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Måling av hjertemuskelfunksjon med ultralyd vevs-Doppler og mønsterfølging 
(speckle tracking) 

– Validering og bruk under arbeidsbelastning og trening 
 
Ultralyd av hjertet (ekkokardiografi) er en relativt rimelig og lett tilgjengelig 
undersøkelse, og brukes ofte for å vurdere hvor mye de ulike delene av hjertet trekker 
seg sammen, og dermed hvor mye de bidrar til hjertet sin samlede pumpekraft. Hos 
pasienter med angina pectoris og hjerteinfarkt (koronarsykdom) er påvisning av 
skadde og svekkede områder viktig for riktig diagnose og behandling. De seneste 
årene har man, blant annet ved NTNU, utviklet flere nye metoder som kan gjøre slike 
målinger. I denne avhandlingen har vi undersøkt hvor nøyaktige og robuste disse 
metodene er, blant annet ved å sammenligne måleresultatene med tilsvarende 
målinger ved hjelp av magnet resonans tomografi (MR). Den ene metoden (vevs-
Doppler) er basert på Doppler-prinsippet, mens den andre metoden (speckle tracking) 
er basert på å følge spesielle mønstre (speckle) i ultralydbildet ved hjelp av 
bildeanalyse-programmer. Studiene vi har gjort viser at metoder som bruker speckle 
tracking virker lovende, og kan ha fordeler i forhold til vevs-Doppler. Imidlertid 
trengs videre forbedring, særlig fordi variasjonen i målingene fortsatt er betydelig. Vi 
mener at ulike kombinasjoner av de to metodene bør studeres nærmere. 
 
Som en del av avhandlingen har vi også brukt disse metodene for å studere hvordan 
hjertet arbeider under fysisk belastning (sykling), og hvordan dette endrer seg når 
hjertet er skadet etter et hjerteinfarkt. Vi fant at det særlig var forskjell i hvor godt de 
friske og skadde hjertene slappet av og sugde inn nytt blod i de korte pausene mellom 
hver sammentrekning (hvert hjerteslag). Dette kan sannsynligvis være en del av 
forklaringen på hvorfor pasientene merker at de orker mindre fysisk aktivitet enn før. 
Vi studerte også effekten av trening med ulik intensitet på hjertets funksjon hos 
pasienter med koronarsykdom. Trening på tredemølle med relativt høy intensitet så ut 
til å bedre hjertet sin evne til å slappe av og dermed suge inn blod mer effektivt 
mellom hvert hjerteslag. Det så ikke ut til at trening med moderat intensitet hadde den 
samme effekten. Samlet viser dette at ultralyd kan gi ny viten om hvordan hjertet 
jobber under belastning, og hvordan det tilpasser seg ulike typer trening. Selv om 
flere studier trengs, vil denne kunnskapen forhåpentligvis kunne bidra til at flere 
pasienter med hjertesykdom får mer effektiv behandling, særlig i form av riktig 
trening. 
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2D Strain Speckle tracking application (GE Vingmed Ultrasound) 

ASR  Peak late diastolic strain rate 

Am  Peak late diastolic mitral annular velocity 

AVC  Aortic valve closure 

CO  Cardiac output 

CAD  Coronary artery disease 

COR  Coefficient of repeatability 

COV  Coefficient of variation 

E  Early mitral filling velocity 

ESR  Peak early diastolic strain rate 

Em  Peak early diastolic mitral annular velocity 
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LOA  Limits of agreement 

LV  Left ventricle 

MI   Myocardial infarction 

MRI  Magnetic resonance imaging 

ROI  Region of interest 

SD  Standard deviation 
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SSR  Peak systolic strain rate 

Sm  Peak systolic mitral annular velocity 

ST-7P  Speckle tracking (GcMat application, 7 kernels) 

TDI  Tissue Doppler Imaging 
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VO2max  Maximal oxygen consumption 

VO2peak Peak oxygen consumption 

WMS  Wall motion score 
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4. Background 

4.1. Tissue Doppler Imaging 
The Doppler equation states that the velocity (v) of a moving reflector is given by 
 

θcos2 0 ⋅⋅
⋅

=
f

cf
v d  

 
where f0 is the emitted frequency, fd  is the Doppler shift, c is the velocity of sound in 
the medium and θ is the angle between the direction of the emitted sound and the 
direction of the moving object. In echocardiography this equation can be applied to both 
blood and tissue. McDicken et al published the first paper on myocardial velocity 
measurements by tissue Doppler in 1992 (1). Tissue velocities can be measured both 
with the pulsed wave (PW) method and the colour Doppler method. In PW tissue 
Doppler the whole frequency spectrum of the Doppler shift is displayed, while in colour 
tissue Doppler only the mean frequency of the Doppler shift is shown. Since 1992 tissue 
Doppler imaging (TDI) (or Doppler tissue imaging, Doppler Myocardial imaging, tissue 
velocity imaging) has become a widely used method, and a Pubmed search for the years 
1992 – 2007 yields over 1300 hits for these terms. 
 
Two velocity curves from the septum in a normal subject are showed in Figure 1A. 
Higher velocities are found near the mitral annulus, demonstrating the base-to-apex 
velocity gradient. A PW trace of blood velocities between the mitral and aortic valves is 
included below to show the timing of aortic valve closure (AVC), which defines end-
systole, and mitral valve opening, which defines the end of the isovolumic relaxation 
period and the start of left ventricular (LV) filling (Figure 1B). 
 

4.1.1. Limitations of TDI  
Diagnosis of coronary artery disease (CAD) can be done by echocardiography by 
looking at regional differences in myocardial function in the LV during 
pharmacological or exercise stress. In most hospitals the assessment of regional 
function is made by looking at wall thickening (wall motion score, WMS), which is a 
semi-quantitative method with moderate inter-observer agreement (2). An important 
advantage for TDI is that it is a quantitative and more objective method. However, there 
are some important limitations: 

 
• Tethering  

Tethering exists when one part of myocardium pulls on a neighbour part of 
myocardium. This will give the neighbour tissue a velocity which is not necessarily due 
to its own contraction. Tethering will cause problems in diagnosis of CAD because 
regions with impaired contractile function might have normal velocity due to tethering.  
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Figure 1. 
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Figure 1A. Tissue Doppler velocity curves from the basal (b) and mid-ventricular (m) 
parts of the interventricular septum in a young healthy subject. Higher velocities are 
seen near the base during all cardiac phases. Aortic valve closure (AVC) and mitral 
valve opening (MVO) are derived from the PW blood flow trace recorded between the 
mitral and aortic valves for determination of the isovolumic relaxation time in Figure 
1B. An anatomical M-mode of strain rate (SR) in the septum is shown in Figure 1C. 
Yellow and red colours mean shortening; green means no deformation and blue means 
elongation. Systolic shortening starts nearly simultaneously, while early and late 
diastolic relaxation mainly spread as a wave starting from the basis. In the last part of 
the early phase a smaller wave travelling in the opposite direction can be seen. These 
two waves present as two peaks in the early diastolic phase of the SR tracing from the 
basal segment, while only one peak is present in the apical segment (Figure 1D). The 
second wave might represent a reflection of the first wave from the apex, or a 
continuation of the first wave from the opposite wall (3). Note the relatively similar 
systolic SR values in the different segments (a=apical, m=midventricular, b=basal). 
 

 
• Aliasing 

Aliasing occurs when the sampling rate is not high enough relative to the actual velocity 
to be measured. According to the Nyquist-theorem the maximal measurable Doppler 
shift frequency can be half the sampling rate before aliasing occurs. Sampling rate 
equals the pulse repetition frequency in PW Doppler. Aliasing presents as a wrap-
around effect; the velocities that are too high relative to the pulse repetition frequency 
are shown on the opposite side of the scale. Aliasing is prevented by increasing the 
pulse repetition frequency (sampling rate). An example of aliasing can be seen in the 
PW flow velocity curve in Figure 1B during systole (flow in the LV outflow tract).     
 

• Global heart motion  
Global motion of the heart during systole and diastole influences the regional velocities, 
but will not be linked to regional function, and will therefore not differ between normal 
and dysfunctional segments. 

 
• Translation in the image plane 

As the tissue Doppler sample volume is stationary, different parts of myocardium will 
be imaged during the cardiac cycle. Manual or automated tracking of the sample volume 
can be used to avoid this. A drawback with the automated alternative is that tissue 
Doppler information does not allow tracking in the lateral direction.  

 
• Angle dependency 

Only one of the three velocity components can be measured by using the Doppler-
effect. Therefore, velocity measurements by ultrasound Doppler are sensitive to 
misalignment between the direction of motion of the object and the direction of the 
ultrasound wave. The error is the same in blood and tissue velocity measurements, and 
is proportional to the cosine of the angle. Thus, the error is below 10 % for deviations 
less than 25°, but will be larger if the measurements are used to calculate pressure 
gradients (blood, not tissue Doppler), or velocity gradients (see below). Angle 
correction can be applied in blood velocity measurements in vessels because the flow 
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direction can be predicted from the vessel geometry, and because the flow direction is 
constant during the cardiac cycle. Angle correction can not be applied in tissue Doppler 
because the direction of tissue velocities is difficult to predict, and also varies 
considerably during the cardiac cycle. 
   

• Drop-outs 
Loss of signal in a part of the image is most often due to ribs or lung tissue. Tissue 
velocity signal may still be picked up in regions with low signal, but these signals are 
probably not from the area with low signal, but from nearby regions with stronger 
reflectors. This can be explained by wide beams (low lateral resolution) and the 
presence of sidelobes. 

 
• Sidelobes 

Sidelobes are an acoustic phenomenon caused by focusing of the ultrasound wave 
(Figure 2). The sidelobes are present at certain positions lateral to the main lobe, and if 
this part of the wave is reflected, these echoes will be handled by the scanner as if they 
were from the main lobe. Consequently, they will appear in the image as if they were 
positioned in the field of the main lobe. 
 

• Low lateral resolution 
If frame rate is set too high, fewer and wider beams will be used to cover the image 
sector. Wide beams decrease the lateral resolution, and the lateral parts of these broad 
beams might be reflected by strongly reflecting tissue as explained above. This is 
relevant for instance in relation to the pericardium, which is a strong reflector, but not 
the tissue of interest. 
 

 
Figure 2. Illustration of the beam formed by a linear transducer, showing the sidelobes 
next to the main beam. The intensity across the field at the level of the focus depth is 
shown to the right. Simulation tool made by Hans Torp. 

 
 
• Reverberations 

An important artefact is stationary reflections called reverberations. They arise from 
sound pulses travelling several times between the probe and strong reflectors, especially 
between the probe and the chest wall. In PW tissue Doppler reverberations can be 

 10



separated from the true tissue velocity because all frequencies in the Doppler shift are 
displayed, and reverberations generally appear as a constant and low-velocity signal. In 
colour tissue Doppler this is not possible, as only the mean Doppler shift frequency is 
displayed. 
 

• Through-plane motion 
Through-plane motion causes two limitations of the Doppler velocity measurements. 
First, the tissue velocity components with direction out of the image plane cannot be 
measured by tissue Doppler. Second, through plane motion leads to errors if the velocity 
of the tissue that enters the image differs from the velocity of the tissue that is replaced. 
 

4.2. Strain Rate Imaging 
The first papers proposing that the myocardial velocity gradient could be used to 
quantify regional myocardial function were published in the middle of the 1990-s (4-7). 
A real-time application called strain rate imaging (SRI) was developed at the Dept. of 
Physiology and Biomedical Engineering at NTNU by Andreas Heimdal et al in the end 
of the 1990-s (8-10). SRI was designed to overcome some of the most important 
problems in TDI for evaluation of regional myocardial function (11). The main idea is 
to use the velocity gradient along the LV wall as it is shown in Figure 1A, under the 
assumption that reduced regional function in a segment of myocardium would cause a 
lower velocity gradient in this area. This approach eliminates the errors introduced by 
tethering and global heart motion in evaluation of regional myocardial function. Euler 
strain rate (SR) is defined as the velocity gradient, and is given by the following 
formula: 
   

x
xxvxvSR

Δ
Δ+−

=
)()(  

 
where v(x) and v(x+Δx) are myocardial velocities in two points of myocardium along 
the ultrasound beam, separated by a distance Δx. The noise in SR measurements can be 
reduced by calculating the slope of the linear regression line fitted to all pixel velocities 
along a segment with length Δx. The SR values calculated in this way will be more 
robust because a higher number of measurements are averaged. Typical SR traces from 
the basal, midventricular and apical septum in a healthy subject is shown in Figure 1D. 
The most important difference relative to the tissue velocity traces is the relatively 
similar value for peak systolic SR in segments at different levels of the LV. SR is by 
convention negative for tissue shortening, and positive for tissue elongation. 
 
SR can be integrated over time to give Lagrangian strain (ε), which is relative 
elongation, and given by the formula  

0

01

L
LL −

=ε  

 
where L0 is tissue length at time=0 and L1 is length at a certain time=1 afterwards. 
Negative strain values indicate tissue shortening  Regional myocardial strain 
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measurements from TDI has been validated against sonomicrometry and MRI tagging 
(12,13). From a physiological point of view, both peak systolic SR and end-systolic 
strain are linked to myocardial contractile function, but end-systolic strain is more 
influenced by load and related to stroke volume (SV) (14).  
 

4.2.1. Limitations of SRI 
Strain and SR measurements by tissue Doppler velocity gradients have been shown to 
be equal or superior to tissue Doppler velocities and WMS for diagnosis of myocardial 
ischemia in experimental settings, and for significant coronary artery stenosis in clinical 
settings (15-20). SRI can also improve the accuracy in determination of myocardial 
viability (21,22). The prognostic significance of SR measurements on a global LV level 
during dobutamine stress echocardiography has recently been demonstrated (23). 
 
Even with this track record, SRI has not become a standard tool for the common 
cardiologist. This is due to large random measurement errors, and frequent occurrence 
of artefacts which can only be fully recognised by expert readers (24). The artefacts 
discussed under TDI also occur in SRI, but some of them have different consequences 
when SR is calculated from the tissue Doppler data (Figure 3): 
 

• Tethering 
Tethering is not a problem in SRI because the regional deformation is calculated from 
the difference between velocities in the actual region. This is a major advantage of the 
method compared to TDI. 
 

• Aliasing 
Calculation of SR in regions with both aliased and non-aliased velocities is possible if 
the scanner has been programmed to use the velocity estimate which is compatible with 
the measured Doppler shift, and at the same time most likely according to the velocity 
measured at the previous time point. SR will be correctly calculated when all velocities 
within a region are aliased. 

 
• Global heart motion 

As for tethering, the velocity gradient principle will remove the effects of global heart 
motion on the SR calculations. 

 
• Translation 

Translation is a problem for SRI in the same way as for TDI. 
 
• Angle-dependency 

Angle dependency can lead to larger errors in SRI than in TDI. This is due to the three-
dimensional deformation of the myocardium; the wall thickens transmurally as it gets 
shorter in the long-axis direction. For measurements of long-axis SR, angle 
misalignment between the ultrasound beam and the LV wall will lead to a larger 
component of the wall thickening being picked up, and give too low values for SR in 
the long-axis direction. The size of the error depends not only on the angle, but also on 
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the relation between long-axis shortening and wall thickening in the region (25). An 
error of 25 ° will in most cases give an error in the SR estimate of at least 30 %. 

 
• Reverberations 

A stationary echo in the image is interpreted as stationary tissue. For measurements of 
longitudinal SR in an apical image, a reverberation in a region of normal tissue will 
result in too high SR values calculated on the basal side, where tissue moves against the 
reverberation, and too low SR values on the apical side, where tissue moves away from 
the reverberation. In the SR anatomical M-mode the presence of a reverberation can be 
seen as a region with an abrupt transition between horizontally aligned bands of highly 
positive and highly negative strain rates. 

 
• Through-plane motion 

This is a problem in SRI in the same way as in TDI. 
 
 
 

 
 
Figure 3. Illustration of some important artefacts in SRI. For long-axis measurements 
the angle misalignment is measured between the long-axis of the LV wall and the 
ultrasound beam direction. It is important to emphasise that this only quantifies the 
angle misalignment in one of three directions, and that such angle quantifications cannot 
be used to do angle correction. Drop-outs are seen as low signal intensity in the B-mode 
image. Reverberations are seen as abrupt transitions between opposite colours in the SR 
image, and as grey bands across the image in the background B-mode image.  
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4.3. Speckle tracking echocardiography 
Ultrasound speckles are brightness-patterns in the ultrasound image originating from 
reflections and interference of sound from or between a large number of scatterers at 
different distance from the transducer. Therefore, the speckle pattern is tissue specific, 
but does not mimic the real tissue structure. In addition, images of myocardium will 
also contain signal from larger-size reflectors, due to tissue sheath structures, connective 
tissue and blood vessels. Variations in reflectivity due to different fibre angles relative 
to the ultrasound beam will contribute to the variation in signal intensity. A speckle 
pattern can also be seen in the blood in the LV cavity if the image quality is good and 
the frequency is somewhat higher then the standard 1.5-2.0 MHz. This pattern is 
thought to originate from reflections and interference between conglomerates of red 
blood cells. The origin of the speckle pattern is illustrated in Figure 4. 
 
 

 
 
Figure 4. Illustration of the nature of the speckle pattern. The regular interference 
pattern created by sound waves from three sources (scatterers) is shown in the simulated 
image in A. The addition of more scatterers in image B results in an irregular 
interference pattern, which is more like the speckle pattern (C) in the septum in a four-
chamber view (D). Simulation tool created by Hans Torp. 
  
 
Speckle tracking was designed to recognise speckle patterns and measure velocities in 
moving tissue, including blood, in an angle-independent manner (26). It is based on the 
assumption that the pattern is characteristic for a specific region of myocardium or 
blood, and that it is constant from frame to frame, so that the displacement of the region 
can be followed in time from one frame to the next. 
 
The principle of speckle tracking is illustrated in Figure 2 in paper I. A region (kernel) 
is selected in the image at time point t0. The size of the kernel is selected as a 
compromise between spatial resolution and tracking robustness. In the next image, at 
time t1, a larger region is defined around the position of the kernel, this is the search 
area. The size of the search area should be defined by using a priori knowledge of the 
amplitude and direction of motion of the region that was included in the kernel at t0. 
Setting correct size of the search area is essential; if the area is too small it will lead to 
incorrect tracking and underestimation of the velocities, while a too large area will lead 
to waste of computational time. In the search area, regions with the same size as the 
kernel are defined, and the properties in each one of them are compared to same 
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properties in the kernel from t0. After the region with the best match has been found, 
displacement and velocity can be estimated, and the process is repeated in the next 
frame. The main advantage of speckle tracking methods is that they are less angle 
dependent than tissue Doppler methods. This results from the ability of the algorithms 
to track displacement in both dimensions of a two-dimensional image; both along and 
perpendicular to the ultrasound beam. 
 
Due to the relatively small aperture of the probe and the relatively long distance from 
the outside of the chest wall to the heart, the lateral resolution in the image is inherently 
lower than the radial resolution (beam direction). Radial resolution (Δrz) is given by the 
formula 
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where λ is the wave length and Bw(%) is the bandwidth of the received signal relative to 
the center frequency. For a cardiac transducer using second harmonic imaging (f=3 
MHz and Bw(%)=30 %), radial resolution can be calculated like this: 
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Lateral resolution (Δrx) is given by 
 

λ⋅=Δ #Frx  
 
where F# is the F-number, which is given by the ratio between focal depth and aperture 
(F#=depth/aperture). For the same transducer with an aperture of 2 cm the lateral 
resolution at depth = 7 cm will be: 
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This difference in resolution means that tracking will be less accurate in the lateral than 
in the radial direction. As lateral resolution is depth-dependent, lateral tracking will be 
less accurate in the deeper parts of the image. Reductions of effective probe aperture by 
ribs or lung tissue will further reduce the lateral resolution. 
 
The variables that determine the relationship between the lateral and radial resolution 
can be found by dividing Δrx by Δrz: 
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Several different speckle tracking algorithms have been published lately (27-30). One of 
them used image data in the raw format (RF-data). This is more computational 
demanding, but in general allows higher temporal resolution than algorithms using B-
mode images. 
 

4.3.1. Tracking by sum-of-absolute-differences (SAD) 
The formula for the SAD between two regions in images X and Y is 
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where i and j are coordinates of the kernel in image X, m and n are the coordinates of the 
trial kernel-matching region in image Y, and l and k defines the search area (26). In 
words, possible matching regions are compared to the original kernel by subtracting 
pixel intensities, and the region in the search area which has the lowest SAD is taken as 
the best match. The SAD method is in general less computationally demanding than the 
cross-correlation method, and has been shown to have similar accuracy for flow and 
moderate tissue velocities (26).  
 

4.3.2. The cross-correlation method  
The formula for calculation of the cross-correlation coefficient between two 
corresponding image regions in X and Y, where X  and Y  are the mean pixel values of 
the corresponding image regions, is 
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where i and j are coordinates of the region in image X, m and n are the coordinates of 
the trial kernel-matching region in image Y, and l and k defines the search area. The best 
match is the region with the highest nm ,ρ (26). 
 

4.4. GcMat-application 
In the work included in this thesis, a speckle tracking algorithm (“tissuetrack”) 
developed by Hans Torp was implemented in a software toolbox called GcMat (GE 
Vingmed Ultrasound, Horten, Norway) (31), running under Matlab (MathWorks, Natic, 
Massachusetts, USA). The implementation allowed speckle tracking to be used alone or 
in combination with tissue Doppler data. 
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4.5. 2D Strain 
GE Vingmed Ultrasound has introduced a speckle tracking tool called 2D Strain (28). 
The tool uses both SAD- and correlation-algorithms in the tracking of speckle patterns, 
and in addition selects regions with special features that are stable through the cardiac 
cycle. The motion of these regions is tracked, and smoothing is applied by fitting the 
motion to polynomials. 

 

4.6. Automated analysis 
Interpretation of strain and SR curves involves evaluation of both the shape of the curve 
and registration of the amplitude and timing of specific events, like peak systolic SR 
and peak systolic strain. When strain and SR are analysed manually in tissue Doppler 
images, the user has to position the region of interest (ROI) and mark the selected 
features in the curves. This process can be automated, and this has been done both in 
GcMat and 2D Strain. This reduces the time for analysis substantially (32), and also 
increases the objectivity of the measurements. 
 

4.7. Sonomicrometry 
Sonomicrometry is an invasive ultrasound method, and has been widely used in 
experimental models to measure myocardial deformation (33), and has served as a 
reference method in validation studies for new techniques (12,34,35). The method is 
based on implanting small ultrasonic crystals into myocardial tissue. These crystals can 
act both as transmitters and receivers of ultrasound, and are small enough to follow the 
motion of the surrounding tissue. Thus, the method gives measurements of tissue 
deformation with high temporal resolution and high accuracy. The method can only be 
performed in open-chest preparations, and this might alter cardiovascular physiology 
and mechanics. However, the method serves as a good reference for comparison with 
ultrasound methods. 
 

4.8. MRI tagging 
Magnetic resonance imaging (MRI) is a non-invasive imaging modality based on 
transmitting and receiving radio frequency signals from atomic nuclei (hydrogen in 
medical imaging) that are spinning in a strong magnetic field. By setting up additional 
weaker magnetic fields within this strong field, two-dimensional images with any three-
dimensional orientation can be recorded. MRI normally operates with an in-plane pixel 
size of about 1-2 mm, while the slice thickness for functional cardiac imaging is about 
6-10 mm. The major advantage of MRI is image quality, which is generally better than 
in echocardiography, and also equal in all parts of the image (no difference in lateral 
resolution with depth). Due to good differentiation between blood and myocardium, 
MRI is considered the gold standard for measurements of LV volume and ejection 
fraction (EF), and this is done by acquiring a stack of short axis slices which covers the 
whole left and right ventricles. Presumed that the patient can lie still during the exam, 
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and holds his/her breath in the same diaphragmatic position during every recording, the 
three-dimensional coordinates of the slices are known, and can be used in three-
dimensional reconstruction. Larger three-dimensional volumes can also be acquired.  
 
MRI is used rather infrequently in cardiac patients, at least compared to 
echocardiography. The main reasons are that it is more time-, and staff consuming, it is 
not portable, and the costs are higher than for echocardiography. There are a few 
methodological limitations. First of all, MRI is contraindicated in patients with some 
kinds of metallic implants. MRI in patients with implanted defibrillators or pacemakers 
is currently a topic under investigation. Some patients may need anxiolytic medication 
due to claustrophobia, and children may need sedation. Accurate ECG-triggering is 
absolutely necessary to get good cardiac recordings, and this might be a problem in 
some patients. Arrhythmias are also a problem, but can be reduced by medication in 
some cases. The examination of cardiac anatomy and function also generally needs to 
be done during breath-hold, which might be a problem for patients with dyspnea, 
reduced hearing or unable to cooperate. An important disadvantage compared to some 
echocardiographic applications is the low temporal resolution. 
 
For patients with CAD, MRI can be used for several purposes. One is the measurement 
of volumes, EF and regional WMS, and WMS can also be done during dobutamine 
stress to diagnose viability and ischemia. During the last decade the development of the 
so-called delayed- or late-enhancement method has made an important contribution to 
the diagnostic toolbox in CAD. After injection of a standard Gadolinium-containing 
MRI contrast agent, myocardial perfusion can be assessed during the first-pass phase. If 
imaging is delayed for 10-15 min, the extracellular contrast agent will show brighter 
areas in regions with increased proportion of extracellular space, as in infarcted, 
inflamed or fibrotic tissue. The method is being increasingly used to detect and estimate 
the size of myocardial infarctions (MI), and to differentiate between different causes of 
myocardial damage, both in clinical practice and scientific studies (36,37).  
 
MRI can provide quantitative measurements of myocardial deformation by a technique 
called tagging. Tagging is done by applying a grid or line-pattern of demagnetisation to 
myocardial tissue at the beginning of the QRS-complex, and acquire a series of images 
which show how the lines of demagnetisation move with the tissue in the different 
regions of the heart. Any image orientation can be selected, so, in principle, all 
components of myocardial deformation can be measured. Until a few years ago, 
analysis of tagging images to extract quantitative information was very time-consuming, 
and this limited the applicability of the method (38). Recently, a method has been 
introduced which can analyse motion in a more automated manner, based on the phase 
information in the images (39,40). The method is called harmonic phase analysis 
(HARP) and is based on analysis of the harmonic peaks in the backward Fourier 
transformed image (39,41-44). 
 
MRI tagging has been chosen as a reference method in several studies of new 
echocardiographic deformation-measuring methods for two main reasons: It is a 
different modality, and it is non-invasive. It is normally used as a two-dimensional 
technique, but can also be used to gather three-dimensional data (45). Alternatively, the 
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motion information gathered from the two-dimensional images can be put together in 
three dimensions because the three-dimensional orientation of the image planes is 
known (46).   
 

4.9. Coronary artery disease 
Occlusive disease of the coronary arteries due to formation of atherosclerotic plaques is 
an important cause of death in the industrialised part of the world, and increasingly 
important also in less developed countries (47,48). Total occlusion is often a result of a 
thrombus arising due to plaque rupture, and leads to sudden death or MI. Chronic 
occlusion results in ischemia at rest or during exercise, depending mainly on the grade 
of occlusion. In addition, a period of ischemia might induce stunning; a kind of 
temporarily reduced contractile function in viable myocardium. Stunning has usually 
resolved one week after an infarction, and this is the reason why echocardiography to 
estimate infarct size is not performed during the first few days after the infarction (49). 
There might also be parts of myocardium next to the infarct core that are at risk of 
necrosis due to limited blood supply (area at risk). Hibernation is a somewhat similar 
condition to stunning; and is defined as myocardium that is viable, but has reduced 
contractile function, and regains function after revascularisation. In hibernation, the 
cause of the dysfunction is a chronically reduced blood supply, not a sudden short-lived 
period of ischemia as in stunning. 
 

4.9.1. Echocardiography in myocardial infarction 
Infarct size determined by wall motion analysis in echocardiographic images is an 
important prognostic variable after an MI (50). Such visual analysis is performed using 
the categorical WMS system. The advantage of this system is its simplicity; it requires 
no special software or post-processing of data. The limitations are: Limited sensitivity 
for small reductions in function, subjectivity and experience dependency, limited inter-
observer reproducibility and the fact that assessment is mainly based on wall thickening, 
not long-axis shortening (2). 
 
Can echocardiographic assessment of function contribute in therapeutic decisions in 
patients with MI? According to several studies it can. The presence of viable 
myocardium determined by improvement of WMS during dobutamine stress 
echocardiography is a significant predictor of the effect of revascularisation therapy 
(51). The presence of many viable, but dysfunctional, segments also suggests that such 
therapy should not be postponed (52). The relationship between viable myocardium and 
improved function after revascularisation or after the early phase of an infarction has 
also been demonstrated on a segmental level using gadolinium-contrast late-
enhancement MRI (53-57). SR measurements have been shown to increase the 
predictive value of WMS for improvement of function after revascularisation when the 
two methods were combined, but they came out equal when compared head-to-head 
(21). 
 
After an MI, increased LV end-diastolic volume (EDV), a process known as 
remodelling, occurs in a substantial number of patients, and can lead to development of 
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clinical symptoms of heart failure. This remodelling can be reduced by beta-blockers, 
angiotensin-converting enzyme-inhibitors/angiotensin receptor blockers and exercise 
training (58-60). Echocardiographic evaluation of LV function by reduced EF has been 
used both to guide inclusion and to evaluate the effect of therapy in these trials. 
 

4.9.2. Ischemia (Angina pectoris) 
Detection of ischemia is a major activity in any cardiology department, and can be done 
with different non-invasive methods: Echocardiography, SPECT, MRI, and CT. 
Dobutamine or exercise stress echocardiography and stress MRI aim at detecting the 
result of ischemia, which is reduced or worsened wall deformation. Perfusion during 
adenosine or exercise can be assessed by echocardiography, MRI or SPECT, while 
computerised tomography (CT) is a parallel method to invasive contrast angiography, 
aiming at anatomical definition of stenosis severity. In addition to these methods, 
positron emission tomography (PET) can also be used, but has very limited availability, 
and high cost. 
 
Automated quantitative measurements of regional myocardial deformation has been 
tested in the setting of dobutamine stress echocardiography, and found to improve 
accuracy or be equal to manual analysis of WMS for detection of significant stenoses 
(16,17). There have been some discordant findings regarding which parameter is the 
most accurate. While the previously mentioned studies suggested that peak systolic SR 
was the more accurate, an earlier study found that post-systolic strain was better (15). 

 

4.10. Myocardial function and exercise capacity 
Fick’s equation describes the relationship between cardiac output (CO), arterial and 
venous O2-content (O2Art and O2Ven) and oxygen consumption (VO2): 
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This can be rewritten to illustrate the determinants of VO2, with stroke volume (SV) and 
heart rate (HR) substituted for CO: 
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This equation is the basis for discussions of factors that determines VO2max. 
 

4.10.1. Acute hemodynamic changes during exercise 
During exercise with large muscle groups (walking, running, cycling, rowing) at sea 
level, the main factor limiting exercise capacity is CO; the ability of the heart to pump 
blood to the exercising muscles (61). Maximal CO is determined by maximal HR and 
maximal SV. During exercise with progressively increasing intensity, HR increases 
linearly with the increasing exercise intensity and oxygen uptake. The relation between 
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intensity and SV has been subject for debate; the traditional view has been that SV 
increases with intensity up to about 50 % of VO2max, and then levels off. However, 
recent studies have suggested that in well-trained athletes, SV can continue to increase 
up to VO2max (62,63). The increase of SV is determined by three factors: 1) increased 
filling (preload) due to increased venous return caused by the muscle pump; 2) 
increased contractility (para-/ sympathetic nervous system, circulating catecholamines 
and HR (Bowditch effect)) and 3) decreased peripheral resistance. The decreased 
peripheral resistance is due to vasodilation in the exercising muscles. The increase in 
CO leads to a marked increase of systolic blood pressure, while the diastolic pressure 
increases less or not at all, due to the reduced total peripheral resistance. 
 
In patients with CAD, the present consensus is that SV levels off at about 50-60 % of 
VO2max (64). A number of studies have looked at the response in end-diastolic (EDV) 
and end-systolic volume (ESV), and reached very different conclusions. The most 
widely used methods have been radionuclide ventriculography and echocardiography. 
Both of these have limitations during exercise, especially at higher intensities. Most of 
the studies have found an increase of EDV and a progressive decrease in ESV during 
exercise (65). This suggests that patients with CAD utilize the Frank-Starling 
mechanism to increase SV during exercise. The increased EF might also be due to lower 
peripheral resistance during exercise. 
 

4.10.2. Chronic adaptations to exercise training 
Maximal HR changes only minimally by training (66-68). Thus, to increase CO, which 
is the most important determinant of VO2max, the only opportunity is to increase SV. An 
increase in SV can be accomplished by changing any of the three factors mentioned 
above: increased preload, increased cardiac contractility or reduced peripheral 
resistance. Increased plasma volume, which is a frequent finding after exercise training, 
might contribute to the increase of SV by improving LV filling (preload) (69). Increased 
SV during exercise has been shown after training in healthy subjects, allowing work at 
the same submaximal load to be performed at a lower HR. A thorough review and study 
of the effects of exercise of different intensity and duration on VO2max  in young healthy 
moderately fit subjects has recently been presented by Helgerud et al (70). Their study 
showed that high intensity exercise was superior to moderate intensity exercise for 
increasing VO2max, thus demonstrating that intensity cannot be replaced by duration of 
exercise. The study also showed that the increase of VO2max was paralleled by an 
increase of SV measured at an intensity very close to VO2max. An increased SV at 
submaximal load after training has also been demonstrated by echocardiography in 
young females (71). 
 
In patients with CAD, exercise training can increase VO2max as much as in healthy 
subjects. However, the mechanisms behind this increase seem to be less clear than in 
healthy subjects. Some studies have found improved cardiac contractile function during 
exercise after training (72-75), while others have found that the improvements of 
VO2max can be explained by peripheral changes leading to a larger arterio-venous O2-
difference (66). Only two studies have directly compared the effects of exercise training 
at different intensities, one showed that higher intensity elicited the largest improvement 
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(74), while the other found no difference for VO2max, but an increase in EF during heavy 
exercise only in the high-intensity group (75). 
 
Cross-sectional studies suggest that athletes have altered cardiac morphology compared 
to sedentary subjects. Endurance athletes have larger EDV and increased wall thickness, 
and this is to some extent reversed by de-training (76,77). Strength-trained athletes have 
been found to have slightly higher wall thickness and lower end-diastolic dimensions 
than endurance-trained athletes (78). Two months of high-intensity exercise training 
causes LV mass to increase in young females (71), and even two hours bicycling for 
six-days have been shown to increase EDV during exercise (79). Interestingly, 
endurance exercise training, especially with high aerobic intensity, seems to reverse LV 
dilatation in patients with post-infarction heart failure (60,80). 
 

4.10.3. Exercise capacity and cardiac function 
Even though there seems to be a close relation between CO and VO2max, there is no 
clear relation between EF at rest and VO2max in healthy subjects (81). In the previously 
mentioned study showing that SV does not plateau during incremental cycling exercise, 
the results suggested that differences in diastolic function (filling rate) were more likely 
than systolic function (rate of emptying) to explain the different SV-pattern in the 
sedentary and elite athlete subjects (63). Echocardiographic measurements made during 
exercise support this (78).  
 
In patients with cardiac disease, EF is an important marker of LV systolic function, with 
prognostic value in patients with MI (82) and heart failure (83). However, the relation to 
exercise capacity is not very close here either (83,84). In a population of patients 
refereed for exercise echocardiography, indices of diastolic function (LV mitral annular 
early diastolic velocity, Em) and LV filling pressure (the ratio between early mitral 
filling and mitral annular velocity (E/Em)) were more closely linked to exercise capacity 
than systolic indices like LV EF (85). A recent study from a cardiac rehabilitation 
program for patients with CAD supports this; training improved only early diastolic, 
and not systolic mitral annular velocities (67). In a subgroup with abnormal relaxation 
pattern, the improvement of Em was related to the improvement of VO2max. 
 

4.10.4. Tissue Doppler and exercise hemodynamics 
Tissue Doppler recorded mitral annular velocities are good markers of global LV 
systolic and diastolic function (86). An important advantage of these measurements is 
that they allow systolic and diastolic LV function to be evaluated with the same method 
(84,87,88). The ratio E/Em has been taken into widespread clinical use as a marker of 
LV filling pressure, and has been validated for measurements both at rest and during 
exercise (89-92). As mentioned above, tissue Doppler velocities are influenced by 
global heart motion, and a resent study has proposed that global LV SR during 
isovolumic relaxation can be an alternative measurement that avoids this problem (93).   
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5. Aims of study 
 

Study I 
To validate speckle tracking echocardiography as a method for angle-independent 
measurement of regional myocardial strain, using sonomicrometry and MRI tagging as 
reference methods. 

 
Study II 
To compare four different automated echocardiographic methods, based on TDI and 
speckle tracking alone or combined, for regional myocardial long-axis strain 
measurements, using MRI tagging as reference method. 

 
Study III 
To compare systolic and diastolic LV function during upright bicycle exercise in 
patients with chronic MI, and compare the results to an age- and sex matched control 
group. 

 
Study IV 
To study the effect of aerobic treadmill exercise training with different intensity on LV 
myocardial function in patients with stable CAD, using strain rate- and tissue Doppler 
imaging. 
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6. Material and methods 

6.1. Study subjects 

6.1.1. Study I 
In the experimental part we included experiments performed in nine mongrel dogs, at 
Dept. of Surgical Research, Rikshospitalet, Oslo, Norway. The study protocol was 
approved by the National Animal Experimental Board. The animals were sedated by 
thiopentone 25 mg/kg body weight and morphine 100 mg IV, followed by infusion of 
morphine 50 to 100 mg/h IV and pentobarbital 50 mg IV every hour. The animals were 
artificially ventilated through a cuffed endotracheal tube with room air with 20 % to 50 
% oxygen. All measurements were made during apnoea. 
 
The eleven subjects in study I were recruited from Johns Hopkins University Hospital 
(Baltimore, USA). Seven had sustained an MI, and were included because 
quantification of the size of an MI might be an important application of regional 
myocardial strain measurements. Four healthy subjects were also included. 
 

6.1.2. Study II 
The healthy controls were recruited among university students. Exclusion criteria were 
smoking, known heart disease, diabetes mellitus or hypertension. A standard 
echocardiographic examination was performed to exclude significant pathology. 
 
The patients were recruited from a population that had recently been admitted to St. 
Olavs University Hospital and diagnosed with MI. They had a median EF of 41 (range 
19 – 58). Patients with arrhythmias were excluded due to the problems this gives for the 
deformation measurements, especially MRI tagging. All examinations were performed 
>3 weeks after the infarction. The safety of the implanted stents was checked for the 3.0 
Tesla magnetic field (94). 

 

6.1.3. Study III 
The patients in this study were recruited among the population admitted to St. Olavs 
Hospital and diagnosed with an acute MI >3 months earlier. The patients had relatively 
well preserved EF (46±7 %). The findings in this group were compared to those in an 
age-and sex-matched control group (no history of heart disease and no risk factors). The 
subjects in the control group were recruited among university staff and by 
advertisements at public places. 

 

6.1.4. Study IV 
The patients in this study were recruited among subjects undergoing routine coronary 
angiography at St. Olavs Hospital. The angiographic inclusion criterion was presence of 
at least one significant coronary artery stenosis. All patients in addition had clinical 
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signs or symptoms of CAD (ischemia or typical chest pain during exercise testing, 
previous MI, or had undergone percutan coronary intervention, coronary artery bypass 
surgery). 
 
Poor image quality was not an exclusion criterion in any of the studies. Of the total 52 
patients and 33 controls included in the four studies, eight (15 %) and eleven (33 %), 
respectively, were female. No adverse events occurred during the studies. 
  
 

6.2. Image acquisition and analyses 

6.2.1. Echocardiography 

6.2.1.1. Study I 
In the experimental part of study I, three B-mode cardiac cycles in the apical four-
chamber view were acquired using a Vivid 7 scanner and a phased array 2.0 MHz 
transducer (GE Vingmed Ultrasound). The image orientation was matched to the 
position of the ultrasonic crystals. 
 
The analyses were performed by GcMat. The end-diastolic distance between the crystals 
measured by sonomicrometry was used to guide the position of the ROIs for speckle 
tracking in the images, and was also used to reject images with a clear deviation of 
orientation relative to the position of the crystals. If the crystals were visible in the 
image, the ROIs were placed beside, and not on them, to avoid artificially good 
tracking. 
 
In the clinical part of study I, four- and two chamber B-mode images were acquired 
with a System Five scanner (GE Vingmed Ultrasound) with a 2.0 MHz probe. The 
images were acquired with relatively high frame rate (84±18 s-1). In pilot studies we 
found that this was necessary for the tracking algorithm to work properly. 
 

6.2.1.2. Study II, III and IV 
In these studies echocardiography was done with a Vivid 7 scanner, and an M3S phased 
array 2.0 MHz probe (GE Vingmed Ultrasound). Images were acquired during end-
expiration. This was particularly stressed in study II to achieve the same conditions as 
during the MRI examination. Both B-mode and TDI were acquired in the four-, two- 
and apical long-axis views. TDI frame rate was about 120-130 s-1 in all studies. B-mode 
frame rate in study II was 82±8 s-1. In study III we also acquired images during upright 
rest and upright incremental bicycle exercise (25, 50 and 75 W). On each stage tissue 
Doppler images in the four- and two-chamber views were acquired, in addition to the 
mitral inflow velocity profile by PW Doppler. Three of 42 subjects were excluded from 
analysis in this study due to poor image quality in the upright position. 
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6.2.1.3. GcMat-analyses 
The GcMat application was used in all studies included in this thesis. The code for the 
tracking algorithm has been written mainly by Prof. Hans Torp at the Department of 
Circulation and Medical Imaging at NTNU, and various features have later been added 
by him or PhD–students at the department. Some of these, especially the valuable 
feature allowing automated analysis and extraction of relevant variables, has been 
described by Ingul et al (17,32,95,96). In this thesis the method has been used in a 
somewhat different manner, and this is described below. 
 
The algorithm provides a framework for comparing analysis of regional myocardial 
deformation based on two basic principles; TDI and speckle tracking. Thus, both B-
mode and combined colour tissue Doppler- and B-mode data can be used. When 
analysing tissue Doppler images, the user can also select to use only the B-mode data, 
which is sampled with a lower frame rate than TDI-data (1:3). If the TDI-data are used, 
the user can select to use speckle tracking in both the lateral (in plane, perpendicular to 
the beam) and the radial direction (beam direction). If TDI is used in the radial 
direction, speckle tracking is only needed in the lateral direction to make the 
measurements angle-independent (in the image plane), and this also saves computation 
time. When analysing B-mode data, speckle tracking is performed in both the radial and 
lateral directions.  
 
Some important parameters in the algorithm are: 
 
ROI lat: defines the ROI size (in mm) in the lateral direction (depends on image depth). 
Default in this thesis: 5 mm. 
ROI rad: defines the ROI size (in mm) in the radial direction. Default in this thesis: 5 
mm. Based on pilot experiments. 
Vmax rad: defines the radial size of the search area used in speckle tracking. Must be 
specified according to a priori knowledge about myocardial velocities in the region. Is 
given in cm/s, and then adjusted for frame rate. Default in this thesis: 16 cm/s (20 in 
some healthy young subjects). If tissue Doppler data was used, this parameter was set to 
0. 
Vmax lat: same as Vmax rad, but for lateral size of the search area. Default 8 cm/s. 
Use TDI: If checked TDI-data is used to track the ROI in the radial direction. 
Apex fixed: holds the apex fixed, does not track motion either by TDI or speckle 
tracking. Not used in the present thesis. 
Corr: Sets the lower threshold (correlation coefficient) for when the kernel should not 
be moved to the area with the best match (by SAD) in the next frame. Set to 0 in the 
present thesis. If set at e.g. 0.5, the kernel would not be moved if the correlation 
coefficient between the kernel at t0 and the best SAD-match at t1 was below this, e.g. 
0.44. 
 
When using B-mode data, the only way to analyse strain and SR in the GcMat-
application is to measure the change of length between pairs of kernels during the 
cardiac cycle. When using tissue Doppler images there are two possibilities. One is 
similar to the method used in B-mode analysis, but the tracking of the kernel in the 
radial direction is done only by using tissue Doppler data. Strain and SR are calculated 
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from the change of length between pairs of kernels. This method was called TDI+ST, 
and was one of the four echo methods used in study II. TDI+ST was used for strain and 
SR measurements in study III and IV. The second method is more similar to the way 
strain and SR are analysed manually in EchoPac (GE Vingmed Ultrasound). Here, the 
same seven kernels on the segment boundaries are tracked first, by using tissue Doppler 
data in the radial direction and speckle tracking in the lateral direction. Then, six ROIs 
are positioned between pairs of kernels, in the middle of each of the six myocardial 
segments in each view. Strain and SR are calculated from the velocity gradient along 
the beam within this ROI. By using the tracked positions of the kernels on the segment 
boundaries, the ROI for the velocity gradient can be made to follow the approximate 
same myocardial tissue during the cardiac cycle. This method was called TDI-VG 
(tissue Doppler imaging-velocity gradient), and was only used in study II. In TDI-VG 
segments were excluded if the angle between the beam and the long-axis of the segment 
was > 30°. 
 
Workflow in analyses: 
1. Open an image, and select the appropriate view. 
2. Select the end-diastolic frame 
3. Mark the position of the seven kernels on the segment boundaries, to define six LV 

segments. 
4. Initiate tracking of the kernels. 
5. The algorithm searches for regions similar to each of the seven kernels in the next 

frame, using the SAD algorithm. TDI-use and size of search area are defined in 
advance. The algorithm also performs the same tracking backwards through the cine 
loop. The results from the backward and forward tracking are then subject to a 
weighted average, so that the forward tracking is emphasised in the start of the 
cycle, while the backward tracking is emphasised towards the end. 

6. After tracking, the “Track-inspector”-window appears. The correlation coefficients 
from kernel to kernel during the cardiac cycle are displayed, together with the mean 
and standard deviation (SD) of the distance between the forward and backward 
tracking paths. The two paths are also graphically displayed, together with their 
weighted average, for all the seven kernels (Figure 5). 

7. If the tracking result is not satisfactory, the position of the kernels is adjusted, and 
tracking performed again. 

8. When a good result is obtained, the toolbox “AVCtiming” is chosen, and the timing 
of AVC (end-systole) is performed automatically (97). 

9. The toolbox “tissuetrack” is chosen again. The proper analysis method is chosen, 
and the analysis performed. The results are displayed as strain and SR curves for 
each of the six segments. 

10. The position of the marker for AVC and the other selected curve variables are 
visually inspected, and adjusted if necessary. 

11. The parameters are saved to file.   
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Figure 5. Illustration of the output from the track-inspector function. A graphic 
presentation of the correlation coefficients between the tracked regions is shown in the 
upper panel, for both forward and backward tracking. The forward and backward 
tracking paths are shown in the lower panel, together with the error between them 
during the cycle. Tracking was started at frame nr 13 in this example. Program code was 
written by Jonas Crosby. 
 

6.2.2. Sonomicrometry 
The sonomicrometry crystals used in study I (Sonometrics Corp., London, Ontario, 
Canada) were implanted in the subepicardium of the beating heart, and fixed with 
sutures. Afterwards the pericardium was adopted with sutures. The crystals emitted and 
received ultrasound pulses at a rate of 200 s-1, and the signals were coded so that many 
crystals could be used simultaneously. In the experiments 16 crystals were implanted in 
the walls of the LV, to be able to measure LV rotation and twist in addition to long- and 
short-axis deformation. For the validation of the speckle tracking algorithm, only the 
four crystals positioned in the plane of the four-chamber view were used. By implanting 
the crystals like Figure 1 in study I shows, we were able to measure long-axis strain in 
the septum and lateral wall, and to confirm the accuracy of lateral tracking by 
simultaneously measuring LV short axis diameter change at the apical and 
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midventricular levels of the LV. The traces were analysed in SonoVIEW (Sonometrics 
Corp.), and exported to Matlab for calculation of strain and diameter change.  
 

6.2.3. MRI tagging 
In study I, tagged MRI images were recorded using a 1.5 T magnet with a phased-array 
cardiac coil (Signa, GE Healthcare, Waukesha, Wisconsin) using an ECG-triggered 
segmented k-space fast gradient-echo sequence (DANTE-SPAMM) (13,98). Four to 
five contiguous short-axis images (double oblique) were prescribed from base to apex, 
and six long-axis slices (double oblique) were prescribed radially every 30°. The motion 
of the myocardial tags was analysed, and adjusted by a displacement field-fitting 
method to give a 3D-map of radial, circumferential and longitudinal strain. Long-axis 
Lagrangian strain values were calculated for the basal, mid, and apical segments of the 
septum, lateral, anterior and inferior walls, to cover the same segments as in 
echocardiography (99). 
 
In study II, tagged MRI images were recorded using a 3.0 T Philps Intera magnet and a 
six channels SENSE cardiac coil. Two separate acquisitions with parallel tag lines 
orthogonal to each other were acquired by complementary spatial modulation of 
magnetization (C-SPAMM) using a multi-phase ECG-triggered T1-Fast Field Echo 
sequence (100). The acquisitions generally required a breath-hold time of about 15 s 
each, and were performed in end-expiration. The four-, two-chamber and apical long-
axis views were acquired to cover the same segments as in echocardiography.  
 
The two acquisitions with different tagging angle were combined, and exported in a 
complex data format for off-line analysis in TagTrack (Gyrotools Ltd, Zurich, 
Switzerland) using a peak-combination harmonic phase algorithm (44). The tracked 
contour was exported to Matlab, where seven points along the contour were selected, 
corresponding to the segment boundaries, and segmental strain and SR calculated from 
the change of length between pairs of points. Segmental results were excluded if the 
tracking was poor or if the curves were obviously wrong.    
 

6.2.4. Lagrangian vs. Euler strain/SR 
Strain and SR can be calculated by two different methods; the Lagrangian and the Euler 
(Natural) method. The basic difference is that the Lagrangian method uses the initial 
length of the object as a reference, while the Euler method calculates instantaneous 
strain in relation to the instantaneous length. It has been accepted as a standard to report 
strain as Lagrangian strain, and SR as Eulerian SR. In the speckle tracking methods in 
this thesis, Lagrangian strain was calculated from the change of length of a region of 
myocardium. This was also the case for the MRI tagging data in study II. A simple 
temporal derivation would give Lagrangian SR, so a correction was applied to get the 
Eulerian values (24).    
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6.2.5. Timing of events in the cardiac cycle 
In the echocardiographic analyses in study II-IV we used an automatic algorithm 
developed at our department by Aase et al, which detects AVC, and thus end-systole, 
with high accuracy in apical tissue Doppler images (97). This method was also used in 
analysis of the B-mode images by ST-7P. We also used the same landmark in the 
annular velocity curves in 2D Strain. 
 
The timing problem was avoided in study I, as we measured only peak strain, with no 
attempt to distinguish between systolic and post-systolic values. In study II, we 
measured the peak systolic strain by both echocardiography and MRI tagging. Timing 
of AVC by the same principle as in echocardiography was not possible in the MRI 
images due to low temporal resolution, therefore the positioning of AVC in the traces 
was guided by the AVC found by echocardiography, and by inspection of the shape of 
the strain and SR traces from the MRI analyses, especially looking for the small notch 
that can sometimes be seen in the strain curves at AVC. This unblinding was done 
strictly for the AVC results, no information of patient status or deformation results was 
revealed.     

 

6.3. Statistics 
Values are reported as mean ± SD or median (range). Paired or independent samples t-
test, or Mann Whitney U-test and Wilcoxon signed rank test were used to compare 
measurements within or between groups. One-way analysis of variance was used to 
compare values from more than two methods. Bonferroni post-hoc adjustment of p-
values was used in study I and III, but not in study II, as it is known to be very 
conservative when multiple comparisons are made. Relationship between variables was 
determined by Pearson’s or Spearman’s correlation/rank coefficient. Agreement 
between different methods was assessed using linear regression analysis and Bland-
Altman statistics, with calculation of the 95 % limits of agreement (LOA) (101,102). In 
study II agreement for SR was illustrated by scatter plots with the line of identity, as 
agreement was unequal over the range of measurements, which violates the conditions 
for regular Bland-Altman analysis. Reproducibility (inter- and intraobserver) was 
determined by the coefficient of repeatability (COR) (102) or coefficient of variation 
(COV). In study IV, we also calculated the correlation coefficient between pre- and 
post-test values to estimate the reproducibility and/or the biological variation of the 
different measurements (103). In study III we used a general linear model for repeated 
measurements to test the differences in exercise responses in the two groups. A two-
sided p<0.05 was regarded as a marker of statistical significance. 
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7. Summary of results 
Study I 
In this study the accuracy of the GcMat speckle tracking application (ST-7P) in B-mode 
images was confirmed using sonomicrometry and MRI tagging as reference methods. In 
the experimental part, we found that speckle tracking agreed well with sonomicrometry 
for measurements of myocardial strain and LV short-axis diameter change (95 % LOA 
(-4.4 – 5.0 %) and (-5.6 to 5.1 %), respectively). In the clinical part, we found low bias 
but a somewhat wider 95 % LOA-interval for the comparison with MRI tagging for 
long-axis measurements of segmental peak strain (95 % LOA (-9.1 – 8.0 %)). The 
feasibility for segmental analysis was 80 %. 

 
Study II 
In this study we compared segmental deformation measurements by different 
echocardiography methods to similar measurements by MRI tagging. In 21 subjects (10 
with recent MI) we measured peak systolic strain and systolic (SSR) and early diastolic 
(ESR) SR by four different echo methods. Method number one and two used B-mode 
images, while method number three and four used tissue Doppler images: 1) 2D Strain 
(speckle tracking application in EchoPac (GE Vingmed Ultrasound)); 2) Speckle 
tracking of segment end-points (ST-7P); 3) Combined tissue Doppler (radial tracking) 
and speckle tracking (lateral tracking) (TDI+ST) ; 4) Strain and SR estimated from 
regional tissue velocity gradients, as in traditional manual analysis, but implemented in 
GcMat (TDI-VG). The 95 % LOA-intervals for the echo methods compared to MRI 
tagging were relatively wide, with a wider 95 % LOA-interval for strain for method 4. 
2D Strain measured more negative strains than MRI tagging and the other 
echocardiography methods. Reproducibility was best for 2D Strain. 80-83 % of all 
segments were analysable for each method, except for method 4 (63 %). 

 
Study III 
In this study we compared systolic and diastolic LV function during upright bicycle 
exercise in patients with MI, and compared the results to those of a healthy age- and 
sex-matched control group. The patients had relatively well preserved LV function. At 
rest mitral annular systolic (Sm), but not Em, was lower in the MI patients. During 
exercise Sm, but not Em, increased in the patients, while both increased in the healthy 
subjects. E increased in both groups, thus the E/Em-ratio, a marker of LV filling 
pressure, increased during exercise only in the MI group. HR was similar in both 
groups. 

 
Study IV 
In this study we investigated the effect of aerobic treadmill exercise training with 
different intensity on LV function, quantified by strain/SR and tissue Doppler mitral 
annular velocities, in patients with stable CAD. Seventeen patients were randomly 
assigned to either moderate (50-60 % of peak oxygen uptake (VO2peak)) or high intensity 
exercise (80-90 % of VO2peak) for 10 weeks. The increase of VO2peak was significantly 
larger in the high intensity group (17 vs. 8.0 %, p=0.01). Mean LV ESR increased in the 
high, but not in the moderate, intensity group. For SSR or mitral annular velocities there 
were no changes after training in either group. 
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8. Discussion 
 

8.1. New methods for quantifying regional myocardial 
function 

In study I and II in the present thesis we tested new algorithms for myocardial strain and 
SR measurements based on speckle tracking, both alone or combined with TDI. In the 
experimental part of study I, where we used only ST-7P, we showed that the method 
can detect changes in function due to ischemia and increased load. In the clinical part 
we showed that the method also works in patients. In study II we again used MRI 
tagging as a reference method to validate measurements by speckle tracking alone or 
combined with tissue Doppler data. 

 

8.1.1. Choice of reference methods 
We chose to validate the new echocardiographic methods described in this thesis against 
MRI tagging and sonomicrometry because they are accepted reference methods for 
regional myocardial strain measurements. We also compared the measurements against 
“pure” tissue Doppler-derived deformation measurements in study II, but using a 
different imaging modality is preferred to get an independent assessment of the 
accuracy of the new method. 
 
We could have used other methods to evaluate the clinical value of the new methods. 
The essential question is: what property of the heart, or myocardium, is it that we really 
want to measure, for instance in patients with MI? Is deformation more important than 
the amount of viable myocardium in % of segmental myocardial mass?  
 
In patients with MI, determination of myocardial viability is important to make correct 
decisions on revascularisation therapy. MRI with gadolinium late enhancement imaging 
has become a widely used tool for viability assessment, due to its high spatial resolution 
and generally high image quality. However, viability determined by WMS in low-dose 
dobutamine MRI seems to have better accuracy compared to late-enhancement MRI in 
predicting recovery of function, especially in segments with intermediate scar 
transmurality (104,105). This would mean that even though MRI late enhancement is 
considered to be the “gold standard” for viability/scar-assessment, WMS during low-
dose dobutamine MRI works better when it comes to the main purpose of the 
assessment for these patients; the prediction of recovery of function. A problem with 
both studies is that the same method (WMS on MRI cineloops) was used to detect both 
viability and recovery. In other words; it is not that surprising that function is a better 
predictor of recovery of function, than information on the amount of scar. The two 
methods for prediction of recovery (MRI late enhancement and MRI/Echo low-dose 
dobutamine test) could have been compared in a randomised study looking at hard 
endpoints (morbidity/mortality) in patients who were candidates for revascularisation, 
but such method-comparison studies are seldom performed. 
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In relation to the work in paper I and II, the discussion above shows that validation of 
the new method against MRI tagging might have been as relevant as to evaluate its 
accuracy using MRI late enhancement. On the other hand, long-axis strain and SR is not 
equivalent to the wall thickening-based WMS, which was used in the study mentioned 
above, although the two methods seem to give relatively similar information (9). One 
possible advantage of MRI late enhancement is the good reproducibility and image 
quality relative to tagging. To summarise, this thesis is a basic validation of the new 
speckle tracking methods, but we have not compared them to old methods in a 
diagnostic or prognostic setting where they might be used, for instance in dobutamine 
stress echocardiography. Generally, such studies should be performed before new 
technology is taken into clinical use. 

 

8.1.1.1. Sonomicrometry 
While sonomicrometry has adequate temporal and spatial resolution to serve as a good 
reference method, the positioning of the crystals is vital for accurate measurements. 
There are some important sources of error when comparing measurements by 
sonomicrometry to measurements by two-dimensional echocardiography. First, correct 
alignment of the echocardiography image plane with the position of the crystals is vital. 
Second, the 2D echocardiography methods are not able to measure tissue motion out of 
the image plane, while this is possible in sonomicrometry because the crystals follow 
the three-dimensional motion of the tissue. Third, the positioning of the crystals relative 
to the endo- and epicardium is important, especially for the short-axis measurements. 
While the epicardium is almost still, the endocardium moves substantially, and this 
probably explained why the 95 % LOA-interval was somewhat wider for short-axis 
compared to long-axis measurements. Finally, the open-chest preparation is well suited 
for direct comparison studies, but induces circulatory and mechanical changes that must 
be taken into account when comparing the results with clinical studies. 
 

8.1.1.2. MRI tagging 
The tagging methods used in study I and II were different. In study I, several short- and 
long-axis images were combined to give a three-dimensional deformation map of the 
LV. The large number of images gave good spatial resolution and thus probably more 
robust deformation measurements, but simultaneously gave lower temporal resolution 
due to averaging over many cardiac cycles and breath-holds. In study II the 
measurements were made in two-dimensional images acquired in the same position as 
the echo images. The three-dimensional nature of the measurements in study I 
introduced some of the same problems as those mentioned for sonomicrometry. The 
MRI tagging method in study II had relatively high temporal resolution. The CSPAMM 
sequence also gave better and more sustained tag contrast (100). Tag duration was also 
improved by the longer T1-relaxation constant of myocardial tissue at 3.0 T compared 
to 1.5 T. Therefore, we were able to measure ESR as well as SSR in this study. 
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8.1.2. Feasibility  
The feasibility for ST-7P was equal in study I and II (80 %). In study II 2D Strain and 
TDI+ST had feasibility in the same range (81 and 83 %, respectively), while the 
feasibility for TDI-VG was lower (64 %). These numbers were very similar to the ones 
found in the first study describing the automated approach (32). Angle dependency was 
found to be an important limitation of TDI-VG, causing 14 percentage points of the 36 
% of segments excluded. Others have found slightly higher feasibility rates for 2D 
Strain (106,107). The feasibility for MRI tagging in study II was 83 %, which was 
lower than previously reported (108). This could be due to the type of sequence and the 
higher field strength used in study II, causing susceptibility artefacts and eddy current-
effects. 
   

8.1.3. Agreement – Speckle tracking 
In study I the width of the 95 % LOA-interval was smaller in the experimental than in 
the clinical part. This could partly be explained by better image quality, but also by 
lower absolute values in the experimental part. The measurement bias was similar. The 
95 % LOA-interval in the experimental part was similar to the agreement found for an 
RF-tracking algorithm in an experimental study by Langeland et al (29). Toyoda et al 
obtained slightly better results, but they measured only radial strain (30), and their good 
results were probably explained by the positioning of the crystals at the epi- and 
endocardium, where pattern tracking is probably better due to stronger reflections at the 
tissue surfaces. 
 
The 95 % LOA-interval for the comparison between ST-7P and MRI tagging was 
narrower in study I than in study II. This was probably due to the use of a more 
comprehensive MRI method in study I, both in terms of acquisition and analysis. A very 
similar study to ours found 95 % LOA for 2D Strain vs. MRI tagging in the same range 
as we did. However, the bias was in the other direction, with more negative strain 
values being measured by MRI tagging than 2D Strain (108). In our study 2D Strain 
measured more negative strain values than both MRI tagging and the other echo 
methods. The explanation might be the different shape of the ROI in the different 
methods; in 2D Strain the ROI follows the curvature, while the segment is handled as a 
straight line in the other methods. The bias might also be due to the curve fitting 
implemented in the 2D Strain application. The kind of bias demonstrated in study II has 
been reported for 2D Strain previously (109). 
 
Few studies have looked at longitudinal SR with MRI tagging and speckle tracking 
methods before, especially during diastole. Early diastolic circumferential SR has been 
measured by MRI tagging in an experimental study, and was found to be reduced in 
segments at risk after reperfusion, while SSR was normal in the same regions (110). 
Diastolic SR measurements have also been used to calculate LV filling pressure (93). 
2D Strain seemed to agree better with MRI tagging than ST-7P for both systolic and 
diastolic SR measurements, although all three methods probably underestimated the 
early diastolic values due to inadequate temporal resolution.  
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8.1.4. Agreement – Tissue Doppler  
The TDI-VG method showed little bias compared to MRI tagging, but the 95 % LOA-
interval was wider for the TDI-VG method compared to the other echo methods in 
study II. This was probably due to a high level of noise in the tissue Doppler data and 
angle deviations <30 °. A very similar study which also used MRI tagging as a 
reference method, also found a wider 95 % LOA-interval for strain by velocity gradients 
than for strain by 2D Strain (108). A previous study of strain by tissue Doppler 
compared to MRI tagging found slightly better agreement in terms of 95 % LOA-width 
than we did (13). Another possible explanation for the wider 95 % LOA-interval for 
TDI-VG vs. MRI tagging in study II was the basic difference in the methods; TDI-VG 
used the velocity gradients, while MRI tagging, and the speckle tracking methods (2D 
Strain, ST-7P, TDI+ST), tracked regions of myocardium. 
 

8.1.5. Speckle tracking vs. Tissue Doppler methods 
2D Strain measured more negative peak systolic strain relative to the other echo 
methods. As mentioned above the shape of the ROI might explain this. When strain is 
measured along the middle of a curved ROI which gets thicker during systole, the 
length of the middle line will decrease not only due to myocardial shortening but also 
because the middle line is displaced inwards. The range of values for peak systolic 
strain in the healthy subjects was narrower for 2D Strain, and this was mostly due to a 
more negative upper value (Table 1). The values are similar to values found in normal 
subjects in other studies, using 2D Strain (111) and tissue Doppler velocity gradients 
(112). 
 
Table 1. Peak systolic strain in healthy subjects in study II. 
Peak Strain (%) Mean SD Range Minimum Maximum
MRI tagging  -19 4.4 22 -30 -8 
2D Strain -21 2.8 15 -29 -14 
ST-7P -19 3.8 19 -30 -11 
TDI-VG -19 5.9 28 -36 -8 
TDI+ST -18 3.2 19 -30 -11 
 
 
In patients with MI, slightly different results have been obtained regarding the ability of 
longitudinal systolic strain measurements by 2D Strain to differentiate between normal, 
subendocardial and transmural (>50 % scar) infarcted segments. The optimal cut-off for 
transmural infarction seems to lie around -13 %, but there is considerable overlap 
(111,113). In a study where strain was calculated by the velocity gradient method, 
segmental values for peak systolic strain in normal and infarcted segments in patients 
with MI were similar to those obtained in the two studies using 2D Strain mentioned 
above (112). From these data, one might suspect that there were factors specific to the 
GcMat application that affected the values in ST-7P, TDI+ST and TDI-VG, and caused 
the bias relative to 2D Strain. However, a similar bias was found for 2D Strain versus 
MRI tagging. 
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The bias was different when comparing SR values; more negative SSR values were 
found by ST-7P than by 2D Strain. This could have been an effect of less temporal 
smoothing, but this explanation does not fit with the observation that 2D Strain tended 
to measure higher ESR (Fig 4, paper II). The values for SSR and ESR in the normal 
subjects in study II are shown in Table 2 and 3. 
 
Table 2. Peak systolic SR in normal subjects in study II 
Systolic SR (s-1) Mean SD Range Minimum Maximum 
MRI tagging  -1.3 0.3 1.8 -2.4 -0.7 
2D Strain -1.2 0.3 1.9 -2.6 -0.7 
ST-7P -1.3 0.4 1.9 -2.6 -0.7 
TDI-VG -1.4 0.5 2.6 -3.2 -0.5 
TDI+ST -1.3 0.3 1.7 -2.4 -0.7 
 
 
Table 3. Peak early diastolic SR in normal subjects in study II 
 Early diastolic SR (s-1) Mean SD Range Minimum Maximum
MRI tagging  1.8 0.7 3.7 0.6 4.3 
2D Strain 2.0 0.7 3.7 0.7 4.4 
ST-7P 2.0 0.7 4.3 0.7 5.0 
TDI-VG 2.4 1.0 4.9 0.8 5.7 
TDI+ST 1.8 0.6 3.3 0.5 3.7 
 
 
Compared to tissue Doppler data from groups of healthy, but considerably older, 
subjects, the SSR values in normal subjects in study II were equal or somewhat less 
negative, and the ESR somewhat higher (114,115). Segmental SSR by speckle tracking 
(2D Strain) and tissue Doppler has been compared in one previous study, and found to 
be equal, but slightly less negative than in study II (106). The problem with this study is 
that SR by tissue Doppler was calculated by adding tissue Doppler data to the same 
model where speckle information was also used, along with curve fitting and 
smoothing. 
 

8.1.6. The combined segment-length method 
The TDI+ST method is very similar to the ST-7P method. The main difference is that 
TDI-images are used, and that the kernel is moved in the radial direction according to 
the measured tissue velocities. When compared to MRI tagging, TDI+ST came out with 
similar width of the 95 % LOA-interval as 2D Strain and ST-7P for peak systolic strain. 
For SR, the agreement evaluated by the correlation coefficient seemed slightly better for 
2D Strain than for TDI+ST, while ST-7P agreed less well with MRI. As speckle 
tracking was only performed in the lateral direction in TDI+ST, the method was less 
computational demanding than ST-7P. An advantage of the TDI+ST method compared 
to TDI-VG is that the user can assess the quality of the tissue Doppler data as the 
motion of the kernel is showed during analysis. A drawback of TDI+ST is the low B-
mode frame rate, which might make speckle tracking difficult in some cases. The ratio 
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between B-mode and tissue Doppler frames can be adjusted in the scanner setup, and 
other settings should be tested to see if it might improve tracking quality. A related 
problem which is specific to the TDI+ST method used in the present thesis, is that the 
tissue Doppler data for the three samples between each B-mode sample were averaged 
before they were used to move the kernel. This solution was chosen to avoid moving the 
kernel in the radial direction when there was no information on the motion in the lateral 
direction. However, it results in temporal smoothing, and is probably why TDI+ST 
measured lower ESR values than TDI-VG. 
 

8.1.7. Reproducibility 
2D Strain was better than MRI tagging and the other echo methods in all aspects of 
reproducibility (Fig 6, paper II), in line with previous results (16). The reproducibility 
was not tested in different acquisitions made on separate days, which would have been 
the situation most relevant to clinical use. However, analyses of a different cardiac cycle 
were made with all modalities. The intra-observer reproducibility for analyses of these 
images showed that 2D Strain had approximately half the variation of the other 
methods. The superiority of 2D Strain was probably due to a more standardised 
positioning of the ROI, and that the ROI consisted of many small kernels. The applied 
curve fitting and smoothing probably also contributed; the more smoothing applied, the 
lower variability. It is somewhat surprising that this advantage in reproducibility did not 
result in a narrower 95 % LOA-interval for 2D Strain vs. MRI.   
 
No consistent differences were observed between the two TDI methods, except for 
slightly higher intra-observer different-cycle variability for TDI-VG. Higher variability 
for TDI-VG than for TDI+ST would be expected, as some temporal smoothing was 
applied in the TDI+ST algorithm. In addition, TDI+ST and ST-7P measured strain and 
SR over the entire segment, while TDI-VG used a shorter midsegmental region. This 
gave better spatial resolution in TDI-VG, at the cost of increased noise. In contrast to 
2D Strain, there was no spatial smoothing across segments applied in the GcMat-based 
methods. ST-7P came out with similar values as the TDI-methods. The COV in study II 
were lower for both 2D Strain and the TDI-based methods compared to the results in a 
similar study (108).  
  
In study IV we assessed the reproducibility of the average LV SR. In comparison to the 
values for segmental measurements in study II we found that the COV was reduced by a 
factor of 3-4, from about 12-14 to 3-4. The COV and COR were similar for systolic and 
diastolic measurements. 
 
The reproducibility for MRI tagging was in the same range as the echo methods (not 2D 
Strain). The HARP-technology has till now been sparsely used for long-axis 
measurements, thus there are few studies to compare with. Today, most cardiac 
examinations are performed on 1.5 T systems, due to more artefacts and fewer available 
sequences at 3.0 T. It is possible that using a 1.5 T system in study II could have 
improved the reproducibility. On the other hand, tagging is one of the applications that 
might benefit from the longer T1-relaxation time at 3.0 T, because it gives less tag 
fading. 
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8.1.8. Timing of cardiac events 
Accurate measurements of the strain, SR and tissue velocity variables used in the 
present thesis require accurate timing of the main cardiac events separating the different 
phases during the cardiac cycle. The onset of the QRS-complex in the ECG is an 
accepted standard for timing of end-diastole, but a method for timing of end-systolic has 
been more difficult to establish. Traces of LV outflow by PW Doppler can be used, but 
might be inaccurate as the measurements have to be made in a different cardiac cycle. 
AVC defines end-systole, but there has been no consensus on how to find AVC in tissue 
velocity or strain/-rate images. In the present thesis (paper II, III and IV) we used the 
automatic method proposed by Aase et al (97), which searches for a spike in the 
temporally derived mitral annular velocity curve, appearing in a predefined time-zone 
before the early diastolic relaxation (steepest up slope after first zero-crossing). The 
method has been validated in tissue Doppler images, but it was also used for ST-7P, and 
was found to work satisfactory. 
 
Accurate timing is essential when comparing measurements like peak systolic strain 
between different methods, because post-systolic strain is common (approximately 1/3 
of normal segments, more often in pathology). In study I we did not have adequate 
MRI-data to separate systole from early diastole, so peak strain was used. In study II we 
estimated AVC in the MRI tagging curves by using the AVC-time from the echo 
images, and adjusting it according to features in the strain curves: A small notch or a 
deflection in the down slope of the strain curve is often a marker of AVC. The accuracy 
of this approach was tested by calculating the correlation coefficients and 95 % LOA for 
peak strain (irrespective of systolic or post-systolic) between MRI tagging and the echo 
methods. The results were very similar to those obtained from the systolic 
measurements (≤1 percentage point difference in 95 % LOA-borders). 
 

8.1.9. Frame rate vs. lateral resolution 
In speckle tracking methods high frame rate is necessary to avoid impaired tracking 
caused by speckle decorrelation due to too high tissue deformation between frames. The 
necessary frame rate will therefore depend on the amount of deformation in the tissue 
under investigation. If the deformation rate is high, frame rate must be high. In addition 
to the ability to track the tissue, it is also a question whether frame rate is high enough 
to measure the true peak velocity or deformation rate. The drawback of increasing frame 
rate is that the reduced time between each frame reduces the amount of beams that can 
be sent out and received to build each image. When fewer beams can be used, their 
width must be increased so that there is no significant gap between each beam. Wider 
beams decrease the lateral resolution, and the image might look more smooth or 
smeared out. This will naturally affect the tracking accuracy in speckle tracking 
methods.  
 
In pilot testing before study I we found that the optimal frame rate for GcMat speckle 
tracking (ST-7P) in full sector B-mode images was approximately 70-100, depending 
on LV size and depth from the probe. In study II we found that ST-7P probably 
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underestimated ESR, and this was probably due to insufficiently high frame rate. This 
problem could have been addressed by making single-wall acquisitions, where frame 
rate can be over 150 s-1 with preserved lateral beam density. There seem to be no 
reasons why speckle tracking methods cannot resolve even short lived events, presumed 
the image acquisition setup is adjusted accordingly, but this needs to be tested. Future 
developments in probe technology and beam forming will give us better tools. 
 

8.1.10. User-interaction and control 
The beam density in the lateral direction leads the discussion to another important 
difference between tissue Doppler velocity gradient and speckle tracking methods. The 
emphasis put on temporal resolution has led to scanner setups with as few as 16 tissue 
Doppler beams covering the entire image in full-sector imaging of the LV. Including 
side-lobes, this causes each beam to have a large effective sector area, and this makes 
the inclusion of noise or signal from other tissue than myocardium more likely. In tissue 
Doppler the user would not notice this unless the curves don’t look right, in terms of 
shape, or relative to the visually assessed wall motion. Speckle tracking reduces these 
problems: First, if the object is smeared out due to a low number of beams or a 
reduction in effective probe aperture, this can be seen in the B-mode image. Second, the 
quality of the tracking can be evaluated by checking that the kernel moves in the same 
way as the tissue. Importantly, this must be done at reduced playback speed due to 
limited capability of the human eye and brain to see short-lived events. 
 

8.1.11. Automated quality assessment 
In manual analysis of strain and SR in tissue Doppler data in EchoPac, the user has to 
search for an area with reasonable data quality, and which gives a trace that matches 
his/her visual assessment of regional function in the area in question. Thus, quality 
assessment is visual, subjective and experience dependent. In this thesis we investigated 
different alternatives for assessment of tracking quality by using variables that could be 
automatically extracted from the tracking algorithm. The quality assessment tool in the 
2D Strain application incorporates many different scores to provide a “yes or no”-
answer to whether the result in a segment should be regarded as valid. The sensitivity 
and specificity found for the 2D Strain tool was acceptable, but these numbers will vary 
according to the number of poor quality segments in a material. In the ST-7P GcMat 
application we looked more specifically at two possible markers of tracking quality: the 
correlation coefficient between successive kernels (this coefficient was not used for 
tracking), and the error between forward and backward tracking paths in the image. The 
analyses showed that the values for both markers were different in accepted and rejected 
segments, but that both markers will be difficult to use due to large overlap between 
included and different categories of excluded segments. Visual control of kernel 
tracking relative to wall motion was used as a gold standard, with its limitations. 

 

8.1.12. Temporal resolution 
The temporal resolution defines the accuracy of a method for defining specific events 
like AVC or Em. It is mainly given by the frame rate, which was somewhat higher for 
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the tissue Doppler than the B-mode images. However, the resolution of events also 
depends on the amount of smoothing or averaging applied to the signal, as illustrated by 
the lower SSR and ESR found by TDI+ST compared to TDI-VG. 
 
High frame rate is less important for strain than SR measurements. Frame rate as high 
as 300 s-1 has been suggested to be necessary to fully resolve the events during the 
isovolumic phases (116). However, inadequate frame rate might also affect strain 
measurements; if the peak velocities, especially in early diastole, are not sampled 
properly, this might lead to drifting in the curves. If this drift is linearly compensated for 
to make the curve return to zero at the next end-diastole, this will lead to incorrect 
measurements of for instance end-systolic strain. 
 
The SR curves in 2D Strain look rather smooth, but the fact that the method measured 
higher ESR than ST-7P, where no temporal smoothing is applied, suggests that this is 
likely to be an effect of spatial rather than temporal smoothing. 
 

8.1.13. Spatial resolution 
The spatial resolution in the images has already been commented on above. In ST-7P 
and TDI+ST strain and SR were measured by kernels positioned at the segment 
boundaries, thus the spatial resolution of the analysis tool was equal to the segment 
length. The methods can be used to measure strain and SR in considerably smaller 
regions, but this has not been tested yet, and will probably lead to increased variability.   
 
In TDI-VG the ROI size was 10-15 mm. In 2D Strain, the software can calculate curves 
for 4-5 points per segment, but the average value per segment was used in study III. The 
true spatial resolution in 2D Strain is hard to define due to the spatial smoothing 
applied. 
 
Some spatial averaging was also applied in the MRI tagging analysis. The degree of 
freedom for each of the small points along the drawn contour could be adjusted, and 
was set to allow relatively free motion. Strain and SR values were extracted from 
segment end-points here as well, so the resolution in the analysis tool was similar to the 
ST-7P and TDI+ST methods. 

 

8.1.14. Clinical aspects 
At present there are no established indications for using any of the quantitative methods 
for regional myocardial deformation measurements in daily clinical cardiology practice. 
The high level of random noise and the frequent occurrence of artefacts are significant 
obstacles, in addition to limited availability due to cost. They are used in stress 
echocardiography in some centres, but only by expert users. 
 
The differences found between the methods tested in the present study are rather small 
compared to the large variation in the measurements. Their clinical significance is 
therefore uncertain, and must be determined in head-to-head comparison studies, 
preferably in the setting where they most likely will be used, for instance to measure 
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infarct size and prognosis and to detect ischemia. As an illustration of this, TDI-VG, 
which seemed to be inferior to the other methods in many of the aspects investigated in 
study II, came out with similar accuracy for diagnosis of significant coronary artery 
stenosis as TDI+ST in a recent study (17).  
 
A similar study recently compared 2D Strain and manual analysis of strain/-rate from 
TDI for diagnosis of significant coronary artery stenosis. They found a similar 
diagnostic accuracy for 2D Strain and TDI-based measurements in the anterior 
segments, but lower accuracy in the posterior segments (16). In this study overall 
diagnostic accuracy was similar for WMS and the quantitative methods. 2D Strain had 
higher feasibility than TDI-strain at rest, but was inferior at peak stress. The study also 
found consistently higher cut-offs for peak stress systolic SR by 2D Strain than for TDI-
based measurements, and these differences were slightly higher than the average 
difference between the methods. This might be related to the applied spatial smoothing 
in the 2D Strain algorithm. It should be noted that the group behind this study has a high 
level of expertise on tissue Doppler and WMS, so that different results might be 
obtained in less experienced centers. 
 
For patients with MI there are a number of possible applications for regional 
deformation measurements, in addition to the use in stress echocardiography mentioned 
above: As a gate-keeper to acute invasive coronary angiography for patients admitted 
with chest pain, instead of ST-changes in the ECG; as a marker of reperfusion in 
patients who get thrombolysis because they are admitted to hospitals without an angio-
lab; and as an assessment of improvement due to spontaneous recovery or the effect of 
medical and non-medical (e.g. exercise or intervention) therapy. 

8.1.15. Limitations of speckle tracking 
From the work with different speckle tracking applications in this thesis some 
comments can be made on the possible sources of error, with emphasis on the 
differences to SRI. 
   

• Tethering 
As in SRI, tethering is not a problem, as regional strain and SR is calculated from the 
difference in displacement between different regions. 
 

• Aliasing 
In contrast to TDI, there is no clear limit to the range of velocities that can be measured. 
The ability to measure such velocities depends on adequate temporal and spatial 
resolution. The velocities that are out of range will not appear on the opposite side of 
the scale, as in TDI. This might be a disadvantage, as this phenomenon makes it easy to 
detect aliasing in tissue Doppler images. 

 
• Global heart motion 

As for tethering, this will not affect regional strain and SR measurements by speckle 
tracking. 

 
• Translation 
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Translation in the image plane is principally not a problem in speckle tracking methods 
because they are able to quantify tissue motion both in the radial (beam direction) and in 
the lateral direction in the image, and thus measure two of the three velocity 
components. This is in contrast to SRI, which only measures one of the three velocity 
components. 

 
• Angle dependency 

As discussed above, speckle tracking can quantify motion in the two dimensions of the 
image plane. It is therefore a less angle dependent method than SRI. However, as long 
as we are limited to speckle tracking in two-dimensional images, the methods will not 
be able to measure the velocity component out of the image plane, and will therefore 
still be angle dependent. In addition, the inherent difference between radial and lateral 
resolution will lead to less accurate tracking in the lateral direction, and consequently a 
certain angle dependency also in two-dimensional images. In contrast to SRI, this angle 
dependency will not be exaggerated by the simultaneous wall thickening because the 
orientation of the segment can be specified by the operator or found automatically, and 
taken into account in the calculations.  

 
• Reverberations 

Reverberations cause problems in speckle tracking in the same way as in SRI. 
 
• Through-plane motion 

Through-plane motion can cause errors by several mechanisms. As in SRI, there will be 
errors because the motion in this direction can not be quantified, and because the tissue 
that enters the image plane might have different function than the tissue that is replaced. 
Even in cases where the tissue which enters the plane might have similar function and 
velocity, the differences in tissue structure will lead to a change in the speckle pattern 
and risk of impaired tracking. This is in contrast to SRI, which will not be sensitive to 
changes in speckle pattern. 
 
If the probe is positioned slightly lateral to the apex, wall motion in apical segment will 
cause tissue to enter the image plane. Dependent on the angle between the wall and the 
image plane, this wall motion will appear exaggerated in the image. A speckle tracking 
kernel positioned at the endocardial border might track this false wall motion and give 
wrong values. 
 
Motion of strongly reflecting myocardial tissue through the image plane might cause 
problems in speckle tracking if the tissue structure runs obliquely through the image 
plane, and at the same time gives a similar speckle pattern or edge contour along its 
length. In this case displacement measured by speckle tracking might actually represent 
through plane motion, and not true displacement. In general, through-plane motion is a 
more important problem in short-axis than long-axis (apical) images. 
 

8.1.16. Future developments 
The clear impression from the analyses made in the present thesis is that image quality 
is a very important determinant of analysis accuracy, probably at least as important as 
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the choice of analysis method in most cases. Reverberations and drop-outs are important 
sources of error that restrict the applicability and accuracy of all the methods. Some 
anatomical limitations like ribs and lungs might be challenging, but spending time 
getting good images pays off in the analysis. 
 
In the methods using tissue Doppler, the noise in the velocity estimates is considerable, 
and any improvement here would be very valuable to the techniques. With new and 
better probes we will hopefully get a higher number of beams/higher frame rate, which 
will be advantageous to both speckle tracking and tissue Doppler methods. The 
combination of the two seems to be a good alternative, and will need to be tested 
further, both with respect to acquisition setup and post-processing. 
 
What about three-dimensional imaging? One of the options with the current GE 
Vingmed Ultrasound 3D probe (3V) is the acquisition of three planes simultaneously. 
This increases the likelihood of correct image orientation, which is vital in deformation 
studies. Speckle tracking in three dimensions has been a goal for years, as it will resolve 
the complex deformation pattern in the heart. This will reduce artefacts caused by 
through-plane motion, and possibly also allow analysis of deformation along the 
myocardial fiber direction, which is very interesting from a physiological point of view. 
Tracking might also be improved by having a three-, instead of two-dimensional pattern 
to follow. At present image quality and frame rate are too low for robust measurements, 
but these factors are likely to improve with future technological developments.  
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8.2. Myocardial function and exercise capacity 
 
For patients with CAD, there is much truth in the saying “heart disease is not a disease 
of rest, it is a disease of activity”. Reduced exercise capacity is an important symptom 
in CAD patients, with consequences for daily living. In fact, objectively measured 
reduced exercise capacity is more closely related to low self-reported health status than 
more specific markers of cardiac function (117). In addition, exercise capacity is a very 
powerful prognostic marker in CAD patients (118,119). Exercise therapy both increases 
exercise capacity and improves prognosis in CAD (120), but we know too little about 
the dose-response relationship.  
 
The most obvious reason for the reduced exercise capacity is the heart itself. After an 
MI the amount of myocardium that can contribute to the pumping of blood is reduced, 
and this can be measured as reduced EF or systolic mitral annular velocities. However, 
there is no clear relation between EF at rest and exercise capacity (VO2peak) (84,87). 
This suggests that other parts of the oxygen-transportation and –consuming system are 
affected as well in patients with CAD, and studies have shown that there is evidence of 
reduced function both in skeletal muscle and the perfusion-regulating endothelium that 
can contribute to the reduced exercise capacity (121,122). 
  

8.2.1. Exercise in patients with MI – Study III 
Patients who have had an MI are generally reported to have a VO2peak that is 30-40 % 
lower than in healthy subjects of similar age (123). Some of this gap may be explained 
by reduced CO or peripheral changes associated with the MI, while some might also be 
due to lower VO2peak before the MI, as low exercise capacity is a known risk factor for 
CAD (118).  
 
In study III we wanted to study the possible mechanisms for the reduced exercise 
capacity in patients with MI. We compared the cardiac response to upright bicycle 
exercise in patients with MI and relatively well preserved EF, with the response in 
healthy age-matched controls. We found that early myocardial relaxation, measured by 
Em, was not different between the two groups at rest, and that the healthy subjects, but 
not the MI patients, increased their Em with increasing exercise intensity. Systolic 
contractile force, measured by Sm, was lower in MI patients both at rest and during 
exercise, but in contrast to Em, Sm increased with increasing intensity. Thus, the MI 
patients lacked a diastolic reserve. From estimation of the E/Em-ratio, which is a marker 
of LV filling pressure (89-91), it seemed that E increased during exercise due to 
increased LV filling pressure in the patients, but due to increased LV suction in the 
healthy subjects. 
 
The Em is mainly determined by left atrial pressure, LV active relaxation and LV recoil. 
One possible explanation to the lower Em during exercise in the patients with MI might 
be that SV was lower with less recoiling forces present at the beginning of diastole. 
However, the difference in MAE, which is a marker of SV, was not larger during 
exercise than at rest, when there was no difference in Em.  
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In a similar study Lele et al used radionuclide ventriculography to study the exercise 
response in patients with relatively small MIs during upright bicycling (124). They 
found that exercise capacity was most strongly related to LV filling rate and time to 
peak filling, but not to filling rate at rest or EF at rest or during exercise. These results 
are in line with our findings, but there were some differences between the studies. All 
the patients in the study by Lele at al had evidence of inducible ischemia. In our study 
four of 18 patients had significant stenoses still untreated at the time of the study. All 
these stenoses were in one of the non-culprit epicardial arteries. Their hemodynamic 
significance was not tested during angiography, but no new or worsening wall motion 
abnormalities were found during exercise, neither in those with nor without stenoses, 
suggesting that blood flow was adequate. 
 
In study III we measured systolic and diastolic function with the same type of 
measurements (mitral annular velocities), while Lele at al used EF as a marker of 
systolic, and peak filling rate and time to peak filling rate as markers of diastolic 
function. While Sm, Em and peak filling rates measure the highest rate of deformation or 
filling, EF is a measure of what has happened during the entire systole, and might 
therefore be less related to contractility and more affected by load. This might explain 
why EF was not related to exercise capacity. In the study by Lele et al the increase in 
peak filling rate during exercise was larger in the healthy group. In our study we found 
that early filling was preserved, but that this was not due to a higher Em, but more likely 
due to increased filling pressure. Thus, tissue Doppler gave new information on the 
mechanisms of the diastolic dysfunction during exercise in these patients. 
 
An important limitation of study III is that we did not measure VO2 during exercise, 
neither did we test VO2peak. This makes it difficult to estimate the importance of the 
detected differences between the groups. We compared the groups on the same absolute 
intensity, while Lele et al compared them at peak, which is a relative intensity 
description. 
 
A second similar study was performed by Miyashita et al, who used supine exercise 
with simultaneously invasive LV manometry (125). This study included patients with 
no ischemia and similar EF to the patients in our study. Due to the invasive 
measurements, no control group was included. The study showed that maximum LV 
pressure rise (dP/dtmax) at peak exercise, but not at rest, was related to VO2peak. This 
shows that systolic function is also related to exercise capacity, but that other 
measurements than EF is needed to discover it. Markers of LV early relaxation (dP/dtmin 
and peak negative LV pressure) were the only resting variables that were related to 
VO2peak, and the relationships were slightly stronger when these were measured during 
peak exercise. End-diastolic pressure was related to VO2peak at peak, but not at rest.  
 
In athletes, Vinereanu et al found that Em, but not Sm, immediately after exercise was 
related to VO2max. ESV index at rest, but not after peak, was related to VO2max (78). In a 
study by Støylen at al, also in athletes, both Sm and Em during exercise were related to 
VO2max, with no differences in the strength of the relations. EF was not measured (126). 
In patients with heart failure, EF after exercise, but not at rest, was weakly related to 
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VO2peak (84). Systolic and diastolic annular velocities and the E/Em ratio at rest were 
also weakly related to VO2peak. Tissue Doppler variables were not measured after 
exercise in this study. Together, these studies demonstrate the limitations of resting 
measurements to predict what happens during exercise, at least in healthy subjects and 
patients with relatively well preserved function. 
 

8.2.2. Cardiac volumes and tissue velocities during exercise 
Many studies have looked at EDV, SV and CO during exercise in various populations 
of patients with heart disease and normal subjects. The results diverge, but an attempt to 
summarize the findings is presented below (Table 4). 
 
Table 4. Cardiac function during exercise 
 Normals/Athletes MI, NYHA I-II CHF NYHA >II 
Intensity Subm Peak Subm Peak Subm Peak 
EDV →/↑ →/↑ → ↑ → → 
ESV ↓ ↓/↓↓ ↓ ↓ → → 
SV ↑ ↑/↑↑ ↑ ↑ → → 
Em ↑ ↑↑ → → → →/↓ 
Sm ↑ ↑↑ ↑ ↑↑ → → 
      
� In normal sedentary subjects, EDV does not increase, because early diastolic 

relaxation (Em) is sufficient to suck blood into the LV, and the systolic 
contractile force, measured by Sm, is sufficient to increase SV by decreasing 
ESV. EDV might increase in athletes (78,126-128). 

� In patients with moderately reduced exercise capacity (like in study III), Em is 
insufficient to increase suction, and Sm is reduced, and cannot keep up the SV at 
the same EDV. Thus the Frank-Starling mechanism must be used to 
maintain/increase SV, with an increase of LV filling pressure. Systolic function 
(Sm) increases during exercise and is sufficient to expel blood and maintain SV 
at a higher EDV, but ESV does not decrease as much as in normals ((124), study 
III). 

� In patients with severely reduced exercise capacity, diastolic function is too 
reduced to allow an increase in EDV, thus the Frank-Starling mechanism is not 
used. In addition to impaired active relaxation, this might be due to low 
myocardial compliance, either due to dilatation as in post-infarction heart 
failure, or changes in myocardial tissue structure and -composition in non-
dilated ventricles (129,130). Systolic power is low, so ESV is unchanged, and 
SV does not increase with increasing intensity. Increased HR is the main cause 
of increased CO (84). 

 
The discussion of the EDV, SV and CO responses to exercise is difficult because these 
variables are difficult to measure with echocardiography during exercise, especially at 
higher intensity levels. In study III, we were able to measure EDV and mitral annular 
excursion (MAE), a marker of SV, but we could not measure EF reliably due to 
difficulties with ESV measurements during sitting bicycle exercise. MAE increased 
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from rest to low/moderate intensity, and then seemed to plateau. EDV was only found 
to increase in the patient group. 
 
A further difficulty in comparison of studies is the different body positions used; supine 
or sitting. LV filling pressure, and thus load, is position dependent (131). A further 
source of variability in loading conditions is the type of exercise. Due to the muscle 
pump, bicycling with low and high pedal frequency might give different loading 
conditions. The importance of position and load was clearly demonstrated in study III, 
where annular velocities and MAE decreased from supine to sitting rest, while E 
increased slightly. The increase of E, together with a simultaneously reduced Em, led to 
a significant increase of the E/Em-ratio, suggesting an increased filling pressure from 
supine to sitting position. From previous invasive studies such an increase seems very 
unlikely (131,132), and the result therefore shows that the E/Em-ratio has limitations as 
a marker of LV filling pressure. It is interesting to note that SSR did not decrease from 
supine to sitting in this study. This is in line with previous results from stress 
echocardiography suggesting that SR is relatively load-insensitive (17).  
 

8.2.3. Which cardiac properties are most closely linked to 
exercise capacity? 

This question is not only interesting from a physiological point of view, but also from a 
clinical one, as the answer would tell us which variable(s) to focus on in diagnosis and 
treatment of patients with reduced exercise capacity. As exercise capacity is such a 
powerful prognostic variable, any variable closely related to it might also have 
prognostic information. From the discussion above it seems clear that exercise variables 
are the best candidates. However, a resting variable would be useful for clinical 
practice, as exercise echocardiography is performed rather infrequently.  
 
It seems justified to choose a variable that describes the rate, and not the sum, of 
emptying or filling (dP/dtmax vs. EF). Furthermore, despite differences in measurement 
types in many studies, it also seems wise to select a diastolic variable. The variables 
describing the active, early, energy-demanding relaxation have been mostly used in the 
studies mentioned above. Em, which is determined by the active myocardial relaxation, 
the atrio-ventricular pressure gradient and myocardial tissue properties 
(compliance/recoil), has been shown to a better predictor of exercise capacity than the 
deceleration time of E, which is considered a marker of LV compliance, the major 
determinant of passive relaxation. The E/Em ratio was the best predictor in the study, 
which did not include measurements during exercise (85). One important reason why E 
was inferior to Em is probably the pseudo-normalisation of peak E-velocity when 
diastolic function is poor (restrictive filling pattern), leading to a non-linear relationship 
between E (and E/A-ratio) and diastolic function. Dividing E by Em sorts out those with 
a high E due to restrictive filling. Interestingly, Em has incremental prognostic 
information when added to clinical data and standard echocardiographic variables (133). 
 
ESR has the same determinants as Em, and might also be a candidate for linking cardiac 
function and exercise capacity. ESR has been less investigated than SSR, but carries 
patho-physiological information in relation to ischemia and reperfusion (110). Others 
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have suggested that ESR is a better marker of viability than SSR, and found it to be 
negatively correlated to regional myocardial stiffness (134). ESR has also been found to 
be related to tau, the time constant of LV pressure decay during isovolumic relaxation, 
and to LV filling pressure (93,135). Interestingly, it has also been found to be preserved 
by physical activity in older subjects (136). 
 

8.2.4. Diastolic vs. systolic function 
In the discussion of exercise capacity and cardiac function it might seem somewhat 
artificial to handle systolic and diastolic function as two nearly separate aspects of 
cardiac function.  Briefly, on the molecular level, diastolic relaxation rate is determined 
by the rate of calcium reuptake into the sarcoplasmic reticulum by the sarcoplasmic 
reticulum calcium ATP-ase (SERCA). The amount of calcium available in the 
sarcoplasmic reticulum for release with the next contraction determines the force in that 
contraction, together with the rate of calcium influx from extracellular space and the 
rate of the following efflux from SR. The amount of elastic recoil and tissue stiffness 
can be altered by changes in intracellular proteins (e.g. titin) and the extracellular matrix 
(137,138). The degree of relationship between the systolic and diastolic function has 
recently been a highly discussed matter in the debate on the pathophysiology of heart 
failure. Although accepted by some, the term “heart failure with normal EF” (or 
diastolic heart failure) seems somewhat unspecific, and it is based on a measurement of 
systolic function which has many limitations, especially in terms of reproducibility 
(88,137). It would seem more appropriate to diagnose and treat these patients according 
to the underlying disease causing their heart failure symptoms (129). At the same time, 
study III and IV, and others, show that diastolic function deserves attention on its own, 
and diastolic variables are probably as important as systolic ones in the search for a 
better diagnostic classification of patients with heart failure symptoms. 
 

8.2.5. ESR and exercise training – Study IV 
In study IV we investigated the effects of aerobic endurance training with two different 
intensities, in an attempt to clarify the dose-response relationship for exercise therapy in 
patients with CAD. The study showed that the high-intensity group achieved a larger 
increase in VO2peak than the moderate-intensity group. We also found that the high-
intensity group increased their average LV ESR, while the moderate-intensity group did 
not. Em did not change after training, but was, in line with previous studies, related to 
VO2peak. ESR was not related to VO2peak at baseline. The results suggest that improved 
relaxation gave improved VO2peak through an effect on LV filling, SV and CO, but this 
can only be regarded as a hypothesis, mainly due to the low number of subjects 
included in the study, and that no measurements were made during exercise. 
 

8.2.6. The relationship between Em and ESR 
The fact that Em, but not ESR, was correlated to VO2peak at baseline questions the use of 
ESR to predict exercise capacity. What caused this discrepancy? One explanation is that 
ESR is not simultaneous in all segments in a wall, and the degree of synchronicity 
therefore determines how closely related the two will be. The relative difference 
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between ESR and Em might be a marker of differences in early relaxation synchronicity 
in different populations. Another more likely explanation is that ESR was not measured 
in all segments, but averaged from the segments where image quality was satisfactory, 
and then averaged. As the population included patients with regional dysfunction, the 
selected segments might not have been representative for the true LV value. The 
feasibility on the segmental level was low in the study (71 %), but, important for the 
reproducibility, 83 % of these segment were included both at pre- and posttest. This 
probably accounts for the high correlation we found between the pre- and posttest 
values for ESR.  
 
The matter of feasibility is relevant to studies that use the global SR, like Wang et al 
(93). They argue that global SR is better than annular velocities as SR avoids translation 
and tethering effects. This view might not be correct in the presence of significant 
artefacts, and needs to be tested. In this respect, averaging SR from the available 
segments might be a better alternative than using the global SR for the whole LV. This 
is the approach used in two studies using global strain to detect and measure the size of 
MIs (111,139). 
 
One of the previous studies which have looked at the effects of training on LV function 
in patients with CAD and relatively well preserved LV EF, found improved E, and that 
this improvement was correlated to the increase of VO2peak (67). We also found 
improved E in study IV, but no relation between this improvement and the improvement 
of VO2peak. For systolic function we found no change in EF, Sm and SSR  at rest, which is 
in line with previous studies (72-74). In a similar study in patients with post-infarction 
heart failure, high-intensity exercise improved VO2peak and Em more than moderate-
intensity exercise (80). 
 

8.2.7. At what intensity should patients with CAD train? 
There is convincing data on the positive effect of exercise training on prognosis in 
patients with CAD (140), but the interventions that have been used are so heterogeneous 
that specific recommendations are difficult to establish. In study IV the high-intensity 
group increased their VO2peak more than the moderate group. This is in line with 
previous results in intensity-comparing studies both in patients with CAD (74,75), 
patients with heart failure (80) and healthy subjects (70). In a large prospective study 
Myers et al found that a 1 MET increase in exercise capacity, which was approximately 
the increase found in study IV, was equal to a 12 % increase in survival (118). Although 
the study was cross-sectional, and thus did not include a training intervention, it 
supports further investigation of the effects of high-intensity exercise training. 
 
In addition to the effects on risk factors measured in short-term clinical trials, it is vital 
that the patients continue to exercise. In healthy subjects high-intensity training 
generally leads to larger improvements in VO2max than moderate intensity training 
(141). If more and larger studies than study IV and those mentioned above should show 
that this holds true for patients with CAD as well, this might translate into improved 
long-term exercise compliance because of a larger perceived beneficial effect on 
exercise capacity in everyday-activities. 
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The safety data on high-intensity aerobic exercise are at present relatively sparse, and 
more data are needed. However, it is important that the focus on possible dangers 
associated with higher intensity does not leave the possible positive effects of such 
exercise unknown. In an important recent study, Noel et al prescribed exercise with an 
intensity corresponding to 1-2 mm ST-segment depression for 60 min to patients with 
CAD (142). They found no signs of myocardial injury, more frequent arrhythmias or 
LV dysfunction compared to a lower-intensity control group. Unfortunately, the applied 
six weeks training intervention did not increase VO2peak in any of the groups. This 
questions the appropriateness of the applied training program, and is a weakness of the 
study. 
 
Whereas previous guidelines recommended more strenuous activity (143), the European 
Society of Cardiology position paper for secondary prevention recommends exercise at 
moderate intensity (45–60 % of HR- or VO2-reserve) (144). The guideline from the 
American Heart Association in 2001 recommends intensities from 40-85 % of HR- or 
VO2-reserve (145). In practice these recommendations includes a wide range of 
intensities. It would be very interesting to see the result of studies that compared the 
compliance with such relatively unspecific advice with more specific and detailed 
recommendations, both on physician and patient levels. Also, individual prescription 
based on an exercise test with ECG-monitoring is emphasised in both papers. This 
seems sensible, but might not make the case any easier for the prescribing health care 
personnel. Consensus on a more specific training intervention probably would have 
been a good start in the process of determining the dose-response relationship of 
exercise, as new studies could have tested different exercise training protocols against 
this standard.   
     

8.2.8. Future studies using echocardiography in exercise 
testing and therapy 

Although small, study IV suggests that TDI-derived variables describing myocardial 
deformation are able to give new information on myocardial adaptations to exercise. 
There are a growing number of studies which relates these new indices of myocardial 
function to important fundamental properties of the myocardium, providing a basis for 
their application during exercise testing and monitoring of exercise therapy. 
 
In relation to the present work, a recent study by Wang et al is interesting because it 
showed that global SR during the isovolumic relaxation interval is closely related to LV 
active relaxation and can improve prediction of LV filling pressure (93). The study 
leaves some important aspects of timing of the isovolumic time interval unanswered, 
but still suggest that we have much to learn about diastolic events, their relation to the 
active and passive relaxation of myocardium, their prognostic and therapeutic potential 
and their relation to exercise intolerance. The study also illustrates the importance of 
development of new methods, as they used one of the speckle tracking applications 
described in study II (2D Strain).  
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Speckle tracking can also be used to measure LV rotation and twist, but Notomi et al 
used an algorithm based on tissue Doppler velocities to study  LV twist at rest and 
during exercise (146). They found that untwisting starts at end-systole and peaks before 
the peak of the intra-ventricular pressure gradient, the peak E and peak longitudinal and 
short-axis expansion, and also found that LV twist increased more than long-axis 
velocity during exercise. They concluded that LV untwisting is the main factor 
contributing to the intra-ventricular pressure gradient and thus early diastolic suction. 
Further, they suggested that untwisting is fuelled by release of potential energy stored 
during systole (titin-proteins connecting the actin and myosine-filaments), and thus 
constitutes a link between systolic and diastolic dysfunction. Exercise capacity was not 
measured, but studies using rotation and twist to predict exercise capacity and evaluate 
responses to training will certainly come. Some data from MRI tagging already exist, 
suggesting that early diastolic, but not systolic, rotation at rest is increased by a period 
of training (147).   
 
There is probably also much to gain by evaluating the response to exercise training by 
looking at cardiac function during exercise, and not at rest. At least in patients with 
relatively well preserved LV function, the heart is not challenged at rest, and has a large 
reserve. This was shown in study III, where diastolic function in the two groups was 
equal at rest, but differed during exercise. Other methods than echocardiography are 
probably better suited for CO measurements, but as long as image quality is 
satisfactory, echocardiography can provide unique information of myocardial function. 
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9. Limitations 
 
The patients selected for study I and II had MI. Other populations with altered wall 
motion could have been included to increase the validity of the result to other groups as 
well, e.g. patients with dilated and hypertrophic cardiomyopathy. 
 
In study II, all analyses were done by a single operator. Care was therefore taken to 
achieve blinded measurements for all methods, with different id-numbers for the echo 
and MRI examinations. 
 
Fully blinded analysis was not realistic in study III, as HR and regional wall motion 
abnormalities were visible in the images. Measurements of VO2peak and maximum 
attainable bicycle load could have allowed more accurate evaluation of the relation 
between the different variables and exercise capacity. 
 
In study III and IV there were patients with residual stenoses in major epicardial 
arteries. The patients were in this way representative of the CAD population. In study 
III we found no signs of regional ischemia in wall motion analysis, indicating that the 
stenoses were not flow-limiting, at least not at the exercise intensity used in the study. 
The results in the study were therefore probably not a result of ischemia during exercise. 
In study IV we did not investigate the extent of ischemia in the patients, and can 
therefore not exclude that this affected our results.  
 
The number of patients was low, especially in study IV. This increases the possibility of 
type II errors, and means that we could have detected changes in other variables than 
ESR and E if we had used a larger sample. 
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10. Conclusions 
 
Study I and II show that automated measurement of regional myocardial systolic strain 
by speckle tracking methods is feasible. In an automated setting, speckle tracking alone 
or combined with TDI gives better agreement, in terms of 95 % LOA-interval, with 
MRI tagging than the velocity gradient approach. The clinical significance of this 
difference and the detected bias in 2D Strain needs further testing. The assessment of 
SR is less accurate compared to MRI tagging, but that might as well be due to 
limitations of the MRI method. 
 
Study III and IV show that tissue Doppler alone or combined with speckle tracking 
seems to be well suited for studies of myocardial function during exercise, and of the 
myocardial response to exercise training. Study III shows that diastolic function is 
reduced in patients with MI, and suggests that this might be related to the reduced 
exercise capacity in this patient group. Although small, study IV suggests that exercise 
with high intensity can improve diastolic function in patients with CAD. Further studies 
should look more specifically at the different aspects of systolic and diastolic function, 
both at rest and especially during exercise, and relate them to exercise capacity and 
training. 
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oninvasive Myocardial Strain
easurement by Speckle Tracking Echocardiography

alidation Against Sonomicrometry
nd Tagged Magnetic Resonance Imaging
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OBJECTIVES The aim of this study was to validate speckle tracking echocardiography (STE) as a method
for angle-independent measurement of regional myocardial strain, using sonomicrometry and
magnetic resonance imaging (MRI) tagging as reference methods.

BACKGROUND Tissue Doppler imaging allows non-invasive measurement of myocardial strain in the left
ventricle (LV), but is limited by angle dependency.

METHODS Strain measurements with STE were obtained by a custom-made program that allowed
tracking of two-dimensional motion of speckle patterns in a B-mode image. In anesthetized
dogs, we compared LV long- and short-axis measurements by STE to sonomicrometry
during preload changes and regional myocardial ischemia. Measurements in the two
orthogonal axes were obtained simultaneously in a single imaging plane. In human subjects,
long-axis strain by STE and MRI tagging were compared in multiple segments of the LV.

RESULTS In the experimental study there was good correlation and agreement between STE and
sonomicrometry for systolic strain in the long axis (r � 0.90, p � 0.001; 95% limits of
agreement �4.4% to 5.0%) and systolic shortening in the short axis (r � 0.79, p � 0.001;
�5.6% to 5.1%). In the clinical study, 80% of the segments could be analyzed, and correlation
and agreement between STE and MRI tagging were good (r � 0.87, p � 0.001; �9.1% to 8.0%).

CONCLUSIONS Speckle tracking echocardiography provides accurate and angle-independent measurements
of LV dimensions and strains and has potential to become a clinical bedside tool for
quantifying myocardial strain. (J Am Coll Cardiol 2006;47:789–93) © 2006 by the

ublished by Elsevier Inc. doi:10.1016/j.jacc.2005.10.040
American College of Cardiology Foundation
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yocardial strain calculated from tissue Doppler imaging
TDI) has been shown to be superior to myocardial veloc-
ties by TDI and wall motion score in assessment of
schemia in experimental and clinical studies (1–4). How-
ver, TDI-based strain measurements are angle dependent
wing to use of the Doppler effect and simultaneous opposite
eformation in the long and short axes (1,2). Speckle tracking
s an echocardiographic method based on tracking of char-
cteristic speckle patterns created by interference of ultra-
ound beams in the myocardium (5). As the tracking is
ased on grayscale B-mode images, it is in principle angle
ndependent. Different speckle tracking methods have been
pplied in vivo previously, but systematic validation studies
re sparse (6,7).
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orway.
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ccepted October 3, 2005.
We have developed a speckle tracking echocardiography
STE) application for B-mode images that tracks the
isplacement of segment end points and calculates strain
rom the change of length between them. In contrast, a
ifferent speckle tracking application that has recently been
ade commercially available (2D Strain, GE Vingmed,
orten, Norway) tracks a larger number of small regions

nd averages their motion with spline interpolation before
egional curves can be extracted (6). The aim of the present
tudy was to validate STE against sonomicrometry in an
xperimental study and against magnetic resonance imaging
MRI) tagging in a clinical study.

ETHODS

xperimental study. Nine mongrel dogs of either gender
23 � 2 kg) were anesthetized and instrumented as previ-
usly described (2). Recordings were done at baseline (n �
), during intravenous loading with 1,000 ml saline (n � 9),
nd during 5 to 15 min occlusion of the left anterior descend-
ng coronary artery (LAD) (n � 9). The study protocol was
pproved by the National Animal Experimental Board.
onomicrometry. Four ultrasonic crystals were implanted

n the left ventricular (LV) wall (Sonometrics Corp., Lon-

on, Ontario, Canada) to allow simultaneous measurements
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f long-axis strain (in the septum and lateral wall) and LV
hort-axis systolic shortening (at the apical and mid-
entricular levels) (Fig. 1A). The traces were analyzed in
onoVIEW (Sonometrics Corp.). Lagrangian strain was cal-
ulated as: strain � (L � L0)/L0, where L0 is segment length
t the onset of the QRS.
chocardiography. B-mode second-harmonic images

frame rate 68 � 31 s�1) were recorded from the apical
our-chamber view (Vivid 7, 2.0 MHz transducer, GE
ingmed, Horten, Norway). The imaging plane was
atched to the crystal positions. Images were analyzed in a
atlab-based custom-made program (MathWorks Inc.,
atick, Massachusetts), which uses the “sum of absolute

ifferences” method to find the most similar speckle pattern
n two subsequent frames (5) (Fig. 2). Four 5 � 5 mm
egions of interest (ROI) were placed corresponding to the

igure 1. (A) Figure from the experimental study showing an apical four-
hamber view with crystal positions (circles) and directions for strain and
hortening measurements (arrows). (B) Figure from the clinical study showing

Abbreviations and Acronyms
COR � coefficient of repeatability
LAD � left anterior descending artery
LV � left ventricle/ventricular
MRI � magnetic resonance imaging
ROI � region of interest
STE � speckle tracking echocardiography
TDI � tissue Doppler imaging
0
n apical four-chamber view with the positions of the seven regions of interest
circles) and arrows to indicate where strain was measured.
rystal positions. Maximum tracking velocities were �16
m/s in the beam direction and �12 cm/s laterally, and
orward and backward tracking were averaged (weighted).
train and shortening were calculated from the change of

ength between pairs of ROIs and averaged over three
ycles. No temporal averaging was applied.
linical study. Eleven subjects, seven with previous myo-

ardial infarction (65 � 7 years) and four healthy volunteers
37 � 13 years) were included after having given written
nformed consent. The study protocol was approved by the
nstitutional Review Board of the Johns Hopkins University.

RI tagging. Tagged MRI images were recorded using
1.5-T magnet with a phased-array cardiac coil (Signa,
E Healthcare, Waukesha, Wisconsin) applying an

lectrocardiogram-triggered segmented k-space fast
radient-echo sequence (DANTE-SPAMM) (8). Four to
ve contiguous stacks of short-axis images were prescribed
rom base to apex, and six long-axis slices were prescribed
adially every 30°. Lagrangian strain was analyzed from this
hree-dimensional data using a displacement field-fitting
ethod (8). Long-axis strain was measured in the basal,
id, and apical segments of the septum, lateral, anterior,

nd inferior walls (9).
chocardiography. B-mode second-harmonic images

frame rate 84 � 18 s�1) were recorded from the apical two-
nd four-chamber views (System Five, 2.0 MHz transducer,
E Vingmed). Seven ROIs were positioned to measure

train in six segments in each image (Fig. 1B).
tatistics. Strain values were compared using paired-
ample t test and by calculating the 95% limits of agreement
10). Bonferroni post-hoc correction of p values was used
or comparison of baseline with loading and LAD occlusion
alues (number of comparisons � 2). Intra- and interob-
erver variability was measured by the coefficient of repeat-
bility (COR) (10). A p � 0.05 was considered statistically
ignificant. Values are reported as mean � SD.

ESULTS

xperimental study. Long-axis strain measured by STE
nd sonomicrometry correlated well (r � 0.90, p �

igure 2. Speckle tracking: the motion of the region of interest (ROI) from
ne frame (t0) to the next (t1) can be quantified in two dimensions,
llowing angle-independent measurements. t � time.
.001), as did the measurements of short-axis systolic
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hortening (r � 0.79, p � 0.001) (Figs. 3A and 4A). The
5% limits of agreement for long- and short-axis measure-
ents were not significantly different (�4.4 to 5.0% vs.
5.6 to 5.1%, respectively; p � 0.28) (Figs. 3B and 4B).

aline loading increased long-axis septal strain and mid-
entricular systolic shortening, whereas LAD occlusion
educed apical short-axis shortening and lateral wall strain
Table 1). Speckle tracking echocardiography and sonomi-
rometry measurements were not significantly different in
ny of the measurement conditions. Intra- and interobserver
OR for STE measurements were 4.6% and 7.0%, respec-

ively, for shortening and 6.0% and 6.4%, respectively, for
train. A representative example of traces is shown in Figure 5.

linical study. Twenty-six of 132 segments (20%) were
xcluded from STE analysis (7 because of reverberations, 19
ecause of drop-outs). Strain measured by STE and MRI
agging correlated well (r � 0.87, p � 0.001) (Fig. 6A). The

igure 3. (A) Plot showing the relation between left ventricular short-axis
SX) shortening by sonomicrometry (SM) and speckle tracking echocar-
iography (STE). (B) Bland-Altman plot showing the mean difference
dotted middle line) and 95% limits of agreement (dashed lines).
5% limits of agreement were �9.1 to 8.0% (Fig. 6B).
(
a

ntra- and interobserver COR for strain by STE was 5.2%
nd 8.6%, respectively. Heart rate was 84 � 18 beats/min.

ISCUSSION

he present study demonstrates that STE can quantify
egional myocardial deformation independent of insonation
ngle and thus simultaneously assess systolic long-axis strain
nd short-axis shortening. The accuracy of STE was con-
rmed using sonomicrometry and MRI tagging as reference
ethods.
A recent experimental study with a different speckle

racking application found agreement with sonomicrometry
omparable to our results (7); however, the researchers used
requencies and depths that are less relevant for a clinical
etting. In the experimental part of the present study, STE
ppeared to underestimate shortening at higher values of
hort-axis shortening (Figs. 3A and 3B). Poorer lateral than

igure 4. (A) Plot showing the relation between long-axis (LX) strain by
onomicrometry (SM) and speckle tracking echocardiography (STE).

B) Bland-Altman plot showing the mean difference (dotted middle line)
nd 95% limits of agreement (dashed lines).
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xial resolution might explain this, as there was no such
rend in the long-axis strain measurements.

In the clinical study STE was tested against MRI
agging, which is currently the non-invasive gold standard
or evaluation of systolic deformation (11). Reduced systolic
train was found in infarcted areas, whereas remote myo-
ardium had normal values. The agreement was comparable
o what has previously been reported for TDI-based strain
nd MRI tagging (8), as was the percentage of analyzed
egments (3).

The number of beams covering the sector determines
he lateral resolution, and in TDI recordings for strain
easurements, this number is three to four times lower

han in B-mode images, which are used in STE. Even
hough strain can be measured only in the beam direction
ith TDI methods, the lateral resolution is important, as

ower resolution increases the likelihood for inclusion of
oise from for instance the pericardium. In TDI-based

igure 5. Recordings from a single experiment during left anterior de-
cending artery occlusion. (Upper panels) Left ventricular (LV) short-axis
hortening at mid-ventricular level (left) and apical level (right). (Middle
anels) Long-axis strain in the septum (left) and lateral wall (right).

Lower panels) LV pressure (LVP) for timing. Reduced short-axis systolic

Table 1. Results From the Experimental Study

Baselin

Long-axis strain (%)
Septum

STE �9.0 �
SM �9.4 �

Lateral wall
STE �5.1 �
SM �5.0 �

Systolic shortening in LV short axis (%)
Apex

STE �8.6 �
SM �8.1 �

Mid-ventricle
STE �9.7 �
SM �10 �

Heart rate (min�1) 94 �

All values are mean � SD. The p values are for compari
comparisons (Bonferroni, n � 2). *Significantly different fro

LV � left ventricle; SM � sonomicrometry; STE � spe
hortening and lateral wall strain indicate ischemic dysfunction. Dashed
ine � sonomicrometry, solid line � speckle tracking echocardiography.

A
l

igure 6. (A) Long-axis strains measured by magnetic resonance imaging
MRI) tagging and speckle tracking echocardiography (STE). (B) Bland-
e Loading p Value Ischemia p Value

3 �12 � 3* 0.032 �10 � 2 1.0
2 �12 � 2* 0.034 �7.9 � 2 0.27

2 �5.9 � 2 1.0 3.2 � 3* 0.001
2 �5.3 � 3 1.0 2.5 � 4* 0.003

3 �7.9 � 3 0.81 �4.0 � 5 0.13
3 �8.2 � 3 1.0 �4.0 � 5 0.16

2 �11 � 3 0.13 �8.3 � 3 0.46
4 �12 � 4* 0.016 �9.1 � 4 1.0
13 106 � 13* 0.042 108 � 9* 0.042

son with baseline values. All p values are adjusted for multiple
ltman plot showing the mean difference (dotted middle line) and 95%
imits of agreement (dashed lines).
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ethods, such noise can be included without the user’s
nowledge, whereas the accuracy of STE can be in-
pected by the user because the tracking result is dis-
layed in the image.
tudy limitations. Sonomicrometry measures the motion
f material points in the myocardium, while STE measures
otion in the image plane. Thus, misalignment between

he ultrasound plane and the crystals and out-of-plane
otion were probably the most important sources of vari-

tion between the methods. High B-mode frame rates were
sed to minimize speckle decorrelation.
In the clinical study, misaligned image planes and seg-
ent boarders in MRI tagging and STE might explain

ome of the variation. As strain by MRI tagging was
alculated by a three-dimensional technique, whereas STE
s two-dimensional, out-of-plane movement in STE could
lso have contributed to the variation.

The ROI size must be considerably larger than the image
esolution to allow robust tracking, but also small enough to
llow accurate positioning. We did not perform systematic
omparisons of the effects of different ROI sizes on tracking
uality, but preliminary testing showed that 5 � 5 mm was a
easonable compromise between robust tracking and accurate
ositioning.
The Vivid 7 scanner used in the experimental study has

etter resolution than the System Five scanner used in the
linical part, and using Vivid 7 in the clinical study as well
ight have improved our results.
onclusions. The present study demonstrates that STE

an provide accurate and angle-independent measure-
ents of regional myocardial strain and has potential to

ecome a clinical bedside tool to quantify regional myocar-

ial function.
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