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Sammendrag: 
TITTEL: Perspektiver på vaskulære forskjeller i armer og bein: 

Implikasjoner for menneskers aldring, kjønn og trening. 
FORFATTER:  Steven Keita Nishiyama 
 
Mye forskning som vurderer blodstrøm i human skjelettmuskel er blitt gjennomført, 
som reaktiv hyperemi og muskelmetabolisme i isolerte muskler, men det er et relativt 
fåtall studier som har undersøkt vaskulære og metabolske forskjeller i armer og bein 
både i hvile og under metabolsk utfordrende perioder som trening og avstenging av 
blodstrøm med trykkmansjetter. Imidlertid har nylig noen spennende og klinisk 
signifikante forskjeller mellom armer og bein blitt tydeliggjort både hos friske og 
sykdomsrammede, og hos de siste synes det som om beina har en større grad av 
vaskulær dysfunksjon. For å forstå bedre vaskulær kontroll og patologi (e.g. aldring 
og perifer arteriell sykdom/ intermittent claudication) som gir utslag i større grad av 
vaskulære forskjeller, gjennomførte vi en serie protokoller som var designet for å 
evaluere skjelettmusklenes metabolske og vaskulære reguleringsmekanismer og 
implikasjonene for forskjellige grupper av befolkningen (i.e. alder og kjønn). 
 Flere nye metodologiske teknikker (ultralyd/doppler, nukleær magnetisk 
resonans (NMR) og elektron paramagnetisk resonans (EPR) ble brukt for å måle 
fysiologiske variabler (blodstrøm, reaktiv hyperemi, oxidativ metabolisme, bioenergi 
og produksjon av frie radikaler) ved bruk av eksperimentelle protokoller som 
inkluderte isolert dynamisk arbeid, kuldestimulert konstriksjon, inntak av anti-
oksidanter og bruk av trykkmansjetter for å indusere oksygenmangel. Totalt 140 
friske forsøkspersoner (122 unge (23±2 år) forsøkspersoner (105 mannlige og 17 
kvinnelige) og 18 eldre (72±2 år)  forsøkspersoner (16 mannlige og 2 kvinnelige)) 
deltok i studiene. Avhengig av eksperimentoppsett og måleteknikker ble målingene 
gjort i arm (brakiale a.) og bein (enten de femorale arteriene eller poplietal a.). Disse 
studiene ga følgende resultater: 1) det er en arbeidsindusert avhengighet av pro 
oxidant stimulert vasodilatasjon, som viser en viktig og positiv vaskulær rolle for frie 
radikaler, 2) vasokonstriksjon mediert via sympaticus uttrykkes likt både i armer og 
bein i hvile både for trente og utrente forsøkspersoner, men med forskjellig utvikling 
av vasokonstriksjon under akutt arbeid både med hensyn på arm- og beinforskjeller og 
treningsstatus, 3) leggmusklene i en ung frisk gruppe forsøkspersoner viste en svekket 
reperfusjon respons, mens arterie blodstrøms-mediert dilatasjons data paradoksalt 
viser at bein har større vaskulær reaktivitet enn arm, 4) aldring har en arm og 
beinspesifikk effekt på vaskulær struktur, reaktiv hyperemi og arbeidsindusert 
blodstrøm, og 5) uavhengig av kjønn er reaktiv hyperemi større i beina og kvinner har 
den samme vaskulære funksjon i armer, men er svekket i beina.  
 Samlet sett ser det ut til at arm- og beinforskjeller eksisterer, og i forskjellig 
grad i forskjellige deler av befolkningen. Disse studiene har belyst flere underliggende 
mekanismer som definerer forskjeller i vaskularitet, som alle er viktige for å forstå 
blodstrøm i skjelettmuskel og vaskulære kontrollmekanismer ikke bare i den friske 
delen av befolkningen, men også i sykdomsgrupper som synes å vise arm- og 
beinspesifikke vaskulære funksjonsproblemer.  





Summary: 
TITLE: Perspectives on Limb-Vascular Heterogeneity: Implications for 

Human Aging, Sex, and Exercise 
AUTHOR: Steven K. Nishiyama 
 

Considerable research addressing human skeletal muscle blood flow, vascular 
reactivity, and muscle metabolism has been performed in isolated limbs, but there is a 
relative paucity of studies that have assessed limb-specific vascular and metabolic 
differences both at rest and during metabolically challenging periods such as exercise 
and cuff-ischemia. However, recently some intriguing and clinically significant 
between-limb heterogeneities have become apparent in both health and disease, in the 
latter the lower extremities exhibiting the higher degree of vascular dysfunction. To 
better understand local vascular control and the multiple pathologies (e.g. aging and 
peripheral artery disease) that exhibit limb-specific tendencies, we conducted a series 
of protocols designed to systematically evaluate vascular limb heterogeneities with 
respect to skeletal muscle metabolic and vascular regulatory mechanisms and the 
implications for differing populations (i.e. age, sex).  

Multiple novel methodological techniques (Ultrasound Doppler, Nuclear 
Magnetic Resonance (NMR), and Electron Paramagnetic Resonance (EPR)) were 
utilized to assess physiological variables (blood flow, vascular reactivity, oxidative 
metabolism, bioenergetics, and free radical generation, respectively) during 
experimental protocols which included isolated dynamic exercise, cold-pressor 
stimulation, anti-oxidant administration, and ischemic cuff-occlusion. A total of 140 
healthy subjects (122 young (23 ± 2 yrs) subjects (105 males and 17 young females) 
and 18 old (72 ± 2 yrs) subjects (16 males and 2 females)) participated in these 
studies. Dependent on experimental modality and technique, measurements were 
made in the arm (brachial artery) and leg (either the femoral arteries (common, deep, 
and superficial) or popliteal artery). These studies revealed the following results: 1) 
There is an exercise-induced reliance upon pro-oxidant stimulated vasodilation 
thereby revealing an important and positive vascular role for free radicals, 2) 
Sympathetically mediated vasoconstriction is expressed equally and globally at rest in 
both sedentary and trained individuals, with a differential pattern of vasoconstriction 
during acute exercise according to limb and exercise training status, 3) The lower legs 
in a young healthy group of human subjects exhibit an attenuated ischemic 
reperfusion response, while conduit artery flow-mediated dilation data paradoxically 
reveal that the lower legs have greater vascular reactivity that the arm, 4) Aging has a 
limb-specific effect on vascular structure, vascular reactivity, and exercise-induced 
blood flow, and 5) Regardless of sex, vascular reactivity is greater in the legs and 
women have similar vascular function in the upper extremities, but this is attenuated 
in the lower extremities. 

Collectively, inherent limb differences appear to exist, and to different extents 
in varied populations. These studies have elucidated several underlying mechanisms 
defining vascular heterogeneities, all of which are important for understanding 
skeletal muscle blood flow and vascular control mechanisms in not only a healthy 
population, but also in diseased populations that tend to exhibit limb-specific vascular 
dysfunction.  
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INTRODUCTION 

VASCULAR CONTROL MECHANISMS 

Central and Local Mechanisms Governing Vascular Function and Muscle Blood Flow 

The human vasculature is a complex, dynamic system which precisely regulates the 

delivery of blood to all regions of the body. Regulation of these vascular responses involves 

the coordination of various central and local mechanisms all of which exist and act to 

successfully match the supply of blood with the metabolic demand of various tissues under 

wide-ranging conditions (91, 107). Blood flow is principally dictated by the product of vessel 

diameter and blood velocity, thus, the degree of vascular tone as well as the impact of 

controlling blood velocity are key determinants of blood flow. Accordingly, central and local 

factors act together to vary 1) the degree of vascular smooth muscle “tone”, which ultimately 

determines the diameter of the blood vessel, and 2) the arterial pulse pressure, which 

ultimately determines the velocity of the blood. The central control mechanisms consist 

primarily of neuronal and hormonal factors, and are responsible for regulating cardiac 

activity and regional vascular tone. As such, the central mechanisms are designed for the 

maintenance of systemic blood pressure and central cardiovascular homeostasis. Equally as 

important, vascular control is also regulated by local factors such as autocrine and paracrine 

substances, metabolic bi-products, and mechanical stimuli such as shear stress (80). In 

contrast to the central mechanisms, local vascular control mechanisms are designed to 

maintain site-specific vascular homeostasis. 

Hormonal factors can influence vascular tone in skeletal muscle, but they appear not 

to be of foremost importance in vascular control, particularly during a dynamic challenge 

such as exercise. However, nervous regulation by the autonomic nervous system controls 

both the central (e.g. heart) and peripheral (e.g. vascular resistance and conductance) 

mediators of the circulation and is of paramount importance in acute vascular control (20, 
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50). The combination of signals from central motor systems and by peripheral sensors (e.g. 

baroreceptors, muscle chemosensors, and mechanoreceptors) being integrated by the central 

nervous system (CNS) provides a major feed-forward and feed-back system with a high 

degree of specificity (171). By altering efferent outflow of the sympathetic and 

parasympathetic system, CNS nervous activity subsequently influences heart rate, cardiac 

output, and vascular tone, and thus, blood flow.  

Vascular function is also influenced by local mechanisms that specifically regulate 

vascular tone in a localized area. Two principal local mechanisms are the metabolic 

vasoactive milieu and vascular myogenic activity (37). The metabolic vasoactive milieu  

consists primarily of mediators from the vascular endothelium and muscle fibers (e.g. 

adenosine, nitric oxide (NO), oxidative stress), acting through pharmaco-mechanical coupling 

to promote vascular contraction or relaxation (107). Vascular smooth muscle is also 

controlled by an inherent constriction in response to stretch, normalizing changes in pressure 

across the vessel wall, the myogenic response (90). 

Collectively, both central and local systems govern vasomotion through 

vasoconstrictor and vasodilator processes and thus regulate the circulation of blood in an 

elegant and dynamic fashion. However, details regarding this interaction between local 

metabolic and systemic vascular control mechanisms, as well as the limb-specific variation 

that occurs in healthy young and senescent populations are certainly not well understood.  

 

Vascular Endothelial Function and Shear Stress 

In 1980 Furchgott and Zawadzki discovered the role of the vascular endothelium as a 

modulator and initiator of vasomotion, forever changing the landscape of vascular biology 

(62). Previously characterized as simply a physical barrier between the blood and the vascular 

wall, the vascular endothelium is the monolayer of cells lining all of the blood vessels in the 
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body that responds to both chemical and physical stimuli and forms an important component 

of local vascular regulation and vascular health (204). In a non-diseased/ healthy state, the 

endothelium releases a balance of autocrine and paracrine substances that modulate vascular 

tone and permeability, as well as angiogenesis and inflammation (55). Endothelial function is 

therefore an essential component to vascular homeostasis and control. Conversely, 

endothelial dysfunction is associated with the disruption in this delicate balance, adopting a 

phenotype that facilitates inflammation, thrombosis, vasoconstriction, and atherosclerotic 

lesion formation (113). Furthermore, the present body of knowledge supports the notion that 

endothelial function has prognostic value for cardiovascular risk, indicating that endothelial 

dysfunction plays a significant role in the development and progression of vascular pathology 

(21, 204). 

 One of the most important stimuli for the release of endothelial-derived factors is 

blood flow-associated shear stress (144). The endothelial response to shear stress includes 

changes in ionic conductance and the production of vasoactive molecules. This is followed by 

continuing signaling cascades and transcription factor activation, protein synthesis, and 

finally structural changes to alleviate the elevated shear stress (33). Shear stress refers to the 

laminar frictional force exerted by the blood as it moves along the vessel wall and is 

represented by the equation: ηV/D (where η = blood viscosity, V= blood flow velocity and D 

= vessel diameter) (64). A shear stress stimulus under experimental conditions, typically an 

elevation in blood flow, is created by decreasing downstream vascular resistance so that flow 

through the feeding conduit artery is increased. A reduction in downstream vascular 

resistance can be achieved in several ways and the method employed determines the profile 

of the shear stress stimulus in the conduit artery. The technique predominantly used in 

eliciting this response was first described and employed by Celermajer et al. (21), where a 

pneumatic cuff is placed around a limb and inflated suprasystolically to induce an ischemic 
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environment  distal to that cuff. Following a specific amount of time, the cuff is released and 

the transient elevation in blood flow-associated shear stress induces a vasodilatory response. 

This response is termed endothelial-dependent flow-mediated vasodilation (FMD). In vitro 

experiments have shown that any change in artery wall shear stress stimulates the endothelial 

cells to synthesize and release vasoactive substances: increases in shear stress cause the 

release of vasodilators such as NO, prostacyclin (PGI2), and endothelial-derived 

hyperpolarizing factor (EDHF) (29, 59, 132), while decreases in shear stress cause the release 

of endothelin-1, a potent vasoconstrictor (99). Under very specific procedural conditions, 

FMD examined through the cuff-occlusion modality has since been shown to elicit strictly a 

NO-dependent endothelial-mediated response (47, 125).  NO is synthesized within the 

endothelium from L-arginine under the influence of the enzyme endothelial nitric oxide 

synthase (eNOS). NO has anti-inflammatory and antithrombotic effects and therefore 

provides a degree of vasoprotection (28, 55). The goal of many human conduit artery FMD 

studies is to create a shear stress stimulus that evokes a NO dependent FMD response that can 

provide an assay of NO bioavailability and NO associated vasoprotection (103). To that end, 

FMD has emerged as a broadly applicable, non-invasive clinically relevant research tool that 

allows the assessment of endothelium-dependent peripheral artery vasomotion (22, 57, 195).  

 

The Autonomic Nervous System 

One of the primary means through which the autonomic nervous system regulates vascular 

tone and subsequently blood flow is through sympathetic nerve activity (SNA). Exercise 

leads to an increase in global SNA which affects both the heart (increasing frequency and 

strength of cardiac muscle contraction) and the blood vessels (producing vasoconstriction). 

Vasoconstriction is achieved through the release of norepinephrine (NE), which binds to 

membrane-bound post-junctional α-adrenergic receptors on the vascular smooth muscle. In 
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the vasculature of exercising muscle, these α-adrenergic receptors are susceptible to the 

metabolic byproducts originating from the active muscle tissue causing the vascular smooth 

muscle to be less sensitive to catecholamines (74, 169), and thus, attenuating 

vasoconstriction. Remensynder et al. (158) coined this phenomenon as “functional 

sympatholysis” and ever since, there is accumulating evidence from both animal and human 

studies supporting this attenuation of sympathetically-mediated vasoconstriction in exercising 

skeletal muscle (18, 197, 213). Nevertheless, the underlying mechanisms of sympatholysis 

are not completely understood, and remain a topic of many ongoing investigations. 

 

Oxidative Stress and Vascular Control 

Superoxide anion (O2
-) and other free radicals are highly energized molecular species, 

structurally distinct in that they contain one or more unpaired electrons in their atomic orbital 

(71). Within all mammalian tissue oxidative phophorylation and the formation of ATP is 

accompanied by the univalent reduction of O2 to produce O2
- at an estimated rate of between 

2-5% (16, 56). This “electron leakage” is thought to occur at the NADH dehydrogenase (200) 

and the ubiquinone cytochrome-bc segment of complex III (150) in the mitochondrial 

electron transport chain. Free radicals are also generated by various oxidases, such as 

xanthine oxidase, cyclooxygenase, nitric oxide synthase, cytochrome P450, and the Nox 

family of NAD(P)H oxidases (210).  

Oxidative stress is ultimately determined by the balance between pro and antioxidant 

forces. In low concentrations, free radicals are thought to act as mediators and modulators of 

cell signaling and contribute to other key functions such as regulating the activity of 

transcription factors and gene expression (58, 126). In contrast, high levels of free radicals in 

the vasculature can exceed the local antioxidant defense capacity and thus induce oxidative 

stress in arterial cells and has been associated with hypertension, atherosclerosis, diabetes, 
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heart failure, sepsis, as well as the aging process (203). Since the initial observation that 

superoxide (O2
-) and other free radicals inactivate NO (208) it has become increasingly 

apparent that this may contribute to the origin and progression of vascular dysfunction in 

many of these pathologies (56, 194). Such conclusions are supported by the improvement in 

endothelial function afforded by the infusion of high levels of exogenous antioxidants in 

these conditions (54, 116). With the wide ranging impact of oxidative stress in disease and 

disease progression there is a clear need to better understand the role of free radicals and 

antioxidants in terms of healthy vascular function. 

 

VASCULAR ADAPTATIONS AND ALTERATIONS       

Age-Associated Changes in Vascular Structure and Function 

Aging is a relatively non-specific word; in humans, it is particularly difficult to 

differentiate between manifestations of aging per se and symptoms of disease and disease 

progression. Rather, it has become increasingly apparent that age-associated changes in 

cardiovascular structure and function become partners with pathophysiological disease, 

where aging blood vessels provide the milieu in which disease can flourish. However, over 

time the human cardiovascular system undergoes many deleterious adaptations, and 

advancing age has therefore been proposed as a major risk factor for cardiovascular disease, 

diabetes, hypertension, stroke, atherosclerosis, and congestive heart failure (101). As humans 

age, changes occur in both the central and peripheral circulation that can affect compliance in 

arteries and arterioles, arterial blood pressure, and ultimately limit the dynamic capacity of 

the vasculature (10, 206). Previous studies have documented several factors that 

preferentially occur in aging populations, including arterial wall thickening (41, 81, 135) and 

arterial stiffening (95), insulin resistance (119), and increased α-adrenergic (40, 180) and 

endothelin-1-mediated vasoconstriction (193). However, at the forefront of several functional 
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investigations has been the age-related reduction in endothelial function affecting vascular 

tone (17, 205). This is particularly associated with an attenuated NO regulation by the 

progressive attenuation in eNOS expression, impairment of the nitric oxide pathway, and 

elevated oxidative stress (2, 7, 184, 194). However, the mechanisms involved in this 

alteration as well as the extent of these changes are not well defined and probably depend 

upon the specific etiology. 

 

The Influence of Sex on Vascular Reactivity 

The incidence of cardiovascular disease differs significantly between men and 

women. This is thought to be predominantly due to sex-specific differences in risk factors 

and the hormonal milieu. Indeed, epidemiological studies have revealed that atherosclerosis, 

hypertension, peripheral vascular and coronary artery diseases occur with greater prevalence 

in males and in postmenopausal women when compared to premenopausal females (8, 100, 

111). While in clinical assessments of endothelium-dependent peripheral artery vasomotion, 

FMD studies of healthy populations have revealed that the brachial artery (BA) FMD is more 

pronounced in premenopausal women than men and their postmenopausal counterparts (112, 

142, 176). Therefore, previous studies have implicated estrogen as both a prostaglandin 

promoter and an antioxidant, protecting nitric oxide from degradation and facilitating 

increased vasomotion (117, 140). Thus, current thinking knowledge suggests female sex 

hormones, such as estrogen, have positive vascular effects, whereas their absence could be 

related to vascular dysfunction and subsequent atherogenic disease states. However, in 

studies assessing flow-mediated dilation, when the initial value of arterial diameter is taken 

into consideration, the increase in diameter appears similar between males and females (89). 

This suggests that some of the documented sex differences in vascular reactivity could be the 
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consequence of a mathematical bias rather than the beneficial effects of the female hormonal 

milieu.  

 

Vascular Effects of Exercise Training  

It has been well documented and accepted that habitual exercise not only preserves 

vascular homeostatic mechanisms, but also restores perturbed vascular mechanisms back 

towards the normal physiological range. Exercise training is associated with an improvement 

of many cardiovascular and autonomic parameters (9, 14, 77, 84), which are viewed as 

beneficial adaptations to the physiologic demands of the activity. Elevations in maximal 

oxygen consumption (o2max), a hallmark feature of exercise training, have been attributed to 

both increases in maximal cardiac output and heightened extraction of oxygen from the 

arterial blood (25, 107). The beneficial effects of exercise training specifically on the 

vasculature can be grouped into two forms: structural vascular adaptations and functional 

vascular adaptations. Structural changes are generally characterized by vascular remodeling 

(i.e. growth of already-existing vessels) (43, 69) and angiogenesis (15). Functional 

adaptations are characterized by less neurogenic vasoconstrictor tone (171) and altered local 

control mechanisms via changes in metabolic control systems (38, 105). Exercise training can 

augment endothelium-dependent vasodilation by enhancing eNOS expression and therefore 

increasing NO bioavailability (72). It is also possible that enhanced endothelial function with 

exercise training is the consequence of a prolonged half-life of NO by reducing its 

degradation by free radicals or by directly decreasing free radical production (61) 

Specific to this thesis are the autonomic adaptations that occur with exercise training. 

Data in animal models are equivocal regarding the effect of exercise training on limb α-

adrenergic responsiveness. In rats, longitudinal training studies have demonstrated decreased 

sensitivity to sympathomimetics in the trained muscle (209) and no change (52) or decreased 
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sensitivity (188) in isolated arterial segments. In humans, to our knowledge only two studies 

have assessed the effect of exercise training on α-adrenoreceptor-mediated vasoconstriction. 

Smith et al. (186) observed similar changes in arm blood flow (venous plethysmography) and 

arterial blood pressure in sedentary and endurance-trained subjects in response to both 

sympathomimetic infusion and orthostatic challenge. Similarly, O’Sullivan et al. (133) 

demonstrated a similar degree of vasoconstriction in the forearm of trained and sedentary 

subjects in response to a 2-min cold-pressor test (CPT). Thus, the present study in both the 

arm and leg is an effort to extend these earlier findings and elucidate the effect of chronic 

exercise training upon sympathetically mediated vasoconstriction. 

 

PERSPECTIVES ON LIMB-VASCULAR HETEROGENEITY  

Considerable research addressing human skeletal muscle blood flow, vascular 

reactivity, and muscle metabolism has been performed in isolated limbs of both the upper and 

lower extremities, but it appears that many of these studies do not have explicit interest in the 

limb-specific physiological response. The forearm and its vasculature is a good example of a 

targeted region that has been adopted as much for its practical appeal as its physiological 

implications. For example, the location and accessibility of the forearm and its vasculature 

allow vascular reactivity and blood flow measurements to be carefully and relatively easily 

performed. This has certainly been the case in the clinical context as the development and 

application of the FMD test has become increasingly, if not almost exclusively, performed in 

the BA of the arm (31, 76, 125, 148). Indeed, a strong relationship of the BA FMD test and 

coronary vessel health has been revealed (3, 195). However, the forearm and its vasculature 

has historically been used as a model to extrapolate findings for the systemic vasculature in 

humans without the substantial evidence that this is the case (3, 177, 195). Certainly, the 

perfusion of the forearm may not be of significant consequence to the body as a whole, due to 
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its relatively small perfused muscle mass. As such, there is a relative paucity of studies that 

have assessed vascular and metabolic differences with a specific interest in investigating 

possible limb differences.  

To that end, intriguing and clinically significant between-limb heterogeneities have 

recently become apparent (128, 139, 166). Teleologically, forearm and lower leg differences 

may be explained by the effects of gravity on limb vascular structure. As upright bipeds, 

humans are regularly subjected to large hydrostatic and transmural forces in the legs that 

appear to contribute to decreased capacitance and vascular conductance in the stiffened 

resistance vessels of the leg (53, 171). The impact of this elevated pressure on vascular 

control mechanisms in the legs has not been elucidated. However, based on research 

investigating the effects of elevated blood pressure by the coarctation of the aorta, both 

endothelial and vascular smooth muscle cell homeostatic processes have been shown to be 

impaired (12, 136, 202). This model of hypertension resembles the upright condition of the 

human vasculature where mean arterial blood pressure at the ankle of humans is 

approximately 65 mm Hg higher than in the arm (171). Therefore, it is plausible that the 

elevated blood pressure experienced in the lower extremities results in attenuation in vascular 

reactivity and its homeostatic processes. 

It has also been documented that vascular dysfunction due to disease is limb-specific 

(34, 70, 123, 174), with the lower extremities exhibiting the higher degree of incidence, 

possibly due to gravity and the subsequently elevated orthostatic stress (53, 171). Therefore, 

it is important that additional research be conducted to further explore inherent vascular and 

metabolic limb differences. 
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Exercise and Limb-Specific Regulation of Muscle Blood Flow 

In addition to global cardiovascular improvements, exercise training provokes limb-

specific adaptations in vascular function according to the type of exercise performed (36, 73), 

and even improves vascular function in non-trained limbs (24, 39, 67, 68, 79, 215). DeSouza 

et al. (39) reported a significant improvement in endothelium-dependent vasodilation to 

acetylcholine in the arm after 3 months of aerobic exercise training. Studies from our 

laboratory extend these findings (215), demonstrating a significant, limb-specific 

improvement in BA FMD, but not in the deep femoral artery (DFA) of the leg after only 6 wk 

of isolated quadriceps muscle training. The improvement of BA vasodilation after single-leg 

knee extensor exercise training raises the question of how isolated limb training may produce 

improvements in vascular beds that do not experience direct, exercise-induced hyperemia. 

Others (39, 67, 96) have explored this topic, noting improved vasodilatory capacity in 

untrained limbs after whole body exercise training, which has been attributed to improved 

NO bioactivity.  

In humans, indirect measurements of blood flow in the arm during sympathomimetic 

infusion and orthostatic challenge (186) as well as cold stimuli (133) have demonstrated a 

similar degree of forearm vasoconstriction between leg-trained and sedentary subjects in 

response to the cold-pressor test (CPT). However, in view of the numerous previous studies 

in the area, it is somewhat surprising how few human studies have specifically assessed 

training-induced adaptations in sympathetic control of blood flow in trained and untrained 

limbs. 

 

Aging and Limb-Specific Regulation of Vascular Reactivity and Muscle Blood Flow 

Despite our growing understanding of vascular changes with age, several gaps in the 

literature and newly emerging concepts have clouded this area. Specifically, there appear to 
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be significant positional-, limb-, and site-specific differences in terms of vascular 

responsiveness that may blur the assimilation of some age-related studies (128, 216). Aged 

humans have consistently displayed a 20–30% attenuation in supine resting leg blood flow 

that has been attributed to 50% greater leg vascular resistance (42, 44, 118, 124). In addition 

to supine rest, aging appears to attenuate skeletal muscle blood flow in the leg at submaximal 

and maximal workloads (10, 86, 110, 145, 147). However, this age-related reduction in blood 

flow has not been documented in the human forearm (39, 88, 191). As yet unanswered is the 

question of whether the difference in resting leg blood flow between young and old humans is 

a consequence of posture, because leg blood flow measurements in human aging studies have 

always been made while the subject was supine? Also, is blood flow different between young 

and old subjects during upper extremity exercise? Furthermore, if arm blood flow and leg 

blood flow are measured in the same subjects, are the putative age-associated decreases in leg 

blood flow during exercise also seen in the arm? 

Recent data from Newcomer et al. (129) in resting subjects utilizing pharmacological 

interventions suggest that endothelial-dependent vasodilation in the leg is preserved with 

advancing age, whereas forearm endothelial-dependent vasodilation in the same aged 

subjects is reduced; although collected at rest, these data imply that endothelial dysfunction is 

not a likely mechanism for the age-related reduction in leg blood flow during exercise. 

Although there are no current data to identify a specific mechanism, the fact that leg blood 

flow and vascular conductance are reduced in specific conditions (supine and exercise) with 

age, whereas the arm is not affected, may be indicative of age-related and limb-specific 

changes in vessel structure or alterations in vascular tone. These findings may be mediated by 

factors such as sympathetic nervous system control (44, 97), endothelin (45), or other potent 

vasoconstrictors. The apparently nonuniform limb vascular response in healthy young 
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individuals certainly raises some important questions regarding possible limb-specific 

alterations that may take place in the aged vasculature.  

 

Limb-Specific Autonomic Control of the Vasculature  

In humans, similar degrees of responses have been exhibited in both the arm and leg 

during acute sympathetic activation (133, 186). In a recent study, Jacob et al. (87) evaluated 

adrenergic receptor sensitivity (change in vascular resistance) following sympathomimetic 

drug infusion (phenylephrine and isoproterenol) and the cold-pressor test (CPT) in the arm 

and leg of younger, normally active volunteers. This study reported a similar increase in local 

norepinephrine spillover in the arms and legs following the CPT, interestingly the calculated 

vascular resistance increased in the arm but decreased in the leg, suggesting a limb-specific 

end-organ response. However, during adrenergic drug infusions in the same subjects the arm 

demonstrated a greater sensitivity to phenylephrine and a lesser sensitivity to isoproterenol 

compared with the leg, suggesting that adrenergic-receptor differences cannot explain the 

paradoxical leg response. This study thus provides convincing evidence for similar 

sympathetic activation between limbs, but it provides no explanation for the dissociation 

between sympathetic activation and its functional correlate in the leg. 
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SPECIFIC AIMS AND HYPOTHESES 

 

Paper I 

Aim:   To determine the efficacy of an orally administered antioxidant cocktail on 

free radical concentration and evaluate the antioxidants effects on exercise-

induced brachial artery vasodilation in young healthy human subjects.  

Hypothesis #1:  The antioxidant cocktail will significantly attenuate the circulating free 

radical signal both at rest and as a consequence of exercise. 

Hypothesis #2:  In normal healthy subjects a large antioxidant-induced reduction in free 

radicals will actually attenuate exercise-induced-brachial artery 

vasodilation. 

 

Paper II 

Aim:  To examine whether sympathetically mediated vasoconstriction at rest and 

during acute exercise would differ between sedentary and exercise-trained 

subjects, and whether these differences would be global or limb-specific.  

Hypothesis #1:  Sympathetic vasoconstriction in response to the CPT at rest would be 

attenuated in both the arms and legs of exercise-trained subjects compared 

to sedentary controls.  

Hypothesis #2:  In sedentary subjects, acute exercise would attenuate sympathetically-

mediated vasoconstriction equally in the arms and legs. 

Hypothesis #3:  In the exercise trained subjects, sympatholysis would be limb-specific, 

such that acute exercise would attenuate sympathetically-mediated 

vasoconstriction to a greater degree in the trained legs compared to the 

relatively untrained arms. 
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Paper III 

Aim:  To investigate the limb-specific nature of conduit vessel flow-mediated 

dilation (FMD) and comprehensively evaluate the impact of both a 

mathematical and experimental normalization technique of the shear rate 

stimuli between two different vessels. 

Hypothesis #1:  The arm (brachial artery, BA) would exhibit a larger FMD than the leg 

(popliteal artery, PA) when expressed in traditional terms (% change) 

Hypothesis #2:  Experimental and mathematical normalization for shear rate would reveal 

a greater sensitivity (FMD) to a given stimulus level in the leg (PA) than 

the arm (BA). 

 

Paper IV 

Aim #1:  To characterize the post-ischemic cuff hyperemic response in the arm and 

leg of healthy subjects.  

Aim #2:  To characterize skeletal muscle metabolic activity and oxygenation during 

ischemia and elucidate their influence on muscle blood flow. 

Hypothesis #1:   Resting limb blood flow and post-ischemic hyperemia will be similar in 

the arm and the leg.  

Hypothesis #2:  When normalized for muscle mass, both the resting limb blood and the 

hyperemic response will be far greater in the arm.  

Hypothesis #3:  Utilizing multiparametric Nuclear Magnetic Resonance (NMR), we tested 

the additional hypothesis that the apparent difference in vascular control 

could be explained by differing skeletal muscle metabolic and/or 

oxygenation states between limbs. 
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Paper V 

Aim:  To determine the effect of aging on blood flow and vascular conductance 

during exercise in both the upper and lower extremities. 

Hypothesis #1:  There will be no difference young and old subjects in blood flow during sub-

maximal forearm exercise.   

Hypothesis #2:  The old group will exhibit an attenuated leg blood flow during sub-maximal 

leg exercise compared to young subjects. 

 

Paper VI 

Aim:  To evaluate the limb-specific effects of the aging process as it relates to 

structure, hyperemia, and vascular function of healthy older individuals. 

Hypothesis #1:  Intima-media thickness (IMT) will be greater in the PA than the BA in 

both young and old groups and the limb-specific IMT difference will be 

exaggerated with age.  

Hypothesis #2:  IR per unit of muscle mass will be attenuated in the lower leg compared to 

the arm and the IR limb-specific difference will be exaggerated with age.  

Hypothesis #3:  FMD, expressed in traditional terms (% diameter change), in both the BA 

of the arm and the PA of the leg will be attenuated in the aged group 

compared to the young group. 

Hypothesis #4:  FMD normalized for shear rate will not differ with age in the BA. 

However, in the PA, normalized FMD will reveal attenuated vascular 

function in the older group compared to young. 
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Paper VII 

Aim:  To extend previous findings of limb-vascular heterogeneity and the limb-

specific regulation of muscle blood flow, but with the added focus of 

determining the effect of sex.  

Hypothesis #1:  IR and FMD will differ between the BA and the PA of both the male and 

female groups, extending previous findings of limb-vascular 

heterogeneity. 

Hypothesis #2:  Based upon the purported beneficial antioxidant effects of estrogen on NO 

bioavailability, the impact of a reduced hemoglobin concentration ([Hb]), 

and smaller baseline vessel diameters in females, ischemic reperfusion and 

relative FMD will be more pronounced in the arms and legs of the female 

group. 

Hypothesis #3:  When initial vessel diameter and shear rate following cuff occlusion are 

taken in account (i.e. absolute FMD/shear rate) vascular function in the 

arms and legs will not be different between males and females. 
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MATERIALS AND METHODS 

SUBJECTS 

A total of 140 healthy subjects (122 young (23 ± 2 yrs) subjects (105 males and 17 young 

females) and 18 old (72 ± 2 yrs) subjects (16 males and 2 females)) participated in these 

studies. All subjects were nonsmokers, normotensive (<140/90 mmHg), and free of overt 

cardiovascular disease. Subjects were excluded from participation if they were taking any 

medications that would alter vascular responsiveness. Young female subjects were studied in 

the follicular phase (days 1-7) of their menstrual cycle. Three out of the 17 young female 

subjects were utilizing oral contraceptives. Old female subjects were post-menopausal and 

not on estrogen replacement therapy. Informed consent was obtained according to the 

University of California, San Diego, Human Subjects Protection Program requirements. 

Health histories and physical examinations were completed on all subjects. In addition, 

graded exercise tests were required for individuals over 40 years of age. All subjects reported 

to the laboratory in a fasted state (>4 hours postprandial) and had refrained from caffeine and 

exercise prior to the studies (>12 hours). All studies were performed in a thermoneutral 

environment. 

 

GENERAL PROCEDURES 

Single leg knee-extensor exercise (Papers II and V):  

The subject was seated on an adjustable chair with a cycle ergometer (model 828E; 

Monark Exercise AB, Vansbro, Sweden) placed behind them. Resistance was provided by 

friction on the flywheel, which was turned by the subject via a metal bar connected to the 

crank of the ergometer and a boot attached to the ankle of the subject. Sixty dynamic 

contractions of the knee-extensor muscles per minute were performed (1 Hz). Contractions of 

the quadriceps femoris muscle caused the lower part of the leg to extend from 90° to 170° 
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flexion. The momentum of the flywheel assisted in the return of the relaxed leg to the start 

position. Subjects exercised at work rates of their WRmax determined on the preliminary visit. 

Subjects were allowed sufficient practice during this pre testing to familiarize themselves 

with the exercise equipment, ensuring that each subject was comfortable with all testing 

procedures. This modality of exercise is excellent for Doppler studies because the muscles 

studied are major locomotors, are almost motionless during exercise, and good isolation of 

this muscle group has been documented (159, 160). Over the past five years we have 

constructed several versions of single leg knee-extensor ergometers and have published many 

studies utilizing them (109, 110, 162-165).  

 

Forearm handgrip exercise (Paper I and V):  

A single maximal voluntary contraction (MVC) was be established for subjects using a 

hydraulic handgrip dynamometer with an analog output (Rolyan Ability One, Germantown, 

WI, USA), and this MVC value was used to calculate an individual relative work rate. During 

the handgrip exercise, subjects were instructed to squeeze the dynamometer as quickly as 

possible, which limits the isometric contraction phase to less than 20% of the 2-sec duty cycle 

(0.5 Hz), resulting in a quasi dynamic exercise modality. 

 

Cold-pressor testing (CPT) (Paper II):  

Each CPT was preceded by at least 30 min of supine rest. For all CPT trials, sympathetic 

activation was accomplished through immersion of the foot in an ice water slurry (1-3 

degrees C) for 3 minutes, which has been well documented as a potent reflex stimulus 

capable of increasing muscle sympathetic nerve activity (130, 178, 179) and plasma 

norepinephrine levels in both arm and leg (87) without significantly elevating plasma 

epinephrine (13, 94, 122). 



25 
 

 

Flow-mediated vasodilation (FMD) (Papers III, IV, VI, and VII):   

Subjects lay supine and a pneumatic cuff (Hokanson, Bellevue, WA, USA) was 

positioned distal to the placement of the ultrasound Doppler probe (arm: upper arm proximal 

to the elbow, leg: lower right leg below/distal to the knee) visualizing the brachial artery of 

the arm and the popliteal artery of the leg (152). For leg trials, subjects lay supine on a 

gurney, modified to allow dorsal ultrasound Doppler access to the popliteal artery. After a 20-

min rest period, baseline measurements were made, and the cuff inflated to suprasystolic 

pressure (>250 mmHg) for 5 min. Full occlusion was documented by the loss of ultrasound 

spectra in vessels distal to the cuff. When appropriate, arm cuff was inflated to suprasystolic 

pressure (>250 mmHg) for a period of 30 to ≤ 120 s, to appropriately match the reactive 

hyperemia and subsequent shear rate observed in the leg FMD study (5 min occlusion).  

 FMD was calculated as the percent change (relative) or the absolute delta (absolute) 

from resting artery diameter to the largest diameter achieved during the 105 s of post-

inflation imaging. Consistent with the literature, the peak diameter was observed at 50–70 s in 

most subjects (31). All ultrasound vessel diameter measurements were evaluated during end 

diastole (corresponding to an R wave documented by the simultaneous ECG signal). 

 

Antioxidant supplementation (Paper I):  

All subjects received either an antioxidant cocktail or placebo supplementation in a 

randomized, double-blind balanced design. The formulation and timing of this antioxidant 

cocktail was the result of our pilot work employing vascular sampling and electron 

paramagnetic resonance (EPR) spectral analysis to document its efficacy in reducing free 

radical concentration, but restrained by the intent to not vastly exceed the common “over the 

counter” dosage for each individual antioxidant. Consequently, supplements were taken in 
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two doses separated by 30 minutes, with the first dose ingested two hours before the 

experimental protocol. The first dose consisted of 300 mg of  α-lipoic acid, 500 mg Vitamin 

C, and 200 I.U. Vitamin E, while the second included 300 mg α-lipoic acid, 500 mg Vitamin 

C, and 400 I.U. Vitamin E (water dispersible). Placebo microcrystalline cellulose capsules of 

similar taste, color, and appearance, and was likewise consumed in two similarly timed doses. 

 

MEASUREMENTS 

Ultrasound Doppler flowmetry (All Papers):  

An ultrasound Doppler (Logiq 7, GE Medical Systems, Milwaukee, Wisconsin, USA) 

equipped with a linear array mechanical sector transducer operating at an imaging frequency 

of 8-10 MHz was used to image arterial vessels of the arm and leg.  Vessel diameter and 

intima-media thickness (IMT) was determined at a perpendicular angle along the central axis 

of the scanned area, where the best spatial resolution was achieved. IMT was twice measured 

at rest, within close proximity (~0.05 cm), on the far wall, from the interface between blood 

and intima and the interface between media and adventitia, and then averaged (143). The 

brachial artery (BA) was insonated 4-8 cm proximal to the antecubital crease, medial to the 

biceps and brachii muscle. The popliteal artery (PA) was insonated in the popliteal fossa 

(hollow at the back of the knee) where it was optimally visualized. The common, superficial, 

and deep femoral arteries (CFA, SFA, and DFA respectively) were insonated distal to the 

inguinal ligament.  

 The blood velocity profile was obtained using the same transducer with a Doppler 

frequency of 5.0-6.7 MHz, operated at high-pulsed repetition frequency mode (2-25 kHz) 

with a depth of 0.5-3.5 cm in the BA and PA and 1.5-3.5 cm in the CFA, SFA, and DFA. 

Special care was taken to avoid aliasing, to ensure that probe position was stable, the 

insonation angle did not vary (60º), and that the sample volume was positioned in the center 
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of the vessel and adjusted to cover the width of the diameter and therefore the blood velocity 

 

distribution. Using arterial diameter and mean velocity (Vmean), blood flow was calculated as:  

Blood Flow (mL/min) = Vmean · π · (Vessel Diameter/2)2 · 60. Total blood flow (absolute and 

normalized for muscle mass) was quantified using the area under curve (AUC) for blood flow 

over time (ml or ml/100g), integrated with the use of commercially available software 

(SigmaPlot 8.0, Systat Software, Point Richmond, CA). Total blood flow (AUC) were 

integrated using the trapezoidal rule and was calculated as: ∑(yi(x(i+1) - xi) + (1/2)(y(i+1) - 

yi)(x(i+1) - xi)) 

 Shear stress has been identified as a mechanism that stimulates the vascular 

endothelium and results in subsequent vasodilation (144). However, as blood viscosity was 

not be measured, shear rate was calculated by using the equation (34, 215, 216): Shear rate 

(s-1) = 4· Vmean(cm/s) / Vessel diameter(cm). Cumulative shear rate was expressed using the 

area under the curve (s-1•s) for shear rate over time (1, 148), integrated with the use of 

commercially available software (SigmaPlot 8.0, Systat Software, Point Richmond, CA). 

Cumulative shear rate area under the curves was again integrated using the trapezoidal rule. 

 

 

Figure 1. An ultrasound Doppler screen 
capture illustrating the typical image and 
blood velocity spectra in the brachial 
artery following cuff-occlusion release. 
Note first two cardiac cycles of the 
Doppler signal are during cuff occlusion, 
followed by cuff release and subsequent 
hyperemia. TAMAX is peak veolocity 
(cm/s), TAMEAN is mean velocity 
(cm/s), Vol-Flow is blood flow (ml/min), 
VFDiam is arterial diameter (cm) 
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Multiparametric nuclear magnetic resonance (NMR) (Paper IV): 

These studies were carried out in a 4 Tesla, 46-cm internal bore, superconducting magnet 

(Magnex 4/60) interfaced to a Bruker Biospec NMR spectrometer. Muscle perfusion, 

intracellular oxygenation, and energy metabolism was studied simultaneously by rapidly 

interleaved acquisitions of saturation inversion recovery Arterial Spin Labeling (ASL) 

perfusion imaging, 1H spectroscopy of deoxymyoglobin, and 31P spectroscopy of the high-

energy phosphate metabolites (49). The subject’s appropriate limb was carefully positioned 

inside a 17 cm inner diameter transversal electromagnetic 1H transmit-and-receive volume 

coil, and an 8-cm diameter custom built 31P surface coil slid underneath the limb. 

 

Arterial Spin Labeling (ASL). A temporary perfusion map was extracted by summing the 

differences between successive pairs of images acquired at rest, 5 minutes of arterial 

occlusion, and 100 seconds following release. Multiple (2-3) regions of interest (ROIs) each 

with an area ~2-3 cm2 were traced within the lower leg and the forearm, randomly sampling 

the total area but carefully excluding voxels containing lipids or vessels. Identical ROIs were 

selected in all the images of the series, and perfusion (f) was calculated according to the 

equation (156): 
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where M stands for the image intensity in muscle ROI after slice-selective and nonselective 

inversion; T is the ASL time (0.82 s);  is the tissue/blood partition coefficient (0.9), and r1 is 

the muscle spin-lattice relaxation rate (0.66 s–1).We have previously described in detail the 

quantitative relationship between perfusion and the MRI signal (19, 60, 211, 212). 
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1H Deoxymyoglobin. After a 100-Hz line-broadening exponential multiplication and Fourier 

transformation, zero- and first-order phases of the deoxy-Mb spectrum were adjusted 

manually on an end-cuff acquisition. All FIDs of the series were processed using these same 

parameter settings. After automatic baseline correction (± 20 ppm), the deoxy-Mb peak of 

each spectrum was quantified by integration over 10 ppm. Fractional deoxy-Mb signal was 

determined by normalizing these data to the maximal deoxy-Mb spectra observed at the end-

cuff acquisition, assuming complete desaturation in 4-6 min (163, 199, 207). To appropriately 

account for the potential impact of muscle mass or limb myoglobin concentration, fractional 

deoxy-Mb was then normalized to limb muscle mass (deoxy-Mb (AU)/ muscle mass (100 g)). 

Myoglobin desaturation rate was determined by the slope of the linear portion of the deoxy-

Mb kinetic curve between 90-180 s during ischemic cuff-occlusion. 

 

31P Spectra of High-Energy Phosphates. The 31P FIDs were processed in a similar fashion to 

the 1H spectra, except for an 8-Hz line-broadening exponential multiplication. Inorganic 

phosphate (Pi) and phosphocreatine (PCr) integration limits were set to 5.6/3.5 ppm and 1.5/-

1.5 ppm, respectively. Muscle intracellular pH was calculated from the chemical shift (δ) 

between the Pi  and PCr peaks (196): 








δ+
δ+−+=

69.5

27.3
log75.6pH  

 

Spin trapping and Electron Paramagnetic Resonance (EPR) spectroscopy (Paper I):  

EPR was performed on venous blood samples. Briefly, 4.5ml of venous blood was collected 

into a vacutainer that contained 1.5ml of the spin trap α-phenyl-tert-butylnitrone (PBN) 

(0.140mol/L). After centrifugation, the PBN adduct was extracted from the serum supernatant 

with toluene, and the adduct (200 µL) was pipetted into a precision-bore quartz EPR sample 

tube (Wilmad Ltd, UK) that had been flushed with compressed N2. EPR was performed at 21 
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°C using an EMX X-band spectrometer (Bruker, MA, USA) using commercially available 

software (Bruker Win EPR System, Version 2.11), with data processing blinded to 

experimental condition (achieved by coded numbering of samples). 

 

Heart rate (All Papers):  

Heart rate was recorded from a standard 3-lead ECG, an integral component of the Doppler 

system (Logiq 7, GE Medical Systems, Milwaukee, Wisconsin, USA). 

 

Noninvasive blood pressure (All Papers):  

During studies using the Doppler system, blood pressure was measured using radial 

tonometry (Biopac Systems NIBP 100A), which calculates systolic and diastolic and mean 

pressures derived from a pressure sensor placed directly above the radial artery. 

 

Tissue volume measurements (Papers II, and IV-VII):   

Forearm and lower leg circumferences (distal, proximal end, and one-third distal to the 

proximal end) and length (joint-to-joint) were measured to calculate tissue volume (92). 

Additionally, ventral (forearm, quadriceps) and dorsal (lower leg) skinfold measurements 

were taken to assess subcutaneous fat and allow the calculation of muscle volume for the 

quadriceps, lower leg and forearm (46, 92, 149).  

Muscle mass of the complete forearm (Papers II, and IV-VII) and lower leg (Papers 

II, and IV, VI, and VII) was calculated from the anthropometric assessment of muscle 

volume by multiplying by the density of muscle (1.06 g/cm3). On the basis of both an 

excellent agreement (forearm: ±5%, lower leg: ±2%) and a high correlation (forearm: r = 

0.91, lower leg: r = 0.92) between this method and dual energy X-ray absorbometry 

(Explorer; Hologic, Waltham, MA) documented previously in our laboratory for the forearm 
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(46) and recently (unpublished observations, (n=10)) in the lower leg, we applied the 

following regression equations to the anthropometrically determined values for the forearm 

and the lower leg: 

Forearm: muscle mass (anthropometric) (kg) · 1.155 - 0.24 = Muscle mass (kg) 

Lower Leg: muscle mass (anthropometric) (kg) · 1.0271 - 0.0064 = Muscle mass (kg). 

 

Thigh muscle volume (Paper II and V) was converted to quadriceps muscle mass with the use 

of the following equation: Thigh muscle volume (L) · 0.307 + 0.353 = thigh muscle mass.  

This anthropometrically determined quadriceps muscle mass, previously revealed to correlate 

highly with muscle mass assessed by computer tomography (r2 = 0.86), was corrected on the 

basis of this relationship with the following equation (149): Muscle mass 

(anthropometric)(kg) · 0.924-0.292 = quadriceps muscle mass (kg). It should be noted that 

these calculations do not remove the volume occupied by bone. 

 

Statistics:  

Statistics were performed using commercially available software (SigmaStat 3.10, Systat 

Software, Point Richmond, CA). Repeated-measures ANOVA, ANOVA, and Student's t-tests 

were used to identify significant changes in variables within and between age groups and 

limbs, with the Student-Newman-Keuls test used for post hoc analysis when a significant 

main effect was found. All group data are expressed as mean ± SE. Statistical significance 

was established at P < 0.05. 
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SUMMARY OF RESULTS  

Paper I 

Electron Paramagnetic Resonance (EPR) spectroscopy revealed a reduction in circulating free 

radicals following antioxidant administration at rest (98%) and as a consequence of exercise 

( 85%) (Figure 2).  

 

Plasma total antioxidant capacity and vitamin C both increased following the ingestion of the 

antioxidant cocktail, whereas vitamin E levels were not influenced by the ingestion of the 

antioxidants. Brachial artery vasodilation during submaximal forearm handgrip exercise was 

greater with the placebo (7.4 ± 1.8%) than with the antioxidant cocktail (2.3 ± 0.7%) (Figure 

3). 
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Figure 2. The alpha-phenyl-tert-
butylnitrone (PBN) electron 
paramagnetic resonance (EPR) 
spectroscopy data under the 
conditions of rest and following 
exercise with placebo and the oral 
antioxidant cocktail. Inlayed are 
representative individual examples 
of the PBN EPR spectra under each 
scenario. 
 

Figure 3. The effect of an oral 
antioxidant cocktail on change in 
brachial artery diameter in young 
healthy subjects at rest and at three 
submaximal levels of handgrip 
exercise (3, 6, and 9 kg at 0.5 Hz). 
Values for % change in brachial 
diameter are not exact and are 
displayed solely for reference 
purposes (right axis). * significantly 
different from the placebo condition. 
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Paper II 

At rest, the cold-pressor test (CPT) decreased vascular conductance similarly in the leg and 

arm of sedentary subjects (–33 ± 8% leg, –38 ± 6% arm) and cyclists (–34 ± 4% leg, –31 ± 

9% arm) (Figure 4), and during exercise CPT-induced vasoconstriction was blunted (i.e., 

Le
g 

va
sc

ul
ar

 c
on

du
ct

an
ce

 

(%
∆ )

-60

-40

-20

0

20

40

Rest
50% WRmax

-60

-40

-20

0

20

40

A
rm

 v
as

cu
la

r 
co

nd
uc

ta
nc

e 

(%
∆ )

-60

-40

-20

0

20

40

-60

-40

-20

0

20

40

*
*

*

*

Sedentary Trained

 

sympatholysis) in both the leg and arm of both groups. However, the magnitude of 

sympatholysis was significantly different between the arm and leg of the sedentary group (–

47 ± 11% arm, –25 ± 8% leg), and it was less in the arm of cyclists (–28 ± 11%) than 

sedentary controls (Figure 5). 
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Figure 4. Changes in calculated 
vascular conductance from pre-CPT 
values during a 3-min CPT at rest 
(solid black bars) and during exercise 
at 50% of WRmax (solid gray bars) in 
leg (top) and arm (bottom) trials in 
sedentary and cyclist groups. Values 
are means ± SE. %, Percent change. 
*Significantly different from resting 
CPT trial, P < 0.05. 

Figure 5. "Magnitude of 
sympatholysis" in the leg and arm of 
the sedentary and cyclist groups, i.e., 
the calculated difference in vascular 
conductance changes between rest and 
exercise to the CPT. Values are means 
± SE. * Significantly different from 
leg (P < 0.05).  Significant difference 
between sedentary and cyclist groups, 
(P < 0.05). 
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Paper III 

The brachial artery (BA) revealed a smaller diameter and larger post-ischemic cumulative 

blood velocity (area under curve, AUC) than the popliteal artery (PA), a combination that 

resulted in an elevated post-cuff cumulative shear rate (AUC) in the BA (BA: 25419 ± 2896 

s-1•s; PA 8089 ± 1048 s-1•s, P < 0.05) (Figure 6A). Thus, when expressed in traditional terms 
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Figure 6. Brachial and popliteal shear rates and 
subsequent flow mediated dilations following 5 
minutes of cuff-occlusion in the brachial and 
popliteal arteries (Panel A and B, respectively), 
following reduced cuff duration in the brachial artery 
(Panel C and D), and FMD mathematically 
normalized for shear rate following conventional 5 
minute cuff occlusions (Panel E). * denotes  
significant difference between limbs (P < 0.05) 
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there was a tendency for the BA to have a greater FMD than the PA (6.5 ± 1.0% and 4.5 ± 

0.8%, respectively; P = 0.1) (Figure 6B). Due to an elevated shear rate in the BA compared to 

the PA for the 5 min cuffing experiment, average cuff duration during experimental shear rate 

matching protocols in the arm was significantly reduced from 5 min to 60 ± 9 s. Both 

individually and therefore on average, matching of shear rate was achieved (5 min cuff PA 

cuff-occlusion: 8089 ± 1048 s-1•s, BA reduced cuff duration: 8104 ± 1016 s-1•s) (Figure 6C). 

When shear rate was experimentally matched (PA: 4.5 ± 0.8%; BA: -0.4 ± 0.4%) (Figure 6D) 

or mathematically normalized; (PA: 6.8×10-4 ± 1.6×10-4 %∆/ s-1•s; BA: 2.5×10-4 ± 0.4×10-4 

%∆/ s-1•s) (Figure 6E) the PA revealed a greater FMD per unit of shear rate than the BA (P < 

0.05). 

 

Paper IV 

In absolute terms, both resting and cumulative blood flow (AUC)) over 105 s following cuff 

release was not different between the forearm and lower leg (Figure 7A). However, when 

appropriately expressed relative to muscle mass, blood flow was significantly different 

between limbs at rest (forearm: 10 ± 1; leg: 4 ± 0.5 ml/100g, P<0.05) and during ischemic 

reperfusion (IR) (forearm: 55 ± 4; leg: 17 ± 2 ml/100g AUC, P<0.05) (Figure 7B). To extend 

these limb-specific vascular findings and to examine potential contributing mechanisms, 6 

subjects were studied utilizing multiparametric nuclear magnetic resonance to simultaneously 

examine muscle perfusion (arterial spin labeling (ASL)), intracellular de-oxygenation 

(myoglobin proton spectroscopy), and muscle metabolism (phosphorous spectroscopy (31P)). 

Metabolic perturbation, muscle pH, and de-oxygenation rates during cuffing were not 

different between limbs. However, ASL (AUC) confirmed the resting blood flow differences 

between limbs (forearm: 16 ± 4; leg: 6 ± 1 ml/100g, P<0.05) which were maintained, albeit at 

a lesser degree, during IR (forearm: 47.1 ± 6.1; leg: 29.2 ± 2.9 ml/100g, P<0.05) (Figure 7C). 
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Paper V  

Quadriceps muscle mass was significantly different between young (2.1 ± 0.2 kg) and old 

subjects (1.6 ± 0.1 kg) (P<0.05). During exercise, blood flow and vascular conductance in the 

leg were attenuated in the old when expressed as blood flow per unit muscle mass for a given 

absolute workload or at a given relative exercise intensity (young, 1,523 ± 329; old, 1,340 ± 

157 ml·kg–1·min–1 at 40% WRmax) (Figure 8B). In contrast, aging did not affect forearm 

muscle mass or attenuate exercise blood flow or vascular conductance in the arm (Figure 8A)  
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Figure 7. Absolute limb blood flow at rest and 
following cuff release (panel A). Limb blood flow 
normalized for muscle mass at rest and following 
cuff release (panel B). Intramuscular perfusion at 
rest and following cuff release as measured by 
nuclear magnetic resonance imaging-based arterial 
spin labeling (NMRI ASL) (panel C). ‡ denotes 
significant difference between limbs at rest (P 
<0.05). *  denotes significant difference between 
limbs following cuff release (AUC) (P < 0.05). 
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Figure 8. Effects of aging on blood flow per kilogram of forearm muscle mass (panel A) and of quadriceps muscle 
mass (panel B) during exercise across a series of submaximal absolute and relative workloads (handgrip at 0.5 Hz, 
knee-extensor 1Hz) in young and old subjects. * denotes significant difference between young and old 

 

 

Paper VI 

Intima-media thickness (IMT) measurements revealed a “thickening” in the popliteal artery 

(PA) compared to the brachial artery (BA) which was exaggerated with age (young: BA: 

0.028 ± 0.001 and PA: 0.046 ± 0.003, old: BA: 0.039 ± 0.002 and PA: 0.073 ± 0.005 cm; P < 

0.05) (Figure 9). IR revealed a similar pattern as IMT in terms of limb and age-related 

differences. 
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There was an age-related attenuation in both BA FMD (young: 7.4 ± 0.8%, old: 4.6 ± 0.6%; 

P < 0.05) and PA FMD (young: 5.5 ± 0.6%, old: 1.6 ± 0.5%; P < 0.05) (Figure 10A). 
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Figure 9. Brachial and popliteal artery 
intima-media thickness in young and old 
subjects. * denotes significant 
differences between limbs (P < 0.05). † 
denotes significant differences between 
young and old (P < 0.05).  
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Figure 10. Brachial and popliteal artery flow-mediated dilation in young and old subjects expressed as % change 
in diameter (panel A) and normalized for the shear rate stimulus (panel B). * denotes significant difference 
between brachial artery and popliteal artery (P < 0.05). † denotes significant difference between young and old 
groups (P < 0.05). Note the similar brachial artery flow-mediated dilation normalized for shear rate between 
young and old groups, whereas the same normalization for shear in the popliteal artery does not correct the 
attenuated dilation (panel B). 

However, when this % change was normalized for shear rate, only the PA FMD of the old 

group was still significantly attenuated (young: 10.0 ×10-4 ± 1.5 ×10-4, old: 5.8 ×10-4 ± 1.9 

×10-4 % ∆ / s-1•s) (P <0.05) (Figure 10B).  

 

 

Paper VII 

Between the sex groups, relative FMD (% diameter change) was significantly larger in the 

female group for the BA (male: 6.7 ± 0.6%, female: 8.7 ± 1.1%; P < 0.05) and was not 

statistically different in the PA (male: 4.4 ± 0.6%, female: 5.4 ± 0.8%) (Figure 11A). When 

relative FMD was normalized for the shear rate AUC, the PA of both limbs revealed no sex-

related differences (Figure 11C) (male group: PA: 8.3 × 10-4 ± 0.1 ×10-4 and BA: 3.8 × 10-4 ± 

0.3 × 10-4 % ∆ / s-1•s, P < 0.05; female group: PA: 7.5 × 10-4 ± 1.6 × 10-4 % ∆ / s-1•s and BA: 

3.5 × 10-4 ± 0.5 × 10-4 % ∆ / s-1•s, P < 0.05) (Figure 11C).  

With the statistically smaller resting diameters in the female group for both BA and 

PA, FMD was also assessed as an absolute change in diameter. Using this approach, there 

was no statistical difference both within and between limbs and sex groups (male group: BA: 
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0.027 ± 0.002 and PA: 0.027 ± 0.003 cm, female: BA: 0.027 ± 0.003 and PA: 0.024 ± 0.003 

cm) (Figure 11B). Consistent with the relative FMD, when absolute FMD was normalized for 
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the shear rate AUC, the PA of both the male and female groups revealed a significantly 

greater FMD for a given shear rate than their respected BA’s (male group: PA: 5.0 × 10-6 ± 

0.8 ×10-6 and BA: 1.6 ×10-6 ± 0.1 ×10-6 cm / s-1•s, P < 0.05; female group: PA: 3.3 × 10-6 ± 

0.6 × 10-6 and BA: 1.2 × 10-6 ± 0.2 × 10-6 cm / s-1•s, P < 0.05) (Figure 11D). In contrast to the 

relative FMD/shear rate AUC, there was a sex-related difference in PA absolute FMD/ shear 

rate AUC (P < 0.05), but no sex-related difference in BA absolute FMD/Shear Rate AUC 

(Figure 11D).

Figure 11. Brachial and popliteal artery flow-mediated dilation (% diameter change (panel A) and absolute 
diameter change (panel B)) in male and female subjects. Flow-mediated dilation normalized for shear rate area 
under curve (% diameter change (panel C) and absolute diameter change (panel D)). * denotes significant 
difference between brachial artery and popliteal artery (P < 0.05). † denotes significant difference between male 
and female (P < 0.05). 
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DISCUSSION 

THE INFLUENCE OF OXIDATIVE STRESS ON VASCULAR FUNCTI ON DURING 

EXERCISE (Paper I) 

Pro- and Antioxidant Forces  

The delicate balance between pro- and antioxidant forces and the subsequent positive versus 

negative effects of free radicals is likely a crucial aspect of life (48). Low concentrations of 

free radicals appear to have both important mediating and modulating roles in cell signaling 

(48, 58, 126); however, without restraint higher levels of free radicals such as O2
– can cause a 

wide spectrum of cellular damage, including lipid peroxidation, alteration of intracellular 

redox state, inactivation of enzymes, and damage to DNA. Consequently, there are numerous 

endogenous antioxidants that act as a defense system against oxidative stress. These 

antioxidants are generally divided into the nonenzymatic antioxidants (e.g. antioxidant 

vitamins) and the enzymatic antioxidants (e.g. SOD). Under normal circumstances the 

endogenous array of antioxidants combine to minimize, but, as evidenced in the current study 

by EPR spectroscopy, there is some normal background level of oxidative stress in vivo 

which is magnified by exercise (Figure 2). However, the acute ingestion of an antioxidant 

cocktail effectively ablated the blood-borne alkoxyl and alkyl radicals at rest and severely 

attenuated them following exercise (Figure 2). These EPR data certainly are indicative of the 

more "classical," although indirect, markers of peroxidation and provide clear evidence for 

peroxidative stress and its reduction with the antioxidant cocktail. The direct assessment of 

increased plasma total antioxidant capacity and vitamin C further validate this acute oral 

approach to tipping the balance away from pro-oxidant forces. With such an aggressive and 

clearly documented reduction in free radical concentration, the stage is set to determine the 

role of oxidative stress in the vascular response to exercise.  
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Exercise, Oxidative Stress, and Antioxidants  

In terms of the link between oxidative stress and vascular function, it is well accepted 

that free radicals likely limit vasodilation and blood flow by reducing NO bioavailability (54); 

however, it is also plausible that some free radicals and their end products increase 

vasodilation via their direct vasoactive properties (114). Clearly, the current data support the 

latter concept, because the large antioxidant-induced reduction in free radical concentration 

(Figure 2) resulted in a diminished vasodilatory response to exercise in the brachial artery 

(Figure 3). To our knowledge these are the first data to directly reveal that "unbalancing" the 

equation through a documented reduction in free radicals (and an increase in plasma 

antioxidants) in normal healthy subjects during exercise negatively impacts exercise-induced 

vasodilation (Figure 3). These data reveal a potentially important role for oxidative stress in 

provoking an appropriate vasodilation during exercise. We speculate that this attenuated 

exercise-induced vasodilation is likely the direct result of disturbing the natural balance 

between pro- and antioxidant forces. The downstream consequences of free radicals such as 

H2O2 and ONOO–, perhaps released in response to increased shear stress, may act as potent 

vasodilators (11), and as such possess the capacity to alter vascular responsiveness (114). 

Thus it is likely that the large and clearly documented reduction in free radical concentration 

following antioxidant administration (Figure 2) may have removed oxidative species, which 

possess some beneficial vasoactive properties, severely attenuating the exercise-induced 

brachial artery vasodilation following antioxidant ingestion. 

 

AUTONOMIC CONTROL OF MUSCLE BLOOD FLOW (Paper II) 

Limb-Specificity and Sympathetic Vasoconstriction at Rest and During Exercise 

The cold-pressor test (CPT) was utilized to provoke a profound reflex increase in 

sympathetic nerve activity (108), with subsequent changes in heart rate, arterial blood 
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pressure, and blood flow. Expression of sympathetic activation in response to the CPT has 

been well documented, with others demonstrating a robust (>300%) increase in muscle 

sympathetic nerve activity (131, 178) that does not differ between limbs (173, 181). 

Similarly, the CPT elevates venous norepinephrine levels to a similar degree 40–60% in both 

the arms and legs (26, 83, 87). These similarities in sympathetic activation between limbs set 

the stage to explore the end-organ translation of sympathetic activation into vasoconstriction, 

which to our knowledge has not been investigated utilizing ultrasound Doppler.  

Others have recognized vascular limb specificity in response to orthostasis (85), and 

sympathomimetics (87, 139). The current study supports the concept that sympathetically 

mediated vasoconstriction provoked by the CPT is expressed systemically at rest in the 

peripheral circulation (157), with no apparent selectivity of this response between limbs 

(Figure 4).  

Although sympathetic activation is fully expressed in resting muscle, recent studies 

indicate that this response may be blunted in the exercising limb, an event know as functional 

sympatholysis (197). In further support of this concept, we observed smaller changes in both 

arm and leg vasoconstriction during acute exercise compared with the resting CPT (Figure 4). 

These data extend recent observations by Koch et al. (97) that leg Q did not change when the 

CPT was applied to young subjects during upright cycling, although this study did not include 

a resting CPT trial for comparison. Thus, to our knowledge, this is the first report of a blunted 

sympathetic vasoconstriction in response to the CPT during limb-specific exercise in humans. 

 

Exercise Training and Sympathetic Vasoconstriction 

Although several cross-sectional (179, 190) and longitudinal (153, 183) studies have 

suggested that regular exercise training does not significantly change resting MSNA, we 

hypothesized that the actual expression of sympathetic activity would be lessened due to 
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limb-specific, training-induced changes in end-organ (i.e. α-adrenoreceptor) function. The 

present findings extend earlier findings, demonstrating that chronic exercise training does not 

alter resting sympathetically mediated vasoconstriction to either trained or untrained limbs in 

young, healthy subjects (Figure 4).  

Others have reported that exercise training results in a reduction in the expression of 

sympathetic nerve activity in muscle during acute knee-extensor (153) and handgrip (187) 

exercise, a response that appears to be limited to the trained limb (183). Thus one focus of the 

present study was to identify potential limb-specific responses to sympathetic 

vasoconstriction within both sedentary and exercise-trained subjects during acute exercise. 

Although leg Q and vascular conductance were significantly higher in cyclists than sedentary 

subjects during knee-extensor exercise (due to the higher absolute work rate), the CPT during 

exercise did not cause significant change in absolute leg vascular conductance in either group. 

These responses resulted in a similar calculated magnitude of sympatholysis between 

sedentary (–24 ± 8%) and cyclists (–22 ± 9%) (Figure 5). In contrast to the leg, the magnitude 

of vasoconstriction in the arm during exercise compared with rest differed according to 

training status. When vascular conductance changes were expressed as percent changes, the 

magnitude of sympatholysis in the arm was significantly greater in the sedentary group (–47 ± 

11%) than in the cyclists (–28 ± 11%) (Figure 5). From these results, it appears that 

vasoconstriction in the arm of the cyclists is somewhat less inhibited (i.e., more sympathetic 

vasoconstriction during exercise) than the sedentary group during exercise. We speculate that 

this response may be due to increased 
α-adrenergic sensitivity, similar to animal data 

demonstrating increased adrenergic vasoconstriction in the untrained (spinotrapezius) skeletal 

muscle of treadmill trained rats (104). Conceptually, this observed decrease in arm 

sympatholysis compared with the sedentary group may represent a training adaptation related 

to end-organ sensitivity designed to ensure optimal distribution of Q to the exercising legs, 
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and it may serve to prevent possible overperfusion of the arm and potential blood flow "steal" 

from the legs. However, further studies with measurements at multiple exercise intensities are 

needed to determine the mechanism responsible for this intriguing response in the relatively 

untrained limb of competitive cyclists. 

 

FLOW -MEDIATED DILATION AND ISCHEMIC REPERFUSION IN YOUN G HEALTHY 

INDIVIDUALS: ARE ALL LIMBS CREATED EQUAL? (Papers III and IV) 

Flow-Mediated Dilation (FMD) 

The FMD technique, first employed by Celermajer et al. (21), has emerged as a broadly 

applicable, non-invasive clinical tool to study endothelium-dependent peripheral artery 

vasomotion (22, 57, 195). In their original work and in the current study, a 5 minute or less 

cuff occlusion was employed with the aim of eliciting strictly a NO-dependent endothelial-

mediated response (47, 125). However, it was not until recently that the importance of the 

shear stress stimulus and its non-uniformity across subjects and studies was recognized, 

leading to a need to accurately manipulate or correct for this force (121, 148). Some have 

characterized shear stress as a peak attained after cuff release and used this variable to 

normalize FMD for the stimulus (34, 138). However, it has become increasingly apparent that 

the peak shear rate may not reflect the true nature of the shear stimulus. Therefore the area 

under the curve (AUC) for shear rate across time (s-1•s) has gained favor as the most 

appropriate approach to quantify the cumulative stimulus contributing to the vasodilatory 

response (148). In the current studies we adopted this approach and applied it accordingly, 

both experimentally and mathematically normalizing for shear rate AUC (Figure 6D and E).  

The importance of assessing shear rate and then incorporating any differences into the 

experimental design/analysis is highlighted by the finding that the popliteal artery (PA) 

exhibited a significantly reduced mean blood velocity profile after 5 minutes of cuff 
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occlusion when compared to the brachial artery (BA). This, combined with a larger diameter, 

lead to a much smaller shear rate in the PA compared to the BA (Figure 6A). To 

experimentally account for this shear rate difference, an additional protocol was performed in 

which the BA was cuffed for a shorter duration to lessen the ischemic reperfusion response 

and therefore reduce BA mean blood velocity following cuff release. As a result, shear rates 

were experimentally matched, and the shear stimulus was thus successfully normalized 

between the BA and PA (Figure 6C). With this approach the PA appears much more sensitive 

than the BA to a given shear rate (Figure 6D and E). However, these findings raise the 

possibility that the BA has a “shear rate threshold” below which a FMD response cannot be 

elicited. Nevertheless the fundamental aim of these studies was to examine limb-specific 

shear-mediated vasoreactivity in a scenario in which both the BA and PA received the same 

shear stimulus, and with this goal achieved the PA responded whereas the BA did not. 

Therefore, although a simple FMD assessment suggested that the lower extremities tend to 

have an attenuated vascular function compared to the upper extremities (Figure 6A), when 

the shear rate stimulus was appropriately incorporated experimentally (Figure 6D) or 

mathematically (Figure 6E) into the response, the PA of the lower extremities demonstrated 

greater vascular function than the BA of the upper extremities.  

 

Brachial artery and global vascular health. Although limb-specific vascular responses are 

gaining recognition (146, 214, 216), it has been commonplace for BA vasodilation (% 

change) measured by FMD to be used as an index of global vascular health (31, 201). 

However, the current data reveal that vascular responses to shear stimuli vary significantly 

across vessels of differing anatomic origin and therefore caution must be exercised when the 

vascular function of a conduit artery of a single limb is determined and the results translated 

to systemic vascular health.  
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Ischemic Reperfusion (IR) 

The role of muscle mass. The current data revealed no difference between absolute forearm 

and lower leg blood flow following cuff-occlusion (Figure 7A). The major dictator of muscle 

blood flow is metabolism at rest, as in this study, and metabolic demand is predominantly 

determined by muscle mass (42, 149). Accordingly, it is important to normalize limb blood 

flow to muscle mass when limbs of differing size are compared. When the large muscle mass 

differences of the forearm and lower leg were taken into account, blood flow per unit of 

muscle mass for the lower leg at both rest and following cuff release was significantly 

attenuated in comparison to the arm. This reveals, for the first time, an inherent difference in 

resting blood flow and IR between upper and lower extremities (Figure 7B and C). 

In addition to the skeletal muscle, other tissue that may promote hyperemia include 

adipose tissue, fascia, bone, and tendon, but their contributions during IR are, even as a 

whole, likely minimal (30, 151). Furthermore, skin perfusion, in a normothermic 

environment, does not significantly correlate with the conduit response during IR (182). 

Therefore with knowledge of the muscle mass to blood flow relationship, we are left 

speculating that either the muscle of the leg has a lower metabolic demand, leg muscle 

exhibits greater O2 extraction for a given volume of blood, or blood flow itself is directly 

limited either structurally or functionally and this results in greater O2 extraction.  

 

Between-limb metabolic heterogeneity. As a result of the integrated metabolic control 

mechanisms during tissue hypoxia, suprasystolic cuff occlusion creates dilation of 

downstream resistance vessels and provokes a post-cuff release hyperemia (198, 217). The 

reduction in substrate delivery and metabolite buildup during occlusion could significantly 

contribute to this metabolic vasodilation and induce a subsequent fall in downstream 

resistance (98, 167). Specifically, O2 demand and debt has long been implicated as a 
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Figure 12. Deoxy-myoglobin kinetics of the forearm (Panel A) and lower leg (Panel B) during cuff occlusion. 
The data for myoglobin desaturation rate (slope in shaded area) were assessed during the linear portion of the 
relationship from the point of conclusive myoglobin deoxygenation signal for 90 seconds during cuff-occlusion. 
AU, arbitrary units. 
 

regulator of blood flow (161, 217). In the current study, cuff occlusion applied to both limbs 

presents a uniform challenge that results in a reduction in arteriolar Po2 and the subsequent 

deoxygenation of hemoglobin during cuff occlusion contributes to vasodilation by 

stimulating red cell release of NO, or adenosine, prostaglandins, and NO release from the 

endothelium (51, 66, 120, 155). This progressive deoxygenation was supported in the current 

study by the intracellular assessment of deoxy-Mb, a marker of resting metabolic rate (161, 

163). However, as both the forearm and lower leg revealed the same rate of ischemically-

induced Mb desaturation, differences in O2 consumption do not readily explain the limb  

 

differences in IR (Figure 12). In fact, they support a similar basal O2 demand across the 

skeletal muscle of both the arm and the leg.  

 In combination, the similar rate of deoxy-Mb signal appearance during cuff occlusion 

(an index of muscle O2 consumption) and blood flow per unit of muscle mass collected both 

at rest and upon cuff release suggest the vascular differences (i.e. elevated blood flow) in the 

arm when compared to the leg may be a fundamental physiological differences in O2 

extraction. In light of these observations, the Fick equation (O2 consumption = blood flow × 
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(arterial – venous O2 concentration)) suggests O2 extraction must be nearly 3 fold different 

between limbs, with the greater extraction occurring in the leg.  
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This limb difference was remarkably consistent across scenario (rest and cuff release) and 

measurement approach (Doppler and ASL). Indeed, the only variance from the approximately 

3-fold greater levels in the arm than the leg being the ASL peak and AUC perfusion 

differences that were less clearly different, but were still significantly greater in the leg 

(Figure 13). This latter observation may be reconciled by both physiological and sampling 

heterogeneities in the muscle bed, and remains to be further assessed. This general 

observation of apparently greater O2 extraction in the lower leg may be attributed to a greater 

proportion of oxidative muscle fibers in the leg compared to the forearm (32). 

As expected, based upon previous reports (27), PCr hydrolysis in both the forearm 

and lower leg over the 5 minute cuff occlusion was minimal and revealed no measurable 

limb-specific metabolic perturbation. In addition, changes in muscle pH have been proposed 

to alter vascular tone as muscle pH can reduce intracellular Ca++ concentration and in turn 

cause vascular relaxation (141). However, again consistent with previous work in the arm 

(27), the short ischemic cuff occlusion did not stimulate a change in muscle pH in the muscle 

Figure 13. Ratio (fold difference) of arm to 
leg for rest, peak, and total (AUC) blood flow 
normalized for muscle mass (Doppler) and 
perfusion (ASL). * indicates significant 
difference from rest (P < 0.05). † indicates 
difference between Doppler and ASL (P < 
0.05). AUC, area under the curve; ASL, 
arterial spin labeling. 
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of the arm or leg. Therefore, the difference in limb-specific IR cannot be explained by 

differential metabolic perturbation, as examined by PCr breakdown or intramuscular pH. 

Although there are indeed changes to metabolic factors during cuff occlusion which 

are known to regulate blood flow (muscle oxygenation and [PCr]), the extent of these 

changes revealed no significant difference between limbs. Thus, the reduced IR in the leg 

(Figure 7B and C) suggests that the lower leg may have an attenuated response to these 

metabolic factors when compared with the forearm. This is in accordance with a previous 

report by Newcomer et al. (128) that found pharmacological and physiological vasodilatory 

stimuli elicited smaller relative blood flow and vascular conductance changes in the leg than 

the arm. It is also possible that a blunted responsiveness to vascular stimuli could explain the 

resting limb differences of a similar magnitude. 

 

Conduit muscle blood flow vs. muscle perfusion. The assessment of local skeletal muscle 

perfusion with ASL confirmed the contrasting IR exhibited by the forearm and lower leg 

already documented by Doppler measurements (Figure 7C). Additionally, with the 

combination of these two modalities, this study offers the unique opportunity to compare and 

contrast intramuscular hyperemia (ASL) and conduit blood flow (ultrasound Doppler) 

between limbs (Figure 14). Temporally, conduit vessel blood flow revealed an initial peak 

within 4-12 seconds in both the forearm and lower leg, in agreement with reports in the 

literature (134). The temporal response of perfusion was also similar between limbs, with 

both the forearm and lower leg revealing a consistent initial peak within the time frame of the 

conduit response, followed by an attenuated flow (most exaggerated in the lower leg), and 

then a true peak muscle perfusion after ~25-30 seconds (Figure 7C and 14). Reconciling the 

differences between the reperfusion kinetics in the conduit vessel and the muscle bed is  

 



50 
 

0

20

40

60

80

0

20

40

60

80

100

B
lo

od
 F

lo
w

 (
m

l/m
in

/1
00

 g
)

Time (s)

Lower Leg
Forearm

Lower Leg
Doppler

Lower Leg
ASL

Forearm
Doppler

Forearm
ASL

Cuff Release

 

speculative, but perhaps the time delay in intramuscular perfusion could be, in part, explained 

by the vasodilatory cascade that occurs in the resistance vessels distal to the occlusion upon 

cuff release (144, 185), which may differ between limbs because of both lower leg structural 

and functional adaptations. Nonetheless, Figure 14 illustrates typical individual ASL and 

Doppler data collected from a subject that participated in both protocols and illustrates the 

similarities/differences between these responses and methods on an individual and group 

basis (Figure 7B and C), providing at least some initial support for the validity of the current 

unique observations. 

 

AGING  (Papers V and VI) 

Structural and Functional Vascular Adaptations with Age. 

 Over time the human cardiovascular system undergoes many deleterious adaptations, and 

advancing age has therefore been proposed as a major risk factor for cardiovascular disease 

(101). Thus, determining the structural and functional vascular alterations with age can help 

provide mechanistic insight into the age-related increase in vascular disease risk. With the 

combination of both a structural analysis (IMT) and functional analyses (exercise blood flow, 

Figure 14. An example of the 
intramuscular perfusion and conduit 
blood flow profile in a subject that 
participated in both Doppler and ASL 
protocols.  
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IR and FMD) this study offers the somewhat unique opportunity to comprehensively evaluate 

limb-specific peripheral vascular characteristics and the effect of aging.  

Structurally, IM thickening with age has been documented in previous studies (81, 

135) as in this study (Figure 9). However this work has revealed that aging is accompanied 

by inherent structural adaptations that are exaggerated in the legs (Figure 9) and although this 

may not limit blood flow at rest, it may add to the attenuated blood flow response during both 

exercise (Paper V) and ischemic reperfusion (Paper VI). This aged-related attenuation in 

blood flow has certainly been well documented, particularly during the challenge of exercise 

(42, 110). However, it remains to be seen whether the structural changes in the vasculature 

are truly the cause of a decreased blood flow response with age. 

Functionally, advancing age has been typically associated with endothelial 

dysfunction (17, 205), and a progressive attenuation in nitric oxide synthase (eNOS) 

expression, impairment of the nitric oxide pathway, and elevated oxidative stress (2, 7, 184, 

194). Utilizing the FMD technique, the current data in the BA contradict the dogma of an 

age-related decline in endothelial function, showing a clear preservation of FMD when 

normalized to the shear stimulus (Figure 10B). However, the current data reveal that although 

the PA in the old experienced a similar post-cuff release shear rate to the young, it failed to 

yield a similar FMD whether or not normalized to the shear stimulus (Figure 10B). In 

combination, these findings suggest that the vascular dysfunction typically associated with 

age may be falsely identified in the arm where post-cuff shear rates seem to differ with age, 

but is clearly present in the leg, and at this site cannot be explained simply by a differing 

shear stimulus. This dissimilar shear to FMD response in the leg of the elderly group appears 

to support the concept of a predisposition to vascular dysfunction in the legs, but not the 

arms, of otherwise healthy older people. 
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The Effect of Age on Exercising Limb Blood Flow 

There were no age-associated differences in exercising forearm blood flow normalized for 

muscle mass, examined at both absolute and relative exercise intensities (Figure 8A). These 

findings are qualitatively similar to the only other study that has compared young and old arm 

blood flow associated with exercise, by Jasperse et al. (88), who documented no difference in 

postcontraction hyperemia between young and old subjects. In the leg, however, older 

subjects exhibited a lower leg blood flow than young subjects for a given absolute exercise 

intensity (Figure 8B). These data are in agreement with the majority of studies that have 

assessed absolute leg blood flow/vascular conductance during exercise in young and old 

subjects (10, 110, 145).  

In line with the findings of larger aging studies (63), the current subjects were found 

to have smaller quadriceps muscle mass with increasing age. Acknowledging the relationship 

between muscle mass and resting blood flow (42, 93), it is tempting to speculate that the 

smaller quadriceps muscle mass of the old may account for the attenuated exercising blood 

flow  in this study. However, unlike rest, during exercise this would be a vast 

oversimplification of a complex process based on Henneman's (78) muscle recruitment 

theory. Specifically, during submaximal exercise, only a portion of the potentially active 

muscle mass is working (154), and thus at a given absolute work rate, leg blood flow is 

preferentially distributed to active muscle fibers (5, 106). Therefore, if leg blood flow in the 

aged population were represented as blood flow per unit muscle mass, this would be an 

overestimate because each absolute workload for the old subjects represents a greater 

percentage of their WRmax (Figure 8B, left). If the aged are working at a greater percentage of 

their WRmax, it is likely that these subjects recruit and perfuse a greater proportion of their 

quadriceps muscle mass to perform an absolute work rate (5, 106, 154). Consequently, when 

muscle masses differ between groups of subjects, work rates should be normalized to 
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percentage of WRmax and perfusion should be expressed per unit of muscle mass. When these 

normalizations were performed on the current data, the older subjects once again revealed an 

attenuated leg blood flow and vascular conductance at a given percentage of WRmax (Figure 

8B, right).  

 

Vascular Function and Vascular Disease Progression   

Several studies have now demonstrated that impaired endothelial function in both the 

coronary and peripheral circulation precedes the development of pathologies such as 

atherosclerosis (65, 75, 137, 170). Additionally, in those with atherosclerosis, the lower 

extremities appears to exhibit both a higher prevalence and a greater degree of impaired 

endothelial function than the upper extremities (4, 35). Therefore, in both young and old 

healthy subjects, the study of endothelial function in the upper and lower extremities suggests 

a greater predisposition and potential progression towards limb-specific vascular dysfunction 

and therefore susceptibility to vascular disease in these anatomically distinct locations. 

Indeed, the study of Angerer et al. (4) which investigated the effects of coronary artery 

disease on FMD in the BA and PA, found an attenuated PA FMD when compared to the BA 

in both patient and age-matched controls (≈ 50 yrs), with the greatest reduction in vascular 

function in the diseased patients. Unfortunately, this clinical study did not evaluate the shear 

stimulus, thus limiting accurate inference in the context of the present data. Nevertheless, the 

current data reveal an intriguing scenario, where both FMD and exercise hyperemia in the 

arm is preserved with age (Figures 8A and 10B), while the leg reveals a significant age-

related attenuation in these variables (Figures 8B and 10B). It is tempting to speculate that the 

age-related and limb-specific progression of vascular disease described elsewhere (4, 35) is 

the consequence of physical stresses over the life span which are exclusive to the leg 
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vasculature, such as larger hydrostatic and transmural forces as well as the continued stresses 

associated with daily locomotion (53, 115, 171). 

 

SEX DIFFERENCES IN VASCULAR FUNCTION (Paper VII) 

A Hormonal Milieu Effect on Flow-Mediated Dilation? 

Sex differences in FMD have been reported concomitantly with a greater post cuff hyperemia 

in nonmenopausal women when compared with age-matched men (112, 175). This effect has 

been explained by the positive effect of endogenous estrogens on the availability of nitric 

oxide (NO) (76), the principal vasodilator in shear-mediated vasodilation (125). Indeed, 

numerous studies have implicated estrogen as both a prostaglandin promoter and an 

antioxidant (6), protecting NO from degradation, and facilitating increased vasomotion (82, 

117, 140). In the present study, female BA relative FMD (% diameter change) was larger 

than that of the males, a finding that is consistent with the literature in suggesting augmented 

vascular endothelial-dependent vasodilation in females (figure 11A). However, sex 

differences in post-cuff release shear rate in the BA, the primary stimulus for endothelial-

dependent dilation, were observed in the present study. These findings conform to the 

stimulus-response paradigm for shear rate and endothelial-dependent vasodilation. 

Specifically, the lower shear exhibited by the male subjects in the BA elicited a smaller FMD 

response (figure 11A), however, after normalization for the shear stimulus (AUC), the sex-

related difference in both the BA and PA relative FMD was no longer evident (figure 11C). 

One explanation of the null sex-dependent improvement of vascular reactivity could be the 

fact that estrogens appear to primarily increase basal release rather than the stimulated NO 

release (172, 189). Indeed, it was demonstrated that the arterial vasocontrictive effect of NO 

synthase inhibitors was higher in women that in men despite these same vasodilating effect of 

acetylcholine between sexes (23, 192). However, although normalized for shear rate this 
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approach does not compensate for the mathematical bias associated with the smaller starting 

diameter exhibited by the females. In contrast, in the absolute FMD comparison, the shear 

rate AUC normalization rendered a similar result in the BA, but revealed a potential a gender 

difference in the PA. With this approach there is no longer a mathematical bias in favor of the 

small vessels of the females and may have unveiled a greater vascular sensitivity to shear 

stress in the lower legs of males.  

It must be noted that in the present study, we standardized study visits for women to 

coincide with days 1–7 of the menstrual cycle, when circulating estrogen is most likely to be 

lowest and similar to concentrations measured in men (76). Thus, it is likely that the 

predominant estrogen-mediated mechanisms underlying the present observations in women 

would have been exerted through the chronic, rather than acute, effects of estrogen on the 

vasculature. Studies by both Rogers and Sheriff (168) and New et al. (127) documented that 

estrogen significantly modulates vascular regulation independent of female sex. To that end, 

the study by Hashimoto et al. (76) demonstrated that within fluctuations of estrogen levels of 

the female menstrual cycle, the greatest endothelial-dependent vasodilation, assessed with the 

cuff-occlusion model, coincided with the end of the follicular phase where serum estradiol 

levels were highest. In addition, when estradiol levels were similar to concentrations 

measured in males (i.e. menses), vascular reactivity measured in the BA was similar to that of 

males. However, the data by Hashimoto et al. (76) was not normalized for the shear stimulus. 

Recognizing the acute effects of estrogen on blood flow regulation (168), it is unknown 

whether the results of Hashimoto et al. (76) may have been affected by an altered reactive 

hyperemia response at different times of the menstrual cycle. In light of this and the current 

data, it would be interesting to investigate the normalized FMD in females throughout the 

menstrual cycle to comprehensively elucidate the acute effects of estrogen on human vascular 

function. Despite the hypothesis of an increased vasodilation in the BA and/or PA of the 
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Figure 15. Baseline artery diameter and its influence on relative flow-mediated dilation (% diameter change) 
(Brachial: Panel A, Popliteal: Panel B) and absolute flow-mediated dilation (Brachial: Panel C, Popliteal: Panel D). 
 

female group, there appears to be no female-specific augmentation of peripheral artery 

vasodilation. In fact, there is evidence to the contrary with decreased vascular function in the 

PA of women when absolute FMD is normalized for shear rate AUC. 

 

Vessel Size and Flow-Mediated Dilation.  

 In general, caution should be exercised when comparing vessels of different sizes as there is 

a mathematical bias in favor of smaller arteries yielding a larger relative difference. However, 

in the current limb comparison for both sexes, because the PA has a larger starting diameter 

than the BA (handicapping % change in the PA), this mathematical bias can not explain the 

improved vascular responsiveness of the PA in comparison to the BA, but would, in fact, 

reduce the chance of this observation. Between sexes however, because there are significant 
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differences in starting diameters between males and females for the BA and PA, definitive 

conclusions cannot be drawn from the relative diameter changes data. In the present study, as 

in other studies (21, 89, 102, 127), the flow-induced change in artery diameter is inversely 

related to the basal value of the diameter when expressed in percent change from baseline 

(relative FMD) in both the BA and PA (figure 15A and 15B). This supports the idea that 

larger arteries show a less convincing relative vasodilation compared to smaller arteries. 

Correlation analyses of the flow-induced change in artery diameter expressed as an absolute 

change from basal diameter reveals no such relationship (figure 15C and 15D). This supports 

the latter analytical approach as the most unbiased interpretation when considering vessels of 

different size. Thus, definitive statements concerning differences in endothelial function 

between the sexes need to be carefully interpreted if compared solely in relative terms.  
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CONCLUSIONS 

Inherent limb differences appear to exist, and to different extents in varied populations. These 

studies have elucidated several underlying mechanisms defining vascular heterogeneities, all 

of which are important for understanding skeletal muscle blood flow and vascular control 

mechanisms in not only a healthy population, but also in diseased populations that may to 

exhibit limb-specific vascular dysfunction. 

 

I. This study demonstrates that the brachial artery of healthy subjects vasodilates less 

following the ingestion of an antioxidant cocktail during submaximal exercise, despite 

similar or slightly elevated shear rates. This suggests that an antioxidant-induced 

reduction in oxidative stress, as supported by blood EPR measurements, negatively 

impacts the natural balance between pro- and antioxidant forces that exists in normal 

healthy subjects. This reveals a reliance on free radical-mediated vasodilation, most 

likely induced by the increased oxidative stress of exercise per se (increased metabolic 

rate) or the shear-induced release of free radicals by the vascular endothelium. 

 

II.  This study reveals that sympathetically-mediated vasoconstriction in response to the CPT 

at rest is not limb-specific or affected by exercise training status, and that acute exercise 

effectively blunts sympathetic vasoconstriction (i.e. sympatholysis) in both trained and 

untrained limbs. However, there was a reduced magnitude of sympatholysis in the arm of 

predominantly leg-trained individuals, exemplifying the systemic vascular effects of 

exercise training that may optimize blood flow distribution to meet limb-specific 

demand. 
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III.  This study highlights the importance of both quantifying and accounting for the shear 

stimulus in FMD studies. Without either experimental or mathematical normalization of 

this important variable, clear limb-specific differences in endothelium-dependent 

vasoreactivity would not have been unveiled. With this approach, the present data 

suggest that the PA in a healthy, young, male population exhibits an enhanced vascular 

response to a given shear stimulus when contrasted with the BA. 

 

IV.  There is a clear and robust difference in skeletal muscle blood flow between limbs that is 

maintained from rest to IR. Although the exact mechanism for this limb-specific 

difference has not been completely determined, many potential mechanisms have been 

excluded, leading to the conclusion that observed responses may be due in part to 

difference in O2 extraction between the skeletal muscle of the arm and leg. However, it is 

still unclear whether this differing O2 extraction paradigm is the consequence or cause of 

the limb-specific difference in the control of skeletal muscle blood flow.  

 

V. During single-leg knee extensor exercise, older subjects exhibit a reduced leg blood flow 

that was still evident when differences in muscle recruitment were taken into account. In 

contrast, arm blood flow during forearm exercise is not influenced by age and was not 

complicated by differences in work rate. Therefore, age-associated changes in blood flow 

during exercise are not uniform across limbs. 

 

VI.  The structural analysis of vascular IMT across limbs revealed an age-related thickening 

of peripheral conduit arteries that is more pronounced in the legs. FMD data reveal that 

the brachial artery of older healthy subjects exhibits a preserved endothelial-dependent 

vascular reactivity when shear is taken into account. In contrast, this does not appear to 
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be the case in the popliteal artery and, in combination with structural alterations, may be 

indicative of a limb-specific and age-related progression towards vascular dysfunction in 

the legs that precedes clinical signs of vascular disease. 

 
VII.  The present investigation extends previous findings in young, healthy males of greater 

endothelial-dependent vascular reactivity in the lower compared to the upper extremities 

to females. It is also concluded that basal vessel diameter and shear rates influence the 

magnitude of relative flow-mediated vasodilation and that the sex differences previously 

reported could be the consequence of a mathematical bias and differences in shear 

stimulus rather than a sex-related physiological difference. These vascular characteristics 

are essential to the appropriate interpretation and thus should be taken into account when 

comparing the vascular responsiveness of men and women. Therefore, when the most 

rigorous analysis for these conditions, absolute FMD normalized for shear rate, is 

applied the BA does not exhibit a difference between the sexes, whereas, the PA displays 

attenuated function in females. 
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