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Manganforsterket og di�usjonstensor

MR-avbildning av normal, skadet og

regenererende synsnerve hos rotte

Sentralnervesystemet hos pattedyr regenererer ikke spontant etter nerveskade, og
i dag �nnes det ingen medisinsk behandling tilgjengelig i klinisk rutine. Dette
gjør at pasienter med skader i sentralnervesystemet, for eksempel i ryggmargen,
mest sannsynlig blir lam resten av livet.

Man har i den senere tid oppdaget at eksperimentelle behandlinger kan føre til
noe regenerasjon i sentralnervesystemet. Men det er relativt lite regenerasjon
som oppnås, så mer forskning må til før behandlingen kan føre til mer fullstendig
regenerasjon og gjenvinning av funksjon for disse pasientene. For å teste de ulike
eksperimentelle medikamentene og behandlingsformene er det vanlig å benytte
seg av dyreforsøk hvor dyrene påføres en nerveskade, mottar behandling, for så
bli avlivet. Deretter studeres sentralnervesystemet i histologiske snitt, og e�ekten
av behandlingen evalueres. MR-avbildning (MRI) tillater avbildning av levende
dyr. Muligheten for å studere skader i sentralnervesystemet �ere ganger over
tid, samt å evaluere e�ekten av diverse eksperimentelle behandlingsformer uten
å måtte avlive dyrene først, vil være en stor fordel. Hovedformålet med denne
avhandlingen er å utvikle MR-metoder som gjør dette mulig.

Paramagnetiske manganioner øker signalet i MR-bilder, og denne teknikken kalles
manganforsterket MRI (MEMRI). Dessuten tas manganionene opp av nerveceller
og transporteres langs nervebanene, noe som tillater spesi�kk avbildning av nerve-
banene i sentralnervesystemet. På grunn av nervebanenes struktur, er di�usjon
av vannmolekyler større langs enn på tvers av nervebanene. Di�usjonstensor av-
bildning (DTI) er en MR-teknikk hvor dette utnyttes til å avbilde nervebaner. I
denne avhandlingen etableres det eksperimentelle teknikker hvor MEMRI og DTI
benyttes for å studere sentralnervesystemet. Synsnerven hos rotte er valgt som
eksperimentell modell. Den begynner like bak øyet, og aksonene, som danner
synsnerven, går fra øyet og helt til bakre del av hjernen.

Hovedresultatene viser at både MEMRI og DTI tydelig viser nervebanene i nor-
male synsnerver, og begge teknikkene kan benyttes for å detektere nerveskade i
synsnerven. Videre viser resultatene at etter nerveskade og eksperimentell behan-
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dling, vises økt signal i skadeområde etter tre uker, som tyder på at regenerasjon
har funnet sted etter, og at dette kan detekteres ved hjelp av MR-avbildning.
MR-undersøkelsen ble gjentatt �ere ganger over tid for å følge utviklingen i
sentralnervesystemet hos dyrene, noe som er unikt for MR sammenlignet med
tradisjonelle histologiske metoder. Toksiske e�ekter av mangan ble evaluert, og
det bli vist at mangan ikke er toksisk ved den dosen som er nødvendig for å
oppnå tilstrekkelig kontrast i synsnerven på MR-bildene. Det ble dessuten vist
at levende og velfungerende aksoner er et kriterium for å få mangantransport i
nervene, noe som viser at mangan transporteres aktivt av aksonene.

Metodene som er utviklet i dette arbeidet gir ny kunnskap som kan benyttes i
utvikling av nye medikamenter for regenerasjon i dyremodeller, samt bli verdifulle
også i andre eksperimentelle dyremodeller. Samtidig er det et potensial for at
metodene etter hvert også kan brukes i klinisk sammenheng. DTI er allerede på
vei inn i klinikken, som et verktøy for å studere nervebaner i sentralnevesystemet
hos mennesket. Likeledes, forutsatt at man løser problemene knyttet til toksisitet,
kan man se for seg at MEMRI en gang i fremtiden kan bli et nyttig verktøy for
å studere funksjonelle og strukturelle endringer i sentralnervesystemet.

Marte Thuen

Institutt for sirkulasjon og bildediagnostikk.
Veiledere: Olav Haraldseth og Christian Brekken.
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Summary

Central nervous system (CNS) axons do not regenerate spontaneously after in-
jury, thus most patients with CNS injury face poor prognosis. Currently, there
are no treatments available in routine clinical practice. However, it has been
known since the 1980s that CNS axons can regenerate to some extent when sup-
ported with the appropriate experimental environment. Because of the extreme
complexity of the molecular mechanisms governing the human CNS, the develop-
ment of e�cient treatments leading to neuronal regeneration in humans su�ering
from CNS injury seems di�cult. Nevertheless, because of the dramatic impact
such therapies will have on human healthcare, development of such therapies is
a highly active �eld of research, and new drugs and treatments are constantly
being tested in animal models. Usually, traditional tract tracing methods that
requires sacri�cing of the animals before tissue sectioning and analysis are used.
Magnetic resonance imaging (MRI) is a non-invasive imaging modality, allowing
longitudinal imaging. Sensitive MRI techniques for the monitoring of CNS in-
jury and regeneration would constitute a major advancement that will bene�t of
a large patient population.

Manganese (Mn2+) is paramagnetic and reduces the longitudinal relaxation time
T1, increasing tissue contrast in MR images. Additionally, Mn2+ is a calcium
analogue that can be taken up by and transported along axons. This makes
Mn2+ a unique contrast agent well suited for MRI of neural paths, a technique
referred to as manganese-enhanced MRI (MEMRI).

Because of the longitudinal arrays of neuro�laments and microtubules in axons,
as well as axonal membranes and myelin sheaths, the di�usion of water molecules
along axons is greater that di�usion perpendicular to axons, and this is called
anisotropic di�usion. In di�usion tensor imaging (DTI), a di�usion tensor that
describes the water di�usion in all directions is generated, enabling non-invasive
tracing of neural paths without the use of contrast agents.

In this PhD-thesis, methods for in vivo longitudinal MEMRI and DTI of the
normal, injured and regenerating rat visual pathway were established. The rat
visual pathway was chosen as an experimental model of the mammalian CNS. We
have demonstrated that 3D MEMRI of the rat brain can be used longitudinally
and Mn2+-enhancement of the entire normal visual pathway was seen 24 h af-
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ter intravitreal injection (150 nmol MnCl2). After complete axonal injury of the
optic nerve, no Mn2+-enhancement was observed distal to the injury site, demon-
strating that CNS injury can be detected using MEMRI. The clinically available
Mn2+-based contrast agent MnDPDP resulted in su�cient Mn2+-contrast en-
hancement of the ON after 12− 24 h similar to that after MnCl2-injection. In
contrast, intravitreal Gd3+-injection, resulted in enhancement of the vitreous
only, and not in the retina or optic nerve, demonstrating the uniqueness of Mn2+

as a contrast agent. The highest Mn2+-contrast enhancement of the visual path-
way was seen after 150− 300 nmol MnCl2. Higher doses were toxic, causing
reduced Mn2+-enhancement throughout the visual pathway because of retinal
ganglion cell (RGC) death and subsequent loss of Mn2+-transport in the axons.
After MnCl2-injection directly into the optic nerve, Mn2+-enhancement was seen
distal to the injection site, but no Mn2+-enhancement was seen in the retina,
indicating that Mn2+-tra�c is mainly mediated by anterograde transport. In-
travitreal injections of 150 nmol MnCl2MnCl2 had a protective e�ect and saved
more axons in retina in rats with optic nerve injury. DTI allowed for visualized
of the normal optic nerve, and clearly detected optic nerve injury. Intravitreal
peripheral nerve grafts (PNG) were used to stimulate regeneration after axonal
injury of the optic nerve. At 21 day post lesion (dpl), an increase was observed
in contrast to noise ratio (CNR) in MEMRI and axial di�usivity (λ‖) in DTI at
the injury site compared to that measured at 1dpl in rats with optic nerve injury
and intravitreal PNG, indicating that axons have regenerated though the injury
and beyond, and that this can be detected using MEMRI and DTI.

While MEMRI measures axonal function, DTI mainly re�ects structural changes,
and thus, MEMRI and DTI are complementary methods for imaging the normal,
injured and regenerating axons in the visual pathway. The results of this thesis
demonstrate the feasibility for MEMRI and DTI as tools for in vivo, longitudinal
monitoring of CNS injury, and regeneration after therapeutic intervention.
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Symbols and abbreviations

Ca2+ calcium

α �ip angle

b di�usion weighting factor

CNR contrast to noise ratio

CNS central nervous system

d days

D di�usion tensor

D di�usion coe�cient

dpl days post lesion

FA fractional anisotropy

FLASH fast low-angle shot

Gd3+ gadolinium

h hour

λi eigenvalue

λ‖ axial di�usivity

λ⊥ radial di�usivity

LGN lateral geniculate nucleus

Mdi� Mean di�usivity

MEMRI manganese-enhanced MRI

min minutes

MnCl2 manganese chloride

MnDPDP manganese dipyridoxyl diphosphate

MRI magnetic resonance imaging
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MR magnetic resonance

ONC optic nerve crush

ON optic nerve

PNG peripheral nerve graft

PNS peripheral nervous system

RGC retinal ganglion cells

ρ proton density

ROI region of interest

SC superior colliculus

SD standard deviation

s seconds

SEM standard error of the mean

SE spin echo

S signal

S0 signal from non-enhanced tissue

SMn signal from Mn2+-enhanced tissue

SNR signal to noise ratio

TE echo time

T1 longitudinal relaxation time

T2 transversal relaxation time

TR repetition time

Tr Trace of a tensor
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Chapter 1

Introduction

1.1 Clinical background

Axons in the central nervous system (CNS) of adult mammals do not regenerate
spontaneously after injury, thus, CNS injury will often result in paralysis and
permanent loss of function. CNS damage occurs in neurodegenerative diseases
such as multiple sclerosis (MS), Alzheimer's disease and Parkinson's disease and
in traumatic injuries such as brain trauma, stroke and spinal cord injury. All of
these are conditions in which there currently are few clinical treatments available
and thus little or no hope of recovery.

That the adult mammalian CNS is incapable of spontaneous regeneration was
�rst documented by Ramon y Cajal in 1928 [94]. In contrast, axons in the CNS
grow during development, and injured axons in the peripheral nervous system
(PNS) have the ability to regenerate after injury [50, 54]. Furthermore, in non-
mammalian vertebrates, such as �sh and amphibian, regeneration after injury is
seen both in the PNS and CNS [60]. The reasons for these di�erences are not
known.

It was once believed that the adult CNS lacked any ability to regenerate after
injury, however, in 1981, David and Aguayo demonstrated regeneration in the
adult mammalian CNS after implantation of PNS fragments in the injury site [38].
This laid the route for a series of studies demonstrating CNS axonal regeneration
after a variety of therapeutic strategies, and it is now well documented that CNS
axons can regenerate when given the appropriate stimulation. In spite of this
research e�ort, the degree of regeneration is low, and functional recovery is usually
not achieved. Because of the major signi�cance the regain of function after CNS
injury will have on human health, and the promising �ndings of regeneration
so far, this is a highly active research �eld. Currently, there are no treatments
available for routine applications in clinical practice [93], but new therapeutic
strategies and drugs are constantly being tested in animal models and clinical
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Chapter 1 Introduction

trials around the world [112]. This gives great hope for current and future patients
su�ering from CNS injury and disease.

So far, most studies of regeneration in the CNS and the testing of therapeutic
interventions have been carried out in animals using traditional axon tracing
techniques [85, 86, 95, 107]. However, such post mortem techniques are not
applicable to longitudinal studies of live animals. The ability to perform in

vivo serial imaging for studying the process of regeneration in the CNS would
constitute a major advantage.

MRI o�ers the potential for non-invasive, longitudinal monitoring of animals. In
this thesis, methods for in vivo longitudinal manganese-enhanced MRI (MEMRI)
and di�usion tensor imaging (DTI) are established, with the purpose of study-
ing the normal, injured and regenerating adult rat visual pathway. The results
show that both MEMRI and DTI are promising tools that can be used in the
development and testing of new therapeutics that stimulate regeneration in the
CNS.

In addition to being tools for monitoring the e�ect of therapeutic interventions
on regeneration in animals, DTI and MEMRI have potentials for being used in
clinical diagnostics of CNS injury and response to treatment. DTI is currently
being introduced in clinical MR imaging, for example in pre-surgical planning of
patients with brain tumors. Introduction of MEMRI of the CNS into the clinic is
not equally straightforward, especially because of Mn2+-toxicity. However, given
that the limitations of MEMRI could be overcome, MEMRI might become a
sensitive method for detecting functional changes in CNS injury and regeneration,
giving complementary information to DTI.

1.2 Axonal damage and regeneration in the

central nervous system

In the PNS, injured axons will regenerate after injury. Schwann cells in the PNS
produce myelin and neurotrophic factors to support axonal regeneration. Addi-
tionally, the lesion cavity is �lled with a permissive matrix of collagen, �bronectin,
laminin and �broblasts that support axonal growth, and genes that promotes ax-
onal regeneration are activated in the injured PNS neurons [73]. In the CNS, the
situation is quite di�erent. When an axon is cut, the distal segment of the axons
is isolated from its cell body. Within few days after injury, the axon undergoes
Wallerian degradation and die [15]. The proximal part of the axon survives to
a greater degree [54], but will not regenerate spontaneously [40, 94]. Myelin-
associated inhibitory molecules, such as myelin-associated glycoprotein (MAG)
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1.2 Axonal damage and regeneration in the central nervous system

and Nogo-A are present in the CNS, preventing axonal regeneration after injury
[39, 76, 101]. Immediately after CNS injury, the formation of a glial scar starts.
In addition to being a physical barrier for regenerating axons, several growth
inhibitory molecules, such as for example chondroitin sulfate proteoglycans, are
preset in the scar, hindering axonal growth [39]. Furthermore, the absence of
growth-promoting neurotrophic factors in the CNS prevents spontaneous regen-
eration [19].

The molecular mechanisms involved in the response to injury and those that reg-
ulate the lack of CNS regeneration are very complex. Thus, there are numerous
possible ways for scientists to interfere with the molecular mechanisms in the
hopes of inducing regeneration in the CNS. One strategy has been to try neu-
tralizing the myelin inhibitory molecules and degrade the inhibitory components
of the glial scar. The bacterial enzyme chondroitinase ABC degrades the glial
scar and create a more permissive environment for axonal regeneration [28, 78].
Another way is to administer growth-promoting molecules, which make the le-
sion environment less hostile to growth. Implantation of a peripheral nerve graft
(PNG) in the proximity of the lesion will generate a release of growth factors from
the Schwann cells in the graft. This will enable the CNS axons to mount a more
vigorous regenerative axonal-growth program and can promote regeneration in
the CNS [20, 47, 54, 64, 114]. A promising technique is use of olfactory ensheath-
ing cells (OEC). These glial cells are found in the olfactory system, where they
accompany the olfactory axons into the CNS. This is the only place in the adult
mammalian CNS where regeneration can, in fact, occur [92]. OEC can be trans-
planted into the CNS lesion area, where they encourage axonal growth [68, 69].
Several groups have shown that stem cell therapy can be used to promote func-
tional recovery after CNS injury in animal models. This include various types
of stem cells such as bone marrow-derived stromal cells and adult neural pre-
cursor cells. After implantation, these stem cells migrate to the site of injury,
where they can di�erentiate into oligodendrocytes, astrocytes and occasionally
neurons, a�ecting the inhibitory environment of the injury site so that more of
the spared axons are kept alive and also possible promoting regeneration of the
injured axons [33, 87, 59, 113]. Combinations of the various techniques, such as
Schwann cell bridges and olfactory ensheathing cells with chondroitinase can be
especially bene�cial for inducing regeneration [46]. Even though some recovery
of function has been reported in these studies, the amount of regenerating axons
is low. Thus, more research is needed in the quest of �nding methods that can
result in regeneration and permanent regain of function after CNS injuries.
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Chapter 1 Introduction

1.3 The rat visual pathway

The axonal projections of retinal ganglion cells (RGC) constitute the visual path-
way (Figure 1.1). RGC are located in the innermost layer of the retina and their
axons form the optic nerve (ON) on leaving the eye at the lamina cribrosa. The
rat optic nerve is approximately 9 mm long, 0.6 mm in diameter and contains
about 120 000 axons [30, 31]. In rodents, the majority of RGC axons in the
ON decussate in the optic chiasm and project into the contralateral optic tract
to subcortical targets, including the thalamic lateral geniculate nucleus (LGN),
midbrain pretectum, and superior colliculus (SC) [54, 121]. The pretectum is in-
volved in the control of pupillary re�exes in response to light stimulation, as well
as in the accommodation re�ex. The SC is involved in the coordination of head
and eye movements, and the LGN processes visual information before relaying
it in the optic radiation to layer IV in the primary visual cortex where further
processing occurs, resulting in visual perception [91, 119, 121].

1.4 Manganese-enhanced MRI

1.4.1 Mn2+ as a contrast agent

Paramagnetic substances, such as for example Gd3+, Fe3+, Cu2+ and Mn2+,
have unpaired electrons in their atoms, resulting in a small magnetic moment. In
the absence of an external magnetic �eld, these magnetic moments are randomly
distributed, and will thus cancel each other out. When an external magnetic
�eld is applied, the magnetic moments will align with the direction of the ap-
plied �eld, producing an increase in the local magnetic �eld. The protons in
the tissue will interact with the paramagnetic substances through dipole�dipole
interactions, creating �uctuations in the magnetic �eld. This can a�ect both the
longitudinal relaxation time T1 and transversal relaxation time T2 of the pro-
tons, and result in increased tissue contrast (in T1-weighted images) or reduced
tissue contrast (in T2-weighted images) in the regions where the paramagnetic
substances are present [51, 77].

Mn2+ was one of the �rst MRI contrast agent, used in the earliest stages of
MRI [66, 67], and is mainly a T1 contrast agent. In pure water, the relaxation
rates are linearly dependent on the concentration of the paramagnetic substances
[65]. In vivo, Mn2+ can bind to a variety of structures such as proteins and nucleic
acids, and this strongly in�uence the magnetic properties in the surrounding
tissue, leading to a reduction in T1 and increased tissue contrast in T1-weighted
imaging [58, 84].
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1.4 Manganese-enhanced MRI

Retina

Lamina
cribrosa

Optic nerve

Optic chiasm

Optic tract

Optic 
radiation

Lateral
geniculate
nucleus

Superior
colliculus

Pretectum

Vitreous
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Figure 1.1: Illustration of the rat visual pathway. From the retina, axons project
through the optic nerve (ON) and contralateral optic tract to lateral
geniculate nucleus (LGN), the pretectum and the superior colliculus
(SC). From the LGN, visual information is transferred via synaptic
connections through the optic radiation to layer IV of the visual cor-
tex.
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Chapter 1 Introduction

Mn2+ is an essential trace metal, and is a co-factor in several biological pro-
cesses [7]. The divalent cation Mn2+ is a calcium (Ca2+) analogue and can
enter cells through voltage gated Ca2+-channels and other Ca2+-transport sys-
tems [37, 83, 82, 88]. The simplest way for administration of Mn2+ is to use
a MnCl2-solution. In animals, MnCl2 can be injected intravenously, subcuta-
neously, intraperitoneally or as an injection directly into the area of interest, if
feasible, such as into the vitreous body of the eye. After injection, the salt dis-
solves into Mn2+ and Cl2−. Mn2+ will enter cells through the Ca2+-channels and
react with and bind to intracellular components. How Mn2+ is distributed inside
the cells is not known in detail.

Teslascan� (GE Healthcare AS, Oslo, Norway) is the only commercially available
Mn2+-containing contrast agent. Teslascan consists of manganese dipyridoxyl
diphosphate (MnDPDP), a chelated Mn2+-compound, and is clinically approved
for MRI of the human liver. MnDPDP contains two vitamin B6 parts that
through nitrogen and oxygen bonds keep Mn2+ in a chelate that is highly soluble
and stable in pure water [96]. In vivo, for example after intravenous admin-
istration, MnDPDP is metabolized to manganese dipyridoxyl monophosphate
(MnDPMP) and manganese dipyridoxyl ethylendiamine diacetate (MnPLED).
The MnDPDP and MnPLED metabolites are simultaneously trans-metaled with
zinc (Zn2+), releasing Mn2+ [118].

1.4.2 T1-weighted MR-imaging

Mn2+ is mainly a T1-agent, and MRI can be obtained using a T1-weighted imag-
ing sequence, for example a fast low �ip angle shot (FLASH) sequence. FLASH
is a short-TR steady-state incoherent gradient echo sequence that provides rapid
image acquisition [51]. It uses small �ip angle excitations combined with spoiling
of transverse magnetization before the next RF pulse. In steady-state, the signal
from a spoiled gradient echo sequence is gives by

S = ρ sinα
1− e−

TR
T1

1− e−
TR
T1 cosα

e−
TE
T2∗ (1.1)

where ρ is the proton density, α is the �ip angle, TR is the repetition time, TE
is the echo time and T1 and T2 are the longitudinal and transversal relaxation
times, respectively.

T1-mapping gives the true T1-values in each voxel of the tissue [34, 52], and
is currently getting introduced as an alternative to T1-weighted imaging . T1-
mapping can be more sensitive to changes in T1 than T1-weighted imaging, but
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1.4 Manganese-enhanced MRI

it is also more challenging with regards to obtaining good image quality as well
as post processing.

1.4.3 Applications of MEMRI

Mn2+ can enter excited cardiac cells after systemic injection, accumulating in
activated areas, and can be used in MR imaging of the heart. This has been
demonstrated since the 1980s using MnCl2 in animal models [77, 125] and also
recently in the human heart after intravenous administration of a clinically safe
dose of Teslascan [103]. Furthermore, MEMRI can separate viable and non-viable
myocardium, and is a promising tool for detection of infarcted regions in both
animal and human hearts [25, 102].

After systemic injection of MnCl2, Mn2+ can enter the brain [63], and the trans-
port of Mn2+ will be more e�cient if the blood-brain barrier is disruption [8].
Mn2+ can act as a general contrast agent after systemic administration, enhanc-
ing soft tissue contrast [4], however, as for the heart, the uptake of Mn2+ is more
e�cient in activated neurons. Thus, Mn2+ will accumulate in activated areas
of the brain, and MEMRI can be used to investigate such areas after an exter-
nal stimulation (e.g. stimulation of the whiskers or fore paw on one side) [3, 126].
Since Ca2+ is one of the most robust indicators of neuronal activity [42], MEMRI
will be a measure of brain activity. Furthermore, MEMRI can detect brain is-
chemia [2].

In 1995, Tjälve and coworkers demonstrated that radioactive Mn2+ was trans-
ported from the olfactory receptor neurons to the olfactory bulb in �sh [117], and
later con�rming their �ndings in the rat olfactory pathway [116]. This demon-
strates that Mn2+ is not only taken up by neurons, but is also transported
along the axons. These studies were carried out ex vivo using γ-spectrometry
and autoradiography. In 1998, Pautler and colleagues utilized the paramag-
netic properties of Mn2+, performing the �rst in vivo Mn2+-tract tracing ex-
periment [90]. They showed that after administration of MnCl2 into the rat
olfactory receptor neurons, contrast enhancement was seen in the olfactory bulb
and primary olfactory cortex in MRI. Since this �rst experiment, MEMRI has
been used to trace several pathways of the animal brain, including the visual,
olfactory and hippocampal pathways, and the basal ganglia in rats, mice and
monkeys [88, 100, 123, 124], as well as the song center in birds [70].

The mechanisms by which Mn2+ is transported along the axons are not known in
detail. It is believed that an active transport mechanism is the main contributor
to Mn2+-tra�c within the axons, however, passive di�usion can also contribute
to the net Mn2+-transport [89]. Administration of the microtubule disrupting
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agent colchicine prior to Mn2+-application lead to a reduced transport of Mn2+,
indicating that microtubule is involved in the Mn2+-transport [88, 104]. The
direction of Mn2+-transport is mainly anterograde [104], and Mn2+ is transported
at a rate of approximately 2− 5 mm/h [13, 90]. When the Mn2+-ions reach the
nerve endings, they are released into the synaptic cleft, where the may transverse
the postsynaptic membrane through voltage-gated Ca2+-channels [100, 111]. The
transport of Mn2+ can carry on through the next nerve �ber, and may thus
enhance structures far from the site of injection, for example the visual cortex
after intravitreal injection [71]. After injection, the MRI signal is enhanced for
several hours or days, depending on the dose of MnCl2, area of interest and
method of administration [63, 123].

These properties make Mn2+ a unique contrast agent well suited for tracing
axonal pathways and neuronal connections in the CNS. Longitudinal studies are
feasible, and tract tracing using MEMRI has the potential to be used in studies
of CNS damage and repair.

1.4.4 Toxicity of manganese

Mn2+ is an essential metal found in a variety of biological tissue, and is neces-
sary for normal functioning of several physiological processes [7]. Nevertheless,
overexposure causes toxic reactions, and the toxicity of Mn2+ in the CNS is well
documented [7, 36, 97]. In humans, long term exposure to Mn2+ induces Parkin-
sonian symptoms, including headaches, memory loss, emotional instability, rigid-
ity, tremors, seizures and death [7, 36], and animal studies have shown neuronal
degeneration after MnCl2 injections into the striatum [26]. In the general popula-
tion, Mn2+-exposure is rarely a problem. The primary source of Mn2+-poisoning
is occupational exposure experienced by welders, miners, and workers in dry-cell
battery factories and ferromanganese alloy plants [11, 24, 53, 55, 56, 57, 81].
The molecular mechanisms by which Mn2+ causes neurotoxicity is not known
in detail, but it is believed that the basal ganglia nuclei are primary targets
for Mn2+-neurotoxicity [57, 9]. The experimental set up in MEMRI is usually
di�erent from the occupational exposure described above in regards to the ap-
plied dose of Mn2+, way of administration, and the length of investigation. High
concentrations of Mn2+ may inactivate voltage gated Ca2+ channels leading to
unrestrained Ca2+ entry [29, 83]. Furthermore, Mn2+ might accumulate in mi-
tochondria, which can lead to inhibition of electron transfer [130]. Additionally,
Mn2+ can increase the production of reactive oxygen species which can lead to
apoptosis of neurons [41, 131].
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1.5 Di�usion tensor imaging

1.5 Di�usion tensor imaging

Di�usion tensor imaging (DTI) was introduced in the mid 1990s, when Basser
and coworkers demonstrated that the direction of the Brownian motion of water
molecules in tissue could be used to create contrast in MRI [12]. In pure liquid
with no barriers, the di�usion of protons will be equal in all directions, and
this is called isotropic di�usion. In uniform cellular tissue there can be barriers
resulting in an isotropic di�usion with a reduced di�usion length. In some tissue
types, such as muscles, myocardium and neurons, the barriers within the cells
are oriented mainly in one direction, causing a higher degree of di�usion along
these barriers compared to perpendicular to them. This is called anisotropic
di�usion [14]. Neurons consist of bundles of axons which are often myelinated,
and within each axons, there are longitudinal structures such as mictotubule
and neuro�laments, which makes the di�usion of protons within neurons highly
anisotropic (Figure 1.2 and 1.3). In the brain, the water di�usion in gray matter
is isotropic, while that of normal white matter is anisotropic [80].

Figure 1.2: Illustration of anisotropic di�usion. In CNS white matter tracts, bar-
riers within the cells, such as neuro�laments and microtubule, as well
as myelin sheaths and cell membranes, are oriented mainly in one
direction, leading to a higher degree of water di�usion in this direc-
tion, which is called anisotropic di�usion. Axial di�usivity (λ‖) is
de�ned as the magnitude of the water di�usion parallel to the axon.
Radial di�usivity (λ⊥) is de�ned as the magnitude of water molecules
di�usion perpendicular to the axon.

To generate MR image based on the physical properties of water molecules, pa-
rameter such as proton density ρ, the relaxation times T1 and T2 and the di�usion
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Chapter 1 Introduction

coe�cient D are used. A simpli�ed equation describing how these parameters
contribute to the MR signal (S) in a spin-echo image is given as

S = ρ(1− e−
TR
T1 )e−

TE
T2 e−bD = S0e−bD (1.2)

where TR is the repetition time and TE is the echo time, de�ning the excita-
tion and preparation times of the MR-sequence, and b is the di�usion weighting
factor [79]. While ρ, T1, T2 and D are tissue speci�c parameters, TR, TE and
b can be manipulated by the user. If two images with di�erent b-values are ob-
tained, keeping all other parameters constant, the di�usion coe�cient D can be
calculated from

S1 = S0e−b1D (1.3)

S2 = S0e−b2D (1.4)

S2

S1
= e−(b2−b1)D (1.5)

D = −
lnS2

S1

b2 − b1
(1.6)

In the presence of anisotropy, the di�usion varies according to the direction,
and can no longer be characterized by the scalar coe�cient in (1.6). Thus, this
requires the introduction of the di�usion tensor D, which fully describe the direc-
tion of the di�usion in all directions and the correlation between these directions
in each voxel of the data volume [22]

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.7)

Several parameters derived from the di�usion tensor can be used to describe the
DTI data [22]. The mean di�usivity (Mdi�) describes the overall mean-squared
displacement of the molecules, and the overall presence of obstacles, and is given
by

Mdiff =
Tr(D)

3
=
Dxx +Dyy +Dzz

3
(1.8)

where Tr is the trace of the tensor. Because the di�usion tensor is symmetric
and positive de�nite (has positive eigenvalues), it is diagonalizable, and the sum
of the eigenvalues is equal to the trace. Thus, equation (1.8) can also be written
as

Mdiff =
λ1 + λ2 + λ3

3
(1.9)
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1.5 Di�usion tensor imaging

(a) Free, isotropic di�usion in liquid.

(b) Restricted, isotropic di�usion in uniform, cellular tissue.

(c) Anisotropic di�usion in an axon.

Figure 1.3: Illustrations of (a) free isotropic, b) restricted isotropic and (c)
anisotropic molecular water di�usion. The displacement of the water
molecules forms an ellipsoid where the axis of the ellipsoid repre-
sent the eigenvalues of the di�usion tensor. For isotropic di�usion,
λ1 = λ2 = λ3 (with smaller values of λ in restricted isotropic di�usion
(b)), while for anisotropic di�usion, λ1 > λ2 = λ3.
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The di�usion in each voxel can be illustrated as an ellipsoid (Figure 1.3), where
the eigenvalues of the tensor represents the axis of the ellipsoid, and the shape of
the ellipsoid describes the amount of anisotropic di�usion.

Fractional anisotropy (FA) is the degree of anisotropy, and characterizes how
much molecular displacement varies in space due to the presence of oriented
structures. FA is given as

FA =

√
1
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

(1.10)

alternatively written as

FA =

√
3
2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

λ2
1 + λ2

2 + λ2
3

(1.11)

with 〈λ〉 = (λ1 + λ2 + λ3)/3.

The eigenvalues (λ1, λ2 and λ3 ) derived from the di�usion tensor matrix diago-
nalization can be separated into components parallel (λ1) and perpendicular (λ2

and λ3) to the axonal tract [106]. The axial di�usivity

λ‖ = λ1 (1.12)

is de�ned as the magnitude of the water di�usion parallel to the tract within the
voxel of interest (Figure 1.2). The radial di�usivity

λ⊥ =
λ2 + λ3

2
(1.13)

is de�nes as the average magnitude of water molecules di�usion perpendicular to
the tract.

DTI is a completely non-invasive MR imaging technique that is currently being
introduced in clinical brain and spinal cord MRI. As axonal injury and other
white matter pathologies would expect to a�ect the di�usion of water within the
axons, DTI can be used to investigate such injuries. Furthermore, because DTI
can visualize axonal tracts and neural connections in the human brain, it is a
valuable technique for example in pre-surgical planning of patients with brain
tumors.
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Chapter 2

Aims of study

The main objective of this thesis was to develop and optimize techniques for MR
imaging of the rat visual pathway for the purpose of establishing methods for
longitudinal in vivo studies of ON injury and axonal regeneration in the visual
pathway.

More speci�cally, the aims of this thesis were:

� to use MEMRI for studying the normal rat visual pathway in vivo and
provide dose- and time-responses of Mn2+-enhancement (Paper I).

� to investigate if MEMRI could be used to detect mechanically induced ON-
injury (Paper I).

� to de�ne MEMRI as a longitudinal tool for studying the normal and injured
ON (Paper I).

� to study the similarities and di�erences between MnDPDP and MnCl2 as
contrast agents for MEMRI of the rat visual pathway, and compare them
to the extracellular contrast agent gadodiamide (Paper II).

� to provide dose response data for safe and e�cient use of MnCl2 as a con-
trast agent for MEMRI of the rat visual pathway by studying RGC survival
in retina and Mn2+-contrast enhancement in the visual pathway with in-
creasing doses of intravitreal MnCl2 (Paper III).

� to study the relationship between MEMRI contrast enhancement and the
dose of MnCl2 and the number of surviving RGC (Paper III).

� to investigate the mode of axonal transport of Mn2+ and clearance of Mn2+

from the site of injection (Paper III).

� to investigate the potential for MEMRI as a tool for detecting regeneration
after mechanically induced ON-injury and PNG implantation (Paper IV).
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Chapter 2 Aims of study

� to implement a DTI protocol for in vivo imaging of the rat ON that could
be used in combination with MEMRI (Paper IV).

� to investigate the potential for DTI as a tool for detecting regeneration
after mechanically induced ON-injury and intravitreal PNG implantation
(Paper IV).
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Chapter 3

Materials and Methods

3.1 Experimental setup

3.1.1 Experimental overview

An overview of the experiments performed in this thesis is presented in Table 3.1.

3.1.2 Animal handling

Inbred Fischer and outbred Sprague Dawley rats were used in these studies. The
use of an inbred rat stain was necessary for successful implantation of intvavitreal
PNG without causing immunological responses. Guidelines approved by the local
ethical committee for animal research were followed and all experiments were
approved by the responsible governmental authorities.

Rats were anesthetized during all Mn2+-injections, surgical procedures and MR-
experiments using either subcutaneous injections or iso�urane gas anesthesia.
After experimental procedures, analgesia was provided if required.

In Papers I and II, subcutaneous injections of a 1:1:2 mixture of Hypnorm/Dormi-
cum/sterile water (2.5 ml/kg), under sedation using 4% iso�urane in 3% O2 was
used for all experiments, including Mn2+-injections, ONC and MEMRI.

In Paper III, subcutaneous injections of a 2:3:3:4 mixture of Haldol/Midazolam/
Fentanyl/sterile water (4 ml/kg), under sedation using 4% iso�urane in 3% O2

was used for MEMRI including Mn2+-injections. For RGC counts, rats were pre-
pared for anesthesia with a subcutaneous injection of Buprenorphine (0.03 mg/kg)
and sedated throughout surgery with 4% iso�urane in 3% O2.

In Paper IV, subcutaneous injections of a 2:3:3:4 mixture of Haldol/Midazolam/
Fentanyl/sterile water (4 ml/kg), under sedation using 4% iso�urane in 3% O2

was used for ONC, intravitreal PNG implantations and MnCl2-injections. For
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Chapter 3 Materials and Methods

Table 3.1: Overview of the experiments in this thesis. In this thesis, the nor-
mal and injured ON were studied using MEMRI, DTI and histological
methods. Several experiments were performed using these technique,
which resulted in a total of 4 papers.

Normal ON MEMRI Longitudinal 1 d + 21 d 2.35 T Paper I

Dose-response/CNR
0.2− 200 nmol MnCl2

2.35 T

Time-response 24− 168 h 2.35 T
MnCl2, MnDPDP and Gd3+ 2.35 T Paper II

Mode of axonal transport 2.35 T Paper III

Dose-response/CNR
0− 3000 nmol MnCl2

7 T

Histology
(retina)

RGC-survival,
0− 3000 nmol MnCl2

DTI Longitudinal 1 d, 7 d, 14 d
and 21 d

7 T Paper IV

Mn2+-e�ect on DTI? 7 T
Injured ON MEMRI ONC 1 d + 21 d 2.35 T Paper I

ONC + PNG 1 d + 21 d 7 T Paper IV

DTI ONC + PNG 1 d + 21 d 7 T
Histology
(retina)

ONC ± PNG 1 d + 21 d

Histology
(ON)

ONC + PNG 21 d

MEMRI and DTI, a 1:1:2 mixture of Hypnorm/Dormicum/ sterile water subcuta-
neously (2.5 ml/kg), under sedation using 4% iso�urane in 3% O2 was used. For
RGC counts, rats were prepared for anesthesia with a subcutaneous injection of
Buprenorphine (0.03 mg/kg) and sedated throughout surgery with 4% iso�urane
in 3% O2.

After surgical procedures, post-surgical analgesia was controlled with subcuta-
neous injection of Buprenorphine (1.7 ml/kg in 1:10 sterile water). During MRI,
eyes were smeared with Simplex lubricant to counteract corneal dehydration.
Animals were kept in a pathological free environment at St. Olav's Hospital An-
imal Facility, with free access to food and water. Before MRI, animals were
transported to the MR center in appropriate cages. During Mn2+-injections
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and surgical procedures (ONC and PNG implantations), anesthetized rats were
placed in a custom designed head holder that could be rotated for optimal user
interaction (Figure 3.1). During MRI, anesthetized rats lay prone in dedicated

Figure 3.1: During Mn2+-injections, ONC and intravitreal PNG implantations,
anesthetized rats were placed in a custom designed rat head holder,
which could be rotated for optimal user interaction.

animal bed within the magnet, heated with either circulating air (Papers I and
II) or circulating water (Papers III and IV) to maintain a body temperature of
37 ◦C. The animal bed was designed to minimize animal movement, with a tooth
bar, ear pins, tight space for the head and brackets for the surface coil.

3.1.3 MnCl2-injections

MnCl2-solutions were prepared by mixing the required amount of 1M MnCl2-
solution (Sigma-Aldrich Co, Steinheim, Germany) and sterile H2O to obtain the
appropriate dose of MnCl2. An overview of the injections used in this thesis
is shown in table 3.2. Using a purpose-built injection device consisting of a
plastic syringe connected via polyethylene tubing to a glass micropipette with a
tip diameter of ∼ 50 µm, aqueous MnCl2 was injected into the vitreous body of
anaesthetised rats, immediately posterior to the ora serrata of the left eye. After
the injection, the pipette was slowly withdrawn to minimize re�ux.

Direct injection into the ON : after accessing the intraorbital ON as described for
optic nerve crush (ONC) (see below), 2 µl of aqueous MnCl2 were administrated
directly into the ON, approximatly 2 mm from the lamina cribrosa, using the
injection device as described above.
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Table 3.2: Overview of intravitreal injections used for MEMRI in this thesis. All
injections were done intravitrally, except for the direct injection in
Paper III, as indicated in the table.

Solution Amount Concentration Dose

Paper I MnCl2 3 µl* 50 mM 150 nmol
Paper II MnCl2 2 µl 100 mM 200 nmol

MnDPDP 3 µl 10 mM 30 nmol
gadodiamide 3 µl 500 mM 1500 nmol

Paper III MnCl2 3 µl 0 mM 0 nmol
3 µl 10 mM 30 nmol
3 µl 50 mM 150 nmol
3 µl 100 mM 300 nmol
3 µl 500 mM 1500 nmol
3 µl 1000 mM 3000 nmol

MnCl2, direct inj. 2 µl 100 mM 200 nmol
Paper IV MnCl2 3 µl 50 mM 150 nmol
* In the dose-response experiment of Paper I, rats were given 2 µl of 0.1, 1, 2, 5, 7.5, 10,
25, 50, 75 or 100 mM MnCl2.

3.1.4 Optic nerve crush and peripheral nerve graft
implantation

Optic nerve crush (ONC) was performed according to the method described by
Berry et al [19]. In brief, the dural sheath of the ON was incised longitudinally
after intraorbital exposure through scalp and superior palperbral incisions, and
the ON crushed for 10 s, 2 mm caudal to the lamina cribrosa with microforceps.
Care was taken not to damage the central retinal artery running along the ros-
tral margin of the ON within the dural sheath. In Paper IV, intravitreal PNG
implantations were used as regenerative stimuli. One Fisher rat was sacri�ced
and the sciatic nerve was used as a graft. 1 mm long segments of the nerve were
grafted immediately after the crush into the vitreous body through a perforation
in the sclera 1 mm dorsal to the optic disc.
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3.1.5 Longitudinal studies using MRI

In Paper I, MEMRI was obtained 24 h after intravitreal injection of MnCl2.
Additional MR-scans were obtained during 168 h after injection in the time-
response experiment. In the longitudinal study of normal and injured ON, rats
were re-injected with MnCl2 20 d after the �rst injection, and MEMRI obtained
24 h after this (Figure 3.2). In rats with ONC, the �rst MnCl2-injection was done
immediately after the crush.

In Paper II, MRI was obtained at 1 , 12 , 24 and 48 h after intravitreal injection
of MnDPDP, 24 h after the MnCl2-injection and 1 , 12 and 24 h after injection
of gadodiamide.

In Paper III, MEMRI was obtained 48 h after intravitreal injections of 0− 3000 nmol
MnCl2. 14 d later, rats were re-injected with 150 nmol MnCl2, and MRI was ob-
tained 48 h after this. In the axonal transport experiment in Paper III, MEMRI
was obtained 24 h after injection of 200 nmol MnCl2 directly into the ON.

In Paper IV, MEMRI was obtained 24 h after intravitreal injection of 150 nmol
MnCl2. Rats were re-injected with MnCl2 20 d after the �rst injection, and
MEMRI obtained 24 h after this (�gure 3.2). The MnCl2-injection was done
immediately after the crush.

Figure 3.2: Longitudinal studies of rats with normal and injured ON (Paper I),
and injured ON with intravitreal PNG implantations (Paper IV).
MnCl2-injections (Mn), ONC and/or PNG implantations were per-
formed at day 0, and in vivo MEMRI obtained 1 d later. Rats were
re-injected with MnCl2 at day 20, and in vivo MEMRI was obtained
1 d after this, 21 dpl.
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3.2 MRI

MRI was performed at 2.35 T or 7 T using Bruker Biospec Avance small ani-
mal scanners (Bruker Biospin, Ettlingen, Germany) with 72 mm volume coils
for transmission, and actively decoupled quadrature rat head surface coils for
receive. Water-cooled BGA-12 gradients were used for all MRI acquisitions. The
MR scanner and surface coil are shown in Figure 3.3.

(a) Bruker Biospec 7 T small animal MR
scanner.

(b) Quadrature rat head surface coil.

Figure 3.3: MRI was performed with a Bruker Biospec small animal scanner (a)
with 72 mm volume coils for transmission, and actively decoupled
quadrature rat head surface coils for receive (b).

3.2.1 T1-weighted MRI

3D data sets of the rat brain were obtained using a T1-weighted 3D fast low
�ip angle shot (FLASH) gradient-echo sequence. To correct for the gradually
reduced RF signal detected by the surface coil, two additional T1-weighted 3D
FLASH correction scans were performed in coupled and single coil operations,
respectively (Papers III and IV only). Details on scan parameters used in the
individual papers are listed in table 3.3.
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Table 3.3: Scan parameters for the T1-weighted MEMRI scans used in the ex-
periments. In Papers 1 and 2, equal scan parameters were used. No
correction scans were obtained in Papers 1 and 2.

Paper 1 & 2 Paper 3* Paper 4

Field strength 2.35 T 7 T 7 T

Magnet DBX-100 70/20 70/20

Gradients 200 mT/m 400 mT/m 400 mT/m

Heating circulating air circulating water circulating water

Pilot scan gradient echo gradient echo gradient echo

Geometry 10 sag. slices 3 orth slice packages 3 orth slice packages

TR 150 ms 200 ms 200 ms

TE 6 ms 5 ms 5 ms

FOV 5× 5 cm2 6× 6 cm2 5× 5 cm2

Matrix 128 x 128 128 x 128 128 x 128

Acq. time 75 s 25 s 25 s

T1-weighted scan 3D FLASH 3D FLASH 3D FLASH

TR 15 ms 12.5 ms 12.5 ms

TE 4.2 ms 3.7 ms 3.7 ms

Flip angle 25 ◦C 30 ◦C 20 ◦C

FOV 5× 5× 2 cm3 4× 4× 2.5 cm3 4× 4× 2.3 cm3

Matrix 256× 256× 128 192× 192× 96 192× 192× 112

Resolution 195× 195× 156 µm3 208× 208× 260 µm3 208× 208× 205 µm3

NEX 8 8 8

Acq. time 65.5 min 31 min 36 min

Correction scans 3D FLASH 3D FLASH

TR 12.5 ms 12.5 ms

TE 3.7 ms 3.7 ms

Flip angle 30 ◦C 20 ◦C

FOV 4 ×4 ×2.5 cm 4 ×4 ×2.3 cm

Matrix 32× 32× 16 32× 32× 16

Resolution 1250× 1250× 1562 µm3 1250× 1250× 1437 µm3

NEX 32 24

Acq. time 2.5 min 2.5 min

* The axonal transport experiment in Paper III was done at 2.35 T with equal scan
parameters as in Paper I and II.
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3.2.2 DTI

In order to obtain reasonable short scan time, DTI-echo planar imaging (EPI)
was implemented for the DTI acquisition. EPI is a fast technique that allows
rapid DTI imaging.

2D multi-shot (4 segments) DTI-EPI scans with 5 slices containing the ON were
obtained with TR = 1500 ms, TE = 32.6 ms, ∆ = 15 ms, δ = 6 ms. Di�usion
sensitizing gradients along 12 non-collinear directions and 6 b-values in the range
of 0− 3000 s/mm2 (5 A0-images, and 300, 600, 1000, 1600, 2300 and 3000 s/mm2)
were used. The slice thickness was 0.8 mm (no gap), FOV = 5× 5 cm2, and
acquisition matrix 160× 160 (zero �lled to 256× 256 ). 4 repetitions were used
and the acquisition time was 30 min 48 s. The MEMRI 3D volume was used to
locate the appropriate oblique slice package angle for the 2D DTI scans (Figure
3.4).

Figure 3.4: The MEMRI 3D volume was used to locate the appropriate oblique
slice package angle for the 2D DTI scans in Paper IV. The white
box in the mid-sagittal 2D slice of the 3D FLASH image of rat brain
indicates the oblique axial imaging plane used for the 2D DTI-EPI
acquisition.
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3.3 MRI data analysis

3.3 MRI data analysis

3.3.1 Data analysis using ParaVision

In Paper I, the 3D MEMRI datasets were analyzed using software provided by the
scanner manufacturer, ParaVision 3.0.1 (Bruker Biospin, Ettlingen, Germany).
To quantify Mn2+-enhancement in the control rats 24 h after intravitreal MnCl2-
injection, manually drawn regions of interest (ROI) were placed in oblique 2D
slices in selected structures (for details, see Paper I) along the Mn2+-enhanced
and contralateral non-enhanced visual pathways using the ROI-tool in ParaVi-
sion. The ROIs were placed identically in all of the rats and symmetrically in
both hemispheres. The mean signal intensities in the ROIs were measured, and
the signal-to-noise ratio (SNR) was calculated from [45]

SNR = 0.655
S

SDair
(3.1)

where S represents the signal intensity in the ROI of the Mn2+-enhanced area or
the contralateral non-enhanced selected area of the visual pathway, and SDair is
the mean value of the SD in two ROIs in air.

For the analysis of dose- and time-response of Mn2+-enhancement, the mean
signal intensity in ROIs in the Mn2+-enhanced and contralateral non-enhanced
visual pathway were measured manually in oblique 2D slices in the 3D volume.
The contrast-to-noise ratio (CNR) was calculated from

CNR = 0.655
SMn − S0

SDair
(3.2)

where SMn and S0 represent the signal intensities in the ROI of the chosen
structure in the Mn2+-enhanced and contralateral non-enhanced visual pathway.

For the longitudinal studies of rats with normal and injured ON, intensity pro�les
were calculated from oblique 2D planes showing cross sections of the ON from the
retina to the optic foramen (Figure 3.5). The �rst cross section was placed in the
retina, 0.7 mm proximal to the lamina cribrosa. The subsequent cross sections
were placed every 0.2 mm from 0− 3 mm, and every 0.4 mm from 3− 7 mm
caudally, measured from the lamina cribrosa, for a total of 25 cross sections in
each ON. Circular ROIs were placed within the ON in each cross section manually,
and the mean signal intensity was measured. The CNR was calculated from the
signal intensity at equal distances from the lamina cribrosa in the Mn2+-signal
enhanced and non-enhanced ON using the above described formula (3.2).
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Figure 3.5: In Paper I, the Mn2+-intensity pro�les along the ON in the con-
trol and ONC groups were assessed by calculating the CNR in cross
sections of the ON. The image shows a control rat at 24 h after in-
travitreal Mn2+-injection. The vertical lines indicate the 2D plane
perpendicular to the ON, where the cross sections were drawn using
ParaVision 3.0.1, a total of 25 cross sections in each ON. The mean
signal intensities in the ROI in each cross section in both the Mn2+-
enhanced and non-enhanced ONs were measured and the CNR was
computed.

In Paper III, mode of axonal transport was investigated by calculating intensity
pro�les as described above.

3.3.2 Semiautomatic segmentation procedure

In Paper II, a technique for semiautomatic segmentation of MEMRI data was
implemented using Matlab 7.1 (MathWorks, Natick, MA, USA) which included
the Image Processing Toolbox. The technique is described in detail in Paper II,
and will only be covered brie�y here. This segmentation procedure was used to
segment the ON in Paper IV.

First, the 3D image was binarized using a global threshold close to the mean
signal of the non-enhanced ON. Then morphological segmentation of the Mn2+-
enhanced ON was done by a 6-connected region growing from an interactively set
seed point within the Mn2+-enhanced ON. The resulting image segment contained
the Mn2+-enhanced eye, ON, and part of the brain. In order to separate the ON
from the eye and brain, a morphological top-hat transformation was performed,
preserving structures not entirely �lling the structuring element while translated
through the image volume, resulting in a morphological segmented ON. Further-
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more, a sliding box segmentation was developed to ensure correct de�nitions of
the coordinates of the ON including start and end points. Two boxes moved
along the ON, calculating the center of mass until the density reached either a
critical value or 0, indicating that the boxes were apposed to a dense object (e.g.
eye or brain), or an �empty� distal end of the ON. The signal in a 1 mm diameter
ROI centered on the ON in 2D planes perpendicular to the direction of the ON
was measured every 0.2 mm. Due to low SNR, the segmentation procedure failed
to segment the non-enhanced nerve. Thus, a regression model based on manu-
ally calculated intensity pro�les of non-enhanced ON from 10 rats was used to
calculate S0 at all positions along the ON in Paper II. CNR was calculated using
the above described formula (3.2).

In Paper IV, the semiautomatic segmentation procedure was used as described
above. But because segmentation was performed after surface coil corrections
(see 3.3.3), the signal from the non-enhanced ON was uniform throughout the
nerve, and the use of a regression model was not necessary.

3.3.3 RF signal correction

In Papers III and IV, the spatially inhomogeneous sensitivity of the coupled-
coil was corrected using the set of two low-resolution correction scans with scan
parameters as described earlier (see Table 3.3). Using in-house, custom developed
software written for Matlab 7.1, the correction scans were interpolated to match
the matrix size of the main MRI dataset. Assuming that the sensitivity of the
single-coil setup was spatially homogeneous, the MRI signal intensity in a voxel
at location (x,y,z) was normalized using the following relation:

Isc(x, y, z) = Icc(x, y, z)
Csc(x, y, z)
Ccc(x, y, z)

(3.3)

where Icc and Csc is the coupled-coil and single-coil signal intensities in the cor-
rection scan datasets, respectively, Icc is the recorded coupled-coil signal intensity
in the main MRI dataset, and Csc is the resulting normalized signal intensity.

3.3.4 Normalization of MR data sets

In Paper III, the Statistical Parametric Mapping (SPM5) software package de-
veloped for Matlab (Wellcome Department of Imaging, London) was used to
normalize all datasets to a chosen template brain. Using a custom developed
program written for Matlab 7.1, slices from the normalized 3D volume contain-
ing the appropriate regions were chosen and regions of interest (ROI) were drawn
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equally in the Mn2+-enhanced and non-enhanced parts of the visual pathway in
one data-set and transferred to all other data-sets. CNR was calculated using
the above described formula (3.2).

3.3.5 DTI data analysis

The DTI datasets were analysed using custom developed software written in Mat-
lab 7.1. The magnitude operation changes the signal distribution in MR images
from Gaussian to Rician, and at low SNR, this introduces a bias that must be
taken into account when estimating the apparent di�usion coe�cient. A simple
least squares �tting of the measured signal to the median value of the proba-
bility density function (PDF) was applied. Since averaged magnitude data were
used, the PDF could not be expressed in closed form, but had to be calculated
numerically as a convolution of Rician distributions (for details, see Kristo�ersen
2007 [62]). The noise level, σ, was estimated from a region of interest in the im-
ages that were well separated from the object. After estimating σ, the di�usion
tensor in each voxel was generated based on 6 di�erent di�usion weightings and
12 di�erent di�usion gradient directions. The tensor's eigenvalues (λ1, λ2 and
λ3) were calculated from matrix diagonalization. From the eigenvalues, the DTI-
parameters mean di�usivity, FA, λ‖ and λ⊥ (de�ned in section 1.5), describing
the properties of water di�usion in each voxel, were calculated. Positions were
manually selected along the ON in the mean di�usivity-maps starting at the lam-
ina cribrosa. This de�ned a line which was re-sampled in 0.2 mm resolution and
used as co-ordinates of the ON, from which the signal pro�les of the ON in the
FA-, mean di�usivity-, λ‖- and λ⊥-maps were calculated by bilinear interpolation.

3.3.6 Statistical analysis

In all experiments, groups were compared using either independent samples, one-
samples or paired t-tests in SPSS (SPSS Inc., Chicago, IL, USA), with a signif-
icant level of 95%. The statistical analysis is described in detail in the Material
and Methods sections of each individual paper.
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3.4.1 RGC counting using Flurogold

In Papers III and IV, histological counting of the RGC in retina after incre-
menting doses of intravitreal MnCl2-injections (Paper III) or after ONC with
and without PNG and MnCl2-injections (Paper IV) was obtained. The head of
the anaesthetised rat was �xed in a stereotactic head holder and the ON was
crushed 2 mm from the lamina cribrosa in Paper III, and mid way between the
lamina cribrosa and the 0 d ONC lesion site in Paper IV (details on performing
the ON crush are given in 3.1.4). 1 µl hydroxystilbamidine (FluroGold (FG),
Biotium Inc, Hayward, Ca, USA) was injected into the crush, immediately prior
to the intravitreal MnCl2-injection in Paper III, and immediately prior to the
second MnCl2-injection at 20 dpl in Paper IV. Rats were killed 48 h after the last
MnCl2-injection and the eyes removed, marking the temporal segment with a su-
ture in the sclera. The eye was immersion �xed in 4% paraformaldehyde at 4 ◦C
for 2 h, and the retina whole mounted on a slide, de�ning the temporal, nasal,
superior and inferior retinal quadrants with radial incisions, air dried for 3 h, and
mounted in FluorSaveTM reagent (Cabiochem, USA). A 349.0 µm × 440.4 µm
counting grid was projected onto the mid radial point of each retinal segment
and the total number of FG-�lled RGC recorded per grid.

3.4.2 Immunohistochemistry using GAP43

In Paper IV, immunohistochemical staining of the injured ON was obtained
21 dpl. The ON was dissected, straightened on a sti� card and dried in room
temperature for a couple of minutes before being immersed in 4% formaldehyde
for 2 h at 4 ◦C. Then the ON was washed in 10 mM PBS, and immersed in
10 % and 20 % sucrose for 2 h each and in 30 % sucrose over night. The ON
was removed from the card, embedded in OTC and frozen at −80 ◦C without
disturbing the ON orientation. Using a cryostat (Leica CM3050S, Leica Mi-
crosystems, Wetzlar, Germany) with the knife parallel to the long axis of the
ON, 5 µm thick frozen sections were cut and mounted onto Superfrost Plus mi-
croscope slides, which were dried for 2 h and stored at −20 ◦C. After drying in
37 ◦C overnight and 4 d in room temperature, slides were rinsed in Tris-bu�ered
saline (TBS) for 3× 3 min, and pressure boiled at low pressure in Tris-EDTA pH
9 (TitrplexIII and Tris(hydroxymethyl)-aminomethan) for 12 min, then cooled.
Slides were rinsed in TBS for 2× 3 min and incubated in 2 % BSA in TBS
for 10 min. Sections were incubated in monoclonal mouse anti-GAP43 primary
antibody (0.5 mg/ml Zymed Laboratories, San Francisco, USA), diluted 1:100,
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at 4 ◦C for 18− 20 h in a humidi�er chamber. Slides were rinsed in TBS for
2× 3 min, and incubated with polyclonal goat anti-mouse FITC secondary anti-
body (Dako) diluted 1:10 in TBS for 30 min. Finally, slides were rinsed in TBS
for 2× 3 min and mounted with �uromount medium. Images were obtained using
a Nikon Eclipse 90i microscope (Nikon Instruments Europe, Badhoevedorp, The
Netherlands) and merged using the photomerge procedure in Adobe Photoshop
CS (Adobe Systems Incorporated).
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Summary of papers

Paper I
Manganese-enhanced MRI of the optic visual pathway and optic
nerve injury in adult rats.
Marte Thuen, Trond E. Singstad, Tina Bugge Pedersen, Olav Haraldseth, Martin
Berry, Axel Sandvig, and Christian Brekken.
Journal of Magnetic Resonance Imaging 22:492�500, 2005.

Mn2+ is paramagnetic as well as being a Ca2+-analogue, and is taken up by
neurons and transported along axons. The aim of this study was to utilize this
in a longitudinal investigation of the normal and injured rat visual pathway, and
to de�ne parameters such as dose- and time-response after intravitreal MnCl2-
injections.

In the control group 24 h after unilateral intravitreal injection of 150 nmol MnCl2,
3D MEMRI of the rat brain showed Mn2+-enhancement of the visual pathway
from the retina to the superior colliculus, with indications of trans-synaptic trans-
port into the cortex. There was a semi-logarithmic relationship between MnCl2-
dose and Mn2+-contrast enhancement from 4− 200 nmol. Maximum Mn2+-
contrast enhancement was seen at 24 h after injection in the ON and at 48 h in the
SC, and the Mn2+-contrast decayed gradually to 0 by 168 h. No Mn2+-contrast
enhancement was seen distal to the ONC. In the control group, no di�erence was
detected between the �rst and second 150 nmol MnCl2-injection, 20 d later. In
the ONC group, Mn2+-contrast enhancement was reduced proximal to the crush
site at 21 dpl compared to 1 dpl, but no di�erence was detected distal to the
lesion between the two time points.

These results demonstrate that MEMRI is a reliable method for longitudinal
visualization of the normal visual pathway, and can detect ON injury.
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Paper II
Axon tracing in the adult rat optic nerve and tract after intrav-
itreal injection of MnDPDP using a semi-automatic segmenta-
tion technique.
Øystein Olsen, Marte Thuen, Martin Berry, Vassili Kovalev, Maria Petrou, Pål
Erik Goa, Axel Sandvig, Olav Haraldseth, and Christian Brekken.
Journal of Magnetic Resonance Imaging 27:34�42, 2008.

The aim of this study was to develop and validate an objective technique for
3D segmentation of MEMRI data of the rat ON and optic tract, and to use this
technique to investigate the similarities and di�erences between MnDPDP and
MnCl2 as contrast agents for MEMRI of the rat visual pathway, and compare
them to the extracellular contrast agent gadodiamide.

Intravitreal injection of MnDPDP resulted in su�cient Mn2+-contrast enhance-
ment of the ON after 12− 24 h similar to that after MnCl2-injection. After
intravitreal Gd3+-injection, contrast enhancement was seen in the vitreous body
only, and not in the retina or ON. The ON was successfully segmented and CNR
accurate calculated within 2 minutes.

These results demonstrate that Mn2+ was released from MnDPDP in su�cient
amounts to obtain functional tracing of the adult rat visual pathway, and that
semiautomatic 3D image segmentation and the use of MnDPDP can improve in
vivo axon tracing in MEMRI. Furthermore, it demonstrates the uniqueness of
Mn2+ as a intracellular contrast agent, compared to extracellular Gd3+.

Paper III
Manganese-enhanced MRI of the rat visual pathway: acute
neural toxicity, contrast enhancement, axon resolution, axonal
transport and clearance of Mn2+.
Marte Thuen, Martin Berry, Tina Bugge Pedersen, Pål Erik Goa, Mike Summer-
�eld, Olav Haraldseth, Axel Sandvig, and Christian Brekken.
In press. To be published in Journal of Magnetic Resonance Imaging.

The aim of this study was to provide dose response data for safe and e�cient use
of MnCl2 as a contrast agent for MEMRI of the rat visual pathway by evaluating
RGC toxicity and contrast in MEMRI with increasing dose of MnCl2, MEMRI
resolution of axon density, and clearance of Mn2+ from the vitreous body after
intravitreal injections of 0− 3000 nmol MnCl2, and the mode of RGC Mn2+-
transport after direct intra-ON injection.

There were no changes in RGC density after intravitreal injections of MnCl2 ≤
150 nmol and 48 h exposure, and reductions of 12%, 57% and 94% occurred after
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300, 1500 and 3000 nmol MnCl2, measured by counting surviving RGC back-
�lled with Flurogold. CNR in 3D MEMRI of the rat brain increased in the visual
pathway with MnCl2 ≤ 300 nmol, and decreased when the dose was further in-
creased. Minimum detectable ON axon densities were 125000 axons/mm2. After
injection directly into the ON, CNR > 0 were recorded distally from the injec-
tion site, but there was no signal in the retina. After intravitreal injections of
doses > 1500 nmol, clearance from the vitreous body was impaired.

These results demonstrate that the optimal dose for MEMRI of the rat vi-
sual pathway is 150− 300 nmol MnCl2. Higher doses are toxic, causing RGC
death, impairment of active clearance from the visual body, and loss of Mn2+-
enhancement throughout the visual pathway. Mn2+ tra�c in RGC axons is
mediated mainly by anterograde transport.

Paper IV
Combination of Mn2+-enhanced and di�usion tensor MR imag-
ing gives complementary information about injury and regen-
eration in the adult rat optic nerve.
Marte Thuen, Øystein Olsen, Martin Berry, Tina Bugge Pedersen, Anders Kristof-
fersen, Olav Haraldseth, Axel Sandvig, and Christian Brekken.
Accepted for publication in Journal of Magnetic Resonance Imaging.

The main objective of this study was to utilize MEMRI and DTI as tools for
detection of ON injury and regeneration in the visual pathway.

ONC reduced RGC survival in retinae by 94 % in rats without intravitreal MnCl2-
injections, and by 90 % in rats with MnCl2, compared to non-injured control,
measured by counting surviving RGC back-�lled with Flurogold. PNG improved
RGC survival in retinae. In rats with ONC and PNG, RGC survival in retinae
was reduced by 82 % without MnCl2-injection and 74 % with MnCl2-injection.
The presence of Mn2+ in the non-injured ON did not a�ect the DTI-derived
parameters, and no di�erences in DTI-derived parameters were detected when
comparing the di�erent time-points of the non-injured ON in rats with unilateral
ONC. At 1dpl, Mn2+-enhancement was seen in the retina and proximal to the
injury site, but no Mn2+-enhancement was detected distally to the injury site. At
21dpl, CNR was increased distally to the injury site compared to that measured
at 1dpl. At 1dpl, axonal di�usivity (λ‖) was reduced in the injury site compared
to non-injured ON. At 21dpl, λ‖ in the injury site was increased compared to that
measured at 1dpl. GAP-43 immunohistochemistry demonstrates axons present
in the ON distally to the injury site at 21dpl.

These results demonstrate that MEMRI and DTI are complementary tools for
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detecting ON injury, and both techniques are promising for in vivo detecting
regenerating axons after ON injury.
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Discussion

5.1 Main �ndings

The main objective of this thesis was to develop and optimize MEMRI and DTI
as MRI tools for longitudinal, in vivo imaging of the rat visual pathway, and
to use these techniques to detect CNS injury and regeneration. In Papers I�III,
re�nements to the technique of MEMRI were made. The main �nding of Paper I
was that MEMRI can be used longitudinally to study the normal and injured
visual pathway. Intravitreal injection of MnCl2 allows for visualization of the en-
tire visual pathway from the retina to the superior colliculus, in agreement with
previous [90, 123]. Furthermore, we have demonstrated that in the mechanically
injured adult rat, no Mn2+-enhanced signal was observed in the ON distal to
the lesion site, indicating that the injury blocks the active transport of Mn2+.
Similar results have been observed in the ON following radiation-induced dam-
age [98], and after mechanically induced injury to the rodent olfactory tract [35]
and spinal cord [23, 108]. In Paper II, we demonstrated enhancement of the visual
pathway after intravitreal injection of MnDPDP similar to that seen after MnCl2-
injections, while no enhancement was seen in the visual pathway after intravitreal
injection of gadodiamide. This demonstrated the uniqueness of Mn2+-based con-
trast agents as intracellular markers for MRI of the CNS. To our knowledge, this
is the �rst study where Mn-DPDP is used as a CNS contrast agent, previous
animal studies using Mn-DPDP have mainly focused on heart or liver MR imag-
ing [44, 61, 74]. The toxicity of Mn2+ is well documented, but few studies have
addressed acute toxic reactions after local injections into the CNS. In Paper III,
we show that the optimal MnCl2-dose for MEMRI of the rat visual pathway af-
ter intravitreal injections was in the range of 150− 300 nmol, providing su�cient
tissue contrast without being toxic. High doses of MnCl2 (500 nmol and higher)
were toxic, leading to massive RGC death. Furthermore, we have demonstrated
that there was a strong correlation between the number of axons and CNR in
MEMRI, and that viable axons were necessary for Mn2+-transport.
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Regeneration in the CNS after injury and therapeutic intervention have been
studied extensively using histological tract tracing methods, however, in vivo

methods for detecting regeneration after injury are wanted. Three main �nd-
ings of this thesis demonstrate the potential for MEMRI as a possible tool for
investigating regeneration after axonal injury:

� MEMRI can be performed longitudinally.

� The transport of Mn2+ is blocked after ON injury.

� Viable axons are needed for transport of Mn2+.

In Paper IV, we demonstrate using MEMRI increased Mn2+-enhancement in the
distal ON after injury and intravitreal PNG, indicating that axons have regener-
ated through the injury and beyond. To our knowledge, no previous studies have
investigated regeneration in the ON after injury and treatment using MEMRI.
However, after an 80% spinal cord transection in mice, antibody therapy pro-
moted axonal survival of spared axons and possibly induced regeneration after
injury. This was demonstrated by increased Mn2+-enhancement in the spinal
cord distal to the injury site [108], supporting our �ndings in the rat ON. As a
complementary method to MEMRI, DTI was de�ned as a tool for visualization
of the ON in Paper IV. Most previous studies of the ON using DTI have used
spin echo (SE)-DTI, which is less prone to image distortions, but also requires
long scan time, making in vivo scanning in combination with other MR protocols
di�cult. In this thesis, we combine in vivo DTI with MEMRI by using the rapid
imaging technique DTI-EPI. We found that λ‖ was reduced in the injury site,
which is in agreement with previous �ndings [105, 109, 110, 129]. To our knowl-
edge, no previous studies have investigated regeneration in the ON after injury
and treatment using DTI. The main �ndings of Paper IV were that MEMRI and
DTI give complementary information about functional and structural changes in
CNS, and both methods detect axonal injury in the ON, and give indications of
axonal regeneration after injury and intravitreal PNG.

5.2 Methodological considerations

5.2.1 MEMRI

In MR imaging, the goal is to quickly obtain high quality data with high SNR,
high CNR and good image resolution. When scanning live objects, time is often
the limiting factor. In every protocol, parameters such as TR, TE, �ip angle,
�eld of view (FOV), slice thickness, matrix size, number of averages (NEX) and
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receiver bandwidth must be optimized to obtain the best image quality possible
within the time frame available. The choices of TR, TE and �ip angle determine
if the image will be proton density, T1- or T2-weighted, and in�uence the image
contrast. Increasing TR will increase SNR, but also the acquisition time. Choos-
ing a large matrix size and thin slices will give a high resolution image, however,
this will also increase the scan time and reduce SNR. Scan time increases lin-
early with the number of averages (NEX), while SNR increases as

√
NEX, due to

the presence of random noise in the data. Reducing the receiver bandwidth will
reduce the noise, which will increase SNR. However, this will also increase the
minimum TE and increase chemical shift artifacts. The �eld strength and type
of coil also greatly a�ect SNR [51, 127].

All MEMRI acquisitions in this thesis were obtained using a T1-weighted 3D
FLASH protocol. T1-weighting is obtained by acquiring an MR-scan with low
TR and low TE. In a 3D volume acquisition, the entire set of continuous slices
is excited for each TR, resulting in a 3D k-space matrix of raw data that is
reconstructed by 3D Fourier transform. 3D acquisitions will usually increase the
scan time compared to 2D, but SNR will increase, and the slice thickness can
be drastically reduced, allowing reduced partial volume e�ects and better image
resolution [18]. The 3D FLASH sequence used in Papers I and II was based on the
protocol used by Watanabe et al [123], where 3D MEMRI of the visual pathway
was obtained at 2.35 T with a similar magnet as our system. This protocol was
optimized with regards to �ip angle, to obtain high SNR within a reasonable scan
time. Before data collection for Paper I, the protocol was tested at our system,
and it was found that no further optimalization was necessary.

The MRI-acquisitions in Papers I and II were performed at 2.35 T, while in
Papers III and IV, MRI was performed at 7 T. Theoretically, SNR should increase
linearly with increasing �eld strength [43]. However, susceptibility and chemical
shift artifacts increase with higher �elds, as well as a lengthening of T1 and a
shortening of T2 [75]. Thus, the observed increase in SNR is usually not as high
as theoretically expected [21]. The increase in SNR can for example be used
to reduce the scan time (by reducing TR or NEX), or increase the resolution.
The latter is illustrated in Figure 5.1, where the increased SNR at 7 T is used
to increase the resolution in a frog brain within equal acquisition times. Going
from 2.35 T to 7 T (Paper I and II versus Paper III), TR in the MEMRI rat
brain protocol was reduced from 15 ms to 12.5 ms (Table 3.3). This, in addition
to small decrease in resolution, lead to a scan time of approximately 30 min,
compared to 1 h in Papers I and II. Still, an increase in SNR of approximately
50% was obtained. The �ip angle was found not to a�ect SNR or CNR very
much within the range of 20 to 30◦.

A surface coil was used for all MR imaging. This greatly increases SNR, however,
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(a) Field strength: 2.35 T,
Resolution: 273× 234× 313 µm3,
Number of averages: 16,
Acquisition time: 32 min.

(b) Field strength: 7 T,
Resolution: 136× 136× 156 µm3,
Number of averages: 4,
Acquisition time: 32 min.

Figure 5.1: Oblique 2D slices from 3D MEMRI of the frog brain 48 h after intrav-
itreal 150 nmol MnCl2-injection showing the retina and ON at 2.35 T
(a) and 7 T (b). The same frog is imaged at both �eld strength.
Both scans were performed with the same acquisition time, and the
increased SNR at 7 T was used to increase the resolution and reduce
NEX. All other scan parameters were the same, and a quadrature rat
head surface coil was used in both acquisitions.
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the RF signal detected is gradually reduced as the distance form the coil to the
tissue increases. In the rat visual pathway, the ON projects ventrally from the
retina, away from the dorsally located surface coil, resulting in an expected grad-
ually reduced signal along the ON. To adjust for this, the CNR was calculated
from the signal intensity in the Mn2+-enhanced and contralateral non-enhanced
ON, at positions along the ON located equidistant from the surface coil. How-
ever, because of the increased signal in the MnCl2-injected ON compared to the
non-injected ON, this still causes a reduction in the CNR with increasing dis-
tance between the ON and the surface coil in Paper I and II (Paper I; Figure
7 and Paper II; Figure 8). In Paper III and IV, low resolution correction scans
with equal parameters as the high resolution 3D FLASH sequence was obtained
in single and coupled operation settings, to correct for the gradually reduced
detection area of the surface coil (see Table 3.3). This corrected for almost all
of the gradually reduced signal (Figure 5.2), thus, the observed fall in CNR is
mostly caused by the use of a surface coil. However, the fall in CNR could also be

Figure 5.2: CNR ± SEM pro�les along the ON after intravitreal injections of
150 nmol MnCl2 in 8 normal rats without surface coil correction (open
circles) and with surface coil correction (�lled circles).

attributed to temporospatial e�ects caused by axonal transport mechanisms of
Mn2+. The uptake of Mn2+ by RGC, the potential combination of active trans-
port and passive di�usion, and the possible clearance of Mn2+ from the ON are
all factors that may have contributed to the characteristic CNR pro�les observed
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in rats with normal ON.

In Paper I, the ROI tool in ParaVision was used to analyze the data. The
procedure was very time consuming, and required high degree of user interaction
which was subjected to possible user bias. Furthermore, the reconstructed 2D
slices perpendicular to the ON were limited to 8-bit resolution, not utilizing the
whole 16-bit range of the original 3D data set. This could reduce the sensitivity
and possible not detect di�erences in CNR that were detectable in the 16-bit data
volume. Thus, the was a need for a more automated and e�cient segmentation
procedure, which was developed in Paper II. Here, the ON was automatically
segmented based on a manually set seed point within the ON, a highly unbiased
and e�cient procedure using the whole 16-bit range. The procedure of Paper
II needed a minimal CNR in the ON. Thus, it could not be used in Paper III,
where CNR was close to zero in the visual pathway after high doses of MnCl2.
Furthermore, the segmentation procedure segmented the ON and optic tract
only, not the SC, which was examined in Paper III. To reduce user bias and
increase e�ciency compared to the procedure used in Paper I, all MEMRI data
sets in Paper III were normalized to a chosen template brain. ROIs were drawn
manually in one dataset and transferred to all the other data-sets. In Paper IV,
the semi-automatic segmentation procedure developed in Paper II was used for
data analysis.

The experiments of this thesis have all been using T1-weighted imaging. T1-
mapping is more sensitive to changes in T1 that T1-weighing, and would provide
the true T1-value of each voxel in the data volume. T1-mapping of the entire rat
brain is possible using for example the Look�Locker method in either multiple 2D
slices or a 3D volume [34, 52], however, the technique is challenging compared to
the 3D weighted FLASH sequence with regards to obtaining good image quality
and post processing procedures.

5.2.2 DTI

DTI of the animal brain is challenging due to the small nerve �ber bundles
compared to humans. SE-DTI has produced good image quality DTI maps of
rodents; however, the scan time is long, up to several hours [109], making it
di�cult to combine in vivo DTI with other protocols. EPI is a very fast imaging
technique that allows rapid in vivo DTI of the animal brain. However, EPI is
prone to eddy current- and chemical shift artifacts, and image distortions due
to �eld inhomogeneity and magnetic susceptibility variations [18]. DTI-EPI of
the ON is particular challenging because of its small size, uncontrolled motion,
air in the nasal cavity causing susceptibility e�ects, and high signal from fat and
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cerebrospinal �uid surrounding the ON [128]. In spite of these di�culties, we
have developed a DTI-EPI protocol which produced good quality images of the
ON in vivo with few geometrical distortions. Furthermore, by comparing DTI
results form control ON with or without Mn2+-enhancement, we were able to
rule out interference from Mn2+ with regards to the DTI-derived measures. The
parameters that mostly a�ected the image quality was increasing the receiver
bandwidth to 500000 Hz, and introducing multi shot EPI (number of shots = 4),
both of which were crucial for obtaining satisfactory image quality at our system.
Increasing the receiver bandwidth reduces SNR, but will also reduce chemical shift
artifacts. Multi shot EPI can yield better image quality because of better SNR,
reduced blurring, less distortions and lower ghost intensity [18]. However, the
scan time is increased and multi shot EPI is more sensitive to motion. Although
pilot studies revealed better image quality ex vivo, satisfactory image quality
was accomplished in vivo, and no gating was necessary. Better MR hardware,
especially improved shim strength, would increase �eld homogeneity, and could
improve the EPI protocol.

5.2.3 MEMRI and DTI

MEMRI and DTI are complementary methods with sensitivity for in vivo trac-
ing of normal, injured and regenerating axons in the ON. Good image quality
was easily obtained using the FLASH-sequence for T1-weighted MEMRI, while
DTI-EPI was prone to susceptibility-related artifacts, and geometrical distor-
tions compared to MEMRI. Thus, DTI is a more challenging imaging technique
than MEMRI with regards to protocol optimalization. However, DTI-EPI has
the advantage of being completely non-invasive with no need for contrast agent
injections. Further pulse sequence optimalization of both MEMRI and DTI pro-
tocols, as well as more sophisticated post-processing methods and better MR
hardware can possible improve both sensitivity and image quality. In particular,
3D T1-mapping has recently been shown to improve Mn2+-sensitivity in rodent
neural tract tracing by MEMRI [34]. Furthermore, inversion recovery prepara-
tions might improve T1-weighted contrast, especially important when applying
this technique to even higher magnetic �elds strengths due to the inherent con-
vergence of T1 relaxation times.
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5.3 Mn2+ as a contrast agent

5.3.1 Mn2+ and toxicity

The toxicity of Mn2+ in the nervous system is well documented [7, 36, 97]. In
humans, long term exposure to Mn2+ induces parkinsonian symptoms, includ-
ing headaches, memory loss, emotional instability, rigidity, tremors, seizures and
death [7, 36], and animal studies have shown neuronal degeneration after MnCl2
injections into the striatum [26]. However, little is known about the acute e�ects
of MnCl2 when used as a contrast agent for MEMRI. Bearer et al. [13] recently
reported a transient disruption of retinal electrical activity after 100 nmol (0.5 µl
200 mM) intravitreal injection of MnCl2 in mice, as well as 25% loss of RGC
after 4 months. In MEMRI, high Mn2+-enhanced tissue contrast, but without
introducing toxic e�ects is wanted. In Paper I, we showed that increasing the
dose of MnCl2 from 0 to 200 nmol lead to a gradually increase in CNR in the
ON. In Paper III, a wider range of MnCl2-doses from 0− 3000 nmol was inves-
tigated. Here, we observed a gradually increase in CNR in the ON and SC as
the dose was increased from 0− 300 nmol, and a decrease in CNR when the dose
was increased from 300− 3000 nmol. The decrease in CNR with high doses of
MnCl2 was attributed to breakdown of axonal transport mechanisms and RGC
degeneration caused by Mn2+-toxicity. Based on these results, the optimal dose
for MEMRI of the visual pathway is in the range of 150− 300 nmol. This will
give maximal CNR without introducing severe RGC toxicity. In Paper I, rats
were given serial intravitreal MnCl2-injections of 150 nmol at 0 d and 20 d, and
MEMRI at 1 d and 21 d showed no di�erence in CNR between the two time-
points, demonstrating that longitudinal MEMRI is feasible. However, long term
toxic e�ects caused by MnCl2 was not investigated in detail in this thesis.

Several strategies can be used to reduce the Mn2+-dose. T1-mapping is a quanti-
tative imaging technique providing the T1-value in each voxel of the data volume,
and is more sensitive to changes in Mn2+-enhancement that T1-weighted imaging.
Thus, the Mn2+-dose needed for su�cient tissue contrast can be reduced. To re-
duce the high initial concentrations after local injections of MnCl2 into the CNS,
Mn2+-releasing contrast agents such as MnDPDP (Paper II) or alginate capsules
can be used. However, attention must also be given to safe ways of administrat-
ing Mn2+ into the speci�c brain regions, and clearance versus accumulation of
Mn2+ in the brain.
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5.3.2 Can Mn2+ have a therapeutic e�ect?

In Paper IV, toxic e�ects of two serial doses of 150 nmol MnCl2 on RGC survival
in retina in rats with ONC was investigated. We feared that injured axons could
be more sensitive to toxic reactions of an assumed non-toxic dose of Mn2+ than
non-injured axons. Surprisingly, the current results suggest that MnCl2 had a
protective e�ect on RGC survival after ONC. There are several explanations for
our observations. Apoptosis after ONC is triggered by the entry of Ca2+ into
RGC [99], and since Mn2+ enter RGC through voltage gated Ca2+-channels, non-
toxic concentrations of Mn2+ may competitively block Ca2+ entry thereby protect
against apoptosis. Furthermore, ONC may cause the release of free radicals
which cause oxidative stress and cellular damage [49]. Mn2+ has the ability to
act as a scavenger, protecting RGC against oxidative stress [5, 10, 27]. Similar
observations of Mn2+-protection have been observed when the Mn2+-containing
and Mn2+-releasing contrast agent MnDPDP (Teslascan�) has been introduced
after acute liver injury and in hearts subjected to cardiac infarction. Furthermore,
it has been shown that MnDPDP has the potential to enhance anticancer drug
treatment by protecting normal cells as well as increasing the activity of the
anticancer agent [16, 27]. Further research is needed to fully understand these
possible therapeutic e�ects of Mn2+.

5.3.3 Uptake, binding, transport and clearance of Mn2+

After injection, there is an uptake of Mn2+, and a subsequent transport of Mn2+

along the axons. Little is known about the dynamics of uptake versus trans-
port, for example if the transport rate is limited by the uptake of Mn2+, or the
subsequent transport mechanisms, or both. Mn2+ is taken up by voltage gated
Ca2+-channels [82], which are present in great numbers in dendrites of the cell
body. Mn2+ can also enter through other Ca2+-transporters such as the Ca2+-
pump mediated by ATP and the Na+/Ca2+-exchanger [91]. A reduced uptake
of Mn2+ has been observed after administration of the Ca2+-channel blocker
diltiazem [88].

The e�ect of a substance on proton relaxation rate is known as relaxivity [65].
Water molecules tumbles much faster than the Larmor frequency, resulting in
ine�cient relaxation, which is demonstrated by long T1 and T2 relaxation times.
Paramagnetic substances, such as Mn2+, are strong magnetic dipoles that when
placed in the presence of tumbling water protons, creates �uctuation in the mag-
netic �eld because of dipole-dipole interactions between electrons and protons.
This will reduce the T1 relaxation times of the nearby protons, and result in
increased signal in T1-weighted images [127]. Bound Mn2+ have a stronger re-
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laxivity (i.e. stronger T1-e�ect) compared to free Mn2+ [58]. This can be ex-
plained by binding of Mn2+-ions to macromolecules, which will greatly reduce
the molecular tumbling rate of the paramagnetic center, leading to a more ef-
�cient dipolar interaction with surrounding protons. Intracellularly, Mn2+-ions
can bind to a variety of macromolecules, and be transported into organelles such
as mitochondria and endoplasmatic reticulum, or move freely in the cytosol. The
strong T1-e�ect observed in these experiments suggests that most Mn2+-ions are
bound to macromolecules within the RGC. The exact locations of the Mn2+-ions
within the cell, remain unknown.

Several observations indicate that there is an active transport of Mn2+ inside ax-
ons. In Paper I, we show that no Mn2+-enhancement was detected distal to the
ON injury, demonstrating that mechanically injuring the axons blocks the trans-
port of Mn2+. Furthermore, in Paper III, no Mn2+-enhancement was observed
in the visual pathway after high doses of MnCl2 indicating that viable axons are
needed for transport of Mn2+. These results are supported by previous �ndings;
Paulter and Koretsky demonstrated that the transport of Mn2+ is blocked after
administration of the microtubule disrupting agent colchicine [88]. Passive di�u-
sion could also contribute to the transport of Mn2+. Passive di�usion of Mn2+

has been observed after direct injection into the striatum and amygdala [89].
Separation of the two transport mechanisms is often di�cult. After ONC, no
Mn2+-was seen distal to the crush site (Paper I). If passive the di�usion was the
main mechanism of Mn2+-transport, Mn2+-enhancement distal to the crush site
would be expected. However, Mn2+-di�usion could be blocked by the ONC scar
tissue, or Mn2+ could be removed from the ON by blood in the crush, and thus
not be observed in the distal ON, even if it was transported passively within the
ON. It has been suggested that Mn2+ mainly is transported anterogradely [104],
but retrograde transport of Mn2+ has been recorded in the mouse striatum and
amygdala [89]. After intra-ON injection, we observe Mn2+-enhancement distal
to the injection site (Paper III). Proximal, some Mn2+-enhancement is observed
close to the injection site, but not in the retina. This indicates that a small
component of the transport might be mediated by passive di�usion at a speed
not high enough to reach the retina within 24 h. Furthermore, this indicates
that anterograde, not retrograde transport is the main direction of Mn2+-tra�c
within the ON.

After intravitreal injection, the maximal CNR was seen in ON after 24 h and in
the SC after 48 h, demonstrating the temporospatial movement of Mn2+ through
the visual pathway. The distance between the ON and SC is approximately
22 mm. Using this, we can estimate the rate of Mn2+-transport to be approxi-
mately 1 mm/h. This is lower that the rates of 2− 5 mm/h recorded in the ON
by Pautler et al and Bearer et al [13, 90]. Our estimate was, however, not based
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on a dedicated transport rate experiment, but derived from an experiment where
the main purpose was to investigate clearance of Mn2+ from the visual pathway.
Because a variety of molecules/organelles might be involved in the transport of
Mn2+, the Mn2+-transport might consist of several components, with di�erent
transport rates. A dedicated transport rate experiment could tell us more about
which structures within the axons that are involved in the transport of Mn2+, and
the transport rates of Mn2+-tra�c. Furthermore, blocking/impairment of various
structures within the axons could provide information about which components
of the axons that are involved in the transport of Mn2+.

Mn2+ can traverse the synaptic cleft and be taken up in the post-synaptic mem-
brane [111]. Using MEMRI, trans-synaptic transport of Mn2+ has been observed
in the olfactory pathway, striatum and amygdala [89, 90, 100]. In the visual path-
way, RGC axons project from the retina to the LGN and SC without synapses,
however, in the LGN, visual information is transferred via synaptic connections
through the optic radiation to layer IV in the primary visual cortex. In our exper-
iments, we did not observe signi�cant Mn2+-enhancement of the primary visual
cortex. As the amount of Mn2+ is reduced when crossing the synapse, MEMRI
sensitivity could limit the detection of Mn2+ in the post-synaptic areas. Nev-
ertheless, Lindsey et al recently demonstrated Mn2+-enhancement in the mouse
visual cortex after intravitreal injection. Although detection of trans-synaptic
Mn2+-transport has not been the main focus of this PhD-thesis, we have de-
tected Mn2+-enhancement in a subcortical area outside the visual pathway, most
likely the CA3 region of the hippocampus, also observed by others [122]. This
suggests that Mn2+ is released, either through the synapses in the LGN, and/or
unspeci�cally throughout the visual pathway into for example the ventricles, and
a subsequent uptake of Mn2+ into the hippocampal area. Accumulation of Mn2+

in the hippocampal formation has also been observed after systemic injection
[122], suggesting high a�nity for Mn2+ in the hippocampal region.

In Paper I, we show that Mn2+ is cleared from the visual pathway 168 h after
intravitreal injection of 150 nmol MnCl2. The exact mechanisms for clearance of
Mn2+ from the visual pathway are not known, but systemic venous and lymph
vessels are believed to be involved. Mn2+ is cleared from the body by biliary,
pancreatic and urinary excretion [7], however, it has been shown that some Mn2+

can accumulate in the brain [7, 48]. Even if Mn2+ is cleared from the visual
pathway by one week, the clearance rates from the brain and rest of the body
have not been investigated here.
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5.3.4 Mn2+ and other contrast agents

Gadolinium (Gd3+)-based contrast agents are by far the most common contrast
agents used in clinically MRI. Similarly to Mn2+, Gd3+ is a paramagnetic heavy
metal that reduces T1. In Gd3+-based contrast agents, Gd3+ is chelated into
a stable complex and is not released from this complex within the body. The
complex is usually administrated intravenously, and released from the capillaries
into interstitial space [17]. As the uptake and clearance of Gd3+-complexes from
normal and abnormal tissue di�erers, MRI can separate pathological tissue such
as tumors and stroke from healthy tissue. However, in contrast to Mn2+, the
Gd3+-complex is not taken up into cells, and thus is an unspeci�c contrast agent.
As demonstrated in Paper II, Gd3+ is not taken up into the retina or ON after
intravitreous injection, but is present in the vitreous for a period of at least 12 h,
and is cleared gradually within 24 h, most likely by super�cial retinal veins. This
demonstrates the uniqueness of Mn2+ as a MRI contrast agent.

5.4 CNS injury and regeneration

Before MEMRI can be considered as a tool for detection of axonal regeneration,
some conditions need to be ful�lled. Three of the major �ndings of this thesis
address these conditions. Firstly, MEMRI can be used as a longitudinal tool.
After clearance of Mn2+ from the visual pathway (by ∼7 d), rats can be re-
injected with MnCl2, allowing for longitudinal monitoring of animals after injury.
Secondly, the transport of Mn2+ is blocked after ON injury, enabling detection
of the injury. Thirdly, viable axons are necessary for Mn2+-transport, making
it possible to detect regenerating axons. Thus, Mn2+ is transported actively in
axons, and MEMRI is a measure of axonal function. Without these conditions
ful�lled, the use MEMRI as a tool for detection of regeneration in the CNS would
be di�cult.

These �ndings demonstrate that MEMRI as a method, has the potential of de-
tecting regenerating axons. However, several obstacles exists. Regeneration after
intravitreal PNG is well documented using traditional histological tract tracing
methods [20, 38, 47]. But the amount of CNS axons that regenerate after injury
and stimulation is limited to maximum 10%, and the sensitivity of MEMRI is low
compared to histological tract tracing methods. Thus, even if these regenerat-
ing axons have the ability to transport Mn2+, it might not be enough axons with
Mn2+ present to reach a level detectable by MEMRI. Furthermore, the resolution
of MEMRI is low compared to histology. While histological methods can sepa-
rate individual axons, this is far from possible using MEMRI. However, MEMRI
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has the major advantage of being a longitudinal tool for in vivo investigation.
Future advances in developing regenerating stimuli would increase the amount of
expected regeneration, making MEMRI an even more attractive tool. Addition-
ally, future improvements in MR technology can increase both sensitivity and
resolution. While MEMRI hardly will be as good as histological methods, the
gap between the methods will decrease.

No Mn2+-enhanced signal was detected distal to the injury site 1 dpl. Proximal to
the injury site, Mn2+-signal enhancement was increased compared to non-injured
control ON with intravitreal MnCl2 (Paper I; Figure 7). This can be attributed to
accumulation of Mn2+ in the proximal ON caused by disruption in downstream
axonal transport in the injury site. CNR in MEMRI was increased at the lesion
site and distally at 21 dpl compared to 1 dpl in rat with ON injury and intravitreal
PNG implantations (Paper IV), while no di�erence was seen in rats with ON
injury only (Paper I). This indicates that axons have regenerated through the
injury site and beyond after injury and PNG implantation. These results were
con�rmed by GAP-43 immunohistochemistry, that showed the presence of axons
in the ON distal to the injury site. However, no ultra structural methods that
can pinpoint the exact location of the Mn2+-ions within the axons are easily
available. Thus, our results give only an indication of regeneration that has to
be con�rmed by future studies.

λ‖ derived from DTI-measurements has been suggested as a biomarker for axonal
damage [105, 6, 115], and is the strongest candidate of the DTI-parameters (FA,
mean di�usivity, λ‖ and λ⊥) to describe axonal regeneration. λ‖ was reduced in
the injury site at 1 dpl, demonstrating that DTI can detect axonal injury. Pre-
vious DTI-studies of axonal injury without regenerative stimulation have shown
no di�erence, or an additional decrease in λ‖ in the chronic phase after injury
compared to the acute phase [109, 110, 129]. Here, we demonstrate an increase in
λ‖ in the injury site at 21dpl compared to that measured at 1dpl. This suggests a
normalization of axonal structures within the ON in the chronic phase, approach-
ing values of λ‖ for the non-injured ON, and indicates that axonal regeneration
can be detected using DTI.

Taken together, results from this thesis, which are con�rmed by GAP-43 im-
munohistochemistry, indicate that MEMRI and DTI can detect regeneration after
injury and intravitreal PNG in the rat visual pathway.
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5.5 Clinical considerations

In this thesis, MEMRI and DTI are de�ned as tools for studying the normal,
injured and regenerating visual pathway. Parameters such as dose- and time-
response of Mn2+-enhancement, toxicity of Mn2+ and mode of Mn2+-transport
were speci�ed for MEMRI, and a DTI-EPI protocol for in vivo acquisitions was
optimized. This constitutes re�nements to the techniques of MEMRI and DTI,
and can be applied to a variety of methods in experimental animal research.
Thus, MEMRI and DTI are valuable techniques in animal research, and can be
used for example in development and testing of new therapeutics for regeneration
after CNS injury and other neurodegenerative diseases. When a promising ther-
apeutic is developed, this can be transferred into clinical trials, and ultimately,
if successful, becoming part of routine clinical treatment. MEMRI and DTI can
also be used in other aspects of preclinical CNS research, to learn more about for
example epilepsy, glaucoma and stroke [1, 32, 72, 120] before this knowledge is
transferred into patient care.

However, direct clinical applications of DTI and MEMRI exist. DTI is currently
being introduced as a clinical tool to map white matter tracts of the human
brain. DTI is non-invasive and without the need for contrast agents, and because
of larger nerve bundle size, DTI of the human brain can be obtained more easily
that of the animal brain. However, to de�ne and re�ne DTI as a tool for detection
of CNS injury and regeneration, the controlled settings of animal research is
needed. Introducing MEMRI of the CNS into the clinic is not equally straight
forward. The major obstacle is the toxicity of Mn2+. However, the high initial
concentrations of Mn2+ could potentially be reduced by developing new slow-
release Mn2+-contrast agents. Furthermore, the constant improvement in RF coil
technology and MR pulse sequences could improve MEMRI sensitivity, so that
the Mn2+-dose needed for su�cient tissue contrast can be reduced. This could
potentially facilitate future transition into clinical CNS applications. Given that
the limitations of MEMRI could be overcome, several potential future clinical
applications of MEMRI exist. With increasing MR �eld strengths, T1 increases,
and separation of grey/white matter contrast becomes more di�cult. Mn2+

could increase white matter contrast at higher �elds and facilitate anatomical
imaging of the human brain. Furthermore, MEMRI has the potential to detect
structural and functional changes in the CNS, and be a complementary technique
to applications such as DTI and BOLD fMRI, in the latter case because Mn2+

accumulates in activated areas of the brain, enabling mapping of brain activation.
This is of potential interest in epilepsy and brain tumor surgery. MEMRI could
also become a powerful tool for cellular imaging of neurodegenerative diseases
and monitoring response to regenerative therapy also in humans. Examples of
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the latter are di�erentiation of implanted stem cells and regeneration of axonal
connections after spinal cord injury. It must be emphasized that more work is
needed to reveal the full potential of clinical MEMRI of the CNS.

5.6 Future perspectives

This thesis has provided re�nements to MEMRI, however, much is still unknown
about the transport mechanisms of Mn2+ in axons. Future studies could tell us
more about the rate and direction of Mn2+-tra�c within the axons, and which
subcellular compartments within the axons are involved in transporting Mn2+.
Also, there is a need for an easily available method for ultrastructural detection
of Mn2+, to pinpoint the exact location of Mn2+ within the cell. Future protocol
optimalization and development of new MR hardware and post processing tools
will improve MEMRI and DTI sensitivity and speci�city. Thus, MEMRI and
DTI have the potential for becoming important tools for monitoring CNS injury
and regeneration, both in animal models, and in patient care.

5.7 Conclusion

Methods for in vivo longitudinal MR imaging using MEMRI and DTI have been
established, with the purpose of studying the normal, injured and regenerating
visual pathway. Both MEMRI and DTI can visualize the normal ON, detect
ON injury and are promising tools for detecting regeneration after ON injury.
MEMRI detects the axons ability to transport Mn2+, and thus is a measure of
axonal function. DTI is a measure of water di�usion, re�ecting mainly structural
changes in the ON. Thus, MEMRI and DTI are truly complementary methods
for detecting axonal injury and regeneration.
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