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Ole Johan Kemi, Per Magnus Haram, Jan Pål Loennechen, Jan-Bjørn Osnes, Tor 
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Moderate vs. high intensity: differential effects on aerobic fitness, cardiomyocyte contractility,

and endothelial function. Cardiovascular Research 2005;67:161-172.

Paper IV 

Ole Johan Kemi, Per Magnus Haram, Ulrik Wisløff, Øyvind Ellingsen.

Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function

in exercise training and detraining. Circulation 2004;109:2897-904.
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DEFINITIONS

Intracellular calcium concentration ([Ca
2+

]i) transient The transient increase and decay of 

[Ca2+]i during a contraction-relaxation cycle of the cardiomyocyte; denotes the cytosolic Ca2+

changes that induce contraction and relaxation.

Ca
2+

-induced Ca
2+

 release The subcellular events that initiate cardiomyocyte contraction.

The inward L-type Ca2+ current stimulates the Ryanodine receptor to release Ca2+ from the 

sarcoplasmatic reticulum. The released Ca2+ induces myofilament contraction.

Detraining Complete withdrawal of exercise after a history of regular exercise training. 

Endothelial function Includes several faculties of arterial endothelium; is in this thesis

indicated by acetylcholine-induced nitric oxide generation in the endothelium that relaxes the 

vessel wall smooth muscle and induces vasodilation.

Fractional shortening The decrease in cardiomyocyte length from end-diastole to end-

systole divided by end-diastolic length; defines the degree of cell shortening.

Maximal oxygen uptake (VO2max) The highest oxygen uptake achievable during dynamic

exercise with large muscle groups; the best single physiological measure of aerobic fitness. 

Myofilament Ca
2+

 sensitivity The myofilament contractile response to any given [Ca2+]i in 

the cardiomyocyte.
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SUMMARY

Beneficial effects of exercise are closely associated with fitness and maximal oxygen uptake

(VO2max). Capacity for oxygen transport increases mainly by improved cardiac function,

including larger chamber volumes, myocardial hypertrophy, and enhanced diastolic and

systolic function. Higher arterial conductance, capillarity, and oxygen utilization in skeletal

muscle also contribute. The present thesis investigates the cellular basis for cardiac and

arterial effects; how they correlate with changes in VO2max during exercise training at high or 

moderate intensity, and during detraining.

The studies show that: 

1. Regular aerobic exercise training increases running performance and VO2max,

induces cardiac hypertrophy, and improves cardiomyocyte contractility and arterial

endothelial function.

2. High intensity exercise is more effective than moderate intensity exercise to increase

aerobic fitness.

3. VO2max correlates closely with cardiomyocytes size, contractility, and calcium handling

during adaptation in the first weeks of exercise, during detraining, and with different 

training intensities.

We conclude that: 

1. Aerobic fitness is intimately related to cardiomyocyte size and function.

2. The magnitude of adaptation to training depends on exercise intensity.

3. Intensity emerges as an important determinant for beneficial effects of exercise 

training.
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INTRODUCTION

Physical activity reduces, but does not currently prevent the Western Society epidemic of 

cardiovascular disease from either reaching global proportions or taxing public health and 

economy (6,30). Lack of physical activity and lowered level of fitness contributes to the world-

wide rise of life-style related diseases as cardiovascular disease, metabolic syndrome, and

diabetes (118). Better, affordable prevention and treatment strategies to improve wide-scale 

health are called upon. Regular physical exercise represents such a strategy (17,20). It 

improves cardiovascular function, health and quality of life, and mortality in patients and in 

those at risk of developing disease (11,18,62,65,140,143). A Cochrane meta-analysis found

that exercise training reduces mortality by 27% in coronary artery disease patients (91).

However, recommendations on physical activity in primary and secondary prevention of 

cardiovascular disease are diffuse (5,52) despite indisputable evidence of aerobic fitness as

an important clinical reference point and target (93,136). In order to develop optimal exercise 

protocols to improve health, a sound understanding of the responsible cellular biology of 

improved cardiac and vascular function after exercise training is required. Thus, this thesis

studies the relationship between aerobic fitness and cardiomyocyte and arterial function.

Aerobic Fitness is Closely Associated with Maximal Oxygen Uptake

The single most important physiological measure of aerobic fitness in both health and disease

is maximal oxygen uptake (VO2max), which refers to the maximal rate at which oxygen can be 

transported from ambient air to peripheral working skeletal muscles, where it is utilized by 

intracellular metabolic processes (160,176,177). Work economy, i.e. oxygen cost of given 

work or ratio between power output and oxygen uptake (VO2), and lactate threshold, i.e. 

highest VO2 or power output without excess congestion of lactate, also contribute to aerobic

fitness, but considerably less (77,126,145).

Determinants of Maximal Oxygen Uptake 

Analytical modeling (26,47,176,177) and laboratory approaches (154,156) assert that cardiac 

output and arterial conductive and redistributive capacity are rate-limiting to aerobic exercise

in every individual. A majority of studies indicate that VO2max is by large determined by the 
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cardiac pumping capacity, as the main drop in oxygen partial pressure occurs between the 

pulmonary and skeletal muscle capillaries (160,176,177). This implies a regulatory role for 

arterial conductance. In contrast, pulmonary work and the problem of lung perfusion/diffusion

mismatch is only rate-limiting to well-trained individuals, whereas skeletal muscle diffusion

and metabolic flux appears rate-limiting only when convective supply surpasses peripheral

demand, such as in unfit subjects or during work with only a small muscle mass (178). All 

things considered, the likelihood is that there is no sole determinant of VO2max, but rather a 

complex chain of intertwined elements working in concert (154,176,177).

Intensity of Exercise Determines Outcome

Although defining studies of healthy individuals still are lacking, clinical trials point to the 

superiority of high aerobic intensity over low-to-moderate intensity to gain full effect of a 

training program (2,89,101,157,170). The emergence of VO2max as a continuum from health to 

disease supports this notion (93,136). Cardiovascular adaptations may therefore rely on the 

exercise intensity during long-term regular training programs also in healthy individuals,

especially since it was demonstrated that stroke volume in well-trained athletes increases

continuously with increasing intensity up to maximal levels at or around peak aerobic exercise

intensity (59,194).

Exercise Training Induces Cardiomyocyte Hypertrophy

Adaptive growth of the cell in response to regular exercise (physiological hypertrophy) usually

involves proportional growth in length and width (83,128,129). This corresponds with

increased ventricular weights (8) and the phenomenon of the athletes’ heart, manifested as

increased chamber volumes and mass, and increased thickness of the left ventricle wall 

(146,147,150). Both increased gene transcription and translation seem to underlie

physiological hypertrophy (25,102). In contrast, abnormal growth in response to pressure

and/or volume overload characterizes pathologic hypertrophy, and involves early longitudinal 

cell growth followed by a later stage of proportional length and width growth (38,83).

Hypertrophy in heart failure is normally linked to reprogramming into a fetal gene program

expressing embryonic growth cascades (28). 
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Cardiomyocyte Contractile Function 

A central feature of regular exercise training is improved systolic and diastolic function and

larger cardiac output (50,59,162,186). Exercise training over months usually improves

cardiomyocyte shortening and rates of contraction-relaxation (129,187,188), providing a 

cellular basis for global function. In contrast, heart failure induces cardiac dysfunction with 

reduced ejection fraction and lower cardiac output, which also is associated with impaired 

cardiomyocyte contractile function in both man and rodent (22,38,41,66,109,110,148,165,174,

182,187). Overall, the differences that occur between species seem to be quantitative, rather 

than qualitative (14,15,167). Experimental studies of cellular effects of regular exercise

training appear therefore translatable to humans, also when exercise training is applied

therapeutically in heart failure and cardiovascular disease. Such studies suggest restored 

contractility and attenuated pathological growth as important cellular mechanisms for the 

beneficial effects of physical activity in heart failure (187,190,192).

Cardiomyocyte Contractile Machinery

Cardiomyocyte sarcomere units composed of mainly actin and myosin filaments constitute the 

contractile protein machinery, together with tropomyosin and the troponin complex. When 

Ca2+ binds to troponin C, the complex changes conformation and troponin I moves to allow

actin-myosin coupling, while troponin T attaches the complex to tropomyosin. Next, myosin 

heads bind to actin and flex to slide the filaments in opposite directions and cause shortening;

hence, the process is termed the sliding filament model. Upon release of Ca2+ from troponin

C, the machinery returns to its innate position and awaits the next contractile cycle. Titin, 

myosin binding protein C, M-protein, myomesin, nebulin and nebulette, and - and -actinin

serve supporting and regulatory functions (14,15).

Cardiomyocyte Excitation-Contraction Coupling and Calcium Handling 

The rapid transient increase in intracellular Ca2+ concentration ([Ca2+]i) evoke global cell 

shortening as described above. Conversely, the Ca2+ decay causes relaxation. Details of the 

subcellular events regulating Ca2+ induced Ca2+ release are illustrated in figure 1.

10



Figure 1. Excitation-contraction coupling in ventricular myocytes. DHPR: L-type Ca2+ channel; NCX; Na+/Ca2+

exchanger; T-Tubule: Transverse tubule; RyR2: Ryanodine receptor-2; SR: Sarcoplasmatic reticulum; PLN: 

Phospholamban; SERCA2a: SR Ca2+ ATPase-2a. Modified from Bers (14). 

Depolarization allows a small entry of Ca2+ through the dihydropyridine receptor (DHPR; L-

type Ca2+ channel) and through reverse mode Na+/Ca2+ exchanger (NCX). The resulting

[Ca2+]i increase stimulates the ryanodine receptor-2 (RyR2) to release mM-order of Ca2+ from 

the Sarcoplasmatic Reticulum (SR). The co-location of the inward Ca2+ channels in 

transverse tubules and the RyR2 complex in SR secures a fast and efficient coupling,

whereas RyR2-embedded proteins as FKBP12.6 regulate the open probability of the RyR2 to 

prevent diastolic leakage. Localized Ca2+ release (Ca2+ sparks) coordinate and generate the

[Ca2+]i transient that induces contraction (60,104,112). Post-contraction, the main bulk of Ca2+

is re-sequestered (Ca2+ decay) by the SR Ca2+ ATPase-2a (SERCA2a), which activity is 

closely regulated by phospholamban (PLN). Thus, SERCA2a recharges the SR Ca2+ load, 

whereas normal mode NCX and plasma membrane Ca2+ ATPases translocate Ca2+ out of the 

cell to the extracellular space. This is the prevailing mechanism of cell contraction-relaxation
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(14,15,153), although alternatives relying on other stimuli have been suggested (48,51,80),

and rebutted (15,94,173).

Intracellular Calcium Controls Myocyte Contractility

Studies of excitation-contraction coupling and Ca2+ cycling after exercise training have 

demonstrated that increased levels of SERCA2a and PLN at least partly explain why Ca2+

handling improves and [Ca2+]i transport rates increase with regular exercise (188). Studies of

other subcellular factors that may improve cell contractility are sparse, but clues are provided 

from manipulative and mechanistic studies (27,35,76,111,119,121,151). Thus, exercise

training improve subcellular Ca2+ events that account for larger cardiomyocyte shortening and 

higher contraction-relaxation rates, although a complete cellular perspective of the underlying

biology has not yet been provided.

In contrast, abnormal excitation-contraction coupling and depressed Ca2+ handling provide

mechanisms for cardiomyocyte contractile dysfunction (60,66,68,104,109,133,148,163,182).

Reduced SERCA2a levels (54,76,84,149) and inhibited activity due to decreased

phosphorylation of PLN (16,105) reduces the SR Ca2+ cycling ability to cope with higher heart

rates, and may distort normal force-frequency relationships (38,68) and thus Frank-Starling

mechanics. The importance of SERCA2a was further documented by adenoviral gene 

therapy; restoring SERCA2a in cardiomyocytes corrected abnormal Ca2+ handling and 

contractile dysfunction (41,42), whereas targeted overexpression enhanced contractility in 

transgenics (9). Reduced SERCA2a levels may be compensated by enhanced

phosphorylation of PLN (36). However, close intrinsic control is needed to maintain balanced

Ca2+ cycling (172).

Myofilament Calcium Sensitivity

Regular exercise training increases myofilament Ca2+ responsiveness (46,188). Thus, 

increased cell shortening may not always correspond to altered bio-availability of Ca2+. The 

biological basis for altered Ca2+ sensitivity is not well defined yet, but modification in the 

contractile machinery, e.g. troponin subunits and myosin light chains have been proposed (7,
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45,100,137). However, another plausible explanation to increased cell contractility may be 

changed cooperation of actin and myosin or other contractile proteins, independent of Ca2+.

After myocardial infarction and in heart failure, the role of myofilament Ca2+ sensitivity 

response is unsettled, as results range from decrease via no change to increase (67,69,70,

109,148,164), despite improved clinical outcome of Ca2+ sensitizers (75). It may be that 

cellular changes affecting Ca2+ sensitivity are adaptive in exercise training, and compensatory

rather than causative in heart failure, in order to increase or preserve contractile capacity.

Arterial Endothelial Function

Improved arterial endothelial function with exercise training improves conductance of blood

flow, and is associated with depressed atherosclerosis due to inhibition of leukocyte adhesion

and invasion, less platelet aggregation and adhesion, and suppressed smooth muscle

proliferation (3,23,73,97,179). Since these effects depend upon endothelial release of the 

vasoactive and anti-atherogenic agent nitric oxide (NO), it appears that measuring NO-

mediated vasorelaxation is indicative of endothelial function (99,124,138,189). In this thesis,

endothelial function is therefore indicated by acetylcholine-induced vasorelaxation (see 

below); higher artery relaxation is interpreted as improved endothelial function. Endothelial

dysfunction represents abnormalities in the pathways that regulate the level of NO. Other

vasoactive agents released from the endothelium are endothelium-derived hyperpolarizing

factor, prostacyclin, angiotensin II, thromboxane, prostaglandin, and endothelin (57,87,139).

Acetylcholine Stimulates Nitric Oxide-Mediated Vasorelaxation

The bio-availability of NO is mechanistically linked to artery relaxation and endothelial

function, as illustrated in figure 2. NO is a small uncharged radical compound produced by 

oxidation of the terminal guanidino nitrogen of the amino acid L-arginine. The process is

catalyzed by the constitutive endothelial isoform of NO synthase (eNOS), after stimulation by

acetylcholine-binding to muscarinic receptors. Next, NO enters smooth muscle cells and 

initiates the signal cascade that ultimately decreases [Ca2+]i and induces vasorelaxation

(23,138,139). Besides acetylcholine, shear stress, bradykinin, ATP, ischemia, and a large 

number of extra- and intracellular factors may also mediate NO production (23).
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Vascular
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Figure 2. Acetylcholine-induced nitric oxide (NO)-dependent arterial relaxation pathway. eNOS: endothelial NO 

synthase; NO: nitric oxide; sGCi: inactivated soluble guanylate cyclase; sGCa: activated soluble guanylate cyclase;

GTP: Guanosine triphosphate; cGMP: cyclic 3`,5`-guanosine monophosphate; PKG: cGMP-dependent protein 

kinase. Modified from Walther et al (179). 

Higher level of NO in the smooth muscle cell induces relaxation and is an important cause of 

improved endothelial function after exercise training (71,179). Although endothelial function is

associated with aerobic fitness (97,189), conflicting results appear during exercise training in 

normal individuals, from increased to unchanged and decreased endothelial function (13,29, 

95,99,117,123,124). In endothelial dysfunction, acetylcholine fails to induce normal relaxation,

and may in fact induce a paradoxical vasoconstriction by binding to cholinergic receptors on 

the smooth muscle cell surface (115). Thus, endothelial (dys)function is linked to

cardiovascular health. Recent studies link improved cardiovascular health in cardiovascular

patients to corrected endothelial function due to regular exercise training (3,72,73,97,106),

partly due to enhanced phosphorylation of eNOS to restore NO-levels (71). Hence,

endothelial dysfunction reduces the levels of NO and has been identified as an independent

risk factor and marker of morbidity and mortality (74,161).
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OBJECTIVE

The main focus of the present study was to investigate the cellular basis for cardiac and

vascular contributions to aerobic fitness (VO2max).

The specific aims of the studies were to: 

1. Develop valid and reproducible procedures to determine VO2max during treadmill 

running in rats and mice.

2. Establish long-term intensity-controlled exercise training in rats and mice that yield 

robust cardiovascular effects mimicking adaptation in humans.

3. Determine how intensity of exercise influences VO2max, cardiomyocyte hypertrophy,

contractility and Ca2+ handling, and arterial endothelium-dependent relaxation. 

4. Determine the time-course of VO2max, cardiomyocyte hypertrophy, contractility and 

Ca2+ handling, and endothelial function when high-intensity exercise training is 

implemented and withdrawn.

5. Determine the relationship between cardiomyocyte contractile capacity and arterial

endothelium-dependent relaxation on one side and VO2max on the other side.
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METHODOLOGICAL CONSIDERATIONS

Animal Models 

The objective was to correlate VO2max with cardiomyocyte and endothelial function. This 

requires access to viable cells and tissues and a close control of the intensity and time course

of exercise training. Hence, procedures for exercise training and testing of VO2max were 

developed and evaluated in animal models as detailed in papers I and II, since similar studies

in humans are close to impossible. For both rodent models, availability and costs were 

favorable.

Rat

Adult female Sprague-Dawley rats were used in studies I, III, and IV, as they are previously 

well characterized in our lab (109,110,187,188) and elsewhere (43-46,190-193). Physiological

body growth is less pronounced in females; thus, data related to body mass are less

confounded than in males. As discussed below, this does not preclude gender-specificity on 

cardiac or vascular adaptations (63,142), which may affect cellular dynamics. As Sprague-

Dawley rats come from an outbred strain, the genetic variability is preferably larger than in 

inbred animals and validates the results to a wider biological background. Moreover, the 

effects of anesthesia in this strain are well-known from previous experience in our laboratory

(108-110).

Mouse

To expand future investigations to specific molecular and genetic targets via transgenic and 

gene-modified models, we extended our exercise model to adult mice. Thus, the first mouse 

training study from our laboratory is reported here (paper II). The C57BL/6J strain is inbred

and more genetically homogenous than outbred animals. Hence, it is extensively used for

pharmacological and physiological studies. Even though a recent report described it as 

inferior to other mouse strains with regard to running performance and exercise adaptability

(122), responses in study II were fairly robust.
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Exercise Training Program

To maximize cardiovascular adaptations, we chose the custom-made inclined treadmill 

running model that allows close control of exercise intensity, as our preferred model of 

exercise. The exercise sessions throughout the investigations were carried out at 85-90% of 

VO2max, interspersed by short periods of milder intensity, except in paper III, in which 

moderate intensity at 65-70% of VO2max also was employed to study cellular adaptations to 

different intensities. Uphill treadmill running is a full-body exercise that taxes the 

cardiovascular system and VO2 maximally, and reduces running speed, which otherwise

would have the potential to intrude reaching maximal work intensity (see data in papers I and 

II). Although this model may also cause stress reactions given the electrical grid (130), the 

physiological adaptations by large mimic those in humans (129,188). In comparison, other 

available exercise models as voluntary wheel running, fixed speed treadmill running or swim-

training in a water tank (8,33,79,129), give little or no control of the amount or intensity of the 

work performed. In particular, forced swimming probably involves more stress.

The light-dark cycle of the animals was adjusted to accommodate exercise sessions during

the animals’ dark cycle, as normal behavior pattern summons activity at night. Finally, animals

were rewarded chocolate after each exercise session as reinforcement to encourage treadmill

running (158). To counteract bias, sedentary animals were also given the same amounts of 

chocolate.

Testing of Oxygen Uptake

To monitor training-induced adaptations and adjust treadmill running speed to maintain the 

desired relative exercise intensity, VO2max was measured during treadmill running to 

exhaustion at the start of every training week. Running economy, i.e. VO2 at a given 

submaximal running velocity was measured after the warm-up, but before testing VO2max, to

avoid accumulation of excess lactic acid. The protocols for measuring VO2 in rats and mice

are detailed in paper I and II, respectively. The methods have been found reproducible

through several studies in our laboratory in both normal healthy and heart failure rats, and in 

rats genetically selected and bred for either high or low aerobic capacity (papers III and IV; 
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187-189). Since paper II, we have reproduced the test and training protocols for mice in later 

unpublished studies. The principles behind the VO2max test resemble those from human

subjects (181,195) and confirm that VO2max is integral for evaluating physical capacity and 

integrative function.

Anesthesia

The normal method for sacrificing animals was with diethyl ether anesthesia, which provides a 

quick comatose, but maintains a stable cardiac function that is vital for harvesting

cardiomyocytes. Intraperitoneal injections with ketamine and xylazine provided anesthesia for 

echocardiography; a mixture widely used for echocardiography recordings of both rats and

mice because of the well-defined cardiovascular effects (88,107,169). Ketamine provides

analgesia, sedation, and amnesia. It may affect hemodynamics by increasing blood pressure

and cardiac output. Hence, the lowest possible dose was used to balance depressive and 

stimulatory effects to secure adequate sedation. Following echocardiography, the animals

were observed until awakening.

Echocardiography in Rats and Mice

Global adaptations on cardiac morphology and work performance were evaluated by 

echocardiography, as described in papers II and III. 2-dimensional M-mode long-axis 

recordings providing 250 frames per second were used to evaluate left ventricular

dimensions, whereas pulsed-wave Doppler recordings at 500 Hz were used to assess flow 

characteristics, according to recommendations from the American Society of 

Echocardiography (159). From each recording, 5-10 consecutive cardiac cycles were

averaged. Although echocardiography is fairly well established as a valid tool to assess left 

ventricular dimensions and function in the rat myocardial infarction model (88,107,108,166),

its feasibility to evaluate training-induced cardiac adaptations is less certain, probably due to a 

smaller window of changes. In our hands, echocardiography was less sensitive than single

cell measurements to detect hypertrophy and different contractile function between sedentary

and trained (papers II and III; 188). This is consistent with the large number of animals 

needed to detect biologically important changes by standard equipment; ~50-60 individuals 
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would be needed to detect significant differences of 15% (  0.05,  0.8) of left ventricular size

between different mouse groups in standard M-mode (31). 

Cardiomyocyte Isolation

Cardiomyocytes were isolated to study cell size and function, as detailed in papers I and II. 

The procedures are modified from previous protocols for rats (82) and mice (103). Due to 

discontinued delivery of Joklik’s minimum essential medium used in I and II to isolate left 

ventricular myocytes, a slightly different solution replaced the isolation medium. Thus, studies

III and IV proceeded with Krebs Henseleit Ca2+ free solution, but with similar concentrations of 

the proteolytic collagenase type II and similar introduction to Ca2+ to ensure Ca2+ tolerability 

after isolation, which was performed in absence of Ca2+ to separate cells from each other.

Our laboratory has extensive experience with both Krebs Henseleit and Joklik’s solutions, and

no differences in cell yield and intrinsic properties were noted throughout the studies.

However, the batch of collagenase was an important source of variation in cell yield. We also

noted that different batches of laminin caused some variation in myocyte attachment to the 

cover-slips. The number of left ventricular myocyte nuclei of the rat is estimated to ~33 · 106,

whereas our average cell yield was ~3-4 · 106 from healthy left ventricles; thus, a recovery

rate of ~10%, given that most cardiomyocytes are mononucleate; some may be binucleate

(15). The percentage of rod-shaped cells was consistently ~70-75%. Only viable rod-shaped

cells without obvious cellular damage were selected for measurements of dimensions, and 

only undamaged cells that also responded to electrical stimulation were chosen for

measurements of contractility and [Ca2+]i transients. Cells that failed to complete the

stimulation protocol during the experiment were excluded from analysis. Exclusion rates were

similar in all groups. In every experiment, cells from two different groups were isolated 

simultaneously, to maintain a balanced design and avoid systematic variation. 

Electrical Stimulation of Cardiomyocytes

Electrical field stimulation is a standard and widely used means to study contractile function 

and Ca2+ dynamics in isolated cardiomyocytes, as it effectively characterizes cellular

adaptations of the heart to exercise training, heart failure, and other diseases (68,109,110,
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129,148,151,172,187-189). As a measure of contractile function, fractional shortening was

measured during continuous perfusion with HEPES solution at physiological [Ca2+] and 37˚ C. 

The magnitude of shortening was normalized to diastolic cell length, whereas changes in 

velocities of contraction and relaxation were indicated by time to half and peak shortening, or 

time from peak shortening to half-relaxation. [Ca2+]i ratio was measured simultaneously.

Fluorescence and Edge-Detection Microscopy

In order to study contractility and intracellular Ca2+ handling and homeostasis (III and IV), 

cardiomyocytes were mounted on an inverted microscope with the optical train converted to 

epifluorescence, including a xenon arc 75 W excitation source, and fluorescence emission

detection with a photometer and photomultiplier tube. Capture-and-analysis software handled

the generated data. The extent of cell shortening and the rates of cell shortening and 

relaxation were measured by a sideport camera and video edge-detection from the light/dark 

contrast of the cell edge against background. Contractility and [Ca2+]i transients were sampled

simultaneously through an Fl 40X/ 1.3 NA oil immersion objective, while cells were stimulated

by 5 ms and 1-10 Hz electrical field bipolar pulses; bipolarity to avoid electrolysis. A 500 Hz 

rotating optical chopper and bandpass filters excited the Fura-2/AM loaded cells by 

alternatively near-ultraviolet 340 nm and 380 nm wavelengths, whereas 510 nm emission was

counted to allow ratiometric evaluation of [Ca2+]i transients. When excited at 340 nm, 

fluorescence emission increases with increasing [Ca2+]i, whereas at 380 nm excitation,

emission decreases with increasing [Ca2+]i. Thus, ratioing minimizes possible aberrations of 

uneven dye loading, leakage, photobleaching and unwanted compartmentalization of Fura-2

in the cell (Grynkiewicz et al 1985). Because of uncertainty of calibration procedures and a 

non-linear relationship between the ratio and [Ca2+] (53), we used ratios without converting to 

[Ca2+]i for further analyses.

For detection of cell size, a large number of cells were video taped through either a Fl 20X/0.4 

NA or Fl 40X/0.7 NA objective, whereupon 100-150 random cells per rat and 170-250 random

cells per mouse were measured for length and midpoint width. Cells without visible damage

were selected and calibrated by a stage micrometer. The standard deviations for cell length
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and width from a pool of sedentary rat cardiomyocytes were found to be ±13 m and ±3 m,

respectively, and ±11 m and ±4 m in mice.

Cardiomyocyte Calcium Sensitivity Index

To study how the contractile properties of the cell react to a given amount of available Ca2+

(67,70,148), a Ca2+ sensitivity index was calculated as the ratio between fractional shortening

and the amplitude of the [Ca2+]i ratio from diastole to peak systole. This is not a direct

measure of the myofilament sensitivity to Ca2+; however, previous studies have established

this as an adequate index (109,188). Direct evaluation would require permeabilization of the 

plasma membrane, which would compromise contractile function, or mounting the cell to force 

transducers to trace loaded shortening in order to determine the power production of the 

given Ca2+ (46). Moreover, indirect measurements of Ca2+ sensitivity imply that the 

intracellular environment in terms of e.g. pH is not controlled, which may affect myofilament 

Ca2+ sensitivity, whereas the time lag between peak [Ca2+]i transient and peak shortening of 

the cell may to some degree distort the evaluation. Nonetheless, the Ca2+ sensitivity index 

results indicate that myofilament contractile dependence of Ca2+ in the isolated

cardiomyocytes adapts to chronic exercise.

Arterial Endothelial Function

To assess endothelial function, acetylcholine-mediated endothelium-dependent

vasorelaxation was measured by mounting the right common carotid artery onto a force 

transducer and a micrometer in a continuously equilibrated Krebs solution at 37° C, as 

detailed in papers III and IV. The protocol was adapted and modified from studies of piglet 

femoral arteries (168), and represented the first vascular assessments our laboratory

performed in rat (paper III). After the first study, it became evident that, after pre-contractions 

with the -agonist phenylephrine, higher concentrations of acetylcholine were required to 

ensure maximal relaxation in all artery segments (see paper III, figure 5). This was effected in 

the succeeding study (IV), whereas conventional curve-fitting methods were used to calculate

maximal relaxation levels in the artery segments that did not level off in study III. 
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Acetylcholine induces endothelium-dependent vasodilatation via muscarin receptors. To 

ascertain endothelium-dependence in the tension measurements, arterial segments from 

each animal were also exposed to L-NAME, an L-Arginine competitor that inhibits the L-

Arginine-NO pathway and thus blocks NO-production. Arterial segments were also exposed

to Na+ nitroprusside; an endothelium-independent NO-donor. The prevailing NO synthase in 

the arterial wall is eNOS (71,74), which L-NAME inhibited effectively and Na+ nitroprusside

bypassed by evoking maximal relaxation independent of endothelial NO. The interventions

confirmed that arterial vasodilatation induced by acetylcholine were endothelium-dependent.

Indomethacin was added to all experiments to exclude confounding by cyclooxygenase-

mediated prostaglandin and thromboxane-conversion from arachidonic acid.

Allometric Scaling

Since studies I and II involved both sexes and every study involved long-term follow-up, body

mass might influence the results. Thus, allometric dimensional scaling was applied to 

appropriately normalize VO2 and cardiac and skeletal muscle weights to body size. 

Traditionally, data were usually divided by blank body mass. However, this may lead to 

underestimation in heavier subjects (10,37). Measuring lean body mass is difficult and would

require body scanning to distinguish different tissues. At the time of our studies, scaling VO2

to body mass raised to the power of 0.75 (exponent b) occurred as the best available method,

in line with theoretical modeling and empirical studies over a wide range of body masses and 

species (171). Recent investigations published after the present studies, have estimated

different mass exponential values, especially at maximal metabolic rate as indicated by 

VO2max. By re-examining 34 eutherian mammalian species ranging 7 g to 500 kg from a large 

body of published data (31 original reports, including paper II), it was found that VO2max

should be reported in relation to a body mass with the exponent b 0.872 (± 0.029, 95% 

confidence limits 0.813-0.932; 184,185). However, the exponent b may differ between athletic

and non-athletic phenotypes, as a tight connection was found between how VO2max relates to 

body mass and aerobic capacity in the skeletal locomotor muscles. The allometric cascade

was also examined with a different multiple-cause model, in which the relative contributions

along a detailed cascade were assessed, from pulmonary ventilation and alveolar-to-arteriolar
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oxygen diffusion, to skeletal muscle fiber, Ca2+ pump and myosin ATPase activities at the 

receiving end (81). With this approach, the exponent b was found to be 0.84-0.92 during

maximal metabolic rate, and 0.74-0.77 during basal metabolic rate. However, when re-

analyzing our VO2max data with the mass exponent 0.872, the conclusions remained the 

same, since body masses remained similar between trained and sedentary animals.

Following the best current approximation, cardiac weights were related to body mass with the

exponent 0.78 (10). In paper II, skeletal muscle weights were also measured. To the best of 

our knowledge, no previous studies could advice on how to scale appropriately. Therefore, we 

calculated the exponent b from the present population by allometric equations. This approach

yielded the exponent b 0.75, almost similar to the cardiac exponent. However, care should be

granted, as defining a valid exponential power usually requires a much larger pool of data 

(90).

Statistical Analysis

As each study operates with a limited number of animals per group, data were analyzed by 

non-parametric procedures and complemented by one-way and repeated measures ANOVA,

where appropriate. In papers III and IV, we investigated which cellular factors best 

corresponded to VO2max, to identify the cellular determinants of aerobic fitness. Such attempts

were performed by simple univariate and multivariate linear regression analyses. Although 

this approach identified several cellular features, variables that did not reach statistical

significance may still be biologically important. The backward stepwise model was chosen to 

include all independent variables and then remove insignificant ones one at the time until a 

final model with significant cellular contributors was achieved. However, the same variables

were identified using the forward stepwise model. 
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SUMMARY OF RESULTS

PAPER I Intensity-controlled treadmill running in rats: VO2max and cardiac

  hypertrophy

The objectives of this study were to develop and evaluate experimental procedures for 

determining VO2max during treadmill running in rats of both sexes, and to determine the effects 

of long-term high-intensity treadmill exercise training at 85-90% of VO2max.

Evaluation of Test Procedures

1. Repeated measurements of submaximal running yielded a high reproducibility:

VO2: r = 0.96, coefficient of variation = 4%.

Heart rate: r = 0.98, coefficient of variation = 1.5%. 

2. Optimal treadmill inclination for measuring VO2max: 25° (47%). 

3. Respiratory exchange ratio > 1.05 and blood lactate > 6.0 mM confirmed exercise

level at or close to exhaustion.

4. Linear relationship between VO2 and heart rate was found during increasing treadmill

running velocities; maximal heart rate required higher velocities than VO2max.

5. VO2 leveled off (VO2max) during treadmill running, despite increased running velocity.

Effects of Regular Exercise Training

1. Exercise training induced an athletic phenotype resembling human cardiopulmonary

adaptations to exercise.

2. VO2max and maximal aerobic running velocity increased 60-70%.

3. Resting and maximal oxygen pulse increased 25-30%, indicating increased stroke

 volume. 

4. Exercise training improved running economy during submaximal treadmill velocities:

Oxygen cost decreased ~16%.

Heart rate decreased 11-13%.

Respiratory exchange ratio decreased ~5%

5. Exercise training induced myocardial hypertrophy; right and left ventricular weights

increased 23-34%, while left ventricular myocyte length increased 6-12%.
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PAPER II Intensity-controlled treadmill running in mice: cardiac and skeletal 

  muscle hypertrophy

The objective was to extend the experimental treadmill running protocols into a mouse model.

Thus, the study established valid and reproducible protocols for determining aerobic capacity,

and protocols for exercise-induced cardiopulmonary adaptations in mice of both sexes similar

to those reported in rats and humans.

Evaluation of Test Procedures

1. Repeated measurements of submaximal VO2 yielded a high reproducibility: r = 0.98,

coefficient of variation = 9.1%.

2. Optimal treadmill inclination for measuring VO2max was 15-35°; highest respiratory

exchange ratios were obtained at 25°. 

3. VO2 increased linearly with increasing treadmill velocity, until leveling off at VO2max,

despite increasing running velocity. Respiratory exchange ratio > 1.0 confirmed

exercise level at or close to exhaustion.

Regular Exercise Training

1. Regular exercise training in mice of both sexes induced a similar athletic phenotype

as in paper I, and resembled human cardiopulmonary adaptations to exercise.

2. VO2max increased 30-50%; maximal aerobic running velocity increased ~70%.

3. Exercise training improved running economy during submaximal treadmill velocities:

Oxygen cost decreased 19-25%.

Respiratory exchange ratio decreased ~8%

4. Exercise training induced myocardial hypertrophy; left and right ventricular weights

increased 19-29% and 12-17% in females and males, respectively. Left ventricular

myocyte length and width increased ~20-30% in both sexes.

5. Echocardiography indicated cardiac hypertrophy.

6. Extensor digitorum longus and soleus skeletal muscle weights increased 12-18%
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PAPER III Moderate vs. high exercise intensity: differential effects on aerobic

  fitness, cardiomyocyte contractility, and endothelial function

The objective was to determine how regular exercise at either high (85-90%) or moderate (65-

70%) intensity exercise affects VO2max, cardiomyocyte contractile capacity and arterial

endothelial function.

1. High and moderate intensity exercise increased VO2max 71% and 28%, respectively.

2. High intensity exercise increased cardiomyocyte size 14% by proportional length and 

width growth, whereas moderate intensity increased cardiomyocyte length by 5% and 

cell width indicated growth. Ventricular weights and echocardiography indicated

intensity-dependent biventricular hypertrophy.

3. Cell fractional shortening increased 45% and 23% with high and moderate intensity

exercise, respectively. Intensity-dependent resting bradycardia was indicated.

4. Cardiomyocyte contraction rates increased 43% and 39%, whereas relaxation rates 

increased 20% and 10% with high and moderate intensity exercise, respectively.

Rates of systolic and diastolic Ca2+ transient increase and decay paralleled

contraction and relaxation rates. 

5. Diastolic Ca2+ levels and Ca2+ transient amplitudes were unaffected by exercise

training, whereas Ca2+ sensitivity index increased 40% and 30% after high and 

moderate intensity exercise, respectively.

6. Arterial endothelium-dependent relaxation improved with high and moderate intensity

exercise; acetylcholine concentration evoking half-relaxation decreased 4.3-fold and

2.8-fold with high versus moderate intensity, but the difference between the exercise

intensities was not statistically significant.

7. Differential integrative effects were paralleled by intensity-dependent adaptations on 

cardiomyocyte hypertrophy and myocyte contractile function, but not so clearly with

arterial endothelial function. Multivariate regression analysis showed that rates of

systolic Ca2+ increase and diastolic cell relaxation corresponded best with VO2max,

although also degree of cell hypertrophy and contraction, and vasorelaxation 

correlated to VO2max with univariate analysis.
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PAPER IV Aerobic fitness is associated with cardiomyocyte contractile capacity

and endothelial function in exercise training and detraining

The objective was to determine the time-course of VO2max and associated cellular changes

after regular high intensity exercise was implemented and withdrawn (detraining).

Time-Course of Adaptations to Implementation of Exercise Training (2-13 Weeks)

1. VO2max and cardiomyocyte size, fractional shortening, and rates of myocyte 

relengthening and Ca2+ decay improved steadily up to ~8-10 weeks.

2. Multivariate regression analysis identified cardiomyocyte elongation and diastolic

function as the main factors for determining VO2max, although cell shortening and

volume also correlated with VO2max in univariate analysis.

Time-Course of Adaptations to Detraining (2-4 Weeks)

1. About 50% of the exercise-gained increase in VO2max vanished within 2 weeks of 

detraining, and plateaued 5% above sedentary controls after 3-4 weeks.

2. Cardiomyocyte length and width increased 20-22% with exercise training. During

detraining, cell width regressed completely within 2 weeks, whereas length remained

7% increased after 2 weeks and 5% after 4. 

3. Myocyte fractional shortening increased 30% with exercise, but vanished almost

completely within 2 weeks of detraining. The training-induced increase in contraction-

relaxation rates and corresponding Ca2+ transient rates regressed within 2-4 weeks.

4. Diastolic Ca2+ levels and Ca2+ transient amplitudes were unaffected by exercise

training and detraining, whereas Ca2+ sensitivity index increased with training, and

regressed gradually within 4 weeks of detraining.

5. Endothelial function improved after exercise training, and regressed completely within

2 weeks of detraining.

6. Cardiomyocyte length and endothelial function appeared as the main cellular

determinants for regressed VO2max with detraining (multivariate regression analysis),

whereas univariate analysis also showed that fractional shortening and rates of 

contraction-relaxation and Ca2+ transient correlated significantly with VO2max.
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DISCUSSION

The working hypothesis of the present thesis was that VO2max is associated with cellular

changes in the heart and in arteries. The magnitude of change depends on exercise intensity.

Adaptations occur shortly after initiating regular exercise training, level off after ~2 months, 

and vanish almost completely within a month of detraining. Given that the level of VO2max is 

closely related to clinical outcome, optimizing exercise programs is likely to yield significant

health benefits.

Evaluation of Test Procedures for Oxygen Uptake

The procedures for determining VO2 during treadmill running were found reproducible and

valid both for rats and mice (I and II). To be strict, this validates measurements of submaximal

VO2 and not VO2max. However, hallmarks of appropriate procedures for determining VO2max

are linear relationship between submaximal VO2 and running speed, leveling off of VO2

despite continued increase in running velocity (VO2max), reproducible values from the same

individual when duplicating tests with different inclinations, respiratory exchange ratios >1.0,

linear heart rate response up to maximal levels (I), and clinical signs of exhaustion. These

results are indicative of appropriate experimental procedures for determining VO2max in rats

and mice (I and II). Our methods resemble clinical procedures in healthy and diseased human

individuals (181). Thus, the procedures were valid to determine relative exercise intensity and

evaluate adaptations to regular exercise training. 

Exercise Training Improves Maximal Oxygen Uptake and Cardiac Function

As expected, VO2max and maximal aerobic running velocity increased with regular exercise

training (I-IV). Improvements on VO2max of 50-70% in rats and 30-50% in mice are among the 

largest reported, which probably reflects the close control of relative exercise intensity (for 

comparisons, see Discussion sections in papers I and II). Although several factors influence

aerobic fitness, VO2max is by far the most important (77,145). Nonetheless, regular exercise

also improved work economy considerably, as VO2 and respiratory exchange ratio during

submaximal running decreased. VO2max is closely related to cardiac function (59,194). Thus,

improved cardiac output accounts for a large component of increased VO2max (176,177), as 
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confirmed by increased oxygen pulse (I), which indicates larger stroke volume. Both diastolic

and systolic function and hypertrophy of the heart account for higher cardiac output. Multiple 

regression analysis identified hypertrophy, diastolic function, and Ca2+ handling of the 

cardiomyocyte as important cellular mechanisms of increased VO2max, whereas single

univariate analysis also found that myocyte systolic function correlated well with VO2max (III 

and IV). 

Maximal Oxygen Uptake is Pliable to Different Exercise Intensities

High versus moderate exercise intensity during training sessions doubled VO2max, even 

though moderate intensity induced a substantial increase (III). In fact, moderate exercise

intensity increased VO2max to a degree previously regarded as high (134). Recently, intensity-

dependence of training-induced VO2max has been confirmed in clinical trials of cardiovascular

patients; high intensity exercise was superior for clinical outcome (see Introduction). This has

important consequences since epidemiological data suggest that VO2max is closely linked to 

health and survival (93,136). Surprisingly though, no studies have thoroughly examined the 

effects of different exercise intensities on VO2max in healthy individuals during long-term

exercise programs, although clues of intensity-dependence were provided early on also in 

healthy adults (39).

Time Course of Adaptations in Maximal Oxygen Uptake

Implementing regular high intensity exercise in previously inactive individuals imposes a rapid

augmentation in VO2max up to ~8 weeks, whereupon it leveled off (IV). This probably reflects 

that at one point, exercise training shifts to maintaining fitness, leaving little room for 

improvement unless higher doses of exercise are implemented (195).

The time course of regressed VO2max is considerably shorter in rats than humans, as VO2max

perished almost completely to sedentary levels in less than 1 month (IV). Ten days of 

detraining in well-trained men did not reduce VO2max (34), whereas 8 weeks detraining in 

previously active men and women only modestly decreased VO2max (152). However, the initial 

level of fitness in the latter study was much lower than in paper IV. 
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Cardiomyocyte Hypertrophy with Training

Cardiomyocyte hypertrophy was shortly induced after initiating a regular exercise training

program, and continued steadily for ~2 months, when hypertrophy plateaued (IV). The 

magnitude of cardiomyocyte hypertrophy was dependent upon the intensity of regular

exercise, as high intensity exercise training induced a substantially more pronounced

response than moderate intensity, 14% vs. 5% longer cells, respectively (III). Cell width also 

increased after high intensity exercise (III and IV), but was only indicated with moderate 

intensity (III). Thus, high intensity exercise provides a stronger hypertrophy stimulus than 

moderate intensity. Moreover, proportional cardiomyocyte length and width hypertrophy was

also induced by high intensity exercise in mice.

Physiological hypertrophy is considered beneficial to improve the cardiomyocyte contractile

capacity. It provides a cellular basis for larger end-diastolic dimensions, and confirms with the 

concept of athletes’ heart, i.e. enlarged left and right ventricular masses and volumes, and 

increased wall thicknesses (58,146,150). Global hypertrophy was indicated by increased left 

and right ventricular weights (I-IV), and by echocardiography indices of enlarged left

ventricular posterior wall and septum thickness (II, III). Exercise-induced cardiomyocyte

hypertrophy corresponds to previous studies (8,129,187,188), including previous studies

reporting increased heart weights in both endurance-trained rats (49) and mice (4,92,125). In

fact, the time course of cardiomyocyte hypertrophy (IV) corresponds well to a study finding 

heart weights to plateau after ~10 weeks of regular exercise, following a continuous increase

from initiation of exercise (33). In contrast, there is a lack of well-controlled studies on 

intensity-dependence of cardiac hypertrophy; in fact, most experimental studies do not control

exercise intensity but rely on fixed treadmill speeds, voluntary wheel running, or swim training.

This is probably because controlling exercise intensity accurately in terms of VO2 requires

more sophisticated and time-consuming protocols. Intensity-dependence of hypertrophy may 

explain why only top endurance athletes develop hypertrophied, athletic hearts, whereas less

intense programs usually do not (146,147). Cardiac factors account for the ability to increase

stroke volume linearly with exercise intensity up to near-exhaustion in well-trained endurance

athletes (59,194), and not just up to ~50-60% of VO2max as previously suggested (195). This is
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probably why the magnitude of cardiomyocyte adaptation depends on exercise-intensity

beyond moderate levels.

Hypertrophy Regression with Detraining

Regression of cardiomyocyte hypertrophy with inactivity following a period of regular exercise

(IV) is consistent with previous studies of deconditioning after regular swim training in rats. 

After 9-10 weeks of daily unloaded swimming that increased heart weights similar to the 

present studies (I-IV), 80% of the gained heart weight was lost after 2 weeks of detraining

(56), and 100% after 3 weeks (33). In fact, 60% of training-induced gain in heart weight was

lost one week after stopping regular exercise (79). In the latter study, the training period 

lasted only 3 weeks, rendering the degree of hypertrophy uncertain. Finally, it was shown that

both training- and detraining-induced changes in heart weight are repeatable and susceptible

to successive exercise programs (78). Jointly, our data and the previous reports suggest that 

cardiomyocyte size is closely regulated according to changes in physiological needs.

Regression of cardiomyocyte size is probably the mechanism of myocardial hypertrophy

regression in humans, although time course may be slower. Ten days of detraining did not 

induce any regression in well-trained athletes (34), whereas hypertrophy regression was

evident after 3 weeks of detraining in athletes with similar endurance level (120). Thus, the 

rate of global cardiac regression in humans is probably considerably longer. About ~50% of 

former elite athletes experienced complete regression of left ventricular mass, whereas

almost all maintained enlarged chamber volume during 13 years of follow-up after ceasing

competitive sports (147). Given the participants history of exercise training, it is posible that 

continued leisure activity may have maintained a certain degree of hypertrophy.

Cardiomyocyte Contribution to Myocardial Changes

Cardiac myocytes seem to have an ample potential of adaptation to regular exercise training

and inactivity. Although the present results (I-IV) did not quantify contributions of water and

connective tissue, other studies have. The roles of connective tissue and collagen were 

minimal for regulation of cardiac weights during exercise training and detraining (78,79), 
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whereas myocardial hydration did not contribute at all (33). However, the latter study 

indicated a minor role for non-myocyte protein components to changed heart weights. Thus,

the combined data show that cardiomyocyte size account for the major part of training-

induced cardiac hypertrophy and detraining-induced regression.

Mechanisms of Cardiomyocyte Size Adaptation 

Physiologic hypertrophy has been associated with proportional increase in length and width of

the cardiomyocyte (83), but this has not been demonstrated experimentally until now (II-IV). 

Other studies in our laboratory (I; 187,188) and elsewhere (129) have only reported increased

cell length after regular training. The reason for this discrepancy is presently unclear, but may 

rely on the accuracy of measurements and number of cells studied. Proportional hypertrophy

requires generation of new sarcomeres in series and parallel. Longer cardiomyocytes do not

have longer sarcomeres (129), whereas tissue generation by differentiation, dedifferentiation,

or stem cell proliferation remains dubious, although such traces have been found in infarcted

hearts (12). Regression of cell length and width also occurs proportionally (IV). 

Physiological and pathological hypertrophy is characterized by different molecular phenotypes

and gene expression profiles (85,86). The underlying molecular mechanisms of adding and

removing sarcomeres have not been determined, but several important mechanisms have 

been identified. Physiologic growth appears to rely on initiation of the phosphoinositol-3-

kinase/AKT pathway to stimulate mTOR/p70 S6K signal transduction to increase rate of

protein translation in the ribosomal machinery (19,25,125). Other suggested targets involve 

the Ca2+-binding protein S100A1 (131) and the transcription factors GATA4 and GATA6 

(102). Signal cascades normally associated with pathologic growth, such as atrial and brain 

natriuretic peptides (ANP and BNP; 108) and reprogramming into a fetal gene program (83) 

are usually depressed during physiological hypertrophy, although mildly increased mRNA 

levels of cardiac ANP and BNP also have been reported with mice voluntary running (4).

Hypertrophy regression has been linked to depressed protein synthesis (56). Other

mechanisms could also contribute, e.g. increased rates of protein metabolism or degradation

to reduce redundant sarcomere mass.

32



Cardiomyocyte Contractility during Exercise Training and Detraining 

Regular exercise training enhanced cardiomyocyte fractional shortening and rates of systolic

contraction and diastolic relengthening (III and IV). The magnitude of improvement was larger 

with high intensity exercise than with moderate intensity (III). The adaptations increased 

steadily with regular exercise until a plateau was reached after ~2 months, whereas during

detraining, adaptations subsided within 2-4 weeks (IV). No previous accounts exist of time 

course of cardiomyocyte contractile function after exercise training with different intensities or 

during detraining, but magnitude of improvements were in line with most data (e.g. 43,46,129, 

187,188), but not with studies reporting no effect or decreased contractility (98,144,193).

Different exercise training protocols and experimental conditions, e.g. ionic concentrations,

pH, temperature, stimulation frequencies, and region of the heart from which cells were

isolated, may explain some of the variation. Most studies did not stimulate cells up to 

physiological frequencies (7-10 Hz; e.g. 98); where our exercise-induced effects were most

marked (III and IV). Together with hypertrophy, improved contractility effectuates a 

substantially greater contractile capacity of the cell, which contributes to greater systolic

output and diastolic filling. Increased stroke volume is usually associated with resting

bradycardia, as indicated in II and III. 

Electrical versus Current Stimulation of Cardiomyocytes

Field stimulation does not completely resemble ordinary action potential-derived excitation-

contraction coupling and should thus only cautiously be compared to patch-clamped cells 

stimulated with ion currents. For instance, field stimulation changes triggering mechanisms

into dependence on L-type Ca2+ current and reverse mode NCX-current, instead of initiation 

by the Na+ current, with the consequence that time to contraction is prolonged (24). In our 

hands, the extent of cell shortening with field stimulation has continuously been among the 

largest compared to other laboratories, with values regularly between ~15-25% at 7 Hz 

stimulation. Fractional shortening varies reportedly between ~3% and ~25%, in line with 

concordantly large variations in [Ca2+]i amplitudes (15). Such differences probably result from 

experimental conditions, e.g. temperature, pH, concentrations of Ca2+ and other ions,

stimulation frequencies, selection of cells, species and strains, and procedures for isolating
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and culturing cardiomyocytes. These factors may also partially explain the controversy

regarding a positive or negative force-frequency relationship (21,53). In our experimental

conditions and procedures, we typically observed a positive staircase during 1-7 Hz

stimulation, but negative >7 Hz (papers III and IV). This relationship is also maintained in 

heart failure cells (109). Furthermore, our approach studies intrinsic, unloaded contractile

properties of the single cardiomyocyte, as mechanical influences by adjacent cells, tissues

and impending in vivo load, as well as neurohormonal stimulation are removed.

Calcium Handling is Linked to Contraction-Relaxation Rates

The inter-dependency and the similar changes on [Ca2+]i transients and contraction-relaxation

velocities suggests that increase in rate of Ca2+ cycling explains faster shortening and 

relengthening of the trained cardiomyocytes (III and IV). Reduced rates of Ca2+ cycling with

detraining also translate into slower contraction-relaxation rates (IV).

Altered Ca2+ handling and contractile capacity of the cardiomyocyte (III and IV) suggest that 

cellular adaptations contribute to improved global heart function in endurance-trained

subjects, such as increased end-diastolic volume, stroke volume, and cardiac output (59,155,

162,194). Cell shortening has also been linked to myocardial contractility in heart failure 

(109). Regressed Ca2+ handling (IV) probably contributes to the detraining-induced reduction

of stroke volume (32,120). Intensity-dependence of cardiac function has not been shown

previously, but based upon paper III, we hypothesize that high intensity exercise is superior to

moderate intensity to induce cardiac effects. Our results are of unloaded shortening with zero 

external work output, whereas in vivo loaded shortening includes external work due to tissue 

mass and blood pressure. However, single cell force- and power production also increase

with regular exercise (43). Together, these results form a cellular basis for increased

myocardial capability to perform external work, although effects of mechanical stress and 

neurohormonal stimulation are not accounted for (see Methods section for details).
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Mechanisms of Altered Calcium Handling

Molecular changes that mechanistically explain the observed changes in Ca2+ handling or 

excitation-contraction coupling have not been determined, although clues are provided. More 

effective coupling of the L-type Ca2+ current to RyR2 Ca2+ release, but not more channels,

has been shown with regular exercise (128,144). This suggests a mechanism for exercise-

induced higher rate of systolic [Ca2+]i transient increase (III and IV). Training-induced effects 

on isolated SR Ca2+ release per se have not been studied, but could potentially be interesting

as the RyR2 complex is responsive to different stimuli (35,55,113,183). Faster [Ca2+]i

transients decay after exercise training (III and IV) seems to at least partly be explained by 

increased levels of SERCA2a, PLN and NCX (114,187,188). This improves Ca2+ re-

sequestering and myocyte relaxation, and may secondarily improve contraction due to 

improved loading of the SR.

Calcium Sensitivity Accounts for Fractional Shortening

In rats, changed cardiomyocyte fractional shortening with exercise training or detraining could

not be explained by systolic or diastolic levels of [Ca2+]i or transient amplitude (III and IV). This 

suggests that the magnitude of cell shortening results from improved myofilament

responsiveness to Ca2+. Indeed, papers III and IV indicate that Ca2+ sensitivity improves with 

regular exercise training according to exercise intensity, and wanes with detraining.

Adaptation of cardiac Ca2+ sensitivity to exercise training has previously been demonstrated

thoroughly in rats (46) and has therefore been suggested as an important mechanism of 

intensity-dependency and time courses of increase and regression of cell fractional

shortening (III and IV). Length-dependence of sarcomere Ca2+ sensitivity; stretched

sarcomeres producing more force (44), implies that end-diastolic volume also may explain 

why myofilament Ca2+ responsiveness changes. These studies may also support the notion 

that Ca2+ sensitivity may be a compensatory mechanism to volume overload (148). Since the 

variation on Ca2+ sensitivity among different species is considerable (67,69,70,109,148,164)

and no supportive data beyond rats exist (46, 188), the possibility remains that improved Ca2+

sensitivity is species-specific.

35



Mechanisms of Calcium Sensitivity

Likely mechanisms of changed Ca2+ sensitivity (III and IV) are found in the contractile

machinery of the cell. The levels of atrial myosin light chain-1 in the heart (45), but also 

isoform shifting of troponin T (7), troponin I (100), and myosin heavy chains (137) have been

associated with altered Ca2+ sensitivity. Regulation of pH may also affect Ca2+ sensitivity 

since protons may compete with Ca2+ and inhibit Ca2+-binding to troponin C (141).

Molecular Coupling Between Hypertrophy and Contractility

Exercise training induces simultaneous adaptations on contractile function and size of the 

single cardiomyocyte (III and IV; see figure 2E paper IV). If the newly generated contractile 

machinery also contributes to improved contractility, then it suggests that intracellular

regulatory mechanisms are activated, such as different protein kinases and phosphatases

(e.g. 135). An interesting hypothesis is that the AKT pathway stimulates hypertrophy and 

facilitates Ca2+ cycling in concert (25). 

Endothelium-Dependent Arterial Relaxation

Regular exercise training induced greater arterial endothelial function, but the effects were not

significantly different between high and moderate exercise intensity (III), and vanished 

completely within days of detraining (less than 2 weeks; IV). Endothelium-mediated

vasorelaxation measures the conductive ability of the artery (vasodilation), although

endothelial function also includes mechanisms that protects against atherosclerosis (see 

Introduction). Exercise may therefore reverse endothelial dysfunction and exert anti-

atherosclerotic effects on the endothelium. Thus, some effects of exercise training may be 

more marked in individuals with endothelial dysfunction.

Intensity-Dependence of Endothelium-Dependent Relaxation

Although endothelium-mediated vasorelaxation was indicated better after high intensity 

exercise training versus moderate, no statistical significance occurred between the exercise 

levels (III). No clear consensus has evolved on endothelial adaptations to exercise training in 

healthy individuals. Despite endothelium-dependent vasodilatation improving with moderate
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intensity exercise (50% of VO2max), it did not improve with high (75%) or low (25%) exercise

intensities (61). Other reports show that endothelial function may improve (29,99,124),

decrease (13) or remain unchanged (95,117,123) during regular exercise training. It was also 

reported that endurance-trained women do not have better endothelial-mediated

vasodilatation than sedentary counterparts, but have structurally greater artery diameters 

(127). These discrepancies may be due to inadequate exercise programs, experimental

procedures, selection of the specific artery to study (e.g. large conduit artery vs. smaller and 

more responsive arteries), initial status of the endothelium (normal vs. unhealthy), and 

inherent differences between human and animal biology.

In individuals with heart failure and cardiovascular disease, endothelial adaptation is 

associated with exercise-induced improvement of cardiovascular health and work capacity

(3,71-73,97,106). This suggests that arterial adaptive potential may be larger when 

endothelial dysfunction is present.

Regression of Improved Endothelium-Dependent Relaxation

Regular exercise carried out for 10 weeks improved endothelial function substantially (III and 

IV). When training was stopped, the effects returned to normal levels within less than 2 weeks

(IV). Given the rapid decline, one may assume that regular exercise is necessary to maintain, 

not just induce, improved endothelial function. The time course of regression appears longer

in humans, as endothelial function returned to baseline ~2 months after ceasing regular

exercise in patients with coronary artery disease and heart failure (117,180). How quickly

regression progress in healthy humans is uncertain; whereas NO levels were maintained after 

4 weeks of detraining, plasma levels of NO regress within 8 weeks (116).

Mechanisms of Endothelial Adaptation

Since dilatory responses to Na+ nitroprusside and reaction to acetylcholine after eNOS

inhibition with L-NAME were unaffected by training or detraining (III and IV), altered 

vasodilatory effects were probably caused by acetylcholine-mediated NO from the 

endothelium (see figure 2, Introduction). Besides increased eNOS enzyme activity (71), 
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regular exercise training also increases protein levels of eNOS if the tyrosine kinase c-Src is

present (40). Also, increased shear stress and transmural pressure induces higher endothelial

reactivity via AKT and vascular endothelial growth factor (VEGF; 1). 

Although endothelial adaptation seemed to have a different time course than cardiomyocytes

(III and IV), univariate correlation analysis established a weak association with VO2max (III), 

whereas multivariate regression indicated that regressed endothelial function is associated

with VO2max (IV). However, further studies are required to investigate adaptations of the 

endothelium to exercise, especially in subjects with endothelial dysfunction. 

Cellular Mechanisms of Maximal Oxygen Uptake 

It takes a certain amount of flexibility and adaptability to respond to exercise training and 

withdrawal thereof. This thesis shows that changes in VO2max during training and detraining

are closely associated with adaptation in cardiac myocytes. It should be noted that statistical 

modeling to assign values to cellular determinants cannot provide causal proofs but indices,

and does not take into account other variables not measured or controlled for. Nonetheless, it 

provides important targets for more defining studies. Although the scope of this thesis was on

oxygen delivery and identifies cardiomyocyte contractile capacity as a main determinant of 

aerobic fitness, other biological factors are also important for integrative function after training 

and detraining, e.g. capillarization, mitochondrial mass, and oxidative and metabolic enzymes

(96,132).

General Considerations and Clinical Implications

The data reported here are obtained in healthy rats and mice with no history of cardiovascular

disease, and provide thus insight into processes occurring under normal physiological

conditions. Thus, it remains uncertain how varying degree of disease would affect the results.

Genetic background may also affect the outcome. Both young and old individuals, as well as 

different sexes may react differently to the interventions. Papers I and II indicate that sex 

differences mainly would appear on the magnitude of adaptations, not the nature. It also adds

credibility to translating results from animal to man, that quantitative rather than qualitative 
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differences seem to separate excitation-contraction coupling between the species (14,15). In 

cases were human samples are available, a large degree of similarity between experimental

and clinical studies seem to appear (e.g. 66-73).

The studies were conducted with the intention to identify mechanisms and form a basis for 

studies of exercise training as a therapeutic approach in heart failure and related conditions.

The first such studies in our laboratory show comparable, beneficial effects of training in heart

failure or in animals at risk of developing cardiovascular disease (187,189), in line with other 

studies reporting beneficial effects of exercise training in heart failure (134). Therefore, we 

studied intensity-dependence with a clinical approach by changing exercise intensity without

changing exercise time. This is not a strict control of the sheer effects of exercise intensity per

se, as volume is not adjusted with moderate intensity exercise, but provides evidence that 

clinical and cellular effects increase if exercise intensity is increased within a given period of 

time “set” for exercise. As described in paper III, if one were to appropriately adjust exercise 

time to match volume between groups, the exercise time would approach critical lengths in 

clinical settings. Further experimental and clinical studies of exercise training as a therapeutic

tool, partly based upon the present data, are currently underway and show potentially large 

effects of increasing exercise intensity in patients, even when amount of work is the same.

Given the importance of VO2max for predicting cardiovascular health and all-cause mortality in 

healthy and cardiovascular patients (93,136), our results should have consequences for 

designing appropriate exercise programs and studies. Nevertheless, we recognize that low-

to-moderate exercise (175), and very intense short-bout sprint training (190-193), may also be 

valuable in both health and disease.
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CONCLUSIONS

1. The experimental procedures for determining VO2max and running economy were valid

and reproducible in both rats and mice during inclined treadmill exercise. Thus, the 

protocols could be used to accurately evaluate adaptations to regular exercise

training, and to determine the relative intensity of treadmill running.

2. Regular intensity-controlled exercise training induces robust integrative and cellular

adaptations in rat and mouse. VO2max and running economy improve. Cardiomyocyte

hypertrophy is induced; and contractile function, Ca2+ handling and Ca2+ sensitivity 

increase. Arterial endothelium-dependent vasoreactivity to acetylcholine improved.

3. Regular exercise at high versus moderate intensity induces about two-fold greater

adaptations on VO2max and cardiomyocyte dimensions, fractional shortening, Ca2+

sensitivity, and velocities of contraction-relaxation and Ca2+ transient cycles. In 

contrast, arterial endothelial function was less dependent upon exercise intensity.

4. After implementing regular high-intensity exercise training, VO2max increases rapidly

until a peak level is reached after ~8 weeks. Cardiomyocyte adaptations including

hypertrophy response, fractional shortening, and rates of contraction-relaxation and

Ca2+ transients follow a similar pattern. When regular training is stopped, regression

occurs about twice as fast; most of the effects vanished completely within 2-4 weeks,

except cell size and VO2max, which remained slightly elevated after 4 weeks of 

detraining. In contrast, training-induced arterial endothelium-dependent relaxation

regressed completely within 2 weeks of detraining.

5. Aerobic fitness and VO2max are closely associated with cellular function and 

adaptations to regular training at high and moderate exercise intensities and 

detraining. Multivariate correlation analysis identified cardiomyocyte hypertrophy, rate 

of Ca2+ increase and decay, myocyte relaxation, and endothelial function as the main

variables linked to VO2max. Thus, cardiac cell and endothelium features are dynamic

and show great plasticity to exercise stimuli.
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Figure 3. Summary of the main effects of exercise training at high or moderate intensity, and during detraining

following regular exercise training.

The results indicate that exercise intensity is important for aerobic fitness and cellular

adaptations that underlie health outcomes, and that cardiomyocyte contractile capacity

emerges as an important determinant of VO2max.
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ERRATA

Paper IV

Page 2899, Figure 2 legend: references should read 6, 18.

Page 2899, last paragraph, line 4: “Figure 1” should read “Figure 2.”
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