white cross on black screen. Each participant 
completed three experimental runs, with 20 blocks (five of each condition) and 20 fixation blocks in 
each run. The order of runs was randomized between participants. 
Performance data was logged throughout the experiment and extracted with in-house developed 
software written in Python (Python Software Foundation, Hampton, NH, USA). Success rate was 
computed as % of possible targets reached within each block. Position data of the participants’ 
movements inside the environment were logged with a time interval of 30 ms, and can be displayed 
as a trace (Fig. 1).  
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Imaging parameters  
T2* weighted, blood-oxygen-level-dependent (BOLD) sensitive images were acquired using an 
echo-planar imaging pulse sequence (TR=2600 ms, TE=30 ms, FOV=244 mm, slice thickness=3.0 
mm, slice number=47, matrix=80x80 giving an in-plane resolution of 3x3 mm). Each functional run 
contained 327 volumes, with slices positioned as close to 90� on the anterior-posterior direction of 
the hippocampus as possible without causing fold-in from the neck.  
For anatomical reference one T1 weighted 3D volume was acquired with an MPRage sequence 
(TR=2300 ms, TE=30 ms, FOV=256 mm, slice thickness=1.0 mm, matrix 256x256, given an in-
plane resolution of 1.0x1.0 mm).  
 
Post-scanning 
After scanning the volunteers were presented for a random sample of tasks performed in the 
scanner, and asked to indicate when the initial phase; self localization, target localization and path 
planning were completed. The participants also completed a study specific strategy questionnaire 
(SSSQ) based on the SDQ-S, but pertaining specifically to the current environment. The score range 
was 8-40, with score over 24 indicating a more allocentric knowledge of the virtual environment. 
 
Data Analysis 
Behavioral data  
Behavioral data were analyzed in SPSS 14.0 (SPSS Inc., Chicago, Illinois, USA). The analysis 
included the total scores (sum of all ratings) on the SDQ-S and SSSQ, the number of correct 
answers on the tests of recognition, judgment of direction and judgment of distance. The analysis 
also included success-rate calculated separately for conditions Normal, Without and Block. 
ANOVA analyses was followed by paired t-tests for within-subjects comparisons.  
All values are given as Mean ± SD.  
 
MRI data analysis 
Imaging data were analyzed using FSL 4.0 (Analysis Group, FMRIB, Oxford, UK). First, non-brain 
tissue was removed from the T1-weighted anatomical images using BET (Brain Extraction Tool, 
FMRIB, Oxford, UK), and the resulting images were transformed to the MNI 152 1x1x1 mm 
template (Montreal Neurological Institute, Montreal, QC, Canada) with FLIRT (FMRIB, OXFORD 
UK). The fMRI data was motion corrected using FLIRT, with the median volume of each run as 
reference. Then each functional run was co-registered to the corresponding anatomical T1 image 
and transformed into MNI space by using the transformation matrix obtained with the T1 image. 
The functional data was smoothed with a 5mm full-width at half-maximum Gaussian filter, and 
temporally high-pass filter with a cutoff time of 250 seconds. The statistical analysis of the fMRI 
data was carried out in FEAT (FEAT, FMRIB, Oxford, UK). Conditions were modeled according 
to a boxcar stimulus function convolved with a two-gamma hemodynamic response function. The 
effect of each condition was estimated with GLM using FLAME 1 (FMRIB’s Local Analysis of 
Mixed Effects).  
 
A whole brain analysis was performed using first a statistical threshold of  Z�4 (P�0.000032) for 
each voxel, and then a cluster threshold of  p=0.05. The conditions Normal-Line following, 
Without-Line following and Block-Line following, and differences between conditions Normal, 
Without and Blocked were explored.   
 
Since the region of interest for this study was the medial temporal lobe (MTL), a brain mask created 
by combining the probabilistic maps of the Harvard Oxford Structural Atlases and the Juelich 
Histological Atlas (part of FSL; http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html#ho) 
(Flitney et al., 2007), using max probability >50 % as threshold, was applied.  In total the mask 
encompassed 16 180 1mm voxels. The entorhinal cortex and the perirhinal cortex were segregated 
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based on anatomical boundaries (Insausti et al., 1998). Contrasts between condition effects were 
tested for significance using voxel based thresholding with corrected voxel threshold set to p<0.05, 
and a minimum cluster size of 45 continuous voxels. 
In order to investigate differences in activation between the initial period and the execution phase of 
the navigation period each active navigation block was divided into two separate events.  Based on 
the participants’ reports the initial phases (self-localization, target localization and path planning) 
lasted 4.6�1.2 s (range 3-8 s). The execution phase was the time following the initial phase, lasting 
until either the first target landmark was reached, or until the block was terminated. In blocks where 
participants reached the first landmark, a second target landmark was presented, and thus some 
active navigation blocks included two initial phases. A mixed effects FLAME 1 analysis of the 
contrast initial-execution for condition Normal, Without and Blocked, was performed on the MTL 
ROI and whole brain level. 
 
Combined fMRI and behavioral data analysis 
The subject specific scores for success rate in condition Normal were added as a separate regressor 
in the GLM in order to identify regions of activation that correlated with performance across 
subjects. This was done for activation in condition Normal, for the whole block (Normal>Line) and 
for the initial phase (Initial>Execution), using a mixed effects analysis.  
 
RESULTS 
Behavioral data  
All subjects were able to perform the learning period within the predefined 60 min time limit.  
 
Questionnaires and tests of knowledge of the virtual environment 
The mean score on the SDQ-S was 63.7±8.7 indicating that participants adapted a more allocentric 
strategy for navigation in everyday life. The score on the study-specific questionnaire, SSSQ, was 
26.2±3.9 demonstrating a more allocentric approach in the virtual environment. The number of 
correct answers on the recognition test was 9.9±0.3, distance test 9.0±1.0, and direction test 
6.3±1.7. The average success rate was above chance level for all tests, indicating that the 
participants were able to recognize the landmarks, and had a representation of the internal 
relationship between them. 
 
fMRI performance  
In the condition Normal, participants were able to reach a 9.0±3.2 of the 15 target landmarks. 
However, in conditions Without and Blocked only 5.0±2.5 and 5.2 ±1.8 landmarks were reached, 
respectively. The participants failed to reach the target landmark in some of the tasks not because 
they did not know where the target landmark was located, but because they ran out of time. This 
was verified by the behavioral output (for example, see Fig. 1). This was particularly noticeable in 
Condition Blocked were all participants were close to the target landmarks, but were unable to 
reach them as there was only one open entry point to the landmark. For the success rate, ANOVA 
showed significant effect of condition (F<0.001). Post hoc paired comparisons revealed a 
significant difference both between condition Normal and Without (t =5.5, p<0.001), and condition 
Normal and Blocked (t =4.9, p<0.001). Condition Blocked and Without were not significantly 
different.  
 
fMRI results 
A total of 18 individuals were included in the fMRI analysis because two participants had to 
withdraw during scanning due to nausea. Several participants reported nausea,   but were able to 
complete scanning. Nausea is common in computer games that involves virtual environments, often 
referred to as simulation sickness (Slater et al., 1995), and is supposed to indicate that the 
participant is properly submerged into a virtual environment.   
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MTL analysis 
Activity in the entire navigation block for conditions Normal, Without and Blocked  
The contrast Normal>Line following gave activations in the posterior part of the right 
hippocampus, the mid-posterior part of the left hippocampus, and bilaterally in parahippocampal 
cortex (Figure 2; Table 1). The contrasts Blocked>Line following and Without>Line following 
gave activations in the parahippocampal cortex, bilaterally.  
 
The contrasts Normal>Without showed significantly increased activity in the left posterior 
hippocampus, whereas Normal>Blocked had significantly increased activity in right anterior and 
posterior hippocampus, plus left posterior hippocampus. Also parahippocampal cortex had 
increased activity bilaterally in Normal >Blocked (Table 2). There was increased activation in the 
rostral entorhinal cortex for this condition too, but right below the predetermined cluster threshold. 
The left and right anterior hippocampus were significantly more active in condition 
Without>Blocked. The contrasts Blocked>Normal and Without>Normal showed no increase in 
activation. 
 
Initial versus execution phase of conditions Normal, Without and Blocked  
For conditions Normal and Blocked a comparison of the initial phase with the execution phase 
yielded activation in bilateral anterior and posterior hippocampus, rostral and caudal right 
entorhinal cortex, and right anterior parahippocampal cortex (Fig. 3; Table 3). For condition 
Blocked, activation was also observed in the caudal part of the left entorhinal cortex, and in the left 
perirhinal cortex. The same comparison for condition Without revealed activation in the posterior 
right hippocampus, the anterior and posterior left hippocampus, the caudal part of the right 
entorhinal cortex, and the left parahippocampal cortex. No significant differences were found when 
comparing the initial phases between conditions indicating that the initial phases recruited similar 
regions independent of upcoming navigational demands. 
 
Comparison of execution phases for the different way-finding conditions 
In the execution phase in condition Normal>Without increased activations were observed bilaterally 
in the hippocampus and in the right parahippocampal cortex. In the contrast between the execution 
phase for condition Normal>Blocked increased activations in bilateral hippocampi and 
parahippocampal cortex were observed, and sub-cluster threshold activation in the right rostral 
entorhinal cortex. There were no significant activations when contrasting the execution phases 
Without>Normal and Blocked>Normal. 

Activity correlated with performance during condition Normal  
In condition Normal>Line following there was a positive correlation with activity in right anterior 
hippocampus and left parahippocampal cortex, and success rate (Fig. 4; Table 4). For the initial 
phase of navigation (Initial>Execution), activation in the anterior right hippocampus showed a 
significant correlation with performance (Fig. 4; Table 4). 
 
Whole brain analysis 
Wayfinding conditions-Line following   
Contrasts Normal>Line following, Blocked>Line following and Without>Line following all 
revealed increased activation bilateral in the occipital cortex, anterior insula, precuneus, fusiform 
gyrus, and parahippocampal cortex, and in the right lateral prefrontal cortex and thalamus (Fig. 5;  
Table 5). In both hemispheres the precuneus and fusiform gyrus activations were interconnected 
and spread anteriorly into posterior cingulate cortex, and inferiorly into lingual gyrus in both 
hemispheres. Activation in the right hippocampus was only observed for contrast Normal>Line 
following at the whole brain level.  
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Differences between conditions  
In Normal>Without increased activation was found in bilateral lateral occipital cortex, spreading 
inferiormedially into fusiform gyri (Table 6). Normal<Without showed no regions of increased 
activation. Normal>Blocked had increased activation in bilaterally in lateral occipital cortex and 
hippocampus. In both hemispheres, the parietooccipital activations spread into the entire 
hippocampus. In Normal<Blocked increased activations were present in bilateral superior medial 
prefrontal cortex, left dorsolateral and right inferior prefrontal cortex. There was also increased 
activity in bilateral angular gyrus and right middle temporal gyrus. In Without>Blocked increased 
activation was found in right hippocampus. Condition Without<Blocked had increased activation in 
bilateral cingulate cortex spreading into precuneus, right medial superior frontal gyrus and left 
dorsolateral prefrontal cortex. There was also increased bilateral supramarginal gyrus activity 
spreading inferiorly, and increased activity in right superior temporal gyrus.  
 
Initial>execution in condition Normal  
When comparing the initial phase and the rest of the way-finding block in condition Normal, 
increased activations were observed in both hippocampi, anterior and posterior cingulate gyrus, 
precuneus, middle temporal gyrus, fusiform gyri, caudate nuclei, occipital cortices and thalamus 
(Fig. 6; Table 7). 
 
DISCUSSION 
There are two main findings in the present study: first there is a functional segregation within the 
MTL with regard to navigational phase, i.e. initial versus execution phase, and second hippocampal 
activity depends on environmental features, e.g. presence or absence of landmarks and blockings. 
This study is to our knowledge the first human imaging study to detect entorhinal activation in a 
direct comparison between specific navigational conditions, substantiating that the human 
entorhinal cortex, like the rodent entorhinal cortex, is active during spatial navigation. The pattern 
of initial anterior MTL and persisting posterior MTL activity points to a functional segregation 
within MTL with regard to phase of navigation. The same patter of activity was seen independent of 
upcoming navigational demand, which is to be expected as subjects were unaware of any 
manipulations of the environment at start of the experiment. It should be noted that in condition 
Without where surrounding landmarks were absent, the observant participant may have realized the 
upcoming condition. The finding of increased anterior MTL activity in the initial phase suggests 
that this region is specifically engaged in self-localization, target localization and path planning. 
The posterior MTL, on the other hand, seems to be involved in representing information necessary 
for recognition and/or recall related to the perceptual input from the current location in the 
environment.  
 
In the initial phase of navigation increased activity in both rostral and caudal entorhinal cortex were 
detected in all conditions. Functionally, the medial and lateral entorhinal cortex in rats correspond 
to rostral and caudal entorhinal cortices in humans, and are considered to engender representations 
of non-spatial and spatial information, respectively (Hargreaves et al., 2005; Insausti, 1993; Insausti 
et al., 1997). The rostral entorhinal activity detected in the initial phase was equivalent to activity 
reported in retrieval of stored associations (Kirwan and Stark, 2004; Tyler et al., 2004), and in 
response to objects presented in the same order as previously experienced in a virtual environment 
(Janzen and Weststeijn, 2007). The results from the present study also underscores the importance 
of objects for rostral entorhinal activity, since activity in this region was detectable just below the 
predetermined cluster threshold throughout the navigation epoch in condition Normal, but not in 
condition Without. The only difference between conditions Normal and Without was removal of 
landmarks. Furthermore, the complex landmarks used in this virtual environment may have been 
particularly engaging for the rostral entorhinal cortex since they consisted of combinations of 
objects rich in non-spatial content as compared to the more simplistic and/or solitary landmarks 
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used in most other virtual navigation studies (Antonova et al., 2008; Doeller et al., 2008; Ekstrom 
and Bookheimer, 2007; Iaria et al., 2007; Jordan et al., 2004; Parslow et al., 2005; Peigneux et al., 
2004; Rauchs et al., 2008; Shipman and Astur, 2008).  
The initial increase in activity in caudal entorhinal cortex can also be connected to the presence of 
landmarks, but reflecting their spatial arrangement. Recognition and retrieval of object locations, as 
well as spatial ordering of objects have consistently been reported to engage caudal entorhinal 
cortex n in human neuroimaging studies (Adcock et al., 2006; Johnsrude et al., 1999; Owen et al., 
1996).  In monkeys, visually responsive cells in caudal entorhinal cortex respond to particular 
objects or places (Suzuki et al., 1997). In addition to engendering object-place associations, the 
caudal entorhinal cortex is considered to provide a representation of self-localization within an 
environment together with the hippocampal place cells (Moser et al., 2008). In rats, grid and border 
cells have been located to the medial entorhinal cortex, which is equivalent to the posterior caudal 
entorhinal cortex in humans (Fyhn et al., 2004; Insausti, 1993; Insausti et al., 1997; Solstad et al., 
2008). The activity of grid and border cells in humans during different phases of navigation is 
unknown.  
 
The virtual environment used in the present experiment was large compared to those used in most 
neuroimaging studies of navigation (Antonova et al., 2008; Doeller et al., 2008; Ekstrom and 
Bookheimer, 2007; Grön et al., 2000; Iaria et al., 2007; Iaria et al., 2008; Jordan et al., 2004; 
Ohnishi et al., 2006; Parslow et al., 2005; Peigneux et al., 2004; Rauchs et al., 2008; Shipman and 
Astur, 2008). It is possible that the size of the virtual environment to be mentally represented was 
an important determinant for increasing the caudal entorhinal activity above level of detection. In 
support of this is the positive correlation between increasing distance to target and caudal entorhinal 
activity using London as the environment (Spiers and Maguire, 2007). It seems probable that the 
subjects will engender a representation of the entire virtual environment in order to self-localize 
anew in the initial phase, as well as determine target location and choose the appropriate path. 
When the navigational plan is executed, a limited representation of the virtual environment may 
suffice, possibly leading to a decline in caudal entorhinal activity. Indeed, spatial reference memory 
has been shown not to be updated during locomotion in humans (Mou et al., 2004), and one human 
lesion study demonstrates that entorhinal cortex is not necessary for path integration (Shrager et al., 
2008).  
 
Lack of entorhinal activation in many neuroimaging navigation studies could be due to 
susceptibility artifacts in T2* weighted, blood-oxygen-level-dependent gradient echo echo planar 
imaging (i.e. BOLD fMRI) scans. These artifacts are most pronounced in the entorhinal cortex 
(Ojemann et al., 1997). The slice orientation in the present study reduces this problem (Chen et al., 
2003). The presence of such susceptibility artifacts in BOLD fMRI may explain why PET studies 
have detected entorhinal activity in mental navigation (Ghaem et al., 1997; Mellet et al., 2000), 
which has not been reproduced in comparable fMRI studies (Avila et al., 2006; Kumaran and 
Maguire, 2005). It should be noted that brain activity detected using fMRI only depicts differences 
in activity in one condition relative to another. Persistent entorhinal cortex activity across all 
conditions can therefore not be visualized. Still, our results clearly demonstrate a dynamic role for 
the entorhinal cortex, with increased engagement in the initial phase. 
 
Mental navigation can be considered a type of self-projection or prospection; i.e. looking into the 
future. Interestingly, similar right entorhinal activity has been reported in one study of self-
projection using construction of future episodes (Addis et al., 2008). Furthermore, bilateral anterior 
hippocampal activity is reported in studies of self-projection (Addis et al., 2008; Szpunar et al., 
2007), and the location of this activity is similar to the bilateral anterior hippocampal activity 
detected in the initial phase in the present navigation study. Equivalent anterior hippocampal 
activity has been reported in studies of mental navigation (Ghaem et al., 1997; Mellet et al., 2000), 
bird’s eye view navigation (Jordan et al., 2004) and during way-finding conditions (Spiers and 
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Maguire, 2006). Mental and bird’s eye view navigation entail entering an imaginary, non-actual 
view of one’s position and actions in space. Changing one’s point of view from first to third person 
perspective also correlates with bilateral anterior hippocampal activity (Schmidt et al., 2007). The 
bilateral anterior hippocampal activity in the initial phase of navigation thus seems to draw on 
similar regions in the MTL as prospection and third person’s point of view (Addis et al., 2008; 
Szpunar et al., 2007).  Thus it seems that self-localization, target localization and path planning 
involve construction of a mental representation of the environment based on a meta-perspective of 
the layout. Indeed, behavioral data show that  individuals use mental imagery as strategy for 
navigational planning (Spiers and Maguire, 2008). Furthermore, also in rats are the hippocampi  
involved in planning of future actions, i.e. vicarious trial and error (Hu and Amsel, 1995), which is 
considered the rodent equivalent of prospection or self-projection. 
Moreover, right anterior hippocampal activity similar to that in the initial phase of navigation in the 
present study has been reported in target localization (Doeller et al., 2008; Schmidt et al., 2007; 
Shipman and Astur, 2008), especially when there is increasing demands on memory-based 
navigation (Shipman and Astur, 2008), navigational planning and re-planning (Spiers and Maguire, 
2006), and in studies of object recognition and object-place associations in virtual environments 
(Bohbot et al., 2004; Janzen and Weststeijn, 2007). The finding that navigational success in 
condition Normal correlated with activation in the right anterior hippocampus for the initial phase 
and whole block of navigation further substantiates the claim that the anterior hippocampus is 
essential for accurate navigation. Previously, path integration (Wolbers et al., 2007) and spatial 
performance (Schmidt et al., 2007) have been shown to correlate with activity in the right anterior 
hippocampus with similar coordinates as in the current study. Since the anterior hippocampus is 
considered to support relational processing (Kirwan and Stark, 2004; Schacter and Wagner, 1999), 
including flexible (re)combination of elements extracted from previous learned associations 
(Preston et al., 2004), it is ideally suited to build a mental model based on previous experiences in 
the virtual environment. This is corroborated by animal studies where the anterior hippocampus has 
been shown to support a unitary representation of the environment as a whole (Kjelstrup et al., 
2008).  
 
In most neuroimaging studies of navigation, way-finding has been shown to evoke activation of the 
posterior hippocampus (Antonova et al., 2008; Peigneux et al., 2004; Rauchs et al., 2008). In the 
present study hippocampal activity throughout the entire navigational period was only found in 
condition Normal in both the whole brain and MTL ROI analyses. The center of gravity for this 
enduring activity was in the right posterior hippocampus similar to that observed in numerous fMRI 
studies of way-finding in familiar virtual towns or indoor environments (Antonova et al., 2008; Iaria 
et al., 2007; Peigneux et al., 2004; Rauchs et al., 2008). Using multivariate pattern analysis, a recent 
study demonstrated that accurate allocentric differentiation of position within a familiar 
environment is located to the body-posterior of the right hippocampus (Hassabis et al., 2009), with 
coordinates similar to those observed in condition Normal for the entire navigation block in this 
study. Hippocampal theories suggest that the posterior hippocampus represents environmental detail 
(Moser and Moser, 1998). Changes in the environment as in condition Without decreased the 
activity in posterior hippocampus thus underscoring the importance of a familiar, stable 
environment to produce such positional activity within the hippocampus. Also condition Blocked 
did not have persisting hippocampal activity during navigation. The execution phase of this 
condition resembled to some extent the Morris water maze (Morris, 1984) with visible platform, as 
targets were visible quite early in the navigation block. It has been shown in humans that  
conditions similar to the visible platform condition do not require hippocampal activity (Shipman 
and Astur, 2008). An alternative interpretation is suppression of MTL activity by the rostral medial 
prefrontal cortex (Anderson et al., 2004; Miller and Cohen, 2003; Spiers and Maguire, 2006). The 
medial rostral prefrontal cortex was significantly more active during condition Blocked.  
Like the hippocampus, the parahippocampal cortex displayed an anterior-posterior division of 
activity during the course of navigation. Very few neuroimaging studies of navigation have reported 
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anterior parahippocampal activity (Parslow et al., 2005; Spiers and Maguire, 2006). In the current 
study the anterior parahippocampal cortex was more active in the initial phase, whereas the 
posterior part was active throughout the navigational period in all conditions. Animal and human 
studies, as well as theoretical models, suggest that the anterior parahippocampal cortex generates a 
representation of the environmental layout (Bird and Burgess, 2008; Moscovitch et al., 2005). 
Spatial memory and associations, and retrieval of indirect spatial relationships all engage the 
anterior parahippocampal cortex (Ekstrom and Bookheimer, 2007; Epstein, 2008; Preston et al., 
2004). Again our results from the initial phase substantiate the claim that self-localization, target 
localization and path planning require a mental representation of the virtual environment at large. 
Furthermore, this representation of the virtual environment in the anterior parahippocampal cortex 
correlated with navigational success. The posterior parahippocampus cortex was, however, active 
throughout navigation and in all conditions, underscoring the perceptual role of this region (Preston 
et al., 2004). 
 
Behavioral data on performance in virtual environments points to the importance of a close 
resemblance between this and real world environments (Lessels and Ruddle, 2005; Ruddle et al., 
1997). But the experience of virtual environments can never truly reflect the natural setting; the 
virtual re-creation of real world features are not yet truly lifelike, and more importantly virtual 
navigation relies solely on visual input, since input from the vestibular system and sensory feedback 
from the body are absent (Lessels and Ruddle, 2005). Still, the participants in the present study felt 
submerged in the environment and knew the environment well as indicated by the post-learning test 
scores and performance during scanning. Even though success rate appeared to be low, particularly 
for conditions Without and Blocked, the subjects did not wander aimlessly around. From the 
individual maps of all navigational tasks it was apparent that the participants were close to the 
target, but did not reach it before the block terminated. This suggests that the differences in 
activation between conditions arose from differences in the navigational demands due to 
environmental constraints. The size of the environment and the large number of landmarks allowed 
the subjects to be presented with novel combinations of spawning and target positions during 
learning and scanning. This was done in an attempt to promote an allocentric approach to 
navigation. Based on the SSSQ, participants did indeed use a more allocentric strategy when 
navigating during fMRI. Together these features of the experimental design appeared to actively 
engage the MTL substructures. Thus enabling us to clearly separate activity in MTL subregions in 
response to different navigational demands.  
 
In summary, our results demonstrate that navigation requires dynamic recruitment of MTL 
subregions as navigation progresses from self-localization, target localization, and navigational 
planning to execution of the navigation plan. Furthermore, the current findings suggest a functional 
segregation between anterior and posterior MTL. The anterior MTL is specifically engaged in the 
initial phase of navigation, irrespective of upcoming navigational demands, whereas posterior MTL 
activation persists throughout navigation. However, increased hippocampal activity depended on 
the environment remaining unaltered. For the first time the entorhinal cortex was shown to be 
specifically engaged in the initial phase of navigation confirming previous animal studies that 
suggest a critical function for the entorhinal cortex in spatial navigation. Also the anterior 
parahippocampal cortex and the anterior hippocampus were specifically engaged in the initial phase 
of navigation, and the right anterior hippocampal activity was directly related to successful 
navigation in the subsequent execution phase. Right posterior hippocampal activity throughout 
navigation appeared to be connected to keeping track of the current location in a well-known 
environment.    
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TABLES 
Table 1. Regions within the medial temporal lobe (MTL) with increased activity in conditions 
Normal, Without and Blocked versus the base line condition line following. The analysis was 
carried out using a hippocampal-parahippocampal gyrus mask and voxel based thresholding, p=0.05 
corrected for multiple comparisons. Voxel size is 1 mm3. Only clusters with a cluster size > 45 
voxels were reported. R; right; L, left; MNI, Montreal Neurological Institute 152 brain template.  

Coordinates of peak activation 
(MNI) MTL region 

X Y Z 

Cluster size 
(no. of voxels) 

Z score 

 Normal > Line following                               
 R. Hippocampus 29 -35 -14 567 5.19 
 L. Hippocampus -23 -29 -8 58 4.73 
 R. Parahippocampal cortex 29 -35 -14 632 5.19 
 L. Parahippocampal cortex -21 -41 -13 209 6.00 

 
 Without > Line following 
 R. Parahippocampal cortex 17 -34 -15 557 5.57 
 L. Parahippocampal cortex -21 -41 -13 69 4.66 
 
 Blocked > Line following 
 R. Parahippocampal cortex 28 -36 -14 305 4.83 
 L. Parahippocampal cortex -21 -41 -13 53 4.94 

 
Table 2. Peak activations in the medial temporal lobe (MTL) ROI when comparing the different 
wayfinding conditions. The analysis was carried out using a hippocampal-parahippocampal gyrus 
mask, i.e. a MTL ROI, and voxel based thresholding (p=0.05, corrected for multiple comparisons). 
R, right; L, left; MTL, medial temporal lobe; MNI, Montreal Neurological Institute 152 template.  

Coordinates of peak 
activation (MNI) 

MTL region 

X Y Z 

Cluster size 
(no. of voxels)

Z score 

Normal – Without 
L. Hippocampus -21 -31 -7 102 4.25 
 
Without – Normal (no significant increase in activation observed)                                            
 
Normal – Blocked 
R. Hippocampus 30 

35 
-39 
-18 

0 
-21 

102 
68 

5.33 
4.25 

L. Hippocampus -31 -38 -5 312 5.12 
L. Parahippocampal cortex -27 -32 -21 83 4.45 
 
Blocked– Normal (no significant increase in activation observed)                                              
 
Without – Blocked (no significant increase in activation observed)                                            
 
Blocked– Without (no significant increase in activation observed)                                            
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Table 3. Regions of increased activity within the medial temporal lobe (MTL) ROI when 
comparing the initial phase with the execution phase in conditions Normal, Without and Blocked. 
The analysis was carried out using a hippocampal-parahippocampal gyrus mask and voxel based 
thresholding, p=0.05 corrected for multiple comparisons. Voxel size is 1 mm3. Only clusters with a 
cluster size >45 voxels were reported. The cluster number is given in parenthesis for secondary 
peaks within the respective clusters.  Numbers in the cluster size column represent the actual 
number of voxels within the anatomical region in the respective row. R, right; L, left; MNI, 
Montreal Neurological Institute 152 brain template. 

Coordinates of peak activation 
(MNI) 

MTL region 
 

X Y Z 

Cluster 
no. 

Cluster size
(no. of 
voxels) 

Z 
score 

Normal         

R. Hippocampus 25 
23 
24 
31 

-20 
-25 
-32 
-17 

-18 
-11 
-8 
-14 

1 
(1) 
(1) 
(1) 

1223 
 

4.80 
4.37  
3.89 
3.77 

L. Hippocampus -22 
-20 
-20 

-23 
-16 
-30 

-15 
-15 
-10 

2 
(2) 
(2) 

1311 
 

4.49 
3.90 
3.82 

R. Entorhinal cortex 20 
25 

-2 
-19 

-23 
-25 

3 
(1) 

45 
 

3.65 
3.66 

R. Parahippocampal 
cortex 

28 -29 -23 4 116 3.73 

L. Parahippocampal 
cortex 

-15 
-29 

-32 
-35 

-10 
-15 

5 
6 

49 
198 

4.16 
4.00 

 

Without  

R. Hippocampus 20 -31 -6 1 69 3.91 
L. Hippocampus -20 

-27 
-24 

-34 
-17 
-25 

-5 
-20 
-11 

2 
(2) 
(2) 

1042 
 
 

4.37 
4.12 
3.94 

R. Entorhinal cortex 27 -17 -28 3 56 3.46 
 

Blocked  

R. Hippocampus 26 
26 
23 

-22 
-12 
-35 

-12 
-27 
-3 

(1) 
(1) 
(1) 

 
 
 

5.00 
4.83 
4.53 

L. Hippocampus -19 
-22 
-20 

-34 
-24 
-17 

-7 
-16 
-18 

4 
(4) 
(4) 

2395 
 
 

4.64 
4.36 
4.12 

R. Entorhinal cortex 26 
19 

-13 
-3 

-29 
-27 

1 
(1) 

2930 
 

5.00 
4.13 

L. Entorhinal cortex -17 -17 -27 (4)  4.10 
L. Perhinal cortex  -30 -7 -32 2 62 3.92 
R. Parahippocampal 
cortex 

21 
26 

-35 
-24 

-18 
-25 

3  
(3) 

759 
 

4.51 
4.47 

L. Parahippocampal 
cortex 

-15 
-24 
-24 

-32 
-40 
-23 

-10 
-14 
-25 

4 
(4) 
(4) 

3535 
  

5.01 
4.73 
4.24 
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Table 4. Regions with increased activity within the medial temporal lobe (MTL) ROI correlating 
with number of target reached, i.e. success rate, in conditions Normal for the whole block and for 
the initial-execution phase. The analysis was carried out using a hippocampal-parahippocampal 
gyrus mask and voxel based thresholding, p=0.05 uncorrected. Voxel size is 1mm3. Only clusters 
with a cluster size>45 voxels were reported. R, right; L, left; MNI, Montreal Neurological Institute 
152 brain template. 

Coordinates of peak activation 
(MNI) 

Cluster
No. 

Cluster 
size 

(no. of 
voxels) 

 
Z-score 

 
MTL regions 

X Y Z    

Whole Block       

R. Hippocampus 23 
26 

-38 
-20 

4 
-16 

1 
2 

70 
89 

2.43 
2.25 

L. Parahippocampal cortex -24 -34 -19 3 60 2.00 
       
 Initial-Execution phase       
R. Hippocampus 27 -10 -28 1 47 2.24 

 
Table 5. Peak activations for the whole brain analyses when comparing the different way-finding 
conditions, e.g. Normal, Without and Blocked, with line following. Whole brain analysis was 
carried out using first a voxel threshold (Z�4), and then a cluster threshold  (p=0.05, corrected for 
multiple comparisons). R, right; L, left; MNI, Montreal Neurological Institute 152 template.  

Coordinates of peak activation (MNI)  
Brain region X Y Z 

 
Z-score 

Normal > Line     

R. Frontal pole 29 55 -5 4.78 
R. Superior frontal gyrus 25 8 54 5.02 
R. Inferior frontal gyrus 47 13 30 5.11 
 L. Medial frontal gyrus 0 13 46 6.47 
R. Insular cortex  33 22 -6 5.53 
L. Insular cortex -30 23 -2 5.17 
R. Precuneus 14 -59 15 6.43 
L. Lingual gyrus -21 -43 -14 6.53 
R. Occipital cortex 25 

33 
-49 
-80 

-10 
17 

6.92 
5.30 

L. Occipital cortex -32 -86 23 6.61 
L. Fusiform gyrus -24 -45 -15 6.56 
R. Hippocampus 26 -22 -11 4.86 
R. Thalamus 7 -17 9 5.75 
L. Thalamus -7 -17 9 5.57 
     
Without > Line     
R. Frontal pole 26 

28 
28 

57 
38 
55 

-8 
31 
21 

5.30 
4.93 
4.72 

R. Superior frontal gyrus 26 7 53 5.75 
R. Middle frontal gyrus 28 38 31 4.93 
R. Inferior frontal gyrus 48 12 29 5.61 
R. Medial frontal gyrus 5 32 31 6.45 
R. Insular cortex  32 

41 
22 
-79 

-3 
18 

6.09 
5.13 

L. Insular cortex -31 24 -2 5.36 
R. Precuneus 12 -77 43 6.11 
L. Precuneus -3 -67 54 5.99 
R. Lingual gyrus 8 -49 -1 5.89 
L. Lingual gyrus -21 -45 -14 5.90 
R. Occipital cortex 26 -49 -10 6.37 
L. Occipital cortex -32 -86 24 6.65 
L. Fusiform gyrus -35 -76 -22  
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R. Thalamus 7 -19 9 5.32 
     
Blocked >Line     
R. Frontal pole 30 57 -5 5.47 
R. Middle frontal gyrus 49 21 34 5.31 
R. Orbitofrontal cortex 32 24 -6 5.38 
L. Orbitofrontal cortex -30 24 -7 5.29 
R.&L. Precuneus 0 12 47 6.30 
R. Precuneus 12 -77 43 6.47 
L. Precuneus -3 -67 54 6.14 
L. Lingual gyrus -9 -52 -1 5.02 
R. Occipital cortex 34 -84 30 5.43 
L. Occipital cortex -31 

-32 
-24 

-83 
-62 
-45 

22 
39 
-15 

5.33 
4.77 
5.79 

L. Fusiform gyrus -36 -74 -21 5.90 
R. Thalamus 8 -13 7 4.85 
 
Table 6. Peak activations for the whole brain analyses when comparing the different way-finding 
conditions. Whole brain analysis was carried out using first a voxel threshold( Z�4), and then a 
cluster threshold  (p=0.05, corrected for multiple comparisons). R, right; L, left; MNI, Montreal 
Neurological Institute 152 template. * includes hippocampus activation. 

Coordinates of peak activation (MNI) Brain region 
X Y Z 

Z-score 

NORMAL > WITHOUT     
R. Lateral Occipital Cortex 30 -94 -12 6.05 
L. Lateral Occipital Cortex -30 -94 -11 5.91 
WITHOUT >  NORMAL (no significant increase in activation observed)                                 
     
NORMAL>BLOCKED     
R. Lateral Occipital Cortex 25 -97 -12 5.38 
L. Lateral Occipital Cortex -21 -94 -10 5.45 
R. Parietooccipital Sulcus* 34 -41 -2 5.45 
L. Parietooccipital Sulcus* -28 -41 1 5.13 
BLOCKED>NORMAL     
R. Superior Frontal Gyrus 13 51 30 5.70 
L. Superior Frontal Gyrus -19 57 26 4.95 
R. Middle Temporal Gyrus 59 -57 -5 5.08 
L. Middle Frontal Gyrus -39 18 40 5.06 
R. Inferior Frontal Gyrus 48 46 -14 5.19 
R. Angular Gyrus 54 -41 39 5.69 
L. Angular Gyrus -55 -52 36 5.26 
     
WITHOUT > BLOCK     
R. Hippocampus  31 -40 1 4.65 
BLOCKED > WITHOUT     
R. Middle Frontal Gyrus 34 27 43 4.84 
R. Supramarginal Gyrus 58 -42 19 5.08 
L. Medial Superior Frontal gyrus 5 48 25 4.81 
L. Supramarginal Gyrus -58 -44 34 4.46 
R. Cingulate Sulcus 0 -17 46 4.64 
R. Precuneus 3 -54 63 5.24 
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Table 7. Brain activity patterns for the whole brain analyses when comparing the initial planning 
phase with the rest of the block for the normal way-finding condition. Whole brain analysis was 
carried out using first a voxel threshold( Z�4), and then a cluster threshold  (p=0.05, corrected for 
multiple comparisons). R, right; L, left; MNI, Montreal Neurological Institute 152 template.  

Coordinates of peak activation (MNI) 
Brain region X Y Z 

 
Z-score 

R. Cingulate gyrus, anterior part 2 -11 41 4.71 
R. Cingulate gyrus, posterior part 1 -38 29 4.42 
L. Cingulate gyrus, posterior part -12 -38 38 4.94 
L. Postcentral gyrus -37 -36 57 5.19 
R. Middle temporal gyrus 62 

52 
-52 
-61 

3 
0 

5.30 
5.09 

L. Precuneus -6 -50 52 4.49 
L. Lateral Occipital cortex -51 -63 7 5.18 
R. Cuneal cortex 2 -83 22 5.09 
L. Primary visual cortex -7 -76 14 4.52 
L. Lingual gyrus -17 -64 -4 5.27 
R. Hippocampus 25 -20 -18 4.80 
L. Caudate nucleus -11 10 0 4.64 
L. Thalamus -4 -17 2 4.71 
L. Cerebellum -36 -50 -26 5.37 
 
FIGURES 
Figure 1. Overview of the virtual environment. (a) The initial view a participant was presented with 
at entering the virtual environment. The target landmark was shown as a small image at the bottom 
of the screen. (b) Movement patterns of all participants for one of the navigation tasks mapped onto 
a two dimensional map of the environment. (c) A two dimensional overview map of the virtual 
office landscape, each number indicates the location of one landmark.  
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Figure 2. Medial temporal lobe (MTL) regions with  increase activity for the entire navigation 
block compared with ine following. a) Condition Normal - Line following b) Condition Without -
Line following c) Condition Blocked - Line following. The analysis was carried out using a 
hippocampal-parahippocampal gyrus mask and voxel based thresholding, p<0.05 corrected. Voxel 
size is 1mm3. Only clusters with a cluster size>15 voxels were reported. Activations superimposed 
on the MNI, Montreal Neurological Institute 152 brain template. Left is right in figure.  
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Figure 3. Medial temporal lobe (MTL) regions with increased activity in the initial phase compared 
to the execution phase of the navigation block. In a) condition Normal, b) condition Without, and c) 
condition Blocked. The analysis was carried out using a hippocampal-parahippocampal gyrus mask 
and voxel based thresholding, p<0.05 corrected for multiple comparisons. Voxel size is 1mm3. Only 
clusters with a cluster size>15 voxels were reported. Activations superimposed on the MNI, 
Montreal Neurological Institute 152 brain template. Left is right in figure.  

 
 
Figure 4. Correlation between activation and the number of landmarks reached during condition 
Normal. (a) For Condition Normal > Line following (b), and for the contrast Initial>Execution in 
condition Normal. The analysis was carried out using a hippocampal-parahippocampal gyrus mask 
and voxel based thresholding, p<0.05 uncorrected. Voxel size is 1mm3. Only clusters with a cluster 
size>15 voxels were reported. Activations superimposed on the MNI, Montreal Neurological 
Institute 152 brain template. Left is right in figure.  
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Figure 5. Statistical parametric maps of increased brain activity for the different navigation 
conditions overlain on top of each other on the MNI, Montreal Neurological Institute, 152 template 
brain. Condition Normal - Line following in red, condition Without - line following in blue, and 
condition Blocked – Line following in yellow. Voxel based thresholding, p<0.05 corrected for 
multiple comparisons, was applied. Right hemisphere on the left in figure. 

 
 
Figure 6. Comparison between the initial phase and the execution phase for the normal way-finding 
condition on the whole brain level presented on the MNI, Montreal Neurological Institute 152 
template, brain. The thresholding was voxel based, p<0.05, corrected for multiple comparisons. 
Right hemisphere on the left in figure. 
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