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Summary

A new generation of copper based electronic inks have recently emerged that decomposes
to metallic copper under thermal heating. The inks are based on copper formate complexes
in a +2 oxidation state, whereupon heating reduces to an intermediate +1 oxidation state,
before finally decomposing to metallic copper. Recently it was shown that the decompo-
sition temperature of the copper complex is correlated to the molecular structure of both
the oxidation states and the stability of the intermediate structure. To that end, density
functional theory has been used to investigate the structure and oxidation of three copper
complexes in both the gas phase and as crystalline solid. The strength of the copper for-
mate bond was investigated under stretching, while continuously monitoring the oxidation
state with the DDEC6 atomic population analysis. The trend observed was that the com-
plex with stronger bond had the higher reduction temperature. Furthermore, calculated
infrared spectra of the crystal structures Cu[HCOO]2 and Cu(C5H5N)[HCOO]2 are re-
ported. In addition molecular dynamics have been performed on the crystal Cu[HCOO]2
where the temperature, particle number and volume where constrained. The density func-
tional theory and molecular dynamics calculations are done with the exchange correlation
functional PBE.
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Sammendrag

En ny generasjon av kobber basert elektronisk blekk har blitt nylig utviklet som dekom-
poneres til metallisk kobber under varme. Blekkene er basert på kobber format komplekser
i en +2 oksidasjonstall, som reduseres til en mellomliggende +1 oksidasjonstilstand, før
den endelig dekomponeres til metallisk kobber. Nylig ble det vist at dekomponeringstem-
peraturen av kobber komplekset er korrelert til molekylær strukturen av begge oksidasjon-
stilstandene og stabiliteten av den mellomliggende oksidasjonstilstanden. Det har derfor
blitt brukt tetthetsfunksjonal teori for å studere strukturen og oksidasjonen til tre kob-
ber komplekser i både gas fase og som krystallinsk materiale. Styrken på kobber format
bindingen ble undersøkt under tøyning, og samtidig overvåket oksidasjonstilstanden med
DDEC6 atomistisk populasjons analyse. Trenden som ble observert var at komplekser
med en sterk binding hadde høyere reduseringstemperatur. Videre blir det presentert in-
frarød spektrum av krystallstrukturene Cu[HCOO]2 and Cu(C5H5N)[HCOO]2. I tillegg
ble molekylærdynamikk brukt på krystallet Cu[HCOO]2 ved konstante temperaturer, par-
tikkel antall og volum. Tetthetsfunksjonals teorien og molekylærdynamikken ble gjort
med exchange-correlation funksjonalen PBE.
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Chapter 1
Introduction

All electronic devices require a conductive structure between its electronic components.
In electronic science there is an emerging technology, which aims to manufacture the
conductive structure based on conventional printing techniques. Traditionally, the printing
circuit board industry make use of lithography technology to manufacture the circuits [1].
This is a complex and time consuming method requiring expensive facilities [2]. Being
able to use printing techniques, e.g. inkjet printing, screen printing, with a metallic ink
instead, allows for a faster, versatile method where one can change the design with ease
from one production batch to another.

For the development of flexible electronics there is an additional demand that the inks
should be curable at low temperatures, to prevent deformation of the flexible substrate. In
general, the inks should be nontoxic, stable, compatible with the printing technique, and
inexpensive [3]. Silver has been the most important and successful printable metal [4], due
to its high conductivity and chemical inertness. However, as copper (Cu) is significantly
cheaper with similar conductivity, there is a strong motivation to develop Cu based inks.
One of the challenges to overcome using Cu based inks is that Cu oxidizes in ambient
conditions, which can deteriorate the conductivity. In fact there exists already an ink
formulation, based on Cu nanoparticles which is already commercially available [2]. Here
the Cu nanoparticles are in their reduced state, dispersed in a solution and surrounded
by a stabilizing agent and other additives. This is to achieve a stable ink with regards to
aggregation, precipitation and oxidation. In order to have a conductive layer one has to
remove the agents surrounding the Cu particles by heating and sintering, i.e. bonding the
Cu particles together [5].

Alternatively the Cu ink can be designed such that each Cu atom is in a +2 oxidation
state (Cu(II)) in solution, with organic anions as ligands. The organic anions, for instance
formate [HCOO]−1, will upon heating decompose to gaseous products, such as carbon
dioxide (CO2), molecular hydrogen (H2) and water (H2O), while the excess electrons are
transferred to the Cu ions and thus reducing the Cu ion. To assure that the ink is stable,
the Cu ions are typically coordinated to amine ligands. Moreover, these coordinating
ligands stabilize the Cu ions in solution, reduce oxidation under thermal curing and lower
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the decomposition temperature. Thermal curing of the ink in an inert atmosphere will
result in the ligands and organic anions decompose or evaporate away completely, and
consequently only metallic Cu will remain. Cu inks formulated in this manner can be
categorized as a metal-organic decomposition (MOD) ink. The working principle of Cu
MOD ink is illustrated in Figure 1.1.

Figure 1.1: Schematic representation on how to produce a conductive layer with the use of Cu
MOD ink. The MOD ink is printed on a substrate. Thermal treatment is then applied, whereupon
the formate anions and amine ligands decompose and evaporate away, leaving a conductive Cu layer.

During the decomposition of the MOD ink something interesting happens, i.e. the
Cu(II) complex decomposes to an intermediate Cu(I) complex before eventually reducing
to metallic Cu(0)[3, 6]. Whats more, is that the decomposition temperature of the inks has
been observed to vary depending on the Cu complex. In fact the salt Cu[HCOO]2 shows an
in situ reduction temperature up to 100◦C higher compared to Cu amine complexes. Few
studies have been devoted to understanding what contributes to this shift[6, 7, 8]. However,
the recent study by Marchal et al. [3] has through direct investigation of the reduction
pathway been able to relate the reduction temperature to two important factors. A reduced
reduction temperature can be observed when the Cu(II) complexes transform to a Cu(I)
intermediate with a strong structural resemblance, and whereupon the Cu(I) intermediates
have a favorable stability. The stability of the Cu(I) intermediates are determined by the
coordination geometry.

1.1 Objective and outline of thesis work
The aim of this study has been to investigate the Cu(II) and Cu(I) molecular structures
from first principles methods. As Marchal et al. found that the reduction temperature is
closely related to both the stability of the Cu intermediate and the structure resemblance to
the Cu(II) state, the physics involved in the deduction of favorable MOD inks (with regards
to lowest reduction temperature) are therefor based on quantum mechanics. With that in
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mind, the theoretical tools used in this study are based on density functional theory (DFT)
calculations, which have become a well established method in condensed matter physics
and chemistry when dealing with N-electron quantum systems [9]. The Cu complexes
considered in this study are the neat anhydrous Cu salt Cu[HCOO]2 and the Cu complexes
Cu(Pyridine)2[HCOO]2 and Cu(Ethylenediamine)2[HCOO]2. The DFT simulations will
be performed on these molecular complexes in the gas phase and as crystal structures. In
addition, vibrational analysis and molecular dynamics (MD) simmulations will be carried
out to get some more insights to the dynamical properties as a function of temperature.

To begin with, Chapter 2 introduces some basic chemistry and theoretical background
on crystalline materials in order to describe the properties of the MOD inks under consid-
eration. Introduction to elementary quantum mechanics and the underlying theory behind
the simulations are presented in Chapter 3. While Chapter 4 contains a more detailed re-
view on how the theory is implemented in the applied software program, as well as other
computational methods being used. Results and discussion following the calculations can
be found in Chapter 5, and the conclusion of the work in Chapter 6. Meanwhile, sugges-
tions for future work is presented in Chapter 7.
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Chapter 2
Basics

The goal of this chapter is to introduce some basic chemistry to get more familiar with the
Cu inks.

2.1 Chemistry
The theory presented in this section is based on the chemistry textbook [10].

2.1.1 Chemical Bonds
Chemical bonds are the attractive forces holding atoms together in a chemical compound.
The attractive forces stem from various behaviours of the outermost electrons forming
the chemical compound. The possible behaviours of the electrons are differentiated in
different types of bonds.

When the outermost electron(s) are transferred between atoms, it will generate oppo-
sitely charged ions. The resulting electrostatic attraction between these ions are then said
to form an ionic bond. This occurs typically between atoms with a large difference in
their electronegativity, i.e. the tendency of an atom to attract shared electrons to itself.
Whereas atoms with small electrongativities have to settle with sharing of one or more
electron pairs, in order to obtain a stable electron configuration. This is known as covalent
bonding, and is the most common bond found in nature [11]. For instance in hydrogen
gas H2, the hydrogen share an electron pair equally and are bonded covalently. The bond
results from the mutual attraction for the shared electrons, due to the preferable noble gas
electron configuration. Moreover, it is often ambiguous to differentiate between ionic and
covalent bonds. therefore, bonds displaying both covalent and ionic character are called
polar covalent bonds.

The collective term for bonding within a molecule is intramolecular bonding. Forces
that causes the molecules to aggregate, to form a liquid or solid, are termed intermolecu-
lar forces. These forces can stem from ionic or covalent bonding, or they may arise from
weaker interactions, e.g. dipole-dipole interaction and London dispersion interaction. For
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instance in H2O the intramolecular bonding is a polar covalent bond between the oxygen
and hydrogen atoms. The oxygen attracts the electrons more than the hydrogen and be-
comes fractional negatively charged. It can therefore be seen as a electrical dipole, and
two such molecules may then electrostatically attract each other. Now, having a container
of several of water molecules, they will arrange themselves to have the best compromise
between repulsion and attraction, and thus liquid water is formed. The attraction between
the molecule dipoles are called dipole-dipole attraction.

At certain conditions noble gases are found in liquid and solid states, implying that
there exists also a weak interaction between the noble atoms. Although the noble gases
have no permanent electrical dipole moment, one has to take into account the intrinsic
fluctuations at quantum level, i.e. the zero-point fluctuations in the charge distribution
[12]. This results in fluctuating dipole moments, which can then induce a similar dipole
moment at neighboring atoms, resulting to a force between them. This force that can occur
between nonpolar molecules and noble gas atoms are called London dispersion forces.

For a solid system of metal atoms, the attractive force holding the atoms together arise
from electrostatic forces between the conduction electrons. This form of bonding is called
a metallic bonding. The bonding can be envisioned by imagining the valence electrons
becoming dislocated form the nuclei, forming a sea of electrons which is sheared between
the positively charged nuclei.

2.1.2 Coordination compounds

A coordination compound is a molecule consisting of a metal center with attached ligands.
Ligands are either neutral or charged molecules that have a lone electron pair that can be
utilized to form a bond to the metal. Typically in coordination compound the metal center
is a complex ion, i.e. a transition metal ion, with additional counter ion(s) to balance the
charge. The number of bonds formed between the ligands and a metal ion is called the
coordination number and the ability of the complex ion to form ionic bonds is referred to
as the oxidation state. Equivalently the oxidation state is the charge of the metal ion if the
bonding were 100% ionic, i.e. no covalent component. This is a hypothetical charge, as no
atoms are completely ionic. For instance the coordination complex Cu(C5H5N)2[HCOO]2
has an oxidation state of +2. This is denoted with roman numerals, i.e. Cu(II). Furthermore
the pyridine (pyr) ligand C5H5N, is called a monodentate ligand, because it can only form
one bond to a metal center. Whereas ethylenediamine (en) C2H4(NH2)2 can form two
bonds and is therefore said to be a bidentate ligand. In the Figure 2.1 the coordination
complex Cu(en)2[HCOO]2 is depicted. Here one can notice each (en) has two nitrogen
which is bonded to the Cu ion. In addition it has a coordination number of 6, in a tetragonal
distorted octahedral geometry. Moreover, Cu(II) complexes have a tendency to be in a 6
coordinated tetragonal distorted octahedral or a 5 coordinated square pyramidal or trigonal
bipyramidal structure [13]. The Cu(I) complex tends to be in a 4 coordinated tetrahedral
structure.
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Figure 2.1: The color scheme denotes different type of atoms; orange(Cu), blue(nitrogen),
white(hydrogen), red(oxygen) and brown(copper). The copper complex presented here is the
Cu(en)2[HCOO]2 molecule.

2.2 Metallic organic decomposition inks
As earlier mentioned Marchal et. al. has investigated the decomposition of Cu(II) com-
plex to metallic Cu(0) [3]. They were able to prove the existence of a Cu(I) intermediate
for several Cu amine MOD inks. The reduction pathway for the MOD inks Cu(II) −→
Cu(I) is shown in Figure 2.2. However, the Cu(I) intermediate for anhydrous Cu[HCOO]2
and Cu(en)2[HCOO]2 are assumed structures based on indirect measurements, while for
the intermediate Cu(I)2(pyr)[HCOO]2 they were able to determine the structure from Ex-
tended X-Ray Absorption Fine Structure (EXAFS) measurements. They measured the
reduction temperature for Cu[HCOO]2, Cu(en)2[HCOO]2 and Cu[HCOO]2 to 219 ◦C,
176 ◦C and 128◦C respectively.

2.3 Crystalline solid
The periodically arrangement of groups of atoms constitutes what is called a crystal. Each
group are equally spaced and the mathematical points at which they are attached to is
called a lattice [14]. In three dimension the the lattice may be defined by three lattice
translations vectors a1, a2 and a3 such that the crystal at position r looks identical from a
point r’,

r′ = r + u1a1 + u2a2 + u3a3. (2.1)

Where u1, u2 and u3 are integers, and the set of points r’ that results from this equation
defines the lattice. Depending on the crystal structure, suitable lattice translations vectors
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Figure 2.2: The reduction pathway for different MOD inks. The inks show different colors during
the reduction process, shown by the color bar. The Figure is taken from the recent study [3].

are chosen which defines the crystal axes. Moreover, the lattice vectors span what is known
as a unit cell. If the unit cell contains only a single atom and is constructed from a set of
lattice vectors giving the minimum volume possible, the unit cell is said to be primitive.
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Chapter 3
Quantum Mechanics

This chapter will first present some elementary quantum mechanics before describing
briefly the underlying Density functional theory. The description is mainly based upon
two books [15, 16]. Throughout this chapter, atomic units will be used.

3.1 Schrödinger Equation
Classical mechanics is insufficient for describing atoms and molecules at a fundamental
level, where the electronic structure plays a crucial role in determining respective proper-
ties. In Erwin Schrödinger’s wave function formulation the governing equation for elec-
trons, atoms and molecules is the Schrödinger equation,

i
∂Ψ

∂t
= ĤΨ, (3.1)

where Ψ is the wave function, describing completely the state of the system and Ĥ the
Hamiltonian operator. For a system without time-dependent interactions one may use the
time-independent Schrödinger equation,

ĤΨ = EΨ, (3.2)

where Ĥ operates on the wave function and one yields the eigenvalue, E, i.e. the energy
of the system.

3.1.1 Many-electron Hamiltonian
Before embarking on how to solve the Schrödinger equation for atoms, molecules or solids
the Hamiltonian needs to be defined. It is convenient to divide the total Hamiltonian

Htot = Ĥe + T̂n + V̂nn, (3.3)
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into an electronic Hamilton operator Ĥe, a kinetic energy operator T̂n for the nuclei and
the nucleus-nucleus interaction energy operator V̂nn. The electronic Hamilton operator for
an isolated atomic or molecular system without any time-dependent interactions is,

Ĥe = −
Ne∑
i=1

1

2
∇2
i −

Ne∑
i=1

Nn∑
α=1

Zα
|Rα − ri|

+

Ne∑
i=1

Ne∑
j>i

1

|ri − rj |
. (3.4)

Here Zα denotes the charge of nucleus α, Rα the position of the nucleus, ri the position
of the electron i and the number of particles constituting the system is Ne electrons and
Nn nuclei. The electronic Hamiltonian can be written in a more compact form,

Ĥe = T̂ + V̂ne + V̂ee, (3.5)

where each of the three operators correspond to each term in equation (3.4) respectively,
such that T̂ is the kinetic energy operator, V̂ne is the energy operator due to attraction be-
tween the nucleus and electrons and V̂ee is the electron-electron energy repulsion operator.
Further, the nucleus-nucleus repulsion energy operator is

V̂nn =

Nn∑
α=1

Nn∑
β>α

ZαZβ
|Rβ −Rα|

, (3.6)

and lastly, the kinetic energy operator for the nuclei, is defined as,

T̂n =

Nn∑
i=1

1

2Mi
∇2
i , (3.7)

where Mi is the mass of nucleus i.

3.1.2 Born-Oppenheimer approximation
There is a large mass difference between the electrons and nuclei which indicates that
the velocities of the nuclei are much slower than for the electrons, such that the electrons
arrange themselves as if the nuclei are at fixed positions. Thus the total wavefunction
for the system can be decoupled into an electronic and nuclear wavefunction, since the
electronic wave function only depends on the position of the nuclei, not their momentum,
and the nuclei moves upon the resulting potential energy surface (PES) from the electronic
wave function. That is,

ĤtotΨtot(R, r) = EtotΨtot(R, r)

ĤeΨe(R, r) = Ee(R)Ψe(R, r)

(T̂n + Vnn(R) + Ee(R))Ψn(R) = EtotΨn(R), (3.8)

where R is the nuclei coordinates, r the electronic coordinates and the subscript n denotes
contributions from the nuclei. This is known as the Born-Oppenheimer approximation,

10



and a more rigorous derivation of the approximation can be found in [15]. Using the
fact that in the electronic point of view, the nuclei are fixed objects exerting an external
potential and the electron-nuclei attraction energy operator can then be rewritten,

V̂ne =

Ne∑
i=1

( Nn∑
α=1

−Zα
|Rα − ri|

)
=

Ne∑
i=1

Vext(ri), (3.9)

and for a fixed nuclei the nucleus-nucleus energy is simply,

Vnn = 〈Ψe| V̂nn |Ψe〉 =

Nn∑
α=1

Nn∑
β<α

ZαZβ
|Rβ −Rα|

. (3.10)

3.1.3 Variational method
Normally it is not possible to obtain an analytic solution to the Schrödinger equation, even
under the Born-Oppenheimer approximation. The variational method may then be used
to find a upper bound for the ground state energy. For a given trial wavefunction, f , the
expectation value of the Hamiltonian is larger or equal to the ground state energy. When
the trial wave function yields the exact ground state energy E, then the trial wave function
is the exact wave function [17]:

E ≤ 〈f | Ĥ |f〉
〈f |f〉

(3.11)

3.2 Hartree-Fock
With regards to atoms and molecules, the Schrödinger equation has indeed only been
solved exactly for the hydrogen atom. The electronic wave function for N electrons is a
function of 4N variables, one spin and three spatial coordinates for each electron,

Ψe = Ψe(x1,x2, ...xN ), (3.12)

and thereby solving the Schrödinger equation quickly becomes tedious and impossible,
even for many approximate methods. An important method within the electronic structure
theory is the Hartree-Fock method. This method reduces the complexity by approximating
the interactions between particles in an average manner.
The Hatree-Fock method starts out with the ansatz that the N-electron wave function is ap-
proximated by a product of N orthonormal spin orbitals ψi(x), the Slater determinant[16],

ΨHF =
1√
N

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣ (3.13)

The prefactor of the determinant ensures the wave function is normalized. The spin orbital
ψ(x) is again a product of a spatial orbital φj(r) and a spin function σ(s), hence the
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coordinate x = (r, σ) incorporates both the spatial coordinates and the spin. The spin
orbital is a single-electron wavefunction which describes an electron with possible spin
state, α-spin or β-spin. Furthermore, one knows from the Pauli principle that the wave
function for a N-electron system must be anti-symmetric with respect to the exchange of
two electrons. The product of spin orbitals as given in equation (3.13) satisfies such a
requirement, i.e. the wave function changes sign when two particles are exchanged and
one can also observe that two particles with the same spin cannot occupy the same spin
orbital. This ensures that the exchange between the electrons will also be modelled when
solving the Schrödinger equation. Moreover, the Born-Oppenheimer approximation is
assumed and the expectation value of Ĥe is given by [15],

EHF = 〈ΨHF| Ĥ |ΨHF〉 =

N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij), (3.14)

where

Hi =

∫
ψ∗i (x)

[
− 1

2∇
2 + vext(x)

]
dx, (3.15)

is the sum of the kinetic energy of an electron and the potential energy due the nuclear
attraction. Furthermore,

Jij =

∫ ∫
|ψi(x1)|2 1

|r1 − r2|
∣∣ψj(x2)2

∣∣dx1x2 (3.16)

are called the Coulomb integrals, and represent the classical Coulomb interaction between
the two charge clouds |ψi(x1)|2 and |ψj(x1)|2. Thus, a single electron interacts with the
other electrons at their average position and not the instantaneous one. The last term in
(3.14) has no classical counterpart, the exchange integrals,

Kij =

∫ ∫
ψ∗i (x1)ψj(x1)

1

|r1 − r2|
ψ∗i (x2)ψj(x2)dx1x2, (3.17)

and originates from the anti-symmetric wavefunction with respect to exchange of two
electrons. One knows from the variational principle, that the wave function giving the best
approximation of the ground state, is the one with the smallest expectation value of energy.
Now, minimizing the expectation value, 〈ΨHF| Ĥ |ΨHF〉, subjected to the constraint that
the spin orbitals are orthonormal,

∂

∂ψ

[
〈ΨHF| Ĥ |ΨHF〉 −

N∑
ij

εij(〈ψi|ψj〉 − δij)
]
, (3.18)

with the Lagrangian multiplier, εij , leads to a set of single electron equations, the Hatree-
Fock equations,[

− 1
2∇

2 + Vext(x) + VH(x) + VX(x)

]
ψi(x) =

N∑
j=1

εijψj(x), (3.19)

12



where

VH(x) =

N∑
k=1

∫
|ψk(x′)|2

|r − r′|
dx′ (3.20)

is the Hatree potential and VX describes the exchange potential,

VX(x)ψj(x) =

N∑
k=1

∫
ψ∗k(x′)ψj(x

′)
1

|r − r′|
ψk(x)dx′. (3.21)

As can be seen from the Hatree-Fock equations, the spin orbitals ψ that solve the equations
appear also in the exchange and the Hatree potential. Consequently, the solution must be
found iteratively, i.e. Hartee-Fock method is a self consistent field (SCF) method.

In the Hatree-Fock theory there has been no restrictions regarding the spatial parts of
α spin versus β spin, both the spatial parts and the number of α and β spins are allowed to
differ. This scheme is called unrestricted open-shell Hatree-Fock (UHF) and enables for
spin polarization. On the other hand, if the system is based on a closed shell configuration
with even number of electrons, i.e. each spatial orbital φk is doubly occupied with a α
and β spin and the rest of spin orbitals are empty, the Hatree-Fock equations simplify
and the resulting scheme is called restricted closed shell Hartree Fock-method (RHF).
An illustration of the different methods is shown if Figure 3.1. In the RHF case the 1s
electrons are forced to have the same spatial description, while in the UHF method the
two different 1s electrons experience different effective potentials (exchange interaction
between the α-electrons), and thus prefer different spatial functions.

Figure 3.1: Electrons with two up spins, and one down spins are shown in the cases of RHF and
UHF.

3.3 Density functional theory

The Density functional theory (DFT) represents an alternative to the Hatree-Fock approxi-
mation, by replacing the complex N-electron wave function and its associated Schrödinger
equation with the electron density ρ(r) and a new set of equations. The electron density
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is defined as the integral over all but one of the spatial coordinates and all the spin coordi-
nates,

ρ(r) = N

∫
· · ·
∫
|Ψ(x1,x2, ...,xN |2ds dx2 · · · dxn (3.22)

and determines the probability of finding any of the N electrons within a volume element
dr. Integrating ρ(r) gives then the total number of electrons,∫

ρ(r) dr = N. (3.23)

Immediately one can start to understand why this would be beneficial compared to a wave
function approach. Instead of having 4N variables describing the system, it is enough
with three spatial coordinates, thus the dimensions are independent of the system size. In
addition the following arguments from E.B Wilson helps to understand intuitively why the
system is defined by the electron density[18],

• The number of electrons in the system is defined from the integral of the density.

• The density is cusped at all nuclei, and only at the nuclei, and thus defines the
position of the nuclei.

• The different types of nuclei are distinguished by the shape of the cusp.

These comments were made under a conference in 1965, where Walter Kohn presented his
seminal paper on DFT [19]. The foundations for DFT, e.g. the electron density uniquely
determines all the properties of the system, rests upon the two theorems proved in Kohn’s
paper.

3.3.1 The Hohenberg-Kohn theorems

Recall that for an electronic system, the Hamiltonian is described by (3.4), and with
the variational principle (3.11) the ground state energy and the ground state wavefunc-
tion can be determined. The Hohenberg-Kohn theorems demonstrates that the Hamilto-
nian operator is uniquely determined by the electron density and provides an analogous
variational principle to that in the wave function approach with the electron density as a
parameter[19].

Theorem 1: The external potential vext(r) and hence the Hamiltonian Ĥ are deter-
mined to within an additive constant by the electron density.

Proof: Assume that another external potential, v′ext(r), is determined from the same
electron density ρ(r). Furthermore, the two external potentials are made such that they
differ with more than a constant and thereby have different ground state wave function and
energy (E and E’),
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E = 〈Ψ| Ĥ |Ψ〉 = 〈Ψ| T̂ + V̂ee + V̂ext |Ψ〉 = 〈Ψ| V̂ee + T̂ |Ψ〉+

∫
vext(r)ρ(r)dr

E′ = 〈Ψ′| Ĥ ′ |Ψ′〉 = 〈Ψ′| T̂ + V̂ee + V̂ ′ext |Ψ′〉 = 〈Ψ′| V̂ee + T̂ |Ψ′〉+

∫
v′ext(r)ρ(r)dr.

An assumption is also made that the ground state is non-degenerate. With Ψ′ as a trial
function for the ground state energy E, the variational principle (3.11) becomes,

E < 〈Ψ′| Ĥ |Ψ′〉 = 〈Ψ′| V̂ee + T̂ |Ψ′〉+

∫
vext(r)ρ(r)dr

= E′ −
∫ (

vext(r)− v′ext(r)
)
ρ(r)dr (3.24)

If one then repeats the same procedure with Ψ as a trial function for the ground state energy
E′, then,

E′ < E −
∫ (

v′ext(r)− vext(r)
)
ρ(r)dr. (3.25)

Addition of (3.24) and (3.25) results in

E + E′ < E + E′, (3.26)

which is a contradiction, and thus different external potentials will always result in differ-
ent electron densities. (There is a one-to-one correspondence between the external poten-
tials and the electron densities). Since the external potential is uniquely determined by the
electron density, it follows that the Hamiltonian is also uniquely defined and hence also
the ground state wave function and energy. One should then be able to write the ground
state energy as a functional of density, i.e

E = T [ρ] + Vee[ρ] +

∫
vext(r)ρ(r)dr

= F [ρ] +

∫
vext(r)ρ(r)dr = E[ρ] (3.27)

Here, the brackets denote that the electron density determines the ground state energy,
i.e. that energy is a functional of electron density. Moreover, (3.27) defines F [ρ] which
is independent of the system at hand(the external potential) and is said to be a universal
functional. If the universal functional was to be known, the Schrödinger equation would
have been solved exactly. Unfortunately, the explicit form is unknown.

Theorem 2: For a given trial density ρ′(r), that fulfills ρ′(r) ≥ 0 and
∫
ρ′(r)dr =

N , the ground state energy E0 is less or equal to Ev[ρ′],

E0 ≤ Ev[ρ′], (3.28)

and equality is achieved when the trial density is the true ground state density.
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Proof: From previous discussion one knows that a trial density ρ′ defines its own
wave function Ψ′. The proof follows then readily from the variational method for wave
functions (3.11), and normalized wavefunction is assumed for simplicity:

E0[ρ] ≤ 〈Ψ′| Ĥ |Ψ′〉 = E[ρ′]. (3.29)

Equality occurs when the trial density produces the exact ground state wave function and
consequently the trial density is then the exact ground state density.

For simplicity the ground state was assumed non-degenerate in the preceding discus-
sion. Degenerate ground states presents no difficulties, and the treatment has been done
by Levi with the constrained-search formulation [20],

F [ρ] = 〈Ψ| T̂ + V̂ee |Ψ〉
= min

Ψ−→ρ
〈Ψ| T̂ + V̂ee |Ψ〉 . (3.30)

Here the search is over all the antisymmetric wave functions, giving the input density ρ,
such that F [ρ] delivers the minimum of 〈T̂ + V̂ee〉.

3.3.2 The Kohn-Sham scheme
It is tantalizing that the ground state energy, equation (3.27), could be obtained from a
stationary principle required by the variational method (3.28),

δ{E[ρ]− µ
∫
ρ(r)dr} = 0, (3.31)

where the ground state energy is minimized with respect to the electron density and µ is a
Lagrangian multiplier associated with the constraint

∫
ρ(r)dr = N . Inserting the ground

state energy (3.27), results in the Euler-Lagrange equation,

µ =
δE[ρ]

δρ(r)
= vext(r) +

δF [ρ(r)]

δρ(r)
, (3.32)

The Euler-Lagrange equation (3.32) gives multiple solutions, associated with extrema of
E[ρ], so the one which minimizes E[ρ] must be chosen. This direct approach requires that
the functional F [ρ] is expressed as a functional of density, or optionally an approximate
F [ρ] is constructed [16]. The F [ρ] functional contains the kinetic energy, and small inac-
curacies describing this functional can lead to large errors. Kohn and Sham invented an
approach where the kinetic energy functional is split into two terms, with one term that is
calculated exactly while the other is a small correction part[21].

To treat a physical interacting system the Kohn-Sham method constructs a fictional
non-interacting ground state ΨKS, giving rise to the same electron density ρ(r) and chem-
ical potential µ as the interacting ground state Ψ0. The Hamiltonian for the interacting
system is given by (3.4) and for the non-interacting case,

Ĥs = T̂ +

N∑
i

vext(ri), (3.33)
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with a corresponding determinantal wave function (3.13) as in the Hatree-Fock theory,
where the N spin orbitals and here the Kohn-Sham (KS) orbitals ψi are solutions to the
one-electron Schrödinger equation,

ĥKSψi = [− 1
2∇

2 + veff(r)]ψi = εiψi, (3.34)

For the determinantal wave function the electron density (3.22) reduces to

ρ(r) =

N∑
i

∑
s

|ψi(r, s)|2, (3.35)

and the kinetic energy functional for the fictitious non-interacting electrons is given by

Ts[ρ] = min
Ψ→ρ
〈Ψ| T̂ |Ψ〉 = min∑

|ψ|2=ρ

[ N∑
i

〈ψi| − 1
2∇

2 |ψi〉
]
, (3.36)

where a constrained search is done over all single determinantal wave functions Ψ yield-
ing the true density ρ. The quantity Ts[ρ] differs from the true kinetic energy functional
T [ρ], defined in (3.27), and the residual term is absorbed into a exchange and correlation
functional Exc[ρ]. The ground state energy for an interacting system is then,

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
ρ(r)vext(r)dr, (3.37)

with Exc[ρ] defined as,

Exc ≡ T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ], (3.38)

which contains also the difference between the classical and non-classical part of the
electron-electron repulsion energy Vee. The classical part is given by the Hartree elec-
trostatic energy,

J [ρ] =
1

2

∫ ∫
ρ(r′)ρ(r)

|r − r′|
drdr′. (3.39)

The new ground state energy functional E[ρ] inserted in the Euler-Lagrange equation
(3.32) gives

δTs
δρ(r)

+
δJ

δρ(r)
+
δExc

δρ(r)
+ vext(r) = µ, (3.40)

and results in the same solution as the non-interacting Euler-Lagrange,

δTs
δρ(r)

+ veff(r) = µ, (3.41)

so that veff becomes

veff(r) = vext(r) +

∫
ρ(r′)

|r − r′|
dr′ + vxc(r), (3.42)
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where the exchange-correlation potential is defined as

vxc(r) =
δExc[ρ]

δρ(r)
. (3.43)

This is a key part of the Kohn-Sham scheme; from the functional dependence of (3.37),
an effective potential can be extracted that is felt by the fictitious non-interacting electrons
of the same density. Moreover, the effective potential depends on the density ρ(r), hence
it must be solved together with equations (3.34) and (3.35) self-consistently. The set of
equations make up the Kohn-Sham equations, and when the wave function and density is
found the total energy can be computed through (3.37). The Kohn-Sham equations can
in principle be solved exactly, however the exchange-correlation functional is not known,
and must be approximated.

One can also observe that the Kohn-Sham equations are on the same form as the
Hatree-Fock equations, except that they contain a more general local potential veff(r).
Owing to the fact that orbitals have been reintroduced to evaluate the non-interacting ref-
erence system, the complexity has been increased from 3 to 3N variables. In comparison to
the Hatree-Fock method, the Kohn-Sham scheme incorporates fully (albeit approximated)
the exchange and correlation effect of electrons, whereas the Hartree-Fock method lacks
any electron-correlation contribution. There are extensions to the Hartree-Fock method,
which incorporates the correlation effect of electrons, on the expense of added computa-
tional cost [15]. These methods go under the name post-Hartree—Fock methods.

3.3.3 Exchange correlation

The reaming part of establishing an approach to solve the ground state energy for a N-
electron problem within the Kohn-Sham scheme, is to find the exchange-correlation po-
tential (3.43). The exact form of the Exc[ρ] is unknown and one thus needs to find an
approximate expression for Exc[ρ]. There are some guidelines as to what properties such
approximation should obey, based on the known properties of the exact functional [22].
Over the years many different approximate Exc[ρ]’s have been created and to categorize
them Perdew suggested a "Jacob’s ladder", in which the form of Exc[ρ] defines the differ-
ent rungs [22]. Going up the ladder increases complexity, but with an expected improve-
ment in the accuracy.

Local Density Approximation

The simplest of the approximations is the Local density approximation (LDA), wherein the
exchange-correlation functional depends only on the electron density. Also, the electron
density is assumed to exhibit the same nature as a uniform electron gas. That is, the
electron density is divided into infinitesimal volumes, such that the inhomogeneous nature
vanishes and can be replaced by the density of a uniform electron gas. The LDA for the
exchange-correlation energy is then [16],

ELDAxc [ρ] =

∫
ρ(r)εxc(ρ(r))dr (3.44)
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where εxc(ρ) is the exchange and correlation energy per particle of a uniform electron gas.
Accurate values of this parameter has been found from quantum Monte Carlo calculations
[23], and thus the Kohn-Sham equations may be solved. One should note that the LDA
is justified for systems with slowly varying electron densities, typically metallic systems.
However, successful results have been obtained for highly inhomogeneous systems as well,
which may be attributed to the fact that LDA functional satisfy many formal properties of
the exact exchange-correlation functional, e.g. so called sum rules [24, 16, 25, 26].

Generalized Gradient Approximation

To improve upon the LDA approach, which only depends on the electron density, the Gen-
eralized Gradient Approximation (GGA) was invented. This method includes additional
information about the derivatives of the electron density at a given point. Inclusion of the
gradient of density in the exchange-correlation functional has been done in a several ways,
but their general form is [27],

EGGAxc [ρ] =

∫
fGGA(ρ(r),∇ρ(r))dr (3.45)

where fGGA is some function with the density and its gradient as parameters. The func-
tional can be separated into two terms,

EGGAxc [ρ] = EGGAx [ρ] + EGGAc [ρ] (3.46)

containing the exchange and correlation contribution respectively. The exchange func-
tional takes the form

EGGAx [ρ] =

∫
ρ(r)εunifx (ρ(r))FGGAx (s(r))dr (3.47)

with εunifx is identical to the exchange energy per particle in (3.44) when εxc is separated
in a similar fashion to (3.46). Furthermore, FGGAx is the exchange enhancement factor,
telling how much exchange energy is enhanced over its LDA value, and is a function of
[24],

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ(r)4/3
, (3.48)

a dimensionless parameter called the reduced density gradient. To give an idea what the
enhancement factor might look like, two popular GGA exchange functional will be pre-
sented, the Perdew-Burke-Ernzerhof (PBE, [28]) and Becke88 (B88, [29]) functionals,

FPBE
x (s) = 1 + κ− κ

1 + µs2/κ
(3.49)

FB88
x (s) = 1 +

βx(s)2

[1 + 6βx(s) sinh−1(x(s))]
, x(s) = (48π)1/3s (3.50)
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For the PBE functional the parameters κ and µ are derived from physical constraints the
exact functional should posses, i.e. PBE is a non-emperical functional. On the other hand,
the unknown parameter β for B88 is obtained from fitting to exact atomic Hatree-Fock
exchange data, i.e. B88 is an emperical functional. We can observe that in the limit of a
uniform electron gas, Fx(0) = 1 and both functionals returns the LDA exchange.

The functional form of the GGA correlation functional EGGA
c is also a complex func-

tion of a reduced gradient, and the function may come in different forms, e.g. the PBE
correlation functional [28] and LYP [30]. Besides, the magnitude of the functional is gen-
erally <10% of the exchange energy, so it is more important that the exchange functional
is accurate[31]. Hence for brevity’s shake, the form of this functional will not be presented
here.

Hybrid

The LDA and GGA approach were the first two rungs of "Jacob’s ladder". The natural
extension to the GGA method is then to include higher order derivatives of the electron
density. The meta-GGAs use the Laplacian of the density ∇2ρ and/or the orbital kinetic
density τ(r) = 1

2

∑
i |∇φi(r)|2 [15].

The next rung on the ladder is the hybrid functionals, which includes fractions of the
exact Hatree-Fock exchange. The justification for this mixing stems from the adiabatic
connection formula [32],

Exc[ρ] =

∫ 1

0

Exc,λdλ. (3.51)

Here λ is a coupling parameter characterizing the strength of the electron-electron inter-
action, i.e switches on the Coulomb repulsion 1/|r′ − r|. Exc,λ is the potential energy of
exchange and correlation at λ. The formula connects the fictitious non-interacting Kohn-
Sham system (λ = 0) with the real system λ = 1, through a continuum of partially
interacting real systems, all with the same electron density. In the limit of λ = 0 there is
no correlation energy, only the Hatree-Fock exchange energy (with Kohn-Sham orbitals),
thus it is possible to envisage why the Hartee-Fock exchange might contribute to a bet-
ter exchange-correlation functional. LDA, GGA, and meta-GGAs have been mixed with
fractions of Hatree-Fock exchange to construct new functionals. The PBE0 functional [33]

EPBE0
xc =

1

4
EHFx +

3

4
HPBE

x + EPBEc (3.52)

mixes a fourth of Hatree-Fock exchange with three quarters of the PBE exchange along
with with the full PBE correlation.

3.3.4 Unrestricted Kohn-Sham
Up to this point the theory on DFT has been restricted to systems with only scalar external
potential and no separation of the α- and β-electron densities, ρα(r) and ρβ(r) respec-
tively. The theory with ρα(r) and ρβ(r) as basic variables instead of the electron density
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is called spin-density-functional theory or sometimes Unrestricted Kohn-Sham (UKS) ap-
proach. The derivation of this theory can be done in a similar fashion as for the restricted
Kohn-Sham scheme. Further details are for instance found in [16, 34]. Here the existence
of an universal functional is proved, i.e one-to-one correspondence between spin electron
densities and spin dependent external potentials, vext,σ(r). Where σ is an electron with
either α- or β-spin. The universal function is then,

F [ρα, ρβ ] = Ts[ρ
α, ρβ ] + J [ρ] + Exc[ρα, ρβ ] (3.53)

where ρ = ρα+ρβ is the total density and definition of J[ρ] is the same as in the restricted
case. The Kohn-Sham equations are

ĥσφiσ(r) = [− 1
2∇

2 + vσeff ]φiσ(r)

=
ε′iσ
niσ

φiσ = εiσφiσ(r), i = 1, 2, ..., Nσ, (3.54)

with the spin-dependent effective potentials

vσeff = vext,σ(r) +

∫
ρ(r′)

|r − r′|
dr′ +

δExc[ρα, ρβ ]

δρα(r)
(3.55)

where ε′iσ are the Lagrangian multipliers associated with the normalization constraints and
niσ is the occupation numbers,

ρσ(r) =
∑
i

niσ|φiσ(r)|2. (3.56)

In practice the lowest eigenstates are chosen to be occupied completely (niσ = 1) and the
rest are unoccupied (niσ = 0). The number of electrons with σ-spin needs to be varied as
well to achive minumum, subjected to the constraint

N = Nα +Nβ . (3.57)

These equations constitute the self-consistent field method of UKS method. As discussed
in the end of the Hatree-Fock section 3.2, this allows for spin polarization. Electrons of
different spins may have different spatial densities, hence the effective potential in equation
(3.55) may then be different. Resulting in a self-consistent solution where the total spin
density ρα(r)−ρβ(r) is different from zero, and thus this theory can describe spontaneous
magnetization. In addition, this theory allows for an external magnetic field acting on the
spins of the electrons.

The exchange-correlation functional E[ρα, ρβ ] is dependent on the spin-electron den-
sities. For brevity the derivation of the different approximations will not be done here
and the reference given in the respective subsections in section 3.3.3 should be consulted.
However for completeness, the general form of the LDA and GGA will be presented.

ELSDAxc [ρα, ρβ ] =

∫
ρ(r)εxc(ρα(r), ρβ(r))dr (3.58)
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is the extended version of LDA, the Local Spin Density Approximation (LSDA) with εxc

as the exchange-correlation energy per particle for an electron in an uniform electron gas
with spin density ρσ . The general form of the GGA methods are

EGGAxc [ρα, ρβ ] =

∫
fGGA(ρα(r), ρβ(r),∇ρα(r)∇ρβ(r))dr (3.59)

with fGGA being a function with the different spin-electron density and gradients as pa-
rameters. The hybrid functionals for the unrestricted spin case is equivalent to the re-
stricted case, with the exception that one uses the unrestricted LSDA/GGA functionals
instead.

3.4 Basis set
To use the Hatree-Fock or the Kohn-Scham method as a computational method one would
need to approximate the spin orbitals and the KS orbitals. These unknown orbitals are
expanded in terms of a set of known functions χ, e.g plane waves, exponential, wavelets
or Gaussian functions. If the expansion is done in a complete basis set, that is using
infinitely number of functions to describe the orbital, the representation is exact. However,
as this requires an infinite number of functions, one needs to use a finite basis set. Hence,
decreasing the basis set size, results in a poorer representation of the orbital, but at less
computational cost. The choice of a the basis function will also effect the accuracy and
computational cost. In general a good basis function should mimic the behavior of the
physical problem, so convergence of the basis set size occurs rather swiftly [15].

3.4.1 Gaussian type orbitals
A normal practice in quantum chemistry is to model the spin/KS orbitals with an atom
centered basis set. Which typically include either Slater type orbital (STO) or Gaussian
type orbitals (GTO). Computational methods in this work are based on GTO and for that
reason no further elaboration on the STO basis set will be made. The GTO satisfy the
guideline that the basis function should have behaviour agreeing with the physics of the
problem. In the sense that GTO have the correct long range properties, i.e. decays to zero
when moving radially far out. The GTO have the following form in polar coordinates,

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr
2

, (3.60)

with Yl,m(θ, φ) as the spherical harmonics, where l and m are the orbital angular momentum-
and the magnetic- quantum number respectively. N is a normalization constant, and the
Gaussian function, often called a primitive Gaussian function, with its exponent, ζ, de-
termining the width of the function. Large ζ gives a localized function, whereas a small
value would give a diffuse function. Each spin/KS orbital can then be written as a linear
combination of GTO,

ψi =
∑
α

cαiχα (3.61)
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where cαi determines the weight of each basis function, and are determined during the
self-consistent field method. For computational efficiency it is common to make a linear
combination of several GTO into a new contracted GTO [? ],

ψi = Yli,mi

∑
α

cαi
∑
j

dαje
−ζr2

=
∑
α

cαiϕα(r) (3.62)

Here j sums through the length of the contraction, cαi is the weight of each contracted
GTO and dαj is the contraction coefficient. The contraction coefficients and the exponent,
i.e. the contraction basis function ϕ(r), are determined prior to the calculation depending
on desired qualities. This has the advantage that one can optimize several GTO at the
same time. The smallest number of contracted basis functions one would need to con-
tain all the electrons of a neutral atom is a minimum basis set, i.e. one contracted basis
function for each atomic orbital in a closed shell (1s, 2s, px, py , pz ...) This is in most
cases inadequate, and improvement can be realized upon doubling of all the contracted
basis functions, known as a Double Zeta type basis. Further improvements can be done by
tripling the basis functions Triple Zeta, or increasing even further Quadruple Zeta, Quin-
tuple Zeta and so on. Moreover, to achieve accurate results it is often necessary to include
polarization functions as well [15]. Polarization functions are basis functions with angular
momentum of higher order compared to the valence electrons. This allows for polarization
of the valence orbitals such that the bond in a molecule is better described.

3.4.2 Plane Waves Basis Set
An alternative method to the GTO expansion is to expand the KS orbitals in plane wave
basis functions. The method rely on the Bloch’s theorem which states that an electron in a
periodic system, like solids, can be represented by a Bloch wave[35],

ψj,k(r) = eik·ruj,k(r), (3.63)

which is a plane wave characterized with wave vector k times a function uk(r) with the
same periodicity as the lattice, i.e. uk(r + R) =uk(r) with R being the Bravais lattice
vector. Consequently for a crystalline solid, the one-electron Schrödinger-like equation
models an electron in an effective periodic potential, such that the Bloch’s theorem can be
utilized by expanding the KS orbitals in Bloch waves ψi,k. The periodic potential uk can
be Fourier expanded in terms of the reciprocal lattice vector G which results in

ψj,k =
∑
G

Cj(k,G)ei(k+G)·r, (3.64)

where Cj(k + G) is a Fourier expansion coefficient and the summation is over all values
of G. One therefore needs an infinite number of plane waves to represent the KS orbital.
In practice only plane waves with wave vectors within a sphere of radius G is chosen. On
the basis that the effective KS potential (3.42) converges rapidly with increasing G [36],
plane waves with kinetic energy higher than some energy cutoff Ecut is truncated,

1

2
|k + G| ≤ Ecut, (3.65)
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then the basis functions become,

ψj,k =
∑

|G+k|≤Gcut

Cj(k,G)ei(k+G)·r. (3.66)

The plane wave basis set then consists of basis wave functions (3.66) solving the one
electron Schrödinger equation (3.34) with eigenvalues εj(k). The eigenvalues constitute
the band structure of the crystal where j = 1, 2, .. is a discrete set and the wave vector k
is any value in the primitive cell in k-space, the first Brillouin zone (BZ)[37]. The electron
density for a periodically repeated unit cell with volume Ω is then,

ρ(r) =
1

Ω

∑
j

∫
BZ

fj(k)
∑
GG′

c∗j (k,G
′)cj(G,k)ei(k+G)·rdk

=
∑
G

ρ(G)eiG·r, (3.67)

with fj(k) as the occupation number associated with state j. For practical calculations
the integral must be approximated by a finite sum over a set of k-points. The number of
k-points required for accurate results depends on the dispersion of occupied bands and
hence, the system under study [38].

3.4.3 Pseudopotentials
The physical interesting properties are to a large degree determined by the valence elec-
trons, such as excitations, conductivity, bond breaking and bound formation. Meanwhile,
the description of the strongly localized core electrons at the nuclei require numerous
rapidly oscillating functions, i.e plane wave basis with a high energy cutoff [39]. Treating
the core electrons comes then at a high computational cost even though they are less im-
portant. A procedure to deal with this is to use pseudopotentials. The Coulomb potential
of the nucleus and the core electrons are replaced by an effective nuclear potential screened
by the core electrons. The pseudopotential is an angular momentum-dependent potential
such that all the interactions between the valence electrons and the core are accounted for.
These are; Pauli repulsion, exchange and correlation effects with the core electrons and
the effective nuclear Coulomb attraction??. Outside the core region this potential should
reproduce the true potential and result in the true wave function. Inside the core the po-
tential is a weaker potential than the true potential and the "pseudized" wave functions
become much smoother and ideally with no nodal structure. This approximation allows
for smaller energy cutoff, hence smaller basis sets. In addition, relativistic effects can be
partly accounted for, by incorporating them in the pseudopotentials.
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Chapter 4
Computational methods

The computational methods used in this thesis has been carried out using the open source
software package CP2k[40]. CP2K is a quantum chemical and solid states physics package
convenient for several different modeling methods, e.g. a framework for DFT calculations,
but also Molecular dynamics, Molecular mechanics, vibrational analysis etc. In the fol-
lowing chapter the main ideas in CP2k will be presented as well as other computational
methods used in the present work.

4.1 Density Functional Theory Within CP2K

The DFT calculations done in CP2K are performed using the Quickstep method [41].
Central in this method is the use of a dual basis representation for the density, called
Gaussian and Plane waves (GPW) method. The atom centered contracted GTO basis is
used to represent the KS orbitals. In contrast to the KS orbitals, the GTO basis functions
are non-orthogonal, so there is an overlap between the basis functions. With the GTO basis
(3.62) the density becomes,

ρ(r) =
∑
αβ

Pαβϕα(r)ϕ∗β(r), (4.1)

where Pαβ is the density matrix,

Pαβ =
∑
αβ

ficαic
∗
βi, (4.2)

with fi the occupation number of state i. In the framework of GTO basis set, the electro-
static Hartree energy J [ρ] in (3.37) is a four-centered integral, i.e. over four basis func-
tions, arising from the non-orthogonality. It is very costly to compute in terms of usage of
memory and CPU in a computational calculation. To address this issue, an auxiliary basis
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of plane waves is used to represent the density (3.67),

ρ̃(r) =
1

Ω

∑
|G|≤2Gcut

ρ̃(G)eiG·r (4.3)

The Fourier expansion coefficients ρ̃(G) are such that ρ̃(r) is equal to ρ(r) on a real-
space grid. The fast Fourier transform (FFT) algorithm can be used to transfer the density
between the reciprocal and real grid. This is exploited to solve the Poisson equation and
thereby to obtain the the electrostatic Hartree energy, without the use of any expensive
integration. The computation of the Hartree energy with plane wave representation scales
linearly with the system size. In addition the exchange and correlation energy is calculated
using the plane wave representation, while the rest of the ground state functional are treated
with the GTO density.

The calculation of the ground state functional requires knowledge of the KS orbitals.
As mentioned in section 3.3.2, the KS orbitals can be obtained when the Kohn-Sham
equations are solved with a self-consistent method. In the GTO basis set and using a matrix
formulation, the KS equations becomes a diagonalization problem. The procedure on how
to solve the diagonalization problem and for the full description of the ground state energy
functional, consult the original papers on Quickstep and GPW method [41, 42, 43]. CP2K
also allows for the use of the orbital transfer (OT) method [44], where the KS orbitals
are found by direct minimization of the ground state energy functional with respect to the
KS orbital coefficients, cαi. Figure 4.1 shows a simplified flowchart on how the energy is
calculated with either a traditional method involving diagonalization of the KS matrix or
with the use of OT method.

Figure 4.1: A simplified flowchart describing how to obtain the total energy with CP2K. The gray
box exhibits that the density is found with a self-consistent field (SCF) method, using either the
traditional (TD) method or using the orbital transformation (OT) method.
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4.1.1 Periodic Calculations
An ideal crystal structures is a system of infinitely repeated unit cells in all directions.
To simulate such a crystal periodic boundary conditions (pbc) are employed, where the
original cell can be seen as copied infinitely in all directions. That is when for instance
information is needed outside the original cell, it will collect the information from within
the unit cell corresponding to that area. In CP2K pbc follows naturally when solving
the Poisson equation with a FFT based method and will be employed when dealing with
crystal structures.

4.1.2 Gas Phase Calculations
To study the molecules in the gas phase, single molecules were placed in a non-periodic
simulation box. This corresponds physically to a low pressure(vacuum) system. This is of
course a crude approximation when the environment is important part of the interactions.
Furthermore, to solve the Poisson equation a wavelet solver method made available in
CP2K have been used.

4.1.3 Auxiliary Density Matrix Method
In this work a few of the DFT calculations are performed using the hybrid functional
PBE0. The calculation of the Hatree-Fock exchange (HFX) needed for this functional is
computationally demanding for large systems described by a high quality basis set. In the
CP2K framework there is a possibility to approximate the density matrix P with an aux-
iliary density matrix P̃, called the Auxillary Density Matrix Method (ADMM). Excellent
performances and good accuracy can still be reached with ADMM, where the approxima-
tion of HFX energy is [45],

EHFXX [P] = EHFXX [P̃] + (EHFXX [P]− EHFXX [P̃])

≈ EHFXX [P̃] + (EGGAX [P]− EGGAX [P̃]). (4.4)

The last term is a correction term computed as the difference between the density matrices
using the GGA exchange functional. The auxiliary density matrix is constructed such that
P̃ is either smaller or sparser than the original density matrix, resulting in fewer HFX
integrals that need to be evaluated. In this work the auxiliary basis sets provided in CP2K
have been used.

4.1.4 Setup for CP2K calculations
In order to limit the size of the plane wave basis, the GTH-pseudopotentials optimized for
the GGA functional PBE was used [46, 47, 48]. In addition cutoff analysis were carried
out to determine the optimum Ecut, i.e. yielding meaningful and accurate calculations
with as low Ecut as possible. In CP2K the default is to only perform calculations with
only the Γ-point, i.e. k = 0. In this work the author was only concerned with insulators
and molecular systems, and thus when the cell sizes are sufficiently large, i.e. leading to
small BZ volume, the default value is adequate. The Goedecker-Teter-Hutter (GTH). The
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Gaussian basis set used was the molecular optimized basis set [49]. The MOLOPT basis
contains several different basis set sizes, but here the Double Zeta valence with polarization
functions (DZVP) have been mostly used. If a bigger basis set is used, it will be specified.

4.2 Structure optimization

In the Born-Oppenheimer approximation the nuclei move upon the potential energy sur-
face (PES) resulting from the electrostatic energy and the kinetic energy of the electrons.
Moreover, PES is a multi-dimensional function, i.e. function of the nuclear coordinates.
A stable geometric structure occurs when the nuclei are located at a minimum on this sur-
face. Generally, the surface can have multiple minima, where the first derivatives are zero
and the second derivatives positive. However, in most cases the type of minimum one tries
to locate is the global minimum corresponding to the equilibrium geometry.

There exists different optimization methods to find the minimum [50]. A brute force
method to find the minimum would be to perform m3N energy evaluations to map the
PES on a grid of m points in each dimensionto. As this gives an exponential growth with
system size, CP2K provides more sophisticated methods which exploits the shape of PES
to determine minimas. The negative of the gradients, i.e. the first derivatives of PES with
respect to the nuclei coordinates, give information on the forces acting on the nuclei. The
gradients are calculated analytically, meanwhile a matrix called the Hessian containing
the second derivatives δE

δRiδRj
are approximated via an updated Hessian method. The

derivatives are then used to determine where the atoms should move. The applied update
scheme used was the Quasi-Newton method BFGS provided by CP2k [51, 52]. Moreover,
the geometry optimizations are considered converged to a minimum when the root mean
square (RMS) and the maximum of the atomic forces are less than 10−4 atomic units.
For relaxation of the crystal geometry the unit cell can also be optimized simultaneously
and thus the lattice parameters might vary. For these type of calculations the optimization
was considered converged when the pressure tolerance on the cell was less than 1 bar.
In addition the experimental crystal symmetry was constrained in the calculation, e.g.
monoclinic, orthorhombic. Besides, when performing geometry and cell optimization on
crystal structures, the relative errors were calculated as

Err =
a− a0

a0
, (4.5)

where a0 is the experimental value and a the computed value.

4.3 Vibrational analysis

The curvature of the PES can also give information about the vibrational frequencies of the
atoms. In CP2K this is done using the static-harmonic approximation. The energy (PES)
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change for a displaced nucleus can be written as a Taylor expansion,

E(R) = E(R0) +
∂E

∂R
(R−R0) +

1

2

∂2E

∂R2
(R−R0)2 +

1

6

∂3E

∂R3
(R−R0)3 + ...

= E(R0) + g(R−R0) +
1

2
H(R−R0)2 +

1

6
K(R−R0)3 + ... (4.6)

The third derivative is the anharmonicity K, H is the Hessian, and g is the gradient. The
expansion point R0 may be chosen to be a stationary point, g = 0, such that the force
constant matrix, i.e. Hessian, may be used to determine the vibrational frequencies, since
higher order derivatives are neglected in CP2K. The 3N-dimensional Schrödinger equation
(3.8) for the atoms may be transformed and divided into 3N one-dimensional Schrödinger
equations, with the form of a standard harmonic oscillation [15],

[
−

3Natom∑
l=1

( 1
2

∂2

∂q2
l

+ 1
2εlq

2
l )

]
Ψn = EtotΨn, (4.7)

Where the eigenvalues εl and eigenvector q, are determined from diagonalization of a
mass-weighted force constant matrix. The vibrational frequencies are related to the squares
of the eigenvalues. For details see refrenece [15].

As this approximation is based on a stationary point, the geometry optimization is
converged with RMS forces less than 105 a.u. In addition threshold of 5 · 10−9 on the
SCF is used. From the resulting relaxed structure the vibrational analysis is carried out
in CP2K, which uses finite difference method to construct the force constant matrix. The
resulting vibrational frequencies are convoluted with a Lorentzian function to yield the
infrared (IR) spectrum.

4.4 Population analysis

The charge and spin in a molecule or in a solid, may not necessarily be distributed evenly
and have fractional charges. The atomic charges do not correspond to any unique physical
property, thus the assignment of atomic charges from a DFT calculation is a mathematical
way of assigning a fraction of the wave function or electron density to each atomic nucleus,
called a Population analysis. Since there is no unique way to determine atomic charge
there exists many different population techniques, e.g. Bader charge, Mulliken population,
DDEC6 charge and Hirshfeld charge analysis [53, 54][55][56][57]. For this work, the
Mulliken population analysis and DDEC6 charge analysis have been carried out. The
Mulliken population analysis has an explicitly basis set dependence, whereas the DDEC6
partitioning scheme is independent of basis set as the charge is a functional of the total
electron density distribution. Besides, the DDEC6 analysis is one of the most accurate and
broadly applicable atomic population analysis methods [58]. The Mulliken population
analysis is implemented in the CP2K package and gives information on both the spin and
charge and is readily available. Meanwhile the DDEC6 charges were computed with the
program Chargemol with the electron density computed from CP2K as input [59].
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4.4.1 Bond order
Bond order is a chemical concept used to quantify bond strength and behavior, with larger
bond order indicating greater strength. However, as the case with charge, it does not exist
a unique way to define the bond order. The DDEC6 bond orders are based on the same
DDEC6 electron density partitioning scheme and with a dressed exchange hole approach
to compute the quantitative descriptors known as bond order [60, 58]. For definitions on
how this is done see the mentioned papers. Moreover, the sum of bond orders (SBO) can
be seen as a measure of chemical reactivity. For instance carbon prefers to share four
valence electrons to get a noble electron configuration. Thus when the SBO are lower than
∼4, e.g. 2.58 for carbon monoxide (CO), it wants to react and form a molecule where its
SBO is∼4, like in the CO2 molecule [60]. The DDEC6 bond order has several advantages
compared to other bond order definitions, for instance it does not break down for longer
bonds, as seen in bonding/antibonding definition and assumptions of constant bond orders
with respect to density overlap [61]. The DDEC6 bond order has also some reported areas
where it does not work, though none which are important for this work, e.g. it does not
apply for extremely high-energy excited states, electrides and highly-dependent states.

The bond orders are computed with the same Chargemol program.

4.4.2 Determination of Copper Oxidation
A recent study compared DDEC6 charges with Bader charge analysis for different crystal
structures and molecular systems [62]. They found that the charges for the two methods
are in close agreement. In addition they did DDEC6 charge analysis on several different
known Cu(II) and Cu(I) complexes with different combination of anionic and neutral lig-
ands. The result is listed in table 4.1. These results will be used to compare with DDEC6
charges calculated here in order to determine the oxidation state of Cu.

Table 4.1: Results from an earlier study where known Cu(I) and Cu(II) complexes are modeled
using the DDEC6 charge population analysis[62]. The table shows the relationship between the Cu
oxidation states and the average DDEC6 charge as well as the range of charges.

Oxidation state Average charge (e) Range
Cu(I) 0.85 ±0.17 0.44 - 1.1
Cu(II) 0.36 ±0.08 0.25 - 0.52

4.5 Dispersion Correction
Weak interactions arising from instantaneous dipoles, i.e. London dispersion forces are not
properly described in standard DFT [15, 63]. This interaction is important for instance in
binding between rare gasses and on a longer scale, as a intermolecular force. The missing
dispersion energy Edisp can be accounted for by adding it to the energy, EDFT, from the
SCF procedure ,

EDFT−D3 = EDFT − Edisp. (4.8)
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In CP2K the Grimme D3 method is made available and has been used in parts of this work.
For the definition of Edisp for the Grimme D3 method see the original paper [64]. The
dispersion correction have been shown to give good results for noncovalent interactions in
gas phase system and in molecular crystals [64, 65].

4.6 Bond stretching and bond dissociation energy
To get more insight in how stable a molecule or bond is, one can in addition to the bond or-
ders, look at the energy required to stretch the bond. To stretch a bond between molecule(s)
and/or atom(s) A and B, the bond stretching is performed by translating the molecule or
atom B by a small deviation δb and performing a DFT calculation to get the energy. The
DFT calculations can either be performed as a single energy evaluation at each step of the
stretch or one can relax the geometry if the atom/molecule is fixed in space.

If one stretches the bond to infinitely, i.e. in practice until the Coulomb interactions
are insignificant, the energy difference between the ground state and last step of the stretch
converge to the bond dissociation energy for a non-vibrating molecule. The bond dissoci-
ation energy required to break a bond through the reaction

AB− > A+B, (4.9)

is then defined for the non-vibrating case as,

D = E(A) + E(B)− E(AB). (4.10)

However, a quantum mechanical system is constantly fluctuating, even at zero Kelvin.
The energy of this small residual motion at zero kelvin is the zero-point vibrational energy
(ZPE) and can be quite accurately approximated by harmonic oscillators [15]. The ZPE is
then just half of the sum of the fundamental vibrational frequencies νi [66],

ZPE =
1

2

Natom−6∑
i=1

νi. (4.11)

For a nonlinear molecule of Natom atoms there are 3Natom-6 vibrational frequencies. The
vibrational frequencies determined from HF and DFT methods have been observed to have
a tendency to be larger than the experimental values. A common practice is therefor to
compensate this by multiplying with a scale factor [67]. Sources of errors to the vibrational
frequencies may be for instance the neglecting of anharmonic effects and finite basis set
size. The bond dissociation energy can then be corrected by the inclusion of the ZPE. This
correction corresponds to the bond dissociation energy at 0 K, and becomes

D0 = E(A) + ZPE(A) + E(B) + ZPE(B)− E(AB)− ZPE(AB). (4.12)

When performing vibrational analysis in CP2K, it is also possible to get information about
the thermal corrections at finite temperatures due to the vibrational motion, as well as
contributions from rotational motion and translation. Instead of adding the ZPE one can
then instead add thermal enthalpy correction given by CP2K to give the bond dissociation
enthalpy.
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4.7 Molecular Dynamics
In the aforementioned theory on electrons and nuclei, the system was treated without time
dependency. It is however also of interest to study how the particles behave with respect to
time, not only at a microscopic level, but also at a macroscopic level. These two branches
can be connected with statistical physics, i.e. deriving the thermodynamic properties from
statistical ensemble [68]. To this end ab intio Born-Oppenheimer (BO) MD simulations
have been performed to obtain the ensemble average. The ergodic hypothesis connects the
ensemble average to the time average [15],

〈X〉 = lim
τ→∞

1

τ

∫ τ

0

X(t)dτ = lim
K→∞

K∑
i=1

X(ti) (4.13)

Here 〈X〉 is a macroscopic observable, that is the time average of the instantaneous state
X(t). The number of times the system is sampled in a MD simulation, K, should be large
for accurate results [69].

Moreover, in BO MD the ions are treated as classical particles moving in a potential
V, where the equation governing the motions of the ions is Newtons equation [36],

Mi
d2Ri

dt2
= −dV (R)

dRi
, (4.14)

where the resulting energy from the static DFT calculation is the potential,

V (R) = min
φ

[EKS({φi(r)};R)]. (4.15)

To find how the particles move dynamically one then needs to integrate the equation
(4.14) with respect to time. From a computational view point this is a problem of dis-
cretization of time. How to go from one discreet time step to another is called the integra-
tor. In this work a ASPC integrator have been used with extrapolation order of three, that
is for each step in MD an extrapolation from the three previous converged wave-functions
are used [70]. Furthermore, the MD simulations was done with a canonical ensemble, that
is with a constant volume, particle numbers and temperature. A canonical ensemble is in
contact with a heat bath, and likewise during the simulations energy fluctuations are gener-
ated with a external bath. This is called a thermostat, and for this work a CSVR thermostat
have been used with time constant of 2000.
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Chapter 5
Results and Discussion

This chapter includes presentation and discussion of the results.

5.1 Convergence Tests

As mentioned in the previous chapter, the software CP2K uses a dual basis representation,
with the electron density and Gaussian functions represented on real space grid(s). Having
a good enough resolution of this grid is crucial for obtaining accurate and meaningful
results. What determines this resolution is the plane wave cutoff defined in section 3.4.2.
The result of the convergence test for Cu[HCOO]2 in the gas phase is shown in figure 5.1.
The first graph shows single total energy evaluations of the Cu molecule as a function of
the cutoff energy. The calculations are in general considered converged when the energy
deviates less than ± 0.2 kcal/mol from the last value. On a general basis, one is concerned
with energy differences and not the total energy. Thus a better measure is a convergence
test based on the the dissociation energy, equation (4.10) with a non-relaxed geometry.
This convergence test tend to converge more rapid than the former because of systematic
error canceling. For instance, the given convergence criteria is satisfied with a cutoff value
of 470 Rydberg (Ry) or higher, while the binding energy can be observed to have the same
accuracy already at 350 Ry.

Table 5.1: Shows the obtained values of plane wave cutoff Ecut and relative plane wave cutoff Erel

for different systems.

(a)

Cu-crystal Ecut [Ry] Erel [Ry]
[HCOO]2 510 55
(pyr)2[HCOO]2 480 55
(en)2[HCOO]2 420 55

(b)

Cu-molecule Ecut [Ry] Erel [Ry]
[HCOO]2 510 55
(pyr)2[HCOO]2 430 51
(en)2[HCOO]2 430 51
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With the change of basis, introduction of new elements or with different crystal struc-
tures a new cutoff value was found. In table 5.1 the different cutoff values are tabulated
together with the relative cutoff parameter. This parameter is tuned in the same manner as
the cutoff, for instance in Figure 5.2 the convergence test for the cutoff and relative cutoff
is shown for the Cu(en)[HCOO]2 crystal structure.

Figure 5.1: The first plot is the total energy of the Cu[HCOO]2 molecule, while in the second plot
the binding energy of oxygen is calculated.

Figure 5.2: The results from the cutoff calculations done on the Cu(en)2[HCOO]2 crystal structure.
In the first plot the binding energy is plotted against the Cutoff energy, while in the second against
relative cutoff energy.
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5.2 Gas Phase Calculations

The three different molecules, Cu[HCOO]2, Cu(en)2[HCOO]2 and Cu(pyr)2[HCOO]2
have been studied in the gas phase. For the calculation of the bond dissociation energy
of the molecule [HCOO] one would require the energy of its optimized structure. there-
fore calculations have been performed for the HCOO molecule as well, and these results
will be presented first.

5.2.1 Formate Neutral Radical

The formate neutral radical HCOO was placed in a cubic box with a = 20.0 Å and with
a cutoff value of 510 Ry. Previously optimized structure of the radical was used as a
starting structure for the geometry optimization taken from the NIST database [66]. In
addition the spin state is reported to be in a doublet state, <S2> = 0.75, therefore this
spin configuration is used. For curiosity other starting structures were used as well, and
notably a geometry with lower energy than the reported ground state structure was found.
In this case the coordinates of the formate anion HCOO− was used as a starting point for
the geometry optimization, and the resulting favorable energy was 0.89 kcal/mol. This
shows that the level of theory used in this thesis, i.e. DZVP bais set, PBE XC functional
and GTH pseudopotential, is not reliable when energy differences become closer than at
least 1 kcal/mol. Which is also understandable from the cutoff convergence criteria. The
results of the formate neutral radical, as well as the formate anion is given in table 5.2.

Table 5.2: The results of DFT calculations done on the reported ground state (GS) formate neutral
radical and the structure geometry of the radical giving the lowest energy (LE) in this work.

This work NIST database [66]
LE HCOO GS HCOO PBE/6-311G** B3LYP/6-311G**

Bond length (Å)
CH 1.560 1.103 1.108 1.099
CO 1.238 1.266 1.262 1.251

Bond angle (◦)
OCO 108.15 112.95 113.24 113.11

Zero-point energy (kcal/mol)
ZPE 10.86 12.30 11.93 12.41

The result shows that the vibrational analysis and geometry optimization done on the
reported ground state, HCOO molecule reproduces well the values given in the literature
[66]. Moreover, the corresponding literature values listed in the table is based on a higher
level of theory. Namely all electron calculations with the hybrid functional B3LYP and all
electron calculation with PBE functional, which is believed to be more accurate. All in
all the results are acceptable, as there is a trade off between accuracy and computational
speed, but one should keep in mind that when the energy difference between two isomers
is small, one cannot determine the minima.
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5.2.2 Copper Formate
The Cu[HCCO]2 molecule was placed in a cubic a = 15.0 Å box. There was found no
mention of the geometry of this molecule in the literature. So in order to determine the
ground state, one has to search through different structural isomers and see which con-
figuration yields the lowest energy. In addition the spin multiplicity of the molecule is
unknown. The molecule HCOO only needs one electron to fulfill its shells and become
the favourable formate anion. Moreover, the molecule is an anion in solution, so one can
therefore suspect that the Cu should be found in a Cu(II) charge state, with electron config-
uration [Ar]3d9, i.e. a spin doublet state. And since the formate anion is in a singlet state
[66], the spin multiplicity of the Cu[HCOO]2 is suspected to be in a doublet state. To be
sure of this, the different isomers were also tested with quartet state, i.e. spin multiplicity
of 4. These states showed a consistently higher energy, and thus it is concluded that the
molecule is in a doublet state. Higher spin states, e.g. 6, 8, .., are not considered as this
would mean that the electrons are promoted to higher and higher energy orbitals, which is
not favorable. The optimized geometry of the different isomers tested is shown in Figure
5.3. Vibrational analysis on the configuration marked as "Ground state" gave only real
valued frequencies, which confirms that this structure is at least a minimum on the PES.
Furthermore, the energy differences between the two most energetically favorable states
are significant (15.8 kcal/mol), thus it is safe to infer that this is the ground state structure.
Moreover, the energy increases from A to E and thus it is observed that Cu prefers to be in
a four coordinated square planar geometry.

Population analysis

The result of the population analysis of the ground state shows that the Cu atom has a
charge of +0.87e. From the method section 4.4.2, this value is very close to the average
value of Cu species with formal charge Cu(II). It therefore looks indeed like each formate
gets the desired electron. The bond orders and charges are given in table 5.3.

Table 5.3: Results from the DDEC6 charge and bond order analysis. Table (a) contains the average
bond order with standard deviation for the bonds in the Cu[HCOO]2 molecule. Table (b) contains
the sum of bond orders and charges.

(a)

Bond bond order
Cu-O 0.43 ± 0.016
Cu-C 0.09 ± 0.002
C-O 1.61 ± 0.006
C-H 0.84 ± 0.001

(b)

Element Sum of bond orders Charge (e)
Cu 1.91 0.87
O 2.17 -0.48
C 4.16 0.45
H 0.91 0.08

The bond order between Cu-O is significantly smaller than the C-O, indicating that
this bond may be of more ionic character than covalent, which supports the charge transfer
from Cu to the [HCOO]2 molecules. The sum of bond orders (SBO) of carbon and hy-
drogen is ∼4 and ∼1 respectively. This is consistent with carbon sharing 4 electrons and
hydrogen 1 electron in covalent bonding to be in octet state.
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Figure 5.3: The color scheme indicates different atoms; orange for copper, red for oxygen, brown
for carbon and white for hydrogen. Energy of different isomers of Cu[HCOO]2 were computed to
find the structure yielding the lowest energy, i.e. the ground state. The energy difference between
the ground state and the other isomers are from A to E: 15.8, 18.7, 36.0, 38.0 and 41.8 kcal/mol.

Copper formate

To get a better idea on how strong the bond between the Cu and formate is, the bond dis-
sociation energy needs to be computed. However, this calculation requires the energy of
the oligomer Cu[HCOO]. This structure and spin state is also unknown. The two con-
figurations shown in Figure 5.4 have been tested with 1, 3 and 5 spin multiplicities. The
configuration (B) in a singlet state was the most favorable with 10.32 kcal/mol lower in
energy than the next lowest structure. This shows yet again that it is preferable that both
oxygen is coordinated to the Cu. The DDEC6 charges give Cu a charge of +0.46e, which
is in the upper region of the Cu(I) states (see 4.1).

Bond dissociation energy

The bond dissociation energy can than be computed based on the Cu[HCOO]2, Cu[HCOO]
and [HCOO] calculations summarized in table 5.4. These values are results from geometry
optimization and vibrational analysis.

The resulting bond dissociation energies calculated from equation (4.10) and (4.12) is
given in table 5.5. The thermal vibrations lead to lower bond dissociation energies, but the
values are still high and this indicates that the bond is quite strong.
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Figure 5.4: The two different configurations of the Cu[HCOO] molecule tested. Configuration (B)
was found to be the ground state with 10 kcal/mol lower in energy than configuration (A).

Table 5.4: The results from geometry optimization gives the total energy Etot, while the zero-point
energy (ZPE) and the enthalpy correction Hcorr(298K) at 298 K are from the vibrational analysis.

Molecule Etot [kcal/mol] ZPE [kcal/mol] Hcorr(298K) [kcal/mol]
[HCOO] -24012.97 12.30 14.51
Cu[HCOO] -54205.73 14.09 16.95
Cu[HCOO]2 -78298.85 31.38 35.42

Table 5.5: The bond dissociation energies of the formate bond are calculated with different schemes.
The uncorrected bond dissociation energy is denoted D, while D0 denotes the bond dissociation
energy at 0 kelvin and DH◦

298 the bond dissociation enthalpy at 298K.

Bond dissociation energies
D [kcal/mol] D0 [kcal/mol] DH◦298 [kcal/mol]

81.16 76.17 77.2

5.2.3 Copper Pyridine Formate

A four-step decomposition of the crystal Cu(pyr)2[HCOO]2 upon heating was previously
found in another study and presented here in Figure 2.2 [3]. From the first to the sec-
ond step one of the coordinating pyridine evaporates and the resulting structure forms
a Cu2(pyr)2- [HCOO]2 dimer. This intermediate Cu(II) complex shows great structural
resemblance to the third step of the reduction pathway, namely the Cu(I) intermediate.
The study concluded that the high structural resemblance between the Cu(II) complex and
Cu(I) complex, and that the Cu(I) intermediate is relative stable, results in a low reduction
temperature.

Furthermore, Marchal et al. deduced the structure of the intermediate Cu(II) and
Cu(I) complex from Extended X-Ray Absorption Fine Structure (EXAFS) measurements
[3]. Since the intermediate crystal structures Cu(II) and Cu(I) consist of discrete units
of Cu2(pry)2[HCOO]2, these complexes were used as a starting point for the geometry
optimization. This was done in order to get more insights about these molecules in the
gas phase. To simulate the gas phase, single molecule calculations were performed in a
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a = 20 Å box. For the Cu(II) complex the spin multiplicity of the molecule is unknown,
therefore simulations with spin multiplicities 1, 3 and 5 were performed. It was found that
the singlet state was more favorable than the triplet and quintet state with 1.3 kcal/mol and
77.6 kcal/mol respectively. As previously discussed one can not determine if the singlet
or triplet state is the ground state based on such small energy differences. Moreover, the
geometry of these two are practically the same as can be seen from some selected bonds
in table 5.6 (a).

Table 5.6: Selected average bond length and bond angles for the Cu2(py)2[HCOO]2 molecule is
found in part (a) of the table. The charges in part (b) are from DDEC6 charge analysis, and the spin
moments are from Mulliken population analysis.

Singlet Triplet

Bond length (Å)
Cu-N 2.19 2.20
Cu-O 2.03 2.03

Bond angle (◦)
N-Cu-O 94.95 95.47
Cu-N-C 120.86 120. 89

(a)

Element Charge Spin moment
Singlet state

Cu 0.84 ± 0.66
O -0.52 < ± 0.09

Triplet state
Cu 0.84 0.66
O -0.52 < 0.09

Part (b) of the table shows results from DDEC6 and Mulliken population analysis. The
charges are from DDEC6 analysis, while the spin moment, i.e. difference between α-spin
and β-spin, is obtained with Mulliken analysis. It can be observed that the charges are
the same with Cu in the correct oxidation state Cu(II). Since Cu formally is in the Cu(II)
state, it is expected to be one electron short in the d-shell, i.e. spin moment around 1. The
calculated spin moments supports this idea since in both cases it was optimal to have the
same absolute spin moment of 0.66. For a singlet state the sum of individual atom spin
moments are zero, hence the two Cu’s have opposite sign, whereas the triplet state has
parallel spins. The rest of the elements have small fractional spins with oxygen having the
highest spin moment of the non-Cu atoms. As mentioned, with the current setup it is not
possible to find out if the ground state prefers parallel or anti-parallel spins. However, as
both configurations have the same geometry, charges and almost equality in energy, it is
assumed that the strength of the bond is of equal strength. therefore probing the strength
of the formate bond will be performed for the singlet state.

Probing the Formate Bond

As a first inspection of the strength of the formate bond, one can look at the energy needed
to stretch the formate molecule, given in Figure 5.5.

Only single-point energy evaluations were performed at each step of the stretch, with
the converged wavefunction from the previous step as a starting guess for the SCF proce-
dure. This ensures that the spin-states carry over to the next step, or at least is probed in the
SCF procedure. Since the new geometry with the stretched formate is no longer a ground
state, the SCF method might have converged to another minimum. It is also benefit that it
saves computational resources.
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Figure 5.5: The energy E1 required to stretch the first formate is shown in the first plot, and in the
second plot the second formate is stretched. The color scheme of the atoms are as follows: orange
for copper, red for oxygen, white for hydrogen, brown for carbon and blue for nitrogen.

The energy required to stretch the first formate, E1, should be close to the energy re-
quired to break the bond, as mentioned in section 4.6. Because of the long range Coulomb
interaction, the negative formate will always interact with the Cu-molecule. From the Fig-
ure it is observed that at 4 Å this becomes quite negligible. The sum of energies E1 and
E2 is Estretch = 94.4 kcal/mol. In this case the formates where pulled perpendicular to the
pyridine plane. Geometry optimization simulation was performed with the formates pulled
parallel and 5.14 Å from the Cu centers. The geometry relaxed back to the configuration
with the pulled formates perpendicular to the pyridine plane and the bonded formates par-
allel to the plane. therefore the first inspection shows that it requires 47.2 kcal/mol for
each Cu atom to break the formate bonds and form the Cu(I) structure.

DDEC6 charges

The ground state of the Cu2(pyr)2[HCOO]2 molecule is depicted in Figure 5.6 together
with the resulting DDEC6 charges. When two of the formates are 5.14 Å from the Cu
centers the new charges are found and shown in part (b) of the Figure. The Cu in the
ground state has a charge corresponding to the Cu(II) oxidation number. In part (b) of
Figure 5.6 however, it is observed that Cu has a DDEC6 charge of 0.44e. When comparing
with table 4.1, one observes that the charge is in the upper range of the interval, but still
within the standard deviation of the Cu(I) states.

Under thermal curing, the formate decomposes to gaseous products, whereupon an
electron transfers to the Cu, i.e. a reduction of Cu(II) −→ Cu(I) [3]. It is observed from
Figure 5.6 that the charge transfer may not have undergone yet, as the molecule [HCOO]
is still negatively charged. The energies E1 and E2 is a measure on how strong the formate
bond is, albeit it does not capture the whole picture. It is therefore thought that the energy
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Figure 5.6: The calculated DDEC6 charges for pyridine, formate and the Cu atoms are displayed.
Part (A) of the figure is the ground state of the Cu2(pyr)2[HCOO]2 dimer and (B) is the relaxed
geometry when the formates have been stretched 5.14 Å.

should be seen together with the bond dissociation energy. This energy is calculated from
the energy difference between the ground state, Cu2(pyr)2[HCOO]2, and the products
[HCOO] and Cu2(pyr)2[HCOO]. That is, the formate neutral radical is used instead of the
formate anion.

Intermediate Cu(I)

As mentioned, the intermediate Cu(I) structure is known and is shown together with the
DDEC6 charges in Figure 5.7. Once again the spin state is unknown, but the electron
configuration for Cu(I) atom is [Ar]3d10, so it is expected that it is a closed shell molecule.
The energy difference between the singlet and a triplet state of this molecule is 148.9
kcal/mol in favor of the singlet. It is therefore safe to conclude that it is preferable with
zero spin moments, i.e. singlet state.

Comparing the charges of the Cu centers with table 4.1, it is observed that this time the
charges are in the lower region of the Cu(I) interval. Although, keep in mind that there is
an electron transfer under thermal decomposition of the formate, thus it is expected to be
lower than when the formate is only stretched.

The Cu(II) complex has a coordination number of 6 in a distorted octahedral geometry,
which is typically found for d9 Cu(II) systems [13]. Cu(I) has a formal d10 metal center,
which is generally found in a tetrahedral geometry. However, from Figure 5.7, one can see
that it adopts a distorted square planar geometry. This is not a common geometry, but there
are incidence when a formal d10 or a Cu(I) complex is found as a square planar or distorted
square planar geometry [71, 72]. Furthermore, the bond order of some selected atoms are
presented in table 5.7. There is an increase in covalent character for the coordinated atoms
when going from a Cu(II) to Cu(I) complex, and the SBO for Cu in the two cases are
2.25 and 2.16 respectively. This indicates that the remaining coordinated molecules got a
stronger bond in the Cu(I) complex.
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Figure 5.7: The Cu(I) ground state structure with computed DDEC6 charges.

Table 5.7: Selected bond orders for the Cu2(py)2[HCOO]2 molecule and the intermediate Cu(I)
structure Cu2(py)2[HCOO].

Bond Cu(I) complex Cu(II) complex
Cu-O 0.61 0.41
Cu-N 0.47 0.32
Cu-Cu 0.28 0.11

Bond dissociation energy

The bond dissociation energy of the two formates from the Cu(II) complex can than be
computed based on the previous data on [HCOO] in table 5.4 and the energies of the Cu-
Pyridine complexes. The energies of the Cu-Pyridine complexes can be found in table 5.8.

Table 5.8: The results from geometry optimization gives the total energy Etot, while the zero-point
energy (ZPE) and the enthalpy correction Hcorr(298K) at 298 K are from the vibrational analysis.

Molecule Etot [kcal/mol] ZPE [kcal/mol] Hcorr(298K) [kcal/mol]
Cu2(pyr)2[HCOO] -208545.32 179.22 192.83
Cu2(pyr)2[HCOO]2 -160407.34 145.11 156.45

The resulting bond dissociating energies are given in table 5.9. The non-vibrating
value, D, is almost 20 kcal/mol higher than what was found by the stretching the formate.
In general these values should converge to the same value when the formate is stretched
sufficiently far, but given that the stretch is performed with single-evaluations and the fact
that the formate retains its negative charge, it is natural that they deviate.
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Table 5.9: The bond dissociation energies of two formate bonds are calculated with different
schemes. The uncorrected bond dissociation energy is denoted D, while D0 denotes the bond disso-
ciation energy at 0 kelvin and DH◦

298 the bond dissociation enthalpy at 298K. The energy required
to stretch the bonds is given as Estretch

.
Bond dissociation energies

D [kcal/mol] D0 [kcal/mol] DH◦298 [kcal/mol] Estretch [kcal/mol]
114.05 79.94 77.68 94.4

5.2.4 Ethylenediamine

The crystal structure of Cu formate complexes coordinated by ethylenediamine (en) lig-
ands, are built up of units of Cu(en)2[HCOO]2 molecules. For the gas phase calculations
such a molecule was placed in a 20 Å box. From Figure 2.2 we know that the reduction
temperature is higher compared to the Cu pyridine complex. Marchal et al. proved that
a unstable intermediate Cu(I) does exists, however the structure is based on indirect mea-
surements and literature [3]. Moreover, the increase in reduction temperature is believed
to be due to an energetically unfavorable intermediate on the reduction pathway that needs
to be surpassed.

The Cu(en)2[HCOO]2 molecule was relaxed with spin multiplicity 2 and 4. The low
spin state yielded 80 kcal/mol lower energy and is depicted in Figure 5.8. The result of the

Figure 5.8: The Cu(en)2[HCOO]2 molecule as depicted from two different angles in (A) and (B)
respectively.

DDEC6 population analysis can be found in table 5.10. The oxygen not coordinated to the
Cu has a charge of -0.58 and a small bond order to one of the hydrogen with a charge of
0.29. This indicates that a hydrogen bond is formed [60]. It has previously been observed
a correlation between the ability to form hydrogen bonds between the amine and formate
ligands and the reduction temperature [8]. Moreover, it was argued that the reduction
temperature is effected by steric hindrance. All the hydrogen bonded to the nitrogen have
DDEC6 charges of 0.29, and hence have the ability to form hydrogen bonds. No further
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Table 5.10: Results from the DDEC6 charge and bond order analysis for the Cu(en)2[HCOO]2
molecule. Table (a) contains the average bond order for selected atoms. The oxygen which is not
coordinated to the Cu is denoted by an asterisk. Table (b) contains the DDEC6 charges.

(a)

Bond bond order
Cu-O 0.22
Cu-N 0.44
O∗-H∗ 0.15

(b)

Atom/Molecule Charge
Cu 0.80

Formate -0.74
Ethylenediamine 0.33

investigation on this topic has been made herein.
Meanwhile, the bond order to the coordinated oxygen is weak (0.22), but the formate

is more negatively charged than in the Cu pyridine complexes, thus displaying a more
ionic character. How this effect the strength of the bond will be probed by stretching the
formate.

Stretch of the formate

The energy required to stretch the formate is plotted in Figure 5.9. One can observe that
when the formate is stretched 6.8 Å from its equilibrium position, it requires Estretch =
55.56 kcal/mol. The DDEC6 charge analysis was done on a relaxed geometry where the
formate was located 8.5 Å away from the Cu center. The aim behind this calculation was to
see if there was any indication of charge transfer. The Cu center had a calculated charge of
0.50, which is on the boundary between the Cu(II)/Cu(I) states (see table 4.1). However,
the formate is still largely negatively charged (-0.54), and therefore just the stretch of
formate cannot be seen as a charge transfer mechanism, i.e. in accordance with previous
section 5.2.3.

Figure 5.9: The energy required to stretch one of the formates in the Cu(en)2[HCOO]2 molecule is
plotted against the distance from the equilibrium bond position.
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The result of the stretching in the Cu2(pyr)2[HCOO]2 case, was that∼ 94.4 kcal/mol is
required to remove two formates. Comparing 2Estretch = 111.2 kcal/mol with this value,
it is observed that the formate bond for the Cu2(en)2[HCOO]2 molecule is weaker. This
could be a part to why the reduction temperature for the Cu(en) complex is lower than the
Cu(pyr) complex. However, the data set is too small to conclude, and other Cu formate
based MOD inks should be tested first. Nonetheless, the present finding is worth to keep
in mind.

Intermediate

The exact structure of the Cu(I) intermediate has not been proven. Figure 5.10 shows
different relaxed configurations. A relaxed geometry with both the ethylenediamine as a
bidentate ligand was not found. In a recent study one found a correlation between ligand

Figure 5.10: Different configurations of the Cu(I) ethylenediamine complex have been relaxed. The
relative energy between the configurations are marked as Erel.

denticity and protection against oxidation in the Cu MOD inks [73]. It was demonstrated
that monodentate ligand class complexes had a more pronounced Cu2O formation than the
bidentate class complexes. The Cu2O formation can impede the conductivity, therefore it
is of importance whether the Cu(I) and Cu(II) complexes form bidentate structures. As
can be seen from Figure 5.10 there are small energy differences between the structure,
and one can observe that the difference in geometry lies in the formation of hydrogen
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bonds in part a, b and c. They also exhibit a four coordinated complex which looks like
a distorted tetrahedral geometry. From the energy differences it is not completely safe to
conclude which of the structures (a) and (b) are the most optimal. One can also rule out the
monodentate structure (d). However, the DDEC6 charges for structure (a) yield a charge
of 0.20 which is outside the interval of the Cu(I) complexes in table 4.1. This indicates
that we have not found the ground state intermediate structure and it should be investigated
further.

5.3 Crystal Structures
The experimental crystal structures was used as a starting point for the anhydrate Cu[HCOO]2,
Cu(en)2[HCOO]2 and Cu(pyr)2[HCOO]2 calculations. The experimental unit cell was
taken from the the Cambridge Crystallographic Data Centre [74]. As mentioned in section
4.1.1, pbc are applied for all crystal calculations.

5.3.1 Copper Formate
Many properties that can be calculated from DFT on crystalline materials require a relaxed
geometry and lattice parameters [40]. The reason is that DFT calculations are not exact
and does not necessary capture exactly the forces at play. Another equilibrium is therefore
found, albeit the geometry should be close to the experimental. Figure 5.11 shows the
crystal structure, with its orthorhombic unit cell replicated in the the lattice directions a2

and a3 . Each Cu is 5 coordinated in a distorted tetragonal-pyramidal geometry. The
oxygen in the formate group are covalent bonded to the Cu atoms, making a bridging
network between the Cu atoms. Further discussion on the crystal structure can be found in
[75].

Figure 5.11: The crystal structure of Cu[HCCO]2. Left sides shows the unit cell repeated in a2 and
a3 direction, while to the right the a2-a3 plane is depicted with the sole unit cell.

The optimization of the geometry and lattice cell vectors where done with different
plane wave cutoffs to check if the geometry is well behaved with respect to the cutoff. The
relaxed structure was compared with selected experimental bond lengths, volume, bond
angle and lattice vectors. The experimental values can be found in table 5.11 together
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with the computed values. The bond lengths and the bond angle listed in the table were
measured between the same atoms and the superscript defines between which atoms in
accordance to Figure 5.12. Since the lattice parameter in the a3 direction is just 6.2 Å,
a test was done to check if sampling at the gamma point is sufficient. Simulations done
with more k-points or equivalently increasing the real space lattice, hence denser k-space,
would give more accurate results if this was a problem. Repeating the unit cell results in
doubling of number of atoms, so to decrease the computational cost a short range (SR)
basis set was used, i.e. basis set with fewer diffuse primitive Gaussian functions. From
table 5.11 one can observe that this approximation for the single unit cell case, did not
perform any worse than its counterpart. In the case of multiple unit cell in the a3 direction,
the results show that it does not consistently perform better than single cell calculations
and thus the gamma point is adequate.

Table 5.11: The experimental data is taken from CCDC [74, 75]. The lattice vectors a1, a2, a3 and
the bond lengths i, j and k are given in Å. For definition of the superscripts i, j, k and n see Figure
5.12. Volume is given in Å

3
and the bond angle n in degrees. The geometry and cell optimizations

were performed with different plane wave cutoff energies [Ry] and different approximations. The
results of the geometry and cell optimizations are given as relative error, defined in equation (4.5).

Cutoff Volume a1 a2 a3 CuOi CuOj CuOk OCuOn

Experimental data
790.4 14.195 8.955 6.218 2.409 1.974 1.9277 87.96

DZVP basis
510 0.111 0.025 0.024 0.058 0.013 0.090 0.025 0.022
610 0.133 0.030 0.030 0.067 0.017 0.115 0.018 0.020
690 0.146 0.036 0.030 0.074 0.013 0.129 0.025 0.023

with D3 correction
510 0.052 0.017 0.006 0.028 0.016 0.027 0.021 0.009
610 0.053 0.024 0.000 0.028 0.017 0.044 0.020 0.002
690 0.045 0.012 0.011 0.022 0.018 0.045 0.020 0.001

DZVP SR basis with D3 correction
510 0.046 0.017 0.006 0.023 0.023 0.015 0.020 0.011

and with repeated cell in a3 direction
510 0.027 0.013 0.017 0.030 -0.004 0.016 0.029 -0.014

Mixed TZVP SR and TZVP basis with D3 correction
510 0.053 0.017 0.005 0.029 0.016 0.024 0.020 0.008

DZVP SR and with PBE0 functional
510 0.037 0.006 0.002 0.028 0.016 0.007 0.019 0.013

More importantly, one can observe that the calculations done without the Grimme
D3 correction performs inadequately. For instance the volume and the CuOj bond has a
percent error of over 10%. The inclusion of D3 correction however improves the results
so that max percent error is no larger than 5.4%. Moreover, the results does not appear to
deviate significantly with the increase in plane wave cutoff, i.e. the cutoff is well behaved.
Increasing the basis set size to TZVP does not show to give any increased accuracy. Note
that the basis set is a mixture of TZVP SR for Cu atoms and TZVP for carbon, oxygen
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Figure 5.12: The different bond lengths i, j, k and bond angle n computed in this work.

and hydrogen atoms. This was done since only SR version of the basis set is available.
Increasing the complexity of the XC functional, namely the hybrid functional PBE0 with
the ADMM method, showed signs of giving more accurate lattice parameters. More tests
should be made to say something definite, but it is clear that the the PBE0 functional
accounts for the dispersion forces better than the PBE functional, and there is no need for
D3 correction. Next step to possibly to increase the accuracy would be to use a TZVP
basis set.

To conclude, the approximation done with plane wave cutoff of 510 Ry, DZVP basis
set, single unit cell with periodic boundary conditions and D3 correction gives satisfactory
results at a low computational cost and have been applied as default for this system. In
addition the relaxed geometry and cell parameters are used as default geometry.

Vibrational analysis

The calculated IR absorption spectra are shown in Figure 5.13.

Table 5.12: Calculated vibrational frequencies (cm−1) compared with reported literature values.

Calc. Ref. [76] Ref. [77] Vibrational mode description
3045 2910 2758, 1916, 2998 v1(C-H stretch)
1540 1568 1547, 1596, 1608 v2(C-O antisym. stretch)
1373 1368 1381, 1401 v3(C-H in plane bend)
1373 1380 1355, 1366 v3(C-O sym. stretch)
1007 - 1046, 1065 v5(out of plane C-H bend
856 833 809, 826 v4(O-C-O sym. bend)
430 420 302-433 v5(Cu-O formate stretch)
225 - 153-253 v6(formate lattice)
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Figure 5.13: Calculated IR absorption spectra with identified vibrational modes v1, v2...

The vibrational modes have been identified by dynamical visualization of the different
vibrational frequencies. In table 5.12 the calculated vibrational modes are compared with
references [76, 77]. The estimated values agrees within 5 % error with the first reference.
For the second reference several values were reported for each vibrational mode, hence
it should be compared rather with the calculated spectra since estimated values in the
table 5.12 are peak-values. Overall there seems to be a good agreement with experimental
values.

Stretch of the Cu-O formate

Each of the Cu atoms was coordinated by 4 oxygen in a plane at ∼1.95 Å and by a fifth
oxygen atom at Cu-Oj = 2.41 Å along a line which makes an angle of 71 degrees with
this plane. The strength of this prolonged bond is interesting to measure and to see if there
is any charge transfer occurring when going from a 5 coordinated structure to a 4 coordi-
nated. The fifth oxygen was translated radially accordingly to Figure 5.14, whereupon the
geometry was relaxed. To prohibit the oxygen to relax back to its equilibrium position it
was fixed in space.

The result of the stretch is plotted in Figure 5.14. In this method only the oxygen atom
is translated, but one can observe from Figure 5.14 (b) that it equivalates to the stretch
of the formate. Moreover, the relaxed geometry depicted here is the case when the bond
length Cu-Oj=3.37 Å. Already here one would suspect that the bond is broken, and a
question arise if there is any different charge distribution.

DDEC6 Population analysis

The results of the DDEC6 bond and charge analysis done on the unperturbed crystal struc-
ture and on the stretched Cu-Oj formate bond is presented in table 5.13. The average
Cu-Oj bond order for the 8 Cu atoms in the unit cell decreases barely. However, for two
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Figure 5.14: The oxygen atom marked in blue shade in part (a) is moved consecutively at longer
and longer bond lengths Cu-Oj . The geometry is then relaxed and the resulting relaxation of part (a)
is depicted in part (b). The bond length Cu-Oj in part (b) is 3.37Å

Figure 5.15: The energy difference between the ground state geometry and the geometry resulting
from the oxygen stretch is plotted against the resulting Cu-Oj bond length.

of the Cu atoms, a bond order of 0.07 and 0.08 was observed. That is, in terms of cova-
lent bonding the bond is on the verge of being broken, and thus one may say the two of
the eight Cu complexes are 4 coordinated. But taking the charges into consideration, it is
not observed any noticeable change in charges, meaning the Cu complexes are still in the
Cu(II) state. So one should keep in mind that the bond is still very much in place, just with
a stronger ionic character.

Decomposition Mechanism

The Cu(I) intermediate of the Cu[HCOO]2 crystal structure has been proven to exist [6].
The structure of the Cu(I) intermediate in Figure 1.1 has not yet been exhaustively veri-
fied. With the assumption it is correct, then the reduction from Cu(II) −→ Cu(I) involves a
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Table 5.13: Results from the DDEC6 charge and bond order analysis performed on the ground
state crystal structure and on the geometry with stretched Cu-Oj formate bond at 3.76Å. Table
(a) contains the average bond order. Superscript with i denotes oxygen atoms constituting a square
plane, while superscript j denotes axial bond. Table (b) contains the sum of bond orders and charges.

(a)

Bond Bond order
Ground state

Cu-Oi 0.42
Cu-Oj 0.14
C-O 1.58
C-H 0.79
Stretched geometry
Cu-Oi 0.42
Cu-Oj 0.11
C-O 1.58
C-H 0.79

(b)

Element Sum of bond orders Charge
Ground state

Cu 2.00 1.03
O 2.43 -0.54
C 4.12 0.51
H 1.00 0.05

Stretched geometry
Cu 2.00 1.02
O 2.43 -0.54
C 4.13 0.51
H 1.00 0.05

big structural rearrangement, where the formate bridging bonds are broken and Cu2 dimer
complexes are formed. Moreover, Cu[HCOO]2 has higher reduction temperature than the
other Cu MOD inks. As previously mentioned Marcal et al. connected the reduction tem-
perature to structural differences between the Cu(II) and Cu(I) complexes and the stability
of the intermediate [3]. With that in mind, it is understandable that the large structural
rearrangement necessary to form the Cu(I) intermediate involves a high reduction temper-
ature.

In the Cu(II) crystal there is 2.5 formates per Cu center, while in the deduced Cu(I)
structure there is 1 formate per Cu center. So in order for the structural rearrangement to be
achievable under thermal curing, some of the formates have to evaporate away. The results
of the bond stretching calculations in gas phase and for the crystal have shown that simply
stretching the bond until breakage does not yield the required charge transfer, even though
the coordination number changes. The formate really likes its excess electron. therefore,
the evaporation of formate involves a thermal decomposition to gaseous products, mainly
CO2 [3]. A suggestion for the thermal decomposition of the formate anions in the crystal
structure is the protonation of the formates, i.e. formic acid. Formic acid has been shown
to thermally decompose in the gas phase to mainly CO2 and H2 at elevated temperatures
[78]. In addition it can be speculated that the protonation of the formate reduces the
bonding strength to the Cu centers, and thus will more readily be released and decompose.
To test this, one of the formate’s hydrogen was moved a = 1.89 Å to protonate one of the
formates. Part (a) of Figure 5.16 shows this hydrogen with a pink shade.

It was then performed a geometry optimization and the relaxed structure is shown in
part (b) of the Figure. The energy difference between the relaxed structure and the ground
state crystal structure is justEGS−Eprot = 34.97 kcal/mol. The DDEC6 charge and bond
order analysis is given in table 5.14.

The DDEC6 charges indicate that a charge transfer has occurred to the Cu(43), from
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Figure 5.16: Part (a), the pink hydrogen is moved to the depicted position. The structure is then
relaxed and yields the structure in part (b). This simulates the result of a proton tunneling effect.
Some atoms are given numbers to easier to keep track of different atoms.

Table 5.14: The DDEC6 charges on selected Cu and the average value for the Cu in the unit cell
is shown in part (a). In part (b) all bond orders above 0.07 are shown for selected Cu atoms and
the average for the Cu in the unit cell. Superscript a denotes the bond Cu(43)-O(47), b the bond
Cu(52)-O(49) and c the bond Cu(52)-O(48).

(a)

Element Charge
Cu(43) 0.50
Cu(52) 0.65
Cu(64) 0.88
Cuavg 0.89

(b)

Cu Cu-O
Cu(43) 0.07 0.14a, 0.14, 0.65, 0.65
Cu(52) 0.07b, 0.25, 0.38, 0.48, 0.54
Cu(64) 0.17, 0.34c, 0.40, 0.44, 0.44
Cuavg 0.36

the formation of CO2 and protonation of one formate. The bond orders also reveals that the
oxygen are not that well bonded to the Cu atoms anymore, in terms of covalent bonding,
especially for Cu(43) and Cu(52). The Cu(64) is now coordinated to the formic acid,
HCOOH, which should be a weaker bond. The inertness of CO2 molecule can be seen
from the bond orders as well. The bonds Cu(43)-O(47) and Cu(52)-Cu(47) has only a
bond order of 0.14 and 0.07 respectively.

This simulation can be seen as the result of a proton tunneling effect. Furthermore, it
shows that one such event makes several of the coordination bonds weaker. The inertness
of CO2 allows the latter to evaporate freely away, while the formate acid can further de-
compose to CO2 and H2 gas. Yet to be determined is the energy barrier to see if this is in
fact a reliably mechanism for the decomposition of Cu(II) complex at elevated tempera-
tures.

Band Gap

The projected density of states (PDOS) was calculated to determine the band gap of the
Cu[HCOO]2 crystal structure. The band gap is defined as the energy difference between
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
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(LUMO). The density of states projected per atom was printed out from CP2K and con-
voluted with a Gaussian function to yield Figure 5.17. Since k-sampling was only done
at the gamma point, the calculation was done with multiple unit cells, i.e. a replica in
each a1, a2 and a3 direction. This was done in order to achieve a meaningful sampling
of the PDOS. The HOMO level is defined as 0 eV. The band gap can then be easily read
off as 2.1 eV. Different XC functionals have been tested extensively for their accuracy on
the prediction of band gap size [79]. On average the PBE functional underestimated band
gaps of about 40 %. The systematic underestimation occurring with PBE can be improved
with the inclusion of HF exchange, that is hybrid functionals [80, 79].

Figure 5.17: The projected density of states (DOS) for the atoms in the Cu[HCOO]2 crystal struc-
ture. The HOMO level is defined as 0 eV.

The optimized crystal structure with the hybrid PBE0 functional was used to calculate
a new PDOS plot, seen in Figure 5.18. Here it is noticeable that the k-sampling is too
coarse, due to only a single unit cell was used. Increasing the computational cell size with
more unit cells, would however, be very demanding with the PBE0 functional. The band
gap with the PBE0 functional is 5.8 eV. No earlier determination of the band gap has been
found in the literature.

5.3.2 Copper Ethylenediamine Formate
The crystal structure of Cu(en)2[HCOO]2 is shown in Figure 5.19. The unit cell has a
monoclinic symmetry and the crystal structure contains discrete units of Cu(en)2[HCOO]2
molecules, that is no bridging network as for the Cu[HCOO]2 crystal structure.

The result of the geometry and cell optimization can be found in table 5.15. It was
mentioned earlier that the gamma point sampling may not be sufficient for small unit cells.
The lattice vector for this crystal structure in a2 direction is quite small, and from the table
5.15 one can see that the calculation fails quite miserably, with errors up to 20 % compared
to experimental values. Replicating the unit cell once in the a2 direction (denoted MU(1
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Figure 5.18: The projected density of states (DOS) for the atoms in the Cu[HCOO]2 crystal structure
calculated with the PBE0 functional. The HOMO level is defined as 0 eV.

Figure 5.19: The crystal structure of Cu(en)2[HCCO]2. Part (A) shows unit cell repeated in a1 and
a3 direction. The sole unit cell (B) is depicted in the a1-a3 plane.

2 1) in Figure), solves the problem partly. Without the grimme D3 correction the errors
are still not yet acceptable, as the CuO bond length has errors of about 10 %. With the
D3 correction the results have all less then 0.05 relative errors. Furthermore, one can
observe that increasing the basis set size and including more unit cells does not produce
any more accurate results. Increasing the cutoff may have been interesting, but since these
calculations require multiple unit cells resulting in already quite high computational cost,
and since the errors are within acceptable range, there is no need.
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Table 5.15: The experimental data is taken from CCDC [3, 74]. For the experimental data the lattice
vectors a1, a2, a3 and the bond lengths Cu-N, Cu-O and Cu-C are given in Å. Volume is given in Å

3

and the bond angle N-Cu-N and the angle between lattice vectors a1 and a3, i.e. β, in degrees. The
geometry and cell optimizations were performed with different different approximations, denoted by
(# of multiple unit (MU) cells in direction a1 a2 a3, D3 corrected yes/no, bais set type). The results
of the geometry and cell optimizations are given as relative error, defined in equation (4.5).

Volume a1 a2 a3 β CuN CuO CuC NCuN
Experimental data

1100.8 15.318 5.305 14.022 104.968 2.026 2.473 2.838 85.082
MU(1 1 1), D3 Yes, DZVP

0.011 0.145 -0.200 0.173 0.093 0.030 0.504 0.021 -0.008
MU(1 2 1), D3 No, SR DZVP

0.158 0.097 0.065 0.004 0.023 0.019 0.104 0.010 -0.003
MU(1 2 1), D3 Yes, SR DZVP

0.000 0.011 -0.001 -0.002 0.015 0.019 0.022 0.005 -0.003
MU(1 2 1), D3 Yes, SR TZVP

0.013 0.010 0.005 0.005 0.013 0.014 0.029 0.004 -0.002
MU(2 2 2), D3 Yes, SR DZVP

0.000 0.011 -0.001 -0.042 0.014 0.016 0.026 0.005 -0.002

Stretch of the Cu-O formate bond

The oxygen atom was perturbed and fixed in space in the same manner as for the Cu-
[HCOO]2 crystal. The result of the the calculation is shown in Figure 5.20. The energy
required to stretch the formate for this crystal is noticeable lower, around half the energy.
Moreover, the reduction of the Cu(II) state to Cu(I) involves only one formate evaporation
per Cu center. And from this perspective one can understand why the reduction tempera-
ture is lower than for the Cu[HCOO]2 crystal. The DDEC6 charge on the Cu subjected to
the stretched formate bond was calculated to be 0.74 and the average Cu charge value was
0.75. This is consistent with Cu to be in the Cu(II) state.

5.3.3 Copper Pyridine Formate

The ground state crystal structure of Cu(pyr)2[HCOO]2 depicted in Figure 5.21 shows that
the Cu atoms are connected in a bridge network of formates. The Cu center is coordinated
by three formates and two pyridine ligands forming a tetragonal pyramid structure.

Table 5.16 shows the result of the geometry and cell optimization. The simulations
were performed with different cutoff energies, which did not show any clear difference.
The simulations that included the Grimme’s D3 dispersion correction yielded in fact worse
results than without. It seems like it overcompensates and the structure becomes com-
pressed in the a3 direction. Without the correction the relative errors are still somewhat
high but still better than with the dispersion correction.
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Figure 5.20: The energy required to stretch the Cu-O formate to certain distances.

Figure 5.21: The crystal structure of Cu(pyr)2[HCCO]2 is depicted in two different perspectives.

Vibrational analysis

For the vibrational analysis a plane wave cutoff of 480 Ry and without dispersion correc-
tion have been used, as this setup was the best with respect to accuracy and computational
cost. The IR vibrational spectra calculated is presented in Figure 5.22. Since the crystal
contains different kind of bonds and elements, there are frequency intervals where differ-
ent vibrational modes occur. For instance the peak marked as c in the plot is associated
with stretch of the formate’s O and pyridine’s C.
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Table 5.16: The experimental data is taken from CCDC [74, 3]. For the experimental data the lattice
vectors a1, a2, a3 and the bond lengths Cu-N, Cu-O and Cu-C are given in Å, volume (Å

3
) and

the bond angle O-Cu-N in degrees. The Cu-O bond is with the oxygen constituting the coordinated
square plane. The geometry and cell optimizations were performed with different different energy
plane wave cutoffs (Ry) and test with and without the D3 dispersion correction. The results of the
geometry and cell optimizations are given as relative error, defined in equation (4.5).

Cutoff Volume a1 a2 a3 CN CuN CuO OCuN
Experimental data

1408.36 9.627 14.067 10.400 1.346 2.021 1.951 91.521
Without D3 correction

480 0.127 0.055 0.067 0.001 0.003 0.008 0.030 0.002
640 0.123 0.042 0.064 0.013 0.003 0.009 0.031 0.002

With D3 correction
480 -0.111 0.049 0.073 -0.211 0.003 0.003 0.029 0.001
540 -0.110 0.050 0.074 -0.210 0.003 -0.001 0.028 0.010

Figure 5.22: Calculated IR spectra of the Cu(pyr)2[HCOO]2 crystal structure. The identified vibra-
tional modes can be found in the legend.

5.4 Molecular Dynamics

MD simulations were done on the crystal structure Cu[HCOO]2, with constant temperature
of 300, 400 and 500 Kelvin. Before the production run, the geometry was equilibrated at
each of these temperature. This is to ensure that it does not start in an unlikely state. To do
this a temperature tolerance of 50 K was used for 2000 fs. This allows the temperature to
vary with 50 K before a velocity rescaling occur. In this system hydrogen has the highest
vibrational frequencies of around, so to sample the motion with good enough accuracy
time steps of 0.5 fs was used. The simulations were run for 8.5 ps and the resulting radial
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distribution function g(r) from the MD run is presented in Figure5.23. It shows how the
density of oxygen varies with respect to the Cu atom. The first peak corresponds to the
oxygen coordinated in the distorted square, while the next peak is the coordinated axial
oxygen. The first peak for the 300K run, is located at 1.97 Å. This is in accordance to
the value calculated from static geometry optimization, as the peak corresponds to where
the oxygen is found most likely. The second peak corresponding to the the axial oxygen
is very broad. This shows how loosely bound this formate is, as it moves quite a lot.
With increasing temperature one can observe the oxygen are distributed more unevenly,
i.e. broader peaks, as one would expect. The center of the peaks for all three temperatures
are approximately the same, thus no coordination change is observed. The sampling is
done over a very small time frame, 8.5 ps, so for a reaction to occur is not probable. In
addition this simulates a closed system, where all the Cu are interconnected through the
bridging of formates. Hence it is not possible for the formates to evaporate, and therefore
making it impossible to form the Cu(I) intermediate. Thus the MD simulations on this
system is not interesting with regards to the reduction process.

Figure 5.23: The radial distribution function of oxygen with respect to Cu, average taken over 8.75
ps. The peak corresponding to the square coordinated oxygen is denoted by striped lines. The 300K
and 500K peak coincide.
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Chapter 6
Conclusion

DFT and MD simulations have been used to investigate different types of Cu formate
complexes in the gas phase and as crystalline solid. The complexes considered as crys-
talline solids were Cu[HCOO]2, Cu(en)2[HCCO]2 and Cu(pyr)2[HCOO]2. The calcula-
tions showed that the PBE functional adjusted with the Grimme D3 dispersion correction
was crucial in order for the geometry and cell parameters to relax to the experimental data
within acceptable values. Increasing the basis set size to TZVP basis did not further im-
prove the results. In addition, the hybrid functional PBE0 was tested on the Cu[HCOO]2
crystal without the dispersion correction, and gave similar results as the D3-PBE func-
tional. For the Cu2(pyr)[HCOO]2 crystal the D3 correction overcompensated the disper-
sion interactions, and proved worse than without. One of the formates were stretched in
the crystals, Cu[HCOO]2 and Cu(en)2[HCCO]2, to see how strong the bonds were, as this
might be an important part of the thermal reduction pathway. The formate in the crys-
tal Cu(en)2[HCOO]2 was found to be weaker than for Cu[HCOO]2 which coincides with
Cu(en)2[HCOO]2 having a lower reduction temperature. Furthermore, a decomposition
mechanism for the Cu[HCOO]2 crystal was suggested. This mechanism involves the pro-
ton tunneling between two formates, which could start the reaction of further decomposing
the crystal at elevated temperatures. More investigation should be made.

The calculated IR spectra for the two crystal structures Cu[HCOO]2 and Cu(pyr)2[HCOO]2
are presented. The vibrational spectrum for Cu(pyr)2[HCOO]2 have not been previously
reported, but for the other crystals the spectra is agrees well with literature especially for
Cu[HCOO]2. In addition the band gap for the Cu[HCOO]2 crystal is reported with the
PBE and PBE0 functional, with values 2.1 eV and 5.8 eV.

The crystal Cu(II) intermediate Cu2(pyr)[HCOO]2 and the crystal Cu(en)2[HCOO]2
consists of discrete units of the respective complexes. These complexes were therefore
simulated in the gas phase to learn more about the formate bond strength, and the reduction
to the intermediate Cu2(pyr)[HCOO] and Cu(en)2[HCOO]. The calculations does not have
good enough resolution to be able to determine the structural complex, Cu(en)2[HCOO],
which has not yet been verified experimentally either. The Cu2(pyr)[HCOO] intermediate
could possibly have anti parallel spin or parallel spin on the Cu centers, implying either a
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singlet or triplet state.
The bond strength of the Cu-formate was also probed in the gas phase, as the reduction

of these complexes involve the decomposition of one formate per Cu center. It was found
that the strength of the Cu-formate bonds in the three Cu complexes tested was ordered
as Cu[HCOO]2, Cu(en)2[HCOO]2 Cu2(pyr)[HCOO]2, from strongest to weakest. This
corresponds to the relative order of their reduction temperature in the crystal phase.
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