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Summary

Enabling technologies such as more powerful and miniaturized embedded comput-
ers, sensors, and power systems have rendered small Unmanned Aerial Systems
(sUAS) cheap and readily available for industry, consumers and university depart-
ments and enterprises of all sizes. Videos and photographs captured by cameras
attached to sUAS have become a common sight in video and photo sharing web-
sites, corporate offerings, as well as in scientific journals. While the purpose of the
first group of users often is to take beautiful photos, the latter two user groups
often use the camera attached to their sUAS as a sensor to either navigate the
sUAS, measure certain parameters, or detect objects in the physical world. For
these types of missions, either a visible-light camera or a camera in the infrared
or other bands can be used, e.g. thermal infrared cameras which often prove to be
good at detecting people and animals, as well as oil spills.

This thesis focuses on evaluating and improving upon the methods used when the
camera system is being used as a tool to geometrically measure the environment
and detect objects. Initially in the thesis, image quality degradation caused by ex-
ternal movements and vibrations are discussed. The source of the movements are
discussed, along with suggested solutions on how to mitigate the image degrada-
tion. This includes both camera and optics design parameters (pixel size, optics or
camera sensors with built-in optical image stabilization), as well as active and pas-
sive vibration dampening (electric motors, passive dampeners), software image and
video stabilization, and aerodynamic design of the camera stabilization platform.

For evaluating and improving on the geometrical measurements, an algorithm for
producing a highly accurate camera attitude estimate – the orientation of the cam-
era in the geographic coordinate system – is developed. The reason for this focus is
the large error an incorrect camera attitude estimate can introduce in geometrical
measurements. The algorithm matches a horizon detected in a camera image with a
horizon synthetically generated using a Digital Surface Model. Working in close to
real-time, the algorithm’s accuracy exceeds that of similar methods while perform-
ing global search in the yaw angle – commonly the angle that is most difficult to
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Summary

estimate. Camera images were later acquired in a real-world mission taking place in
the Bothnian bay in Northen Europe. A camera was attached to a moored balloon
system with the purpose of tracking and estimating the size of ice-floes floating
into a marine vessel. The attitude estimation algorithm was used on the camera
images with the purpose of estimating the dimensions of the ice-floes, and proved
to produce highly accurate shape estimates even at very slant camera angles.

The final focus point of the thesis is on object detection and classification, which
is a common task for camera systems mounted on sUAS, for example in search-
and-rescue missions at the sea. In order to evaluate the camera performance, a
mission was performed where various objects were placed at the sea surface. The
objects were selected as common objects present in search-and-rescue missions,
e.g. a human, pallets, buoys, and a small boat. Images of the objects were taken
with both a visible-light camera and a thermal infrared camera. The detectability
of the objects was first evaluated using common image processing algorithms like
edge detection. This showed the large effect that the scene can have on such tasks,
with noise from ocean waves causing difficulties in detecting objects smaller than
3 pixels in the image plane. A study on classification of the objects are finally per-
formed. This uses the the thermal camera image dataset from the aforementioned
mission together with a Gaussian Mixture Model for image segmentation, and fi-
nally a Convolutional Neural Network for object classification. The conclusion is
that object classification is possible with an acceptable accuracy, but that the low
pixel count of objects in the image plane is a limiting factor.
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Chapter 1

Introduction

This chapter introduces the motivation for the research included in this thesis. The
general scope of the thesis and its content are briefly stated, as well as its structure.
Finally, the chapter contains a list of the articles written and published during the
duration of the PhD programme, some of which forms the basis for this thesis.

1.1 Background and Motivation

In the recent decades, Unmanned Aerial Vehicles (UAV) technology has transi-
tioned from being expensive, high-tech, and reserved for military applications and
larger enterprises, to a readily available and affordable technology. UAV technol-
ogy is today being used by hobbyists, companies, and research organization in
their daily operations and projects. Some of the main reasons for their popularity
is their ability to transport smaller packages, as well as to collect valuable data in
vast amounts, while having the potential of being both much safer and require far
less resources than the alternatives such as road transport and manned aviation.

When the data is the main reason for the UAV mission, the data acquisition is
commonly done by the use of remote sensing – using sensors to capture data at
a distance from the observed target. The alternative to this would be to e.g. drag
a sensor through a body of water to acquire data about the water quality. One
example of a remote sensing mission is the Station Keeping Trails (SKT) performed
by Equinor (formerly Statoil) [86] [1]. In this mission, the effects of ice-floes on
marine vessels were analyzed in the Bothnian bay. For this, the size and position of
the ice-floes were important information in the quantitative analyses. During the
trials, this information was gathered by a camera attached to a moored balloon
system. Other missions and research projects include precision agriculture [89] [60]
[148] where multi- and hyperspectral cameras can be used to analyze various health
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1. Introduction

factors of crops, and e.g. apply the required pesticide of the right amount of water;
as well as two- and three-dimensional mapping and modelling missions [112] [79]
[81].

The missions mentioned above mostly use a optical imaging sensors (cameras) as
the main sensors. While many examples also exist where other sensors are used,
e.g. radars, lidars, and air quality sensors, camera systems remain one of the most
commonly used sensor due to their relatively low cost, low weight, and ease of
understanding the data they produce. This makes the camera an interesting and
important sensor to analyze more in-depth in order to get a better understanding
of how it performs for the various types of data that are commonly sought the
be extracted from camera images. The camera performance can be divided into a
multitude of sub-fields, such as optics and imaging sensor performance, read-out
circuit performance, as well as light source and scene understanding and modeling.
Each of these sub-fields can further be broken down, and have been analyzed in
great depth, both in specific books (e.g. [6]) and in more general handbooks, e.g.
[77].

By taking one step from the theoretical foundation of the different sub-fields of
imaging towards the end-users, i.e. photographers and remote sensing data pro-
ducers and users, much research has also been produced and published. Early and
impactful research include Johnson’s criteria [119], which analyzed how well ob-
jects can be detected in thermal camera images. Later on, in e.g. [37] [80] [79] [25]
[123], many camera systems have been built and had their performance evaluated.
These articles serve as good hands-on showcases of how a camera system can per-
form, but often leaves out details on how the camera and other components are
selected. On the other side is research like [58] [94] and the aforementioned research
on imaging components, which presents theoretical surveys and guidelines on how
to design high end stabilized camera system. A designer skilled in the art might
be able to draw the full benefit of those kind of articles. However, literature to aid
non-imaging experts in the design and component selection for stabilized camera
systems for sUAS is missing in the field.

The aim of this thesis is thus to survey current literature, and gather data from
camera systems, in order to aid non-imaging experts in the design, component
selection, and evaluation of stabilized camera systems and to document the per-
formance of common tasks performed by such systems with a focus on remote
sensing.
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1.1. Background and Motivation

1.1.1 The Problem of Georeferencing Accuracy

Georeferencing is the process of relating information to a geographic coordinate
system [59]. For sensors, this often means mapping data from the sensor coordinate
system to the geographic one. In the case of e.g. time-of-flight radar sensors, the
mapping is between two three-dimensional coordinate systems. For camera systems
it is commonly a two-dimensional to three-dimensional coordinate mapping, which
require additional knowledge of the scene. In addition to this third dimension, the
pose (position and orientation) of the sensor coordinate system in the geographic
coordinate system needs to be known. This information is commonly acquired
from a Global Navigation Satellite System (GNSS), magnetometer, and Inertial
Measurement Unit (IMU). However, there are two problems that are commonly
encountered when using external sensors such as GNSS and IMU to determine the
sensor pose. The first is that the pose of the imaging sensor coordinate system in
relation to the GNSS and IMU coordinate systems need to be known; And the
second is that GNSS and IMU in many cases lack the required accuracy due to e.g.
disturbances in the magnetic field from other magnetic fields caused by e.g. large
metal structures or electric motors, causing the heading accuracy to reach tens of
degrees. These problems can cause e.g. georeferencing errors of hundreds of meters
in a common UAV mission.

The camera system itself has a very high spatial accuracy under certain circum-
stances (e.g. when using lens with low or well defined distortion). This makes it
an attractive option to relate the camera coordinate system directly with the geo-
graphic coordinate system. This requires part of the scene to be both spatially well
defined (its geographic coordinates known), and be detected within the camera
image. With the geographic data being readily available, as well as recent ad-
vancements in object detection and image segmentation using low-cost computers
mountable on-board the UAV, using the camera-based pose estimation methods
are becoming more and more feasible. Some problems still remain, e.g. when no
pre-defined scene objects are detected in the camera image due to blocking objects
or fog. This could however potentially be solved with e.g. dead-reckoning estimation
of the camera pose using the lower accuracy GNSS and IMU sensors.

1.1.2 The Problem of Scene Complexity

The utilization of measuring objects in a camera image can be greatly enhanced if
the objects can be automatically detected in the scene first. Object detection also
has many other uses where it is the main purpose, e.g. search-and-rescue missions.
Knowing beforehand whether the known or unknown objects can be detected by the
selected camera at the UAVmission trajectory is vital, but can be highly complex to
calculate or simulate. In some controlled environments, a priori information about
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1. Introduction

the scene and objects can be acquired to select a suitable camera. In this type of
missions, the scene and objects can also be manipulated in order to make object
detection easier. Quick Response (QR) codes can be attached to boxes, and their
corners can be marked with a known pattern so that the intelligent sensor platform
knows what pattern to scan for. In a natural scene it can sometimes be done using
landmarks or other markers to navigate or to limit the area where the scan should
be performed. In many cases, in particular in remote sensing or search-and-rescue
missions taking place in large, natural areas, it is not feasible to rely on a priori
information or environmental manipulation to facilitate easier object detection.

There are some methods for estimating how well objects can be detected in a real
world mission before the mission takes place. One such method is camera system
and scene simulation. In simulations, camera noise models (e.g. as described in [40])
can be used together with artificially limiting the image resolution to introduce the
imaging sensor noise and limitations in the simulation. For simulating the perfor-
mance of the optics, a model such as the Modulation Transfer Function (MTF)
[14] can be used. However, the data required for using the MTF for simulations
can be difficult to obtain – the lens manufacturer rarely makes this available, so
experiments would have to be performed to determined this for the lenses to test.
Simulating the scene could also become complicated due to the different absorption
and reflectance characteristics of the different materials. Modern game engines are
doing a good job of producing photo-realistic image sequences of a wide variety of
scenes, but they may contain effects which are meant to be pleasing to the eyes
rather than imitating the real world. They can also be time-consuming to set up
to imitate the planned mission.

An alternative to simulate the optical imaging system and the scene is to do an in-
depth field study of real images. This can become an iterative process, and can be
used with the simulation methods mentioned above by e.g. starting off with a high
quality camera system and then simulating noise present in lower quality camera
systems until the right price-weight-quality balance have been found. In addition
to using real world data to select the right camera for a future mission, it is also
important to gather intelligence on how well the camera performs in detecting
objects using both traditional image processing and computer vision algorithms,
as well as modern machine learning methods.

1.2 Structure of the Thesis and Main Contribution

The remainder of this thesis is divided into seven chapters, transitioning from design
considerations for components surrounding the camera, to analyses of the camera
system itself in the form of georeferencing and object detection applications. The
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1.2. Structure of the Thesis and Main Contribution

final chapter discusses the main conclusions of the research, and gives suggestion
for future work.

• Chapter 2: Previous research in camera stabilization systems has been fo-
cused on either theory of high-precision pointing and stabilization systems
(e.g [58] and [94]), or evaluating custom-made optical imaging systems (e.g.
[37], [80], [79], [25], [123]). Research in these areas can be very helpful in de-
signing certain aspects of high-performance stabilization platforms, but does
not satisfactory provide an overview of the more practical design consider-
ations required when addressing image degradation caused by vibrations of
the camera system. This chapter contains a survey of practical design consid-
erations of camera stabilization systems, with a focus on cameras mounted on
sUAS. The stabilization aims to mitigate blur caused by vibrations present
in the sUAS either by mechanically dampen or counteract them, by using a
camera with optical image stabilization, or by using software methods e.g.
image and video stabilization. The chapter presents the most common causes
for vibrations, and by extension also blur, as well as the most common and
recent methods for reducing the effects of the vibrations.

• Chapter 3: A number of methods exist for estimating the attitude using
camera images: [51] [34] [47]. However, the important criteria of running in
real-time (or near real-time) on a computer small enough to be part of the
payload of an sUAS while also estimating the yaw angle are not fulfilled
in pre-existing research. This chapter presents a method for estimating the
attitude of the camera by comparing the horizon detected in the camera
image with a synthetic horizon. The camera horizon is found using a simple
flood-fill algorithm, while the synthetic horizon is generated from a Digital
Surface Model (DSM). The algorithm uses grid-search to find the camera
attitude, and performs a global yaw angle estimate while running in near
real-time. The algorithm is finally evaluated using an experimental dataset.

• Chapter 4: Estimating the size of ice-floes has been touched upon in pre-
vious research, e.g. [90]. The focus has however mostly been on evaluating
algorithms and analyzing the ice-floe size distributions, rather than an evalu-
ation of how well the size can be estimated in different camera configurations.
In this chapter, data from a mission in the Bothnian bay was used to evaluate
the size estimate of ice-floes from camera images. The ice-floes were floating
towards a marine vessel, and images of them were captured with a visible-
light camera attached to a moored balloon system. The algorithm from the
previous chapter was in part used to estimate the camera attitude in order
to reduce the errors caused by an incorrect camera attitude estimate. Spe-
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1. Introduction

cial focus was on the relation between the accuracy and the camera-to-object
(ice-floe) angle.

• Chapter 5: Detectability of objects in camera images have been studied
extensively, with perhaps the most well known research being done by John
Johnson several decades ago [119]. However, with the scene having a major
effect in detectability of objects in camera images both for humans and in
computer vision algorithms, it is important to further study the detectability
of objects in different scenes to being able to better predict how well some-
thing can be detected. This chapter evaluates the detectability objects at
the sea surface in camera images. A mission was performed where objects
were placed at the sea surface, where the objects were chosen as common
objects present in search-and-rescue missions at the sea. Both a visible-light
and thermal infrared camera was used in order to showcase two common
cameras used in this kind of mission. Simple edge detection algorithms were
used to evaluate the detectability of the objects compared to the background
of the images as opposed to using multi-stage object detection and segmen-
tation algorithms, in an attempt of reducing the algorithm-dependability of
the results.

• Chapter 6: Object classification of high resolution objects in visible light
cameras is a widely explored topic, with machine learning algorithms in many
cases out-performing humans. Classification of objects in low resolution ther-
mal camera images is a less explored area, but has great importance in e.g.
search-and-rescue missions. Some research has been done on this, e.g. [79].
However, the methods used were traditional image processing and computer
vision algorithns rather than the more modern and higher performing deep
neural networks. This chapter aims to evaluate the object classification per-
formance, using the thermal infrared dataset presented in the previous chap-
ter. To segment the objects (the foreground) from the background, a Gaus-
sian Mixture Model was used. For the found objects, a Convolutional Neural
Network (CNN) was trained on part of the dataset, and evaluated on an-
other part. The CNN used multiple layers, e.g. two convolutional and two
max-pooling layers in addition to the fully connected layers.

• Chapter 7: This chapter contains the final remarks regarding the research
contained in the thesis as a whole. It also contains suggestions for future work
considered to be important research topics of the field in the future.

1.3 Publications

This thesis is based on research articles published in peer-reviewed conferences and
journals. Below are listed the publications included in the main body of this thesis;
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publications included as appendices; and publications not included in this thesis
due to their irrelevance to camera systems.

Publications included in the thesis:

• [114] C. Dahlin Rodin and T. A. Johansen. Accuracy of sea ice floe size
observation from an aerial camera at slant angles. In Workshop on Re-
search, Education and Development of Unmanned Aerial Systems (RED-
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• [117] C. Dahlin Rodin, T. A. Johansen, and A. Stahl. Skyline based camera
attitude estimation using a digital surface model. In IEEE 15th International
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images using convolutional neural networks for search and rescue missions
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• [30] F. A. A. Andrade, A. R. Hovenburg, L. N. Lima, C. Dahlin Rodin, T.
A. Johansen, R. Storvold, C. A. B. Correia, and D. B. Haddad. Autonomous
unmanned aerial vehicles in search and rescue missions using real-time coop-
erative model predictive control. Sensors, 2019.
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• [62] A. R. Hovenburg, F. A. de Alcantara Andrade, C. Dahlin Rodin, T. A.
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• [29] F. A. de Alcantara Andrade, C. Dahlin Rodin, A. R. Hovenburg, T. A.
Johansen, and R. Storvold. Path planning of multi-UAS communication relay
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• [64] A. R. Hovenburg, F. A. de Alcantara Andrade, C. Dahlin Rodin, T.
A. Johansen, and R. Storvold. Inclusion of horizontal wind maps in path
planning optimization of UAS. In International Conference on Unmanned
Aircraft Systems (ICUAS), Dallas, 2018.

• [61] A. R. Hovenburg, F. A. A. Andrade, R. Hann, C. Dahlin Rodin, T.
A. Johansen, and R. Storvold. Long range path planning using an aircraft
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Collaborations and contributions:

The work done to perform the research and writing for the articles cited as being
part of this thesis were all conceptualized, drafted, modified, and reviewed by
more than one author. Below are detailed descriptions of the contributions by
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Chapter 2

A Survey of Practical Design
Considerations of Optical Imaging
Stabilization Systems for Small
Unmanned Aerial Systems

Optical imaging systems are one of the most common sensors used for collecting
data with small Unmanned Aerial Systems (sUAS). Plenty of research exist which
present custom made optical imaging systems for specific missions. However, the
research commonly leaves out the explanation of design parameters and consider-
ations taken during the design of the optical imaging system, specially the image
stabilization strategy used, which is a significant issue in sUAS imaging missions.
This chapter surveys useful methodologies for designing a stabilized optical imaging
system by presenting an overview of the important aspects that must be addressed
in the designing phase and which tools and techniques are available and should be
chosen according to the design requirements.

2.1 Introduction

The use of small Unmanned Aerial Systems (sUAS) has increased rapidly during the
last years. While some hobby users operate sUAS without any particular purpose,
research institutes and corporations commonly operate sUAS for the purpose of
collecting information about the environment. Environmental data that can be of
interest includes readings of the Earth’s magnetic field, elevation data acquired by
a LiDAR, and various wavelengths of transmitted and reflected light acquired by
a camera system.
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Optical imaging systems are one of the most common sensors used for collect-
ing data with sUAS, and their images can be used to take snapshots of beautiful
scenery, provide situational awareness to an operator during a mission, and in vari-
ous photogrammetry applications. Several commercial off-the-shelf optical imaging
systems for sUAS exist, in particular, for missions with high requirements on the
visual appeal of the images rather than the accuracy of the world time, position,
and attitude of the camera when the image was acquired. This is often the case for
TV and video production, photographers, and hobby users.

Image meta data such as world time, position, and attitude are, however, of high
importance in many sUAS missions performed by corporations and research in-
stitutes. With the fast development of new sensors and methods to improve the
accuracy and decrease the cost of acquiring this meta data, together with a lack
of off-the-shelf customizable imaging systems to test the latest technology with,
many have created their own payloads. Plenty of research exists which present
custom-made optical imaging systems for specific missions [37] [80] [79] [25] [123].
The research shows proofs of concept, which can be very valuable since the image
acquisition process is highly complex - experimental data from multiple systems
can show how design parameters affect the data quality in general, or it can be
used to replicate the system for a similar mission. However, the research commonly
leaves out the explanation of design parameters and considerations taken during
the design of the optical imaging system, especially the image stabilization strategy
used, which is a significant issue in sUAS imaging missions. On the other side of the
spectrum, there is research explaining intricate details of the design of inertially
stabilized platforms [58] [94].

This chapter aims to contribute with filling this gap in the literature by provid-
ing useful guidelines and methodologies for designing a stabilized optical imaging
system. However, it does not consider more advanced topics for making a finished
product such as structural analysis, or broad, non-specific topics such as software
design. Therefore, the goal of this article is to give an overview of the important
aspects that must be addressed when designing a stabilized optical imaging system
and which tools and techniques are available and should be chosen according to
the design requirements.

This chapter is structured as following. In the beginning of the next section, the
main vibration sources are discussed, and the main techniques used to identify and
evaluate them, as well as their effect on image quality. As there are different ways
to administer the vibration issue, the main techniques are presented in the follow-
ing sections. First, the mechanical installation of dampers is presented, followed
by optical image stabilization and software solutions. Finally, the next sections are
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focused on gimbal design, including the design considerations, followed by the im-
pact of stabilized image systems on the sUAS aerodynamics. Therefore, in the end,
the reader can make the appropriate choice of which techniques to be explored,
according to the project requirements and limitations.

2.2 Vibration Sources and Effects

Vibration is one of the main concerns when designing sUAS camera systems: it
potentially adds blur, decreasing the image quality and the potential to distinguish
detail in the image, and consequently has the potential to compromise the entire
mission. Therefore, it is important that the causes of vibration are understood so
that the proper mitigation actions are taken.

2.2.1 Vibration sources in sUAS platforms

This section goes through the main sources of vibration in the two main popular
designs of sUAS platforms: fixed-wing and rotary-wing small Unmanned Aerial
Systems. Some sources are shared between them, such as rotors/propellers, and
other sources are fairly unique to each platform (e.g. combustion engine of fixed-
wing sUAS).

Fixed-wing platforms

In [85], with the objective to choose the most suitable sUAS for LiDAR mapping,
the authors studied the vibration, capacity, reliability and stability of many sUAS
platforms. With the acquired knowledge about the different platforms, they devel-
oped two sUAS especially optimized for the LiDAR mapping. With respect to the
sources of vibration on fixed-wing sUAS, the authors based their theoretical analy-
sis on a study performed by [91] about positioning errors on LiDAR systems caused
by manned aircrafts platform vibration. In this study, the author enumerates four
main sources of vibration on manned fixed-wing aircrafts: engine; external wind
flow; internal wind flow within open cavities; and (4) airframe structural motions.
Regarding the combustion engine, its noise impinges on the aircraft structures,
causing vibrations mainly on the frequency of the engine’s rotation speed and also
on double frequency, from the reciprocating motion of the piston. The second and
third main sources of vibration are both due to turbulent aerodynamic flow. One
is caused by the flow over external aircraft structures and the other is caused by
the flow and acoustic resonance phenomena within cavities open to the external
airflow. However, according to [140], these vibrations can be considered less sig-
nificant for sUAS due to lower speeds compared to the commercial and military
aircraft. Finally, the fourth main source of vibration pointed by [91] is with regards
to airframe structural motion caused by maneuvers, aerodynamic buffet, landing,
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taxi, etc. Vibration can also be also caused by specific installed items, however,
according to the authors, the effect is only locally on the surroundings of the item.

Rotary-wing platforms

Battery powered rotary-wing sUAS have the rotors as the main source of vibra-
tion [155] [142]. In [142], measurements were performed for three setups: motor
without propeller; plastic propeller; and wooden propeller. For the first setup, where
no propeller was mounted, low force levels for both radial and axial vibrations were
recorded, indicating that propellers are the main sources of vibration. In that case,
the frequency of vibration is related to the rotation speed of the rotors/propellers.
According to [155], the second main source of vibration on rotary-wing sUAS corre-
sponds to the vibration of the sUAS’ structure, mainly the platform and extension
arms. However, the frequencies of structural natural frequency vibrations depend
on the sUAS structure. Reference [142] compared numerical simulations of the
vibrations on a hexacopter structure using finite elements (FE) model with exper-
imental results obtained by the impulse hammer excitation method. The results
were satisfactory, achieving a vibration frequency accuracy between 0.047% and
2.852%. In addition, a third source of vibration was identified by [155], caused by
the vibration of the payload, such as batteries and other weight sources located on
the bottom of the sUAS.

2.2.2 Vibration effect on sUAS image quality

There is not a significant number of studies about the effect of sUAS vibration on
image quality. Reference [83] investigated the effects of sUAS vibration on Binary
Optical Elements (BOE). BOE is a diffraction imaging element and the diffraction
efficiency can be impinged by the vibration of the platform, affecting the image
quality. In other words, the relative position between the object point and the
optical system changes by the movement of the platform, deteriorating the quality
of the image. Therefore, the study simulates the effect of one dimension sinusoidal
vibrations with different amplitudes and frequencies on an image with pixel size
of 9 µm and integration time of 20 ms (Figure 2.1). First, different amplitudes at
a constant frequency of 50 Hz are applied (Figure 2.2). For 5 µm of amplitude,
no significant changes on the quality can be noticed. For 10 µm of amplitude, the
image quality is affected, however, a more significant degradation is noticed on the
edges of the image than on its center. For 20 µm of amplitude, the whole image
gets blurred, and for 40 µm of amplitude, the image quality is heavily affected.

Figure 2.3 shows the result when the same vibration amplitude (15 µm) is applied
to the image, but with different frequencies. There are not significant differences
between Figure 2.3a and Figure 2.3b. The conclusion is that when a vibration pe-
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Figure 2.1: Original image [83].

Figure 2.2: Vibration simulations with different amplitudes [83].

riod is lower than the integration time, increasing the vibration frequency has little
effect on the image quality. Figure 2.3c and Figure 2.3d have the same frequency
and amplitude, but the vibration was applied on different moments. This may be
due to the varying speed of the camera during sinusoidal vibration. This means
that, in case of low-frequency vibrations, the resulting image quality can be differ-
ent for different time periods since the phase between the vibrations and the image
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integration period is likely to shift randomly during a flight.

Figure 2.3: Simulation with different frequencies [83].

Based on the results, [83] proposes two modifications on the optical system to
reduce the effect of vibration on the image quality. As small amplitudes of vibration
cause minor effects, one way to reduce the degradation of image quality is to reduce
the focal length and increase the pixel size. However, this will result in a decrease in
the angular resolution of the optical system. Another way is to use a CCD (charge-
coupled device) with a shorter integration time, so that the vibration period is
lower than the integration time.

Other studies that investigated the effect of sUAS vibration on image quality were
performed by [52] and [53]. In the latter, the study was not focusing on vibration
but also investigating other aspects such as lens calibration, orthorectification and
mapping. Both studies worked with images taken on the same research mission
and by a Point Grey Research “Flea” camera with a Fujinon YV 2.2 × 1.4 A-2
fish-eye lens mounted both on a sUAS and on a manned aircraft (Cessna 172).
In the sUAS setup, the camera was mounted on a small supporting platform that
was isolated from vibrations using a special anti-shock material. In the manned
aircraft, the camera was mounted on a simple mounting bracket. The main problem
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caused by the aircraft vibration was the movement of the lens relative position
to the camera (Figure 2.4). The authors concluded that the non-interference fit
between the camera and the lens housing is responsible for the vibration effect.
Also, the problem of vibration is more noticeable on the sUAS, because of its small
size, making it more susceptible to maneuvers and turbulence. The comparison
between the roll angle noise of the sUAS and the manned aircraft can be seen
in Figure 2.5. The sUAS has variations approximately twice of the variations on
the Cessna 172. In [52], where the focus of the investigation was on vibration
effects and compensation, the vibration was divided into rotation and translational
vibrations. The largest translational movement detected was ±5 pixels measured
from randomly selected images. That is a big issue since vibrations causing only a
one-pixel shift in a fisheye image captured by a sUAS operating at an altitude of
1000 ft above the ground would result in a displacement of approximately 2.5 m,
using a 0.8 megapixel resolution camera.

Figure 2.4: Estimated displacement of the center of the fish-eye image in pixels
(xm,ym) and the estimated radius of the entire fish-eye lens image circle boundary
(r) [53].

The available literature about sUAS vibration and image quality is very limited.
However, there are a few studies about the effect of mechanical platform vibration
on satellite imaging, such as in [54]. In this case, vibrations limit the maximum
resolution and performance of remote sensing and are caused by turbines, motors,
reaction wheels, actuators etc. The study performed by [54] was based on [147],
which analyzed the relation between blur, vibration, exposure time and resolution,
with focus on vehicular or airborne imaging systems and in robotic systems. The
calculations can be used to determine the most appropriate sensor for a given task,
and the number of images of the same scene that are necessary to achieve a required
resolution.
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Figure 2.5: Comparison of roll angles on sUAS and manned aircraft [53].

2.3 Mechanical Vibration Mitigation

Dampers are very popular devices for vibration mitigation. A wide selection of
vibration dampers are available off-the-shelf. The knowledge of how to select the
best damper is however not widespread, and it is common to just try a few and see
which one works best. By using a more systematic design method together with
collected vibration data (or estimated from the vibration sources), it is possible to
remove targeted vibration frequencies more efficiently. Since trial-and-error might
be resource-intensive in both man-hours and components, a systematic approach
is likely to reduce both cost and time of developing a stabilizing system.

Also, to reduce the vibration effects, actions can be taken in the sUAS platform
design phase, when selecting the materials and when designing the structure.

2.3.1 Dampers on the optical imaging system

Dampers can be used for vibration isolation, to lower the natural frequency of the
system to below the excitation frequency, and for vibration damping, where the
aim is to absorb the mechanical energy and convert it to other energy forms, such
as heat. Three types of dampers (Silicone Foam; Kyosho Zeal; and Sorbothane 30
Durometer Sheets) (Figure 2.6) were tested by [155] to mitigate the vibration on a
rotary-wing sUAS. In total, six aspects were taken into consideration when choosing
the dampers: 1. Electrical insulator to avoid short-circuit; 2. Soft and flexible; 3.
Natural frequency outside sUAS structural resonance zone; 4. Low compression set
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and low creep; 5. Good resistance to outdoor conditions; and 6. Easy installation
and adjustment.

Figure 2.6: Silicone Foam (top left); Kyosho Zeal (top right) and Durometer Sheet
(bottom) (Adapted from Amazon.com)

To study the effect of the dampers on the sUAS vibration mitigation, a structural
vibration analysis was done before the installation of the dampers. In the first
step, the sUAS structure was modeled in SolidWorks simulation, considering also
the materials properties. The frequency analysis was carried out and the high
vibration frequencies observed were 39.90 Hz on the x and y axes, and 80.48 Hz on
the z-axis. Similar behavior also existed for 160.17 Hz and 321.82 Hz respectively,
which the author suspects are the 3rd and 4th mode natural frequencies, related to
the payload. Small vibrations were obtained between 100 to 200 Hz and a stronger
one at 273.16 Hz. The last ones are probably related to the structure, such as arm
extensions and components. After the simulation, flight tests were performed and
the vibrations were measured by an additional IMU with a sampling rate above
800 Hz. Results (Figure 2.7) show that the vibration data obtained on the flight
tests was very similar to the simulated one. Peaks (A) related to the payload were
verified on the vibration frequencies of 40, 80, 160 and 320 Hz, a peak (C) related
to the structure was verified on around 270 Hz, and another peak (B) was verified
on around 50 Hz, which is related to the rotation of the rotors. The last one was
not verified in the simulations because the vibration related to the rotation of the
rotors was not included on the simulated model.

The tests of the effectivity of the dampers were performed on a lab vibration table
for a frequency range from 10 to 300 Hz. Different sizes of each of the three dampers
were used in order to change the transmissibility curve. Among the selections,

17



2. A Survey of Practical Design Considerations of Optical Imaging Stabilization
Systems for Small Unmanned Aerial Systems

Figure 2.7: sUAS vibration measured by an IMU before the damper installa-
tion [155].

Kyosho Zeal Sheet had the best performance. Therefore, it was installed on the
sUAS to mitigate the vibrations on the additional IMU. The size of the damper
was chosen so that the natural frequency of the damper (around 50 Hz) was further
apart as possible from the highest disturbing frequencies (around 270 Hz) to be
mitigated. Results of the flight experiment (Figure 2.8) show a significant reduction
on the vibrations. However, as expected from the transmissibility curve of the
damper, vibration caused by the rotors at around 50 Hz was slightly amplified.

2.3.2 Other mechanical solutions

In addition to the use of dampers on the optical imaging system, other actions
can be taken to reduce vibrations on sUAS. In rotary-wing platforms, an accu-
rate balancing of the propeller blades may reduce the propeller-induced vibrations
significantly [96]. Other suggestions are given by [140], focusing on the reduction
of noise produced by sUAS, but, as in many cases the noise is related to the
vibration of parts of the platform, the same actions can be applied to vibration
mitigation. The author categorizes the methods into five groups: conventional noise
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Figure 2.8: sUAS vibration measured by an IMU after the damper installation [155].

control methods by modifying the structure; futuristic methods; reduction of en-
gine noise; operation time adjustment-based approach; and noise reduction targets
of the federal agencies. The first method consists on passive and active techniques.
An example of a passive technique is to use vibration-absorbing materials on the
structure and therefore reduce the vibration on a specific frequency band. Actives
techniques are, e.g., closed loop adaptive feed forward control techniques with elec-
tromechanical systems, such as piezoelectric actuators, to reduce the vibration of
surfaces [33]. The second category is regarding the design and selection of materi-
als that could reduce the vibration, such as “owl wings”. Engine noise mitigation
is the third category and the author points out some methods from the literature,
such as structural modifications; active noise control systems; slightly changes the
phase between the propeller sets; and modifying blades and controlling the rotation
speed. All these techniques are to be considered during the design and manufac-
turing phases and should be taken into account if the purpose of the sUAS being
developed is sensitive to vibrations. The last two categories discussed by the author
are not related to vibration mitigation.

Flow-induced oscillations

During the design of a optical imaging system it may prove beneficial to consider the
effects of flow induced oscillations on the structure. By minimizing the occurrence
of the oscillations, the overall system performance may increase, while the need for
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mitigation through dampening could be reduced. Here the most relevant aspects
with regards to the stabilized imaging system design are discussed. Vortex-induced
vibrations (VIV) is a phenomenon where the generated vortices cause vibrations of
the object. This is caused by the asynchronous periodical release of vortices along
the object. The magnitude and impact of VIV is highly dependent on the flow
conditions and the shape of the body.

Because the optical imaging sensor is mounted on the airframe, it may experience
vibrations that are not necessarily caused by the optical imaging sensor itself, but
by the airframe or components that are installed on the airframe. Besides more
obvious sources of vibrations, the aircraft may suffer from secondary aerodynamic
effects. One prominent example of this is Dutch roll. This is an oscillatory movement
caused by a change in the aircraft’s yaw, which is coupled into a roll movement.
Because a yaw movement forces one wing forward in relation to the other, a differ-
ential in that wing’s lift and drag occurs. This causes the aircraft to wiggle. The
dynamics behind Dutch roll are considered a difficult dynamic mode to analyze
[150]. However, if the performance of the optical imaging sensor suffers from the
effects of Dutch roll, the typical remedies include an increase of the aircraft’s ver-
tical tail, or the installation of a yaw dampener [110]. The occurrence of Dutch
roll can be recognized by an oscillatory motion, where the roll motion lags behind
the yaw motion by approximately π/2.

2.4 Optical Image Stabilization

In imaging missions, an alternative or supplement to mechanical vibration miti-
gation is Optical Image Stabilization (OIS) [151]. This technique consists of using
motion sensors readings to detect vibration and to move the lens or sensor in order
to correct the jitter. Nowadays, many camera systems, especially the ones installed
on the most modern phones come with this capability. Basically, actuators move
the camera system parts according to the detected vibrations, cancelling the effect.
OIS is considered superior to digital image stabilization as it acts before the image
acquisition and therefore there is no image distortion or degradation. Despite its
advantage, not all imaging systems have this feature and the installation of OIS on
the existing imaging systems is very challenging as the intervention happens in the
hardware of the imaging system. OIS can also alter camera parameters, reducing
the accuracy of remote sensing data.

[84] evaluated the performance of an OIS system using fuzzy sliding-mode controller
under the effect of sinusoidal signals of 6 Hz, 8 Hz, 10 Hz and 12 Hz. The camera
acquired images of a standard ISO-12233 chart with OIS ON and OFF. Figure 2.9
shows the comparison between the chart picture taken from a camera with and
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without OIS turned on for vibrations of ±0.15 degrees on the vertical axis.

Figure 2.9: Comparison of OIS OFF and ON on a standard ISO-12233 chart [84].

2.5 Software Image Stabilization

Image stabilization algorithms are also a way to reduce the effect of vibration on
images. This category of image processing is usually referred to as Digital Image
Stabilization (DIS). It is important to make a distinction between DIS and digital
video stabilization. Digital video stabilization consists of removing the effects of
unwanted camera motion from video data; and Digital Image Stabilization (DIS)
consists of correcting the effects of unwanted motions that are taking place during
the integration time of a single image or video frame [137], by estimating the
motion between frames in sequential imaging and then removing unwanted camera
motions.

2.5.1 Digital Image Stabilization

In DIS, motion estimation techniques can be classified into two categories: feature-
based [111] or direct pixels-based [70] (also called “image-based”). The main differ-
ence is that feature-based approaches extract characteristics of the frames such as
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corners, edges, etc, while direct pixels-based approaches use every single pixel on
the calculations. Therefore, techniques using the feature-based approach are usually
faster and more effective but implies non optimal use of the available information.
Also, in images where the degradation caused by vibrations is too accentuated,
the number of detectable features is small and the features may not be sufficiently
reliable, therefore, a direct pixels-based approach would be more suitable because
it uses the intensity of every single pixel of the image. The motion estimation is
usually done by estimating a parameter vector, which is a two-dimensional map-
ping function that overlaps input images over a reference image [137]. The reference
image has to be chosen among a sequence of images and a good candidate to be a
reference image may be the one the least affected by blur. To identify such image,
a sharpness measure can be used.

Figure 2.10 shows an example of a comparison between an image captured with
exposure time of 1.8 seconds where DIS was not applied (Figure 2.10a) and a
resulted DIS image (Figure 2.10b) using 4 frames captured with 0.3 seconds of
exposure time each. It is possible to notice that the image for which the DIS
algorithm was applied is less blurry.

Figure 2.10: (a) non stabilized image taken with exposure time of 1.8 sec; and (b)
stabilized image by fusing four frames with exposure time of 0.3 sec each [137].

2.5.2 Digital Video Stabilization

In digital video stabilization, where the goal is to make the video flow less trembled
due to the movement of the camera, the motion between frames is also estimated
by calculating the rotation and translation between frames. Then, the opposite
motion can be applied to counteract image shake and realign the frames in order
to make the transition between frames smoother [16]. This is a very popular topic
on sUAS imaging because video taken from sUAS frequently suffers from unwanted
motion of the sensors.
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In [136], Scale Invariant Feature transform (SIFT) was used for key point detec-
tion and matching between successive frames taken by a sUAS. Then, an affine
transformation model was used to estimate the global motion parameters between
two successive frames. After that, the undesired motions were compensated and
spatio-temporal filtering was used to remove the noises in the video. Finally, all
frames were transformed to obtain stabilized video frames.

A fast video stabilization for sUAS was proposed by [124]. A polynomial fitting
and predicting method was proposed to estimate the global motion parameters
and to select undesired frames. After that, the undesired frames are compensated
and all frames are transformed to obtain stabilized images. Figure 2.11 shows the
compensation (Figure 2.11d) of an undesired frame (Figure 2.11c).

Figure 2.11: Compensation of an undesired frame for video stabilization [124].

As most of sUAS are equipped with inertial measurement units (IMU), an alterna-
tive to the feature- or pixel-based motion estimation for digital video stabilization
is to use the IMU readings to calculate the camera motion between frames and
use this information to stabilize the camera feed [100]. IMU readings can also be
integrated with conventional motion estimation methods to increase the speed and
accuracy [121]. In this case, the results can be improved significantly as the ac-
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curacy of the motion estimation increases. A timing and navigation solution was
developed by [4], which made it possible to synchronize the camera images with the
sUAS position with high accuracy by using dedicate hardware time synchronization
of GNSS, IMU and camera sensors readings.

2.6 Gimbal Stabilization

sUAS gimbal systems are electromechanical devices that can be used to stabilize
a platform on a given attitude. Therefore, they are suitable to mitigate unwanted
camera rotations caused by the UAS motion and also for pointing the platform
on a desired direction, controlling the sensor’s line of sight (LoS). Such systems
have already been used in many areas before, such as spacecrafts, manned aviation
and cinematography. However, due to the recent availability of small UAS and its
market growth, there is a new demand for small and precise gimbal systems specif-
ically optimized for particular requirements regarding size and precision. Also, this
topic is benefiting from the advances in the miniaturization of key technologies
such as high-performance gyros and drivetrain components, fast embedded micro-
controllers and small cameras. Therefore, small gimbal system design is a topic just
recently being researched, which the main challenges are regarding the limited size
and weight of the device. In order to evaluate the different gimbal designs, [95] has
undertaken a number of trade studies, investigating various gimbal configurations,
sensors, encoders, drivetrain configurations, control system techniques, packaging
etc.

2.6.1 Gimbal Systems Classification

[95] classifies the gimbal systems according to stabilization performance related to
the LoS Jitter (µrad RMS). Low performance gimbal systems are the ones with
more than 250 µrad RMS of LoS Jitter. Medium quality with from 25 to 250 µrad
RMS and high quality with less than 25 µrad RMS. Reference [18] classifies the gim-
bal systems by crossing size and LoS stabilization performance in degrees. Small
gimbal systems weight up to 4.5 kg and can achieve a LoS stabilization perfor-
mance on the order of ±0.5 to ±0.1 degrees. Medium and larger gimbal systems
weight from 4.5 to 9.0 kg and greater than 22.5 kg can and can achieve less than
±0.1 degrees of LoS stabilization performance.

2.6.2 Gimbal Systems Design Considerations

Regarding sUAS gimbal systems design, while [95] did a wide comparison between
different configurations, in order to provide a broad overview of the design con-
cepts, [18] focused his work on studying the topic to define the best approach for
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the development of his specific gimbal system, designed to meet size, weight and
performance requirements previously defined.

According to [95], the first aspect of gimbal system design is to decide the number
of gimbal axes needed for a desired LoS control and field-of-regard (FoR), which
is the area over which the gimbal can point. A minimum of two axes are required
for controlling two degrees of freedom and point the LoS in a two-dimensions
(vertical/tilt/pitch and horizontal/pan/yaw) desired direction. To control a third
degree of freedom, such as the image orientation, a third axis is needed. In small
sUAS, two-axis gimbal systems are most commonly used. In fixed-wing sUAS, it is
common to use gimbal systems with an outer azimuth gimbal axis to control the
pan so that it is able to rotate 360 degrees and therefore have a wider FoR.

Another important design aspect is to correctly align the center of gravity with
the gimbal motors. By doing this, the required torque and power to make precise
angular rotations can be greatly reduced [24].

Thermal considerations must also be addressed because sUAS gimbal systems are
commonly too small to package cooling fans or heat exchangers. Therefore, correct
electronics layout and proper materials selection are the best measures to mitigate
thermal problems.

2.6.3 Stabilization

As the gimbal system will be mounted on a sUAS, which is subject to vibrations
caused by rotors, engine or turbulent aerodynamic flows, the gimbal system vibra-
tion isolation must be addressed. Combustion engine powered sUAS produce large
torque pulses, due to the non-continuous nature of their operation, often in the
range of 50-80 Hz. This can cause significant image blurring and/or excitation of
jitter in the gimbal’s control system, if no specific vibration isolation is provided.
Electric powered sUAS produce higher frequencies, which are easier to mitigate
and have less of effect on the image quality.

Gimbal system stabilization can be active or passive. Passive stabilization is re-
lated to the fact that the platform, sensor, and target LoS move within inertial
space. Therefore, low friction joints and high inner axis inertia can passively con-
tribute to maintaining the desired LoS/attitude [18]. Active stabilization is done
when the drivers will act based on sensor readings to keep the platform’s desired
attitude/LoS. Therefore, to mitigate these vibration effects, [18] designed an active
inertial dampening to take care of frequencies of less than 5 Hz and the gimbal
system mechanical design provides a good passive inertial dampening for frequen-
cies on the order of 5-20 Hz. For higher frequencies, the gimbal mounting system
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is responsible for dampening them out. According to [95], an option to mitigate
severe effects of sUAS vibration could be to decouple the gimbal system from the
sUAS by vibration isolation, isolating its parts from the sUAS structure, however,
this solution may degrade the accuracy of any type of pointing relative to the ve-
hicle, and can induce angular motion inputs. This degradation occurs due to the
necessity of accurate measurements the gimbal position relative to the sUAS in
order to send the correct controls to the drive systems.

Regarding the vibration caused by the gimbal system structure itself, fortunately,
the frequency of the gimbal system structural resonance is typically higher for
smaller gimbals than larger gimbals [95]. Therefore, structural vibration effects are
often much less a design issue in small sUAS gimbal system design but nonethe-
less important to consider. The most common approach to deal with this is to
include structural notch filters, which helps to improve the loop gain margin at the
resonant frequency. Reference [58] does a deeper analysis of the gimbal structural
interactions and suggests to stiffen the structure, as a first attempt to attenuate
LoS motion due to bending and to modify the relevant structural transfer func-
tions. The author also suggests to stiffen the torsional response of the mounting
structure, to add mass to the stationary gimbal structure, and to employ the notch
filters in the pointing servo system to achieve a better interaction of the control
system with the structure.

Drive System

The gimbal drive system can be direct, where the motor controls the axis directly,
or indirect, via cables, gears or belts. Gimbals with brushless DC direct drive have
the highest performance, being able to achieve very low friction and no reflected in-
ertia [95]. However, it is usually heavier, bigger and more expensive than the other
approaches to achieve the same torque, and needs more complex electronics. If an
indirect drive with gears or belts is chosen, the solution is cheaper and smaller,
but has increased backlash, hysteresis, cogging and compliance as result. The cable
drive approach has a performance between the direct drive and gears/belts ap-
proaches but it has higher friction and lower stiffness, and the difficulty to achieve
360 degrees continuous motion for the yaw axis.

[18] designed the gimbal system using brushless DC servomotors with belts, pulleys
and gears for its axes. The first design attempt achieved too high backslash in the
pan axis. Therefore, the final decision was to use the motor without a gearbox
driving a small rubber wheel directly on an interior bearing surface.

As part of a fixed-wing sUAS imaging system design, [127] designed and produced
a new gimbal system aiming to achieve a better stabilization, wire handling, re-
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pairing capability and robustness than the off-the-shelf gimbal systems. As self
stabilizing direct drive gimbals using speedy brushless motors became available in
the market for multi-rotors, the authors decided the use this kind of motor on their
new gimbal system design specially because they allow gimbals to move fast enough
to stabilize the camera from low frequency vibrations. The commercial brushless
gimbal systems are often supplied with a dedicated controller which uses input
from an IMU to be mounted on the camera. However, according to the authors,
angular drift in heading is a potential worry when using a brushless motor for the
yaw rotation, specially because of the bias instability of the IMU. A possible so-
lution to remediate this problem could be to implement an estimator between the
IMU and the controller board, integrated to the sUAS’ heading estimator. Another
advantage with using brushless motors and IMU is no need to index the gears when
disassembling the gimbal. Therefore, as long as the IMU is reinstalled in the same
location and orientation, the gimbal will calibrate itself on start-up.

The minimum torque of a motor used to stabilize a given sensor is the sensor’s
moment of inertia times the desired angular acceleration.

T = Jα, (2.1)

where T is the torque, J is the moment of inertia and α is the angular acceleration.

Therefore, the first steps when choosing the right motor is to calculate the moment
of inertia and to choose the desired angular acceleration.

[18] derives the equations detailed by [76] which includes all torque contributions
and consequences. In the same axis, the contributions are from the torque of friction
and cable restraint and the mass imbalance torque. In case of the inner axis (e.g
elevation), where the gimbal is mounted on the sensor body, the mass imbalance
torque is caused by the asymmetry of the sensor. In the outer axis (e.g azimuth),
where the gimbal is mounted on the inner gimbal mounting that is connected to
the sensor body, the mass imbalance torque is caused by the asymmetry of the
sensor plus the inner gimbal mounting asymmetry.

In [24], where a gimbal system to house two imaging sensors was designed, the
authors also opted to use brushless DC motors to directly drive the gimbal axes
because of their superior small angular rotations compared to servos. Low weight
motors (109 g per motor) capable to carry the payload (around 400 g) were chosen.
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Motion Sensors

Gyros are the main rotational sensors used in gimbal systems. They measure gimbal
angular velocities, and are used as system’s feedback. Gimbal gyros are usually
based on Micro-Electro-Mechanical Systems (MEMS) technology and should have
the lowest noise and bias instability that the design constraints allow.

Resolvers and encoders are the most common gimbal angle transducers [95]. They
are used to detect the orientation and to report the absolute position of the axes.
Resolvers are more robust but incremental encoders are becoming very popular for
gimbal angle measurement because they are smaller, lighter and cheaper and can
achieve comparable resolution and accuracy. Encoders can be optical, capacitive
or magnetic. Reference [18] used a 12 bits of resolution magnetic encoder for each
axis of the gimbal system design.

2.7 Impact of the Stabilized Imaging System on sUAS
Aerodynamics

Implementing a stabilized imaging system that is optimized for airborne vehicles
requires consideration of its effects on the in-flight performance. Studying the effects
early in the design process may enable a reduction in the negative impact on the
in-flight performance. Presented in this section are the system design trade-offs
in relation to the overall aircraft performance. Besides the energy consumption
of the electrical components, the in-flight performance of the aircraft is primarily
affected by the system’s mass, shape and position. In addition to the flow-induced
oscillations, as described in section 2.3.2, these parameters are elaborated to such
an extend that it gives the essentials in design considerations in the context to
aircraft performance.

2.7.1 Impact of weight

Aerial vehicles stay afloat in the air by generating a force that is equal and opposite
to earth’s gravitation force. In the case of conventional fixed-wing and rotary-wing
aircraft creating such a force requires the consumption of energy. To generate such a
thrust force the rotary-wing aircraft utilize one or more powered propellers which
are positioned so that it directly counteracts the gravitation force. Fixed-wing
aircraft utilize one or more propellers to generate a forward motion, which results
in the main wings to generate a lift force that opposes the gravitational force. As
the total mass of the aircraft increases, so does the required lift force. This results
in an increase in energy consumption.

In an attempt to demonstrate the importance of weight reduction, the effects of
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weight on the energy consumption of the aircraft are quantified. For both fixed-
wing and rotary-wing sUAS, the maximum range by approximation is reduced
proportional to the increase in weight. For sUAS with constant mission variables,
the maximum endurance is reduced by a factor of approximately W 3/2, where W
is the weight, for both fixed-wing [110] [63] and rotary-wing [82]. Therefore, an
increase of 5% on weight, for example, means a reduction of approximately 7% of
endurance.

2.7.2 Impact of shape and size

Moving objects placed inside a viscous medium, such as air, are bound to create
external forces. Overcoming the effects of such forces typically increases the in-flight
power requirements. A stabilized imaging system that is placed inside moving air
will contribute to the total drag force and will thus typically reduce the overall
in-flight efficiency. It is therefore warranted to optimize the design of the system
to reduce the impact through aerodynamic considerations.

Impact of shape and size on fixed-wing aircraft

Figure 2.12: Aerodynamic forces acting on an airplane - Thrust, Lift and Drag.

Aerodynamic drag, also known as air resistance, is the force parallel to the air-
speed [49] (Figure 2.12). With an increase in drag, the aircraft needs to compensate
the energy losses by producing more thrust in order not to lose speed or altitude.
Considering that a typical stabilized imaging system is not intended to generate
a lift force, it may be assumed that the in-flight performance benefits from mini-
mizing the total aerodynamic drag generated by system. To be able to reduce the
aerodynamic drag it is important to understand how it is built up and how it is
affected. The total drag force D generated by an object can be determined through:
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D = CD
1

2
ρv2aA, (2.2)

where

CD = CDP + CDI , (2.3)

where ρ is the air density in kilogram per cubic meter, va is the speed of the
moving air before being affected by the object in meters per second, A is the cross-
sectional area of the object in square meters, and finally CD is a dimensionless
drag coefficient that relates the object’s shape, inclination and flow conditions to
the resulting drag force.

The takeaways from Eq. (2.2) in the context of stabilized imaging systems design
are that the drag generally can be reduced by minimizing the size of the object,
and that the drag increases exponentially with airspeed. Thus, fast flying aircraft
suffer much more from poor design choices than slow flying aircraft. Finally, the
drag coefficient CD ought to be minimized. This can be done by optimizing the
shape or placement of the object in such a way that it causes the least interference
with the moving air. It should be noted that the complete theoretical basis of
aerodynamic flow optimization falls beyond the scope of the study presented here,
and is therefore limited to the most relevant aspects. Assuming that the casing of
the camera system is not designed to generate lift, the lift-induced drag (CDI) is
negligible. The remaining parasitic drag (CDP ) can be categorized into:

1. Form drag: The form drag is influenced by the shape of the object (Fig-
ure 2.13). Although the droplet shape offers the most favourable aerodynamic
characteristics, when pointed straight into the direction of the moving air, it
also offers challenges related to possible viewing angles of the camera system.
Therefore, the aerodynamic considerations may be considered a performance
parameter within the overall geometrical optimization of the camera system.

2. Skin friction drag: As air moves over the surface of the body, close to the
surface the flow will lose energy due to viscous effects. This type of drag is
called skin friction drag. A turbulent boundary layer that is induced by a
rougher surface may stay attached longer than a laminar boundary layer,
thus reducing the form drag. This generally holds true for smaller object in
relatively low air speeds [110]. Therefore, for smaller objects the negative
effects of higher skin friction drag, which is caused by a rougher surface,
may potentially be offset by a lower overall profile drag. Finally, it should be
noted that such potential benefits are highly dependent on the specific design
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Figure 2.13: Flow visualization over different shapes (Modified from MikeRun /
CC-BY-SA-3.0).

and flow conditions, and therefore require an in-depth aerodynamic analysis.
Projects where such analyses is not within reach, may benefit from focusing
on the form drag and interference drag instead.

3. Interference drag: In the context of aerodynamics, the interference drag can
be explained as the airflow over one object disturbing the airflow over another
object unfavourably. The actual effects of interference drag depend to large
extend on the airspeed. Therefore in the context of aircraft performance it
cannot be said that a closed and shielded system is necessarily superior to a
system with exposed components as it may also be heavier. It is dependent
on mission-specific parameters. The following section suggests methods to
study the effects of on-board camera designs, including the interference drag
characteristics.

To quantify the actual impact of a camera design on the aircraft performance, there
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are three methods that ought to be considered. The first is through wind tunnel
testing. Inside a wind tunnel the effects of moving air over an object are recreated,
and the generated forces and moments are captured. The camera can be placed in-
side the wind tunnel without the airframe. However, in that case the aerodynamic
interactions between the aircraft body and stabilized imaging system are not in-
cluded. If executed and post-processed correctly, a wind tunnel test can give an
accurate indication of the impact of the camera system on the flight performance.
Also the airflow around the bodies can be visualized, which provides information
for further optimizing the airflow. However, modelling through wind tunnel ex-
periments are complex and require dedicated equipment. This causes wind tunnel
experiments to be relatively expensive and time consuming. The iterative design
process is commonly also slow when compared to its alternatives.

Nowadays, designers have embraced Computational Fluid Dynamics (CFD). This
is a computer-based method that can approximate the behaviour of fluids, such
as air, over an object. It may prove useful for design optimization as it allows for
quicker iterative development. In popular terms it is sometimes called a virtual wind
tunnel. It is to be noted that setting up such a simulation environment requires
in-depth knowledge on the theory of fluid dynamics. Also, when results with a
high accuracy are required, then a verification of the model is necessary. This
is commonly done inside a wind tunnel. This is especially true for low velocities
and/or smaller objects, such as camera systems, as the modelling of drag then
becomes increasingly problematic.

The final method discussed here is through actual flight tests where the perfor-
mance is compared with and without the camera system installed. Measuring the
consumed energy in cruise flight may serve as an indicative measurement for the
impact on the in-flight performance of the aircraft. Such in-flight comparisons are
only valid when all mission parameters, including airspeed, altitude, atmospheric
conditions and battery charge, are the same in each benchmark flights. Since this
may be hard to accomplish and verify, it is important to note that the obtained
results are non-conclusive, and can only serve as an approximation. The advantage
of this method is that it is accessible and does not require in-depth knowledge of
fluid dynamics. This may serve as a suitable method when an approximation is
sufficient.

Impact of shape and size on rotary-wing aircraft

For rotary aircraft operating in stationary flight there is no forward motion of the
vehicle. As the air in front of the rotor is accelerated by the rotors itself, the before
mentioned aerodynamic effects require additional design considerations. By locat-
ing the camera system outside of the propeller slipstream (vs), the impact of the
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aerodynamic effects are limited (Figure 2.14). When the aerodynamic effects as a
result become small, such a system may not require further aerodynamic optimiza-
tion. Note, however, that when operating in atmospheric winds the aerodynamic
effects remain. For rotary-wing aircraft, a center position ought to be considered.
For conventional rotary aircraft, which typically utilize one main rotor, the camera
mounting points are commonly found under the main body. As the aircraft’s main
body shields the camera system to a large extend from the propeller slipstream, the
need for aerodynamic optimization decreases. However, due to other design con-
siderations, such as clearance to the ground, these mounting locations may not be
feasible. For conventional rotary-wing aircraft the camera systems are often found
to be mechanically suspended in front or along the side of the aircraft body. In such
cases the aircraft performance benefits from a minimized wetted area, which is the
area exposed to the airflow, in order to reduce the interference drag and propeller
blockage.

Figure 2.14: Visualization of the propeller induced slipstream vs in relation to the
camera location.

2.7.3 Impact of Position

For fixed-wing and rotary-wing aircraft to be controllable in flight, it relies on the
ability of the aircraft to compensate the generated forces which are experienced.
Each individual component installed on an aircraft has a mass. When these compo-
nents are exposed to the moving air it will create a drag force, while lifting bodies
may also generate a lift force. First, for the aircraft to maintain altitude in the air,
the aircraft needs to be able to generate enough lift force (or thrust) to compensate
the aircraft’s total weight. In other words, for level flight the sum of the vertical
forces equals zero. In addition, all these individual forces, such as lift and drag will
generate a moment around the aircraft’s center of gravity (C.G.).
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2.8 Results and Discussion

Vibration is one of the main concerns when designing sUAS optical imaging sys-
tems. In fixed-wing platforms equipped with a combustion engine, the engine is the
main source of vibration, followed by the turbulent aerodynamic flow. Rotary-wing
platforms have the rotors as the main source of vibration. To mitigate the effects of
vibration, mechanical solutions such as dampers can be used. Also, it is possible to
use optical stabilization by installing motion sensors to measure the jitter and use
actuators to move the lens in order to correct it. Software solutions are also avail-
able, such as digital image stabilization or digital video stabilization algorithms.
Gimbal stabilization platforms can be used for stabilization and also for pointing.
The most important components in these platforms are the drive systems and the
motion sensors. The installation of a stabilization platform may affect the sUAS
aerodynamics and the impact of weight, shape, size and position must be taken
into consideration in the design phase.

2.9 Conclusions

In this work we presented a wide survey of the literature about optical imaging
stabilization systems and techniques applied to Unmanned Aerial Systems (UAS).
This includes discussions about the sources of vibration, how to mitigate its ef-
fect using mechanical and software solutions, as well as the effects of stabilization
platforms on the UAS aerodynamics.
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Chapter 3

Skyline Based Camera Attitude
Estimation Using a Digital Surface
Model

In several motion control applications, e.g. in precise pointing devices and naviga-
tion systems, an accurate estimate of the attitude of a device in the world coordinate
system is required. Readily available sensors used to estimate the attitude suffer
from drift, magnetic disturbances, or a lack of information about the direction of
the geodetic north. In this chapter, an algorithm which estimates the attitude of
a camera using camera images and a Digital Surface Model (DSM) referenced by
GPS is proposed. The algorithm uses shape features of a skyline extracted from
a camera image and synthetic skylines rendered from a DSM in order to estimate
the roll and pitch angles, while the yaw angle is estimated using grid search. The
algorithm was evaluated using roughly 600 camera images captured with varying
pitch and yaw angles. The standard deviations from the ground truth, provided
by a high precision pointing device, are 0.037◦, 0.015◦, and 0.018◦ for roll, pitch,
and yaw respectively. The results indicate a higher precision than current camera
attitude estimation algorithms using a DSM, while also providing a robust yaw
estimate.

3.1 Introduction

In a number of motion control applications, it is necessary to have an accurate esti-
mate of the attitude and position of a device in the world coordinate system in order
to navigate or rotate relative to a point with known world coordinates. A common
solution to the problem of estimating the attitude is to use an Inertial Measure-
ment Unit (IMU). The IMU commonly contains accelerometers, gyroscopes, and
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magnetometers. The accelerometers are used to estimate the roll and pitch angles
and the magnetometers are used to estimate the yaw angle. The roll and pitch an-
gles can often be estimated with a sufficient accuracy, but additional sensors may
be needed to capture the effects of highly dynamic motions. Moreover, the lack
of accuracy in the magnetometer measurements makes the yaw angle difficult to
estimate with the required accuracy [44]. In systems with significant magnetic field
noise, e.g. when electric motors or large iron parts are near the magnetometers,
the error can be very large – 10 or more degrees are not uncommon.

Cameras, being highly accurate and readily available sensors, are often used to
measure the spatial dimensions of objects when its position and attitude in the
world coordinate system are known. This can also be reversed – if the world po-
sition of some points present in the camera image are known, the camera position
and attitude can be calculated. Using a camera for the purpose of estimating the
attitude has its drawbacks. Most prominent is the requirement that the objects
with known position must be visible in the camera image. This might not be the
case during certain weather conditions such as fog, or when they are occluded by
other objects. The methods are nonetheless suitable for e.g. calibration of other
sensors due to its high accuracy, or continuous estimation when the visibility can
be assumed to be good.

Using a camera for estimating the attitude can be performed with several methods,
e.g. in order to estimate the attitude of spacecraft from the known position of
stars [44], or using information about the local terrain represented by a Digital
Surface Model (DSM) in order to estimate the attitude. A DSM is an elevation
map which specifically includes all objects on the surface, such as vegetation and
buildings. A skyline – the line that separates the sky from the terrain and objects –
is often available in outdoor scenarios, and can be segmented relatively easy due to
the difference in color, illumination, and texture between the ground and the sky.
The skyline can also be rendered from a DSM, providing info about its position in
the world coordinate system.

Gupta and Brennan [51] uses grid search to match a synthetic skyline generated
from a DSM with a camera image skyline in order to refine the attitude estimated
using IMU data. Using grid search for three parameters, even with a fast algorithm
such as the proposed Random SAmple Grid Search (RSAGS), restricts the usage
of the algorithm to refining an initial attitude estimate due to the number of
calculations required to search the parameter space. The accuracy is also not on
pair with recent similar algorithms with σϕ (roll standard deviation) of 0.25◦, σθ
(pitch standard deviation) of 0.13◦, and σψ (yaw standard deviation) of 0.40◦.

Dumble & Gibbens [34] presents an algorithm to estimate both the attitude and
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position of a camera in the world coordinate system. The method matches a cam-
era image skyline with precalculated synthetic skylines generated from a DSM. The
algorithm performs well with a σϕ of 0.025◦, σθ of 0.066◦, and σψ of 0.024◦. How-
ever, the paper only contains synthetic images to evaluate the performance, so it is
difficult to say how it performs with real world data. Noise from terrain features,
camera imperfections, and rendering of the skyline profiles might introduce addi-
tional errors. Additionally, the DSM needs to be preprocessed for the algorithm,
which takes up additional storage space.

Grelsson et al. [47] estimates the roll and pitch angle of an aircraft using a fisheye
camera and a DSM. The algorithm extracts the skyline from a camera image and
matches it with a synthetic skyline generated from a DSM by minimizing the error
between the synethetic skyline and edge pixels of a region in the camera image. The
algorithm shows good accuracy through experimental data, with a σϕ of 0.035◦ and
σθ of 0.044◦. The method does however not estimate yaw, and assumes that the
yaw angle is known. The authors showed that a small error in yaw does not affect
the roll and pitch estimates considerably, and mentions that it is straightforward
to modify the algorithm to estimate the yaw angle as well. However, there is no
experimental data to verify how accurately the algorithm can estimate the yaw
angle, or mentions of how it affects the execution time.

The mentioned methods are able to estimate the roll and pitch angles of the camera,
and some can also refine or do a full estimate of the yaw angle. However, none of
the methods have proven to estimate the yaw angle using experimental data when
the initial yaw angle estimate is highly uncertain. In this chapter we present an
algorithm to estimate the roll, pitch, and yaw angles of a camera using a DSM.
The algorithm uses shape features of a skyline extracted from a camera image and
a synthetic skyline rendered from a DSM, together with geometrical properties of
the camera system in order to estimate the roll and pitch angles. The fast execution
time of the roll and pitch estimation allows for the use of grid search for robust
estimation of the yaw angle. The algorithm is evaluated in an experiment where
about 600 images were taken using a camera with a 16 megapixel sensor. The
camera was mounted on a PTU (Pan-Tilt Unit) which was rotated in pitch and
yaw, but had a fixed roll angle and position. A DSM from the Norwegian Mapping
Authority (Kartverket) with a grid resolution of 10 meters was used to render the
synthetic skyline.

This chapter is structured as follows: Section 3.2 describes the attitude estimation
algorithm. This includes the generation of the synthetic skyline from the DSM
data, the extraction of the skyline from the camera image, and finally the atti-
tude estimation. Then the experimental setup is described, including the hardware
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and the particular DSM used in the experiment. Finally the results are presented
followed by conclusions, discussion, and future work.

3.2 Attitude Estimation Algorithm

This section contains details of the different parts of the attitude estimation algo-
rithm. The different parts are visualized in the diagram shown in Figure 3.1.

Figure 3.1: Overview of the attitude estimation algorithm. ϕ̂, θ̂, and ψ̂ is the roll,
pitch, and yaw estimate respectively. ϕ̂0 and θ̂0 are the initial guesses for roll and
pitch respectively, which may come from an IMU or the user.

3.2.1 Finding skyline elements in the DSM

The first step of the algorithm is to find which elements in the DSM represent the
skyline for the current camera position.

The current position of the camera is generally given as geographic coordinates
(latitude, longitude, and altitude). In order to find the position of the camera in
the DSM, the geographic coordinates can be converted to the coordinate system
of the DSM (see e.g. Karney [73]). See figure 3.2 for an example of a DSM field.
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Figure 3.2: A sample DSM field. The view is at an angle to show the elevation
difference, which is also indicated by the color change.

Several elevation profiles between the camera position in the DSM and the edges
of the DSM are then generated. We experimentally determine the used number of
elevation profiles, nlines, as the best compromise between computation time and
skyline accuracy.

In order to find which DSM elements should be included in the elevation profiles,
Bresenham’s line drawing algorithm [20] is used. The algorithm is used to find the
elements between two points in a grid. In this application, Bresenham’s algorithm
is modified to stop at the end of the DSM grid rather than a predetermined point,
and to step in the direction cos(αi), sin(αi) (north, east) where αi is the angle
between the north direction and the current considered direction with index i. The
algorithm is visualized in Figure 3.3.

For Bresenham’s algorithm to be applicable for a DSM grid, the Transverse Mer-
cator projection of the DSM is approximated with a orthogonal projection. This
means that Transverse Mercator features such as the scale factor are disregarded
and the size of each element in the DSM grid is regarded as the same. The error
caused by this approximation may be reduced by selecting a map projection with
narrow zone widths. A common projection is UTM (Universal Transverse Merca-
tor) which uses a zone width of 6◦ resulting in an error of 400 parts per million
(ppm) at the central meridian of the zone [39], and no error 180 km west and east
of the central meridian. More narrow projections include the NTM (Norwegian
Transverse Mercator) which uses a zone width of 1◦ resulting in an error factor of
11 ppm at the central meridian of the zone [131]. An algorithm for precisely calcu-
lating the scale factor for each element in an Transverse Mercator grid is provided
by [72].

Each elevation profile is created for the grid elements selected by each line in
Bresenham’s algorithm. The elevation in the elevation profile is referred to as the
relative elevation, erelative, and takes into account the curvature of the earth. The
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Figure 3.3: Bresenham’s line drawing algorithm as used in the generation of a
synthetic skyline. The line selects the shaded elements, which in turn are used to
generate an elevation profile.

relative altitude for an element in the DSM grid can be calculated according to
equation (3.1):

erelative = eelement −
rearth + ecamera

cos γ
+ rearth (3.1)

where eelement and ecamera are the elevations of the element in the DSM and the
elevation of the camera respectively, rearth is the radius of the earth at the latitude
of the camera, and γ is the angle between the ground point of the camera and the
ground point of the element. See Figure 3.4 for a visualization of the geometry used
in equation (3.1).

Finally, the elements representing the highest relative elevations in the elevation
profiles are selected as skyline elements for each direction αi.

Finding the skyline elements in the DSM takes several seconds with current hard-
ware. The calculation is therefore performed in the background in order to update
the skyline elements as often as possible. Which DSM elements are found to be sky-
line elements change slowly with the camera position unless the skyline elements
are close to the camera. Exactly how this affects the results of the algorithm is
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Figure 3.4: The geometry of equation (3.1), where the elevation of an element in
the DSM relative to the camera is calculated.

therefore highly dependent on the terrain.

3.2.2 Finding the skyline in the camera image

A simple method is used for finding the skyline in the camera image since the focus
of this chapter is the attitude estimation algorithm.

The image is first converted to gray-scale and filtered with a Gaussian filter in order
to remove noise. For each pixel column in the image going from top to the bottom,
the first change in intensity larger than a threshold is considered to be the skyline
pixel in that column. The threshold is manually adjusted in order to produce the
best segmentation. After each skyline pixel has been found in the image, outliers
are removed and replaced using linear interpolation.

The assumptions made for this method to work is that the skyline must go from
side to side in the image, the contrast between the sky and the ground must be
larger than the noise intensity after filtering, and the intensity difference between
the disrupting objects such as haze, clouds, and the sun.

3.2.3 Generating the synthetic skyline

The pinhole camera model is used to project the DSM skyline elements from the
world coordinates, pworld, to the image plane coordinates, pimage. The projection
from world coordinates to image plane is given by equation 3.2 [108].
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where pworld = [xworld yworld zworld]T are the coordinates for the local tangent plane
with xworld (east), zworld (north) centered at the camera location, and yworld (down)
is zero at the sea level. pimage = [ximage yimage]

T , K is the intrinsic camera matrix,
cRw the rotation matrix, and ctw the translation vector from world coordinates to
camera coordinates. The intrinsic camera matrix K is given by

K =

φx s δx
0 φy δy
0 0 1

 (3.3)

where φx and φy is the focal length in pixels in the x and y direction respectively, s
is the skew, and δx and δy is the central point in the image in pixels. The intrinsic
camera matrix can be obtained either from the specification of the camera and
lens, or from a camera calibration algorithm.

The rotation matrix cRw and translation vector ctw transform world coordinates
into the camera coordinate system. The transformation of the camera in relation
to the world coordinate system can then be found by the following equations [56]:

cRw = (wRc)
T (3.4)

ctw = −cRw · wtc (3.5)

wtc represents the camera position in the DSM and the altitude of the camera.
Following the convention of the pinhole camera model, the x axis points towards
the right side of the camera, the y axis towards the bottom, and the z axis towards
the front. I.e. the orientation of the camera coordinate systems agree when the
camera is positioned flat on the ground at the sea level pointing north. wtc is given
by

wtc =

wxc
wyc
wzc

 (3.6)
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where wzc and wxc are north and east respectively, as obtained by the algorithm
provided by Karney [73], and wyc is down, which is the same as the negative altitude
of the camera.

wRc is obtained by multiplying the rotation matrices for roll, pitch, and yaw. In
accordance with the formalism of the axes previously explained, wRc is given by
equation (3.7):

wRc = Ry(ψ)Rx(θ)Rz(ϕ) (3.7)

where ϕ, θ, and ψ are the roll, pitch, and yaw angles of the camera respectively.

When the DSM skyline elements have been converted to image coordinates, the
points that are outside the image are removed.

3.2.4 Estimating the attitude

When the camera image skyline has been obtained, it is possible to estimate the
camera attitude by iteratively generating synthetic skylines and minimizing the
distance-measure between the camera image skyline and synthetic skyline. This
section describes how this is performed.

For a given roll estimate ϕ̂, pitch estimate θ̂, and yaw estimate ψ̂, a synthetic
skyline is generated according to section 3.2.3. The distance-measure between the
synthetic skyline and the camera image skyline, eskyline, is calculated as the mean
of the Euclidean distance between the pixels in the synthetic skyline and the cor-
responding pixels in the camera skyline.

The yaw estimate is found using grid search. The yaw grid resolution and range
can be varied during run-time, e.g. so the first estimate is global (0◦ to 360◦) and
subsequent estimates are local in order to decrease running time of the algorithm.
For each yaw angle in the grid, the roll and pitch are estimated as described below,
and eskyline is calculated. The yaw angle with the lowest eskyline in the grid is chosen
as the yaw estimate. In order for this to work, the variations in the terrain need to
be larger than the errors produced by the camera and by the approximations done
in the algorithm. Hence the method needs unique features and is not expected to
work with a flat skyline, e.g. in open waters. Note that the roll and pitch angles
can still be estimated with a flat skyline.

The angle that covers one pixel in a camera system given in radians per pixel, αpx,
can be calculated by
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αpx = 2 tan−1
(
dpx

2f

)
(3.8)

where dpx is the physical dimension of the pixel in mm, and f is the focal length in
mm. The angle that covers one pixel describes the angle that a pixel represents in
the world, i.e. if the camera turns a radians, an object movement in the image can
be approximated with a · αpx pixels. Note that this approximation assumes that
the sensor is spherical, introducing a small deviation when using a real sensor that
is flat. The approximation error decreases as a decreases.

The vertical angle between the mean of the camera image skyline and the synthetic
skyline, θ̂error, is thus given by:

θ̂error = αpx · (µsynthetic − µcamera) (3.9)

where µsynthetic is the vertical mean of the pixels in the synthetic skyline, and
µcamera is the mean of the pixels in the camera image skyline. See figure 3.5 for an
illustration. Using this, the pitch can be estimated by:

θ̂i = θ̂i−1 − αpx · µskylines error (3.10)

where µskylines error is the mean of eskyline and θ̂i−1 is the previous pitch estimate.
The initial pitch estimate, θ̂0, can be provided by e.g. an IMU estimate of the pitch
or the user.

In order to estimate the roll error, the angle between the synthetic skyline and
camera image skyline is calculated as the difference between the median angle
between the both skylines and their vertical means, µcamera and µsynthetic. See
figure 3.5 for a visual description. The median is used rather than the mean in
order to decrease the influence of outliers. The roll estimate can thus be calculated
by

ϕ̂i = ϕ̂i−1 − (α̃synthetic − α̃camera) (3.11)

where α̃synthetic is the median of the angle between all the points in the synthetic
skyline and its vertical mean, α̃camera is the median of the angle between the cor-
responding points on the camera skyline and its vertical mean, and ϕ̂i−1 is the
previous roll estimate. The initial roll estimate, ϕ̂0, can be provided by e.g. an
IMU estimate of the roll or the user.
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Figure 3.5: The geometry of the shape features used in the estimation algorithm.
The upper figure shows the camera image skyline (solid) and synthetic skyline
(dotted) and their respective vertical means µcamera and µsynthetic (dashed). The
lower figure shows two angles αj between two arbitrary points on the skyline mean
µ (dashed) and the skyline (solid sinusoidal curve).

As the roll and pitch estimates will not produce an exact solution, but rather
converge towards the true attitude, several iterations might be preferred in order
to obtain better final estimates.

3.3 Experiment Setup

An experiment was performed in order to evaluate the algorithm. This section
describes the hardware and data used, as well as considerations regarding the
hardware and data.

3.3.1 Camera and PTU

The camera system used in the experiment is a Panasonic Lumix DMC-GF6 cam-
era with a Panasonic Lumix G Vario 45-150 mm f/4.0-5.6 lens. More detailed
specifications of the camera system are shown in Table 3.1.

The camera was mounted on a FLIR D48E Pan-Tilt Unit (PTU). The PTU has a
resolution of 0.003◦ in pitch and 0.006◦ in yaw [41]. The geographic coordinates of
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Table 3.1: Specification of the camera system

Camera Panasonic Lumix DMC-GF6

Resolution 4608 x 3464 px

Pixel size 3.45 µm

Lens Panasonic Lumix G Vario 45-150 mm f/4.0-5.6

Focal Length used 45 mm

the camera were obtained by a GPS unit. A photo of the camera system mounted
on the PTU is shown in Figure 3.6.

Figure 3.6: The camera system as mounted on the PTU in the experiment.

The camera is triggered wirelessly, and the whole process is automated. The PTU
is set to rotate a certain angle in pitch and yaw, and then wait for the camera to
capture a photo. The rotation of the camera for each photo taken in the experiment
is shown in Figure 3.7.
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Figure 3.7: The pitch and yaw rotation of the PTU for each photo taken by the
camera.

3.3.2 Digital Surface Model

The DSM used in the experiment was obtained from the national DOM10 data-
set provided by the Norwegian Mapping Authority (Statens Kartverk) [132]. The
relevant meta-data for the DSM are summarized in Table 3.2 [133].

Table 3.2: Metadata for the DOM10 (2017-03-27) dataset from the Norwegian
Mapping Authority

Reference Frame ETRS89

Spheroid GRS 1980

Projection UTM

UTM Zone 33N

Central Meridian 15◦

Scale Factor 0.9996

False Easting 500,000 m

False Northing 0 m

Equatorial Radius 6,378,137 m

Inverse Flattening 298.257222101

Grid resolution 10 m
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3.3.3 Calibration

In the experimental setup, the camera to PTU rotation pRc is known, and the
camera to world rotation wRc will be estimated. In order to evaluate the results,
the PTU to world rotation wRp has to be estimated. The wRc can then be obtained
by

wRc =w Rp
pRc (3.12)

The camera system also need to be calibrated in order to eliminate deviations of the
true camera parameters from the camera specification presented in the data-sheet.
The unknown calibration parameters are those in the K matrix in equation (3.3).

A possibility is to estimate K and wRp by modifying the attitude estimation al-
gorithm to make wRc fixed and the camera parameters the ones to be estimated.
This approach is used by Grelsson et al, where the ground truth is available for
some images in the experiment [47]. A similar but less precise method is to chose
an image in the experiment, extract its skyline according to section 3.2.2, set the
initial camera parameters according to the data-sheet and pRc to the rotation
used when the image was taken and then generate a synthetic skyline according
to section 3.2.3. The parameters in K and wRp are manually adjusted in order to
obtain the smallest error between the synthetic skyline and camera skyline. This
calibration could be automated with e.g. grid search, but the number of parameters
requiring adjustment would result in a long running time.

3.4 Results and Discussion

The data from the experiment consist of 600 photos. Six photos failed to be cap-
tured by the camera due to failures in the automated image capturing system.
A sample blurred, gray-scale camera image is shown together with its full color
version with the detected skyline marked in Figure 3.8.

The parameters obtained by the calibration process are summarized in Table 3.3.

The generated synthetic skyline when using the calibration parameters and the
camera skyline for the first photo is shown in Figure 3.9.

For the first image the initial roll and pitch estimates, ϕ̂0 and θ̂0, are set to zero.
The grid for the yaw estimate is first set to 0◦ to 360◦ (global search) with an
arbitrary resolution of 1◦, then to ψ̂ ± 3◦ with a resolution of 0.1◦, and finally to
ψ̂±0.2◦ with a resolution of 0.005◦, where ψ̂ is the yaw estimate from the previous
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Figure 3.8: A sample camera image from the experiment. The top image shows
the camera image converted to gray scale and with a Gaussian filter applied. The
bottom image shows the camera image in its original color, with the camera skyline
marked in red.

Table 3.3: Parameters from the camera intrinsic and extrinsic calibration

φx 43.7 mm / 3.75 µm/px

φy 43.9 mm / 3.75 µm/px

s 0

δx 2304 px

δy 1732 px
wϕp 0.23◦

wθp -0.27◦

wψp -41.18◦

grid. Using different grid sizes allows for a more accurate estimation at a shorter
calculation time. The optimal grid size depends on the surrounding terrain, with a
more varying terrain allowing the algorithm to converge for smaller grids.

Subsequent images use the roll and pitch estimate from the previous image as the
initial estimates, and the two latter grid sizes and resolutions for the yaw estimate.
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Figure 3.9: An example of a synthetic skyline (red dots) along with a skyline
obtained from a camera image.

Only one iteration of the roll and pitch estimation was performed for each element
in the yaw grid. A higher number might be required if the initial roll estimate has
a difference from the true roll than in the experiment.

The parameters wϕp, wθp, and wψp from Table 3.3 are used to convert the ground
truth pRc, shown in Figure 3.7, to the ground truth wRc according to equa-
tion (3.12). This ground truth is used to calculate the error of the estimated roll,
pitch, and yaw angles for each image.

The resulting error of the algorithm is shown in Figure 3.10, and the standard
deviations of the roll, pitch, and yaw angle errors are shown in Table 3.4. Only
random errors – i.e. the standard deviations and not the mean errors – are reported
in Table 3.4 as the mean errors depend on the accuracy of the calibrated wRp.

Table 3.4: Standard deviations of the roll, pitch, and yaw angle estimates

σϕ 0.037◦

σθ 0.015◦

σψ 0.018◦
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Figure 3.10: The errors of the estimated roll, pitch, and yaw angles for each photo.
The different colors group together samples with the same roll and pitch steps.

The standard deviations of the errors are all low, which shows that the algorithm
is able to estimate the roll, pitch, and yaw angles with a high precision. Figure 3.10
shows that the random errors are kept low, but there is a clear systematic error
present. The two possible sources are the calibration procedure (section 3.3.3) and
the approximation of the UTM projection as a flat grid (section 3.2.1). As can
be seen, the largest error appear when the camera is moved in pitch, i.e. the error
changes faster between photo 101 to 202 (where only the pitch of the PTU is varied)
than between photo 202 to 303 (only the yaw is varied). During pitch movement, the
skyline is only moved in the image; the DSM elements represented in the synthetic
skyline changes very little. This suggests that the camera calibration, possibly the
lens distortion, is a main cause of the systematic errors.

The results presented use a nlines of 2000 to find the skyline elements in the DSM.
Using a higher nlines than 2000 did not result in lower standard deviations for
the performed experiment, but might differ for other types of terrain and different
camera system parameters.

The average running time of the algorithm, excluding the detection of the skyline
in the camera images was 63 ms per image. The algorithm was implemented in
Matlab, and run on a Intel Xeon E3-1535M. This indicates that it can run in real-
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time if a more optimized implemention in a lower level programming language were
to be used, even on an small computer such as the Nvidia Jetson.

The experimental data has shown that precision-wise, the algorithm performs sim-
ilar to, or slightly better than those presented by Dumble & Gibbens [34] and
Grelsson et al [47]. The benefit of the algorithm compared to the other algorithms
is the global yaw angle estimate – a feature that is often required in real world
applications. While the algorithm showed robustness and converged for all the im-
ages in the experimental data set, it should be noted that a proper segmentation
of the sky and land or water is important in order to avoid larger errors and to
ensure convergence.

3.5 Future Work

Future work includes a more robust skyline detection algorithm to find the skyline
in the camera image, and a more accurate algorithm to generate the synthetic
skyline. Additionally, the estimates provided by the algorithm can be used in an
attitude estimation filter as reference vectors due to their high precision.

A more robust method for finding the skyline in the camera image could improve
the robustness significantly. One example of a more robust method which uses a
neural network is presented by Porzi et al [106]. This method could also be used to
determine how well defined the skyline is in the camera image, which could be used
as an indicator of the accuracy of the estimate. Determining the drawing distance of
the synthetic skyline is a similar problem, which is particularly important in areas
susceptible to fog or haze. A possible solution could be to calibrate the algorithm
to see which drawing distance produces the smallest error.

In order to reduce the systematic error, a proper calibration algorithm should be
used, e.g. by performing an experiment where the true angles are known, and using
e.g. the method described by Grelsson et al [47]. Another method could also be
used to render the synthetic skyline in order to get rid of errors associated with
estimating the DSM as a flat grid. For example could a rendering engine such as
OpenGL be used to do a proper conversion from the UTM projection to three-
dimensional world coordinates, and then render the synthetic skyline. The method
could also be used in an attitude estimation filter, e.g. to compute the reference
vectors in a non-linear complementary filter, which could utilize its benefits of being
highly accurate but not as robust as e.g. gyroscopes.

52



3.6. Conclusions

3.6 Conclusions

We have presented an algorithm for estimating the attitude of a camera using the
extracted skyline from a camera image and synthetic skylines generated from a
Digital Surface Model. The algorithm uses geometrical properties to estimate the
roll and pitch angles, and a grid search to estimate the yaw angle.

Using experimental data, the algorithm is shown to estimate the roll, pitch, and
yaw angles with standard deviations of 0.037◦, 0.015◦, and 0.018◦ respectively. The
estimation algorithm is running at 16Hz in the current implementation, which can
be improved by using a lower level programming language. The results are on par
with current DEM based attitude estimation algorithms, while also estimating the
yaw angle globally.
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Chapter 4

Accuracy of Sea Ice Floe Size
Observation from an Aerial Camera
at Slant Angles

The importance of measuring the size of ice floes in e.g. marine navigation and
environmental sciences has made it a frequently performed procedure. When real-
time data is required, images from a camera on-board an aerial vehicle or mounted
on a marine vessel is commonly preferred over satellite images. Their lower fields
of view can be improved by tilting the cameras to capture images of a larger area.
However, this introduces a greatly changing ground resolution within the same
camera image, which makes size estimation a more complex task. It is nevertheless
performed in several methods to estimate the size of ice floes. In this chapter, ice
floe size estimation is evaluated for different scenarios when using an aerial camera
at slant angles. In order to reduce errors caused by automatic image segmentation
and attitude estimation algorithms, the methods are aided by human input. The
estimates are performed on real world data captured during the Statoil Station
Keeping Trials in the Bothnian Bay during March 2017. The results conclude that
the major challenge is to guarantee separation between ice floes in the camera
images, which is something that requires both enough ground resolution and a
suitable image segmentation algorithm.

4.1 Introduction

Floating ice on the ocean surface occupies approximately 7% of the surface area of
the world oceans [144], and comes in different shapes such as icebergs, which have
been broken off from a glacier or an ice shelf, and ice floes, which are pieces of sea
ice varying in size from a few meters to tens of kilometers across [12].
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Sea ice has a major effect on weather, climate, and ocean currents [126], and can
also significantly obstruct navigation in places such as the Northern Sea Route [69].
Both smaller and larger ice formations undergo large changes throughout a year [103].
This makes continuously monitoring sea ice a vital part in a number of fields.
There exist a number of methods for monitoring ice floes. Haugen et al. [57] pro-
vides an overview of existing sensors and sensor platforms for ice management.
Using a satellite as a sensor platform allows for very high quality sensors and a
large field of view from cameras and radars carried by the satellite. However, due
to their high altitude, the spatial resolution is limited. Satellite images can also be
costly, and the updates are slow. Additionally, some sensors carried by satellites
can not properly sample the ground environment during certain weather conditions
such as clouds. An alternative to a satellite is a high-altitude aircraft. An aircraft
can carry many of the same sensors as a satellite while operating at a lower altitude,
which allows for higher spatial and temporal resolution than the satellite. Using
a high-altitude aircraft as a sensor platform is however expensive, in particular in
remote areas such as the Arctic or when continuous updates of the environment
are required. If the goal is to obtain sea ice data around a marine vessel, a solution
is to attach the sensors to the vessel itself. An example of this is marine radars
used for navigation and collision avoidance. The data from the sensors come in
real-time, and have a high spatial resolution for areas near the vessel. However, the
area covered by shipborne sensors is often small. A similar scenario is when the
sensors are placed on land, which has similar benefits and limitations.
In between the high-altitude airborne sensors and the shipborne sensors are the
recent emergence of Unmanned Aerial Vehicles (UAVs) as a sensor platform when
gathering ice data – in particular UAVs small enough to take off from and land on
a marine vessel [57][81]. These UAVs often operate at a lower altitude, allowing for
real-time data at a high spatial resolution, even though the weight of the sensors
are limited. The sensors carried by UAVs can cover a higher area than those carried
by the marine vessel, but not quite as big as a satellite or a high-altitude aircraft.
A similar sensor platform is an aerostat moored to a marine vessel. The aerostat
can not move around like a UAV in order to cover a larger area, but it benefits
from a higher altitude than the sensors attached to a marine vessel and requires
little supervision. A camera mounted to an aerostat or a small UAV is therefore
suitable when monitoring sea ice in an area near a vessel, but the spatial coverage
of shipborne sensors are not enough.
In order to be able to increase the field of view further of a camera attached to a
marine vessel, a UAV, or an aerostat, the camera can be tilted. If the tilt angle and
other camera parameters are known, the pinhole camera model [108] can be used
to find the world coordinates of a pixel in the camera image. Several methods use
this to rectify camera images and measure the size of ice floes [154][90]. Since the
image capturing process is complex, in particular with greatly varying distances in
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an outdoor environment such as that of a tilted camera measuring ice floe sizes, it
is of interest to evaluate how well it is possible to estimate the ice floe size when
the camera is tilted at slant angles.
A method developed by Lu & Li [90] for obtaining the size of ice floes from camera
images when the camera is tilted was evaluated by the same authors against a more
direct method, by comparing the ice floe distributions calculated by both methods.
However, the authors only evaluates their simplified method, and not the effects
of having a camera at a slant angle. A qualitative evaluation of size estimation for
different camera-to-object angles (see section 4.2.3 for the definition of camera-to-
object angle) could provide guidelines for when a good ice floe size estimate can
be expected.
In this chapter, a method for estimating the dimensions of individual ice floes is
presented. The main goal of the method is to be used in evaluating the size es-
timation of individual ice floes seen at different camera-to-object angles. Manual
methods with high accuracy are therefore preferred over automatic methods, in
order to reduce errors caused by e.g. image segmentation errors. The method is
applied to experimental data from the Statoil Station Keeping Trials performed in
the Bothnian Bay during the first three weeks of March 2017 [1] [86]. The results
are evaluated and discussed in order to find how well the size of ice floes can be
estimated for different scenarios when a large camera-to-object angle is used.

4.2 Methodology

This section contains explanations of the methods used in this chapter for com-
paring the dimension estimates of an ice floe appearing in multiple camera images
at different camera-to-object angles. Figure 4.1 shows an overview of the methods.
Lastly, the size estimation error that can be explained by a difference in ground
resolution is explained.

4.2.1 Finding the pixels representing an ice floe

In order to find the pixels representing an ice floe in a camera image, the image is
first segmented. Segmentation divides an image into regions or objects [45]. In this
case, the ice floes are separated from other objects such as water, brash ice, and
other ice floes. Errors made by the image segmentation algorithm, such as dividing
one ice floe into two segments, or missing a border between two ice floes labelling
them as the same segment, can have a big impact on the size estimate.
Even though image segmentation methods have existed for a long time, humans still
outperform commonly available algorithms [143]. Recent algorithms have started
to outperform humans [50], but human performance in image segmentation is still
often used as the ground truth when evaluating algorithms. In this chapter, human
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Figure 4.1: Overview of the size estimation and evaluation algorithm. The rightmost
text indicates which section contain that details about each part.

image segmentation aided by flood-fill algorithm is used to find the pixels repre-
senting an ice floe in an image due to its simplicity.
The flood-fill algorithm selects connected pixels with an intensity within a certain
threshold from that of the starting pixel [21], and is run after the image has been
converted to gray-scale. After the flood-fill algorithm has been run, a human ad-
justs the segmentation by manually adding or removing regions of pixels to properly
represent the area occupied by the ice floe in the camera image.
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4.2.2 Image to world coordinates

The pinhole camera model [108] is used to model the projection of world coordinates
onto an image plane. The projection is given by

λ

ximage

yimage

1

 = [ K 0 ]

[
cRw

ctw
0 1

]
xworld

yworld

zworld

1

 (4.1)

where ximage, yimage, and pworld = [xworld yworld zworld]T are the pixel coordinates
and world coordinates of the projected point respectively, λ is a scaling factor, K
is the intrinsic camera matrix obtained by camera calibration, and cRw and ctw
are the rotation matrix and translation vector from world coordinates to camera
coordinates respectively.
The world coordinate system is in this case defined as the local tangent plane of
the Earth at the location of the camera at sea level, with the x-axis pointing east,
the y-axis pointing down, and the z-axis pointing north. By solving (4.1) for xworld

and zworld, it is possible to obtain the world coordinates of a point if its pixel
coordinates and world coordinate yworld are known. The change in yworld due to
the curvature of the Earth and the altitude of the ice floes are disregarded, and
yworld is thus set to zero.
The pinhole camera model assumes that the rotation matrix and translation vector
from world coordinates to camera coordinates are known. In this chapter the exact
world position of a point represented by a pixel in the camera image is not required,
but rather the distance from the camera to the point. Rotating the camera around
its y-axis (yaw) or moving the camera in the xz-plane will not change this calculated
distance. This means that there is only a need to estimate the camera altitude, ctw,y,
and the camera rotations around its x- and z-axis (pitch and roll).
The camera altitude is estimated using a GPS unit. The roll and pitch are estimated
by projecting horizon points onto the camera image using (4.1), and then manually
adjusting the roll and pitch until the horizon points match the horizon in the camera
image. The method for finding the world position of horizon points is described in
section 4.2.4. See figure 4.2 for an example of matching horizon points. For a more
in-depth study and theory of matching a synthetic horizon with the horizon in a
camera image, see [117] or chapter 3 of this thesis.

4.2.3 Camera-to-Object angle

The camera-to-object angle, αc−o, is defined as the angle between a vector pointing
straight down from the camera, ac-g, and a vector pointing from the camera towards
the object, ac-o. See figure 4.3 for a visual description.
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Figure 4.2: The horizon points (red dots) matched with the horizon in a camera
image.

Figure 4.3: The camera-to-object angle, αc-o.

The camera-to-object angle can be calculated according to

αc-o = cos−1
(

ac-g · ac-o

||ac-g|| ||ac-o||

)
(4.2)

4.2.4 Horizon Points

The first step in finding a horizon point is to find the angle between the camera
and the horizon, γ, which is given by

γ = cos−1 (R/(R+ a)) (4.3)

where R is the radius of the Earth, and a is the camera altitude. See figure 4.4 for
the geometrical derivation of (4.3). Note that this approximates the oblate spheroid
shape of the Earth with a spherical shape.

When the angle γ has been acquired, the yworld and zworld position of the horizon,
yworld horizon and zworld horizon, can be acquired according to

yworld horizon =R(1− cos γ)

zworld horizon =R sin γ
(4.4)

See figure 4.5 for the geometrical derivation of (4.4). The xworld-coordinate of the
horizon point, xworld horizon, is simply set to zero. xworld horizon and zworld horizon are
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Figure 4.4: The geometric derivation of the angle between the camera and the
horizon, γ.

then rotated around the y-axis with equidistant angles in order to obtain the world
coordinates of several horizon points.

Figure 4.5: The geometric derivation of the yworld and zworld position of the horizon.

4.2.5 Comparing ice floe size estimates

The aim of this chapter is to evaluate the accuracy of the size estimates of an ice floe
for different camera-to-object angles. The evaluation is done by comparing the size
estimate of an ice floe with its reference. The reference is the size estimate of the
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same ice floe at the lowest camera-to-object angle available in the camera image set,
i.e. it is the estimate least prone to errors. In order to make a quantitative evaluation
of the results easier, a single metric of the accuracy will be used. It is possible to
use e.g. the volume, but this can be misleading since vastly different shapes can
result in the same volume. Instead, the standard deviation of the radiuses of an
ice floe in polar coordinates from the reference is calculated as the error metric,
σradiuses. This guarantees a larger error when the deviation from the reference is
larger overall, and can be used in e.g. statistical simulations.
The standard deviation σradiuses will be evaluated against the camera-to-object
angle, αc-o, for each ice floe. This is calculated as the mean camera-to-object angle
for each xworld and zworld coordinate of the points representing the ice floe in the
camera image.
After the xworld and zworld coordinates of the points representing the ice floe in the
camera image have been obtained according to section 4.2.1 and 4.2.2, they are
mean centered.
An alpha shape [36] is then generated for the points in order to find a natural
border of the ice floe. An alpha shape is a shape that encloses a set of points
by defining the boundary points as those which can be touched by empty circles
(i.e. circle not containing any points) with radiuses α. See figure 4.6 for a visual
description of the alpha shape algorithm. The alpha shape boundary points are

Figure 4.6: The alpha shape algorithm visualized. The filled points represent the
points, the grey dashed circles represent the empty circles connected to two points
each, and the lines indicate which boundary points the alpha shape goes through.
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selected as the boundary points of the ice floe. The ice floe boundary points are
transformed from Cartesian to polar coordinates according to

rb =
√
x2world + z2world

αb = arctan

(
xworld

yworld

) (4.5)

where rb is the radius and αb is the polar angle.
Since the ice floe will be rotated relative to the camera between camera images,
and the resolution of the polar angle will change, the calculated radiuses of an ice
floe in one camera image can not be directly compared with the radiuses of the ice
floe in another image. In order to make them comparable, radiuses for predefined
equidistant polar angles are found using piecewise cubic Hermite interpolation [31].
After the interpolation, the polar angles of the reference ice floe are shifted in order
to find the polar angles which produces the lowest standard deviation σradiuses. This
is equivalent to rotating one ice floe to match the other ice floe.

4.2.6 Ground Resolution Error

The ground resolution is the number of pixels per square meter when projected
onto the sea surface. In order to find what accuracy is possible, the error that
can be explained by the decrease in ground resolution as the camera moves away
from the object – the ground resolution error, σradiuses gr – is calculated for each
ice floe in each camera image. This is done by shifting the mean of the world
points of the reference to the mean of the ice floe being evaluated; projecting
it onto the image coordinate system using (4.1); rounding the image coordinates
to their closest integer values to simulate the precision lost; and then calculating
the standard deviation σradiuses using the same methods as for the ice floe being
evaluated.
The ground resolution error is not the theoretical minimum error for the given
camera-to-object angle and ground resolution. Rather, it is the approximation of
how large part of the error that can be attributed to the ground resolution for the
current image.

4.3 Experimental Setup

Experiments were performed in order to evaluate the accuracy of size estimates of
ice floes using a camera at slant angles using the method described in section 4.2.
The experiments took place during the Statoil Station Keeping Trials (SKT) in the
Bothnian Bay during the first three weeks of March 2017. The SKT involved two
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vessels in operation, Magne Viking and Tor Viking.
The camera system was mounted on the moored balloon system OceanEye made
by Maritime Robotics, which in turn was attached to Magne Viking. The OceanEye
allowed for the camera to stay at an altitude of around 120 meters throughout the
day.

4.3.1 Camera System

The camera system consisted of an EO-camera, a lens, a GPS unit, and an on-board
computer. The system was designed to capture images with low distortion, high
time synchronization accuracy, and to be light weight. The details of the camera
unit and lens can be found in table 4.1.

Table 4.1: Specification of the camera system

Camera FLIR CM3-U3-31S4C-CS

Resolution 2048 x 1536 px

Pixel size 3.45 µm

Lens Kowa LM8JC10M

Focal length 8.5 mm

Lens distortion 0.31%

4.3.2 Scenarios

The camera was capturing images at 1 Hz for about eight hours per day. Since
the process of estimating the dimensions of an ice floe in a camera image consists
partly of manual work, the evaluation was limited to a camera image sequence of
ten images, taken eight seconds apart. The sequence was chosen to be when Magne
Viking was moving, in order to capture the same ice floes in multiple camera images
at different camera-to-object angles. In the image sequence, five ice floes of different
sizes were chosen. See figure 4.7 for a cropped camera image containing the five ice
floes.

4.4 Results and Discussion

This section presents and discusses the experimental results together with the cal-
culated theoretical errors. First, each step of the methods in section 4.2 is shown,
followed by an analysis of the error metric, σradiuses.
The pixels are first selected using a flood-fill algorithm, and then adjusted by man-
ually adding and removing pixel regions. See figure 4.8 for an example of this
process.
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Figure 4.7: A cropped camera image containing the five ice floes being analyzed.

After the ice floe pixels have been selected, their corresponding position in the
world coordinate system are found, assuming an ice floe altitude of zero. The mean
is subtracted from the points in both dimensions, xworld and yworld, and an alpha
shape around the points is calculated. See figure 4.9 for the mean-centered points
in the world coordinates, together with the alpha shape.

The points connected to the border of the alpha shape are then transformed into
polar coordinates, and interpolated using piecewise cubic Hermite interpolation for
polar angles in the interval [0◦, 360◦), with a resolution of 1◦. See figure 4.10 for
the interpolated border points in polar coordinates.

The same methods were applied to the ice floe in the reference camera image. The
ice floe reference was then rotated to match the current points of the ice floe being
evaluated. See figure 4.11 for a comparison of the ice floe points being evaluated in
Cartesian coordinates, the reference points of the ice floe, and the rotated reference
points.

The distance and camera-to-object angle to the ice floe being evaluated is in this
case 623 m and 81.4◦ respectively, and 262 m and 70.1◦ respectively for the refer-
ence. The standard deviation σradiuses is 0.40 m, and σradiuses gr is 0.33 m.
The same algorithm is then applied to the five ice floes in the selected camera image
set. See figure 4.7 for the numbered ice floes in the camera image with the smallest
camera-to-object angle. The resulting error metric σradiuses and ground resolution
error metric σradiuses gr are then presented in figure 4.12. The ice floe number in
the top left corner of each graph corresponds to the ice floe numbers in figure 4.7.

The errors generally increase with an increased camera-to-object angle, as was
expected. There is little to be discussed for ice floe 1 – the error generally increases
with an increased camera-to-object angle, and stays slightly above the ground
resolution error. The difference between the error and the ground resolution error
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Figure 4.8: The pixel selection process. The top image shows the raw camera image.
The center image shows the pixels selected by the flood-fill algorithm in yellow.
The bottom image shows the final results after after manually adjusting the pixels
selected by the flood-fill algorithm.

might be explained by inconsistency in the pixel selection process and remaining
errors from the camera calibration. The error for ice floe 4 sometimes dips below the
ground resolution error. This might happen when the ice floe in the camera images
line up well with the pixel edges, or when an error has occurred when selecting the
ice floe pixels in the reference image.

The error for ice floe 5 makes a sudden jump between αc-o 76.5◦ and 77.8◦, and a
similar phenomena can be seen for ice floe 3 between 82◦ and 82.5◦. By analyzing
the camera images, it can be seen that this is because the border between nearby
ice floes can no longer be seen, making them appear as one ice floe. See figure 4.13
for a comparison between the reference image and the fourth image (camera-to-
object angle of 78.8◦) of ice floe 5, where the loss of separation between the ice floe
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Figure 4.9: The corresponding mean centered world coordinates of the selected
pixels (blue dots) and the alpha shape (red curve).
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Figure 4.10: The border points in polar coordinates (blue dots), and a curve going
through the interpolated points (red line).

and a nearby ice floe can be seen.

The large error produced by diminishing borders indicate that the separation be-
tween ice floes are of high importance when estimating the size of ice floes.

The errors for ice floe 2 and 3 are overall quite large. Looking at figure 4.7, it can
be seen that these ice floes are larger than the others, both contain darker areas,
and both are near brash ice. This pose a problem to both the flood-fill algorithm
and to human segmentation since it is more difficult to manually correct minor
errors for large ice floes, and ice floes with poorly defined borders.
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Figure 4.11: The ice floe in the camera image being evaluated versus in the reference
image without any rotation (left). The ice floe in the camera image being evaluated
versus in the reference image rotated to match the first (right).

4.5 Conclusion

In this chapter, a method for estimating the size of individual ice floes has been
presented, as well as a metric to evaluate the accuracy of the size estimation. The
method, which was designed to minimize the errors caused by automatic image
segmentation and attitude estimation algorithms in order to find the limitations of
the camera system when estimating the size of ice floes at slant angles, is applied
to experimental data collected during the Statoil SKT performed in the Bothnian
Bay in March 2017. During the experiment, the camera was moved in relation to
the ice floes in order to capture camera images of the same ice floes at different
distances, which allowed for the evaluation of ice floe size estimation for different
camera-to-object angles. Evaluation of the resulting errors and the camera images
conclude that the size of an ice floe can be estimated with a high accuracy if some
criteria, which allows for the ice floes to be accurately segmented in the camera
images, are met. This makes it important to take into account not only the size
estimation accuracy of an individual ice floe when designing a camera system for
a certain ground resolution, but also the separation between ice floes.
Potential future work includes an evaluation of more automatic image segmenta-
tion and size estimation algorithms for use when estimating the size of ice floes.
The camera images could also be fused with e.g. Synthetic Aperture Radar (SAR)
images in order to find details not visible in camera images. The geometrical calcu-
lations can also be made more rigorous by e.g. taking into account the effect of ice
ridges on the ice floes, which might affect the results at a large camera-to-object
angle.
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Figure 4.12: The resulting standard deviations σradiuses (blue line) and σradiuses gr
(red line) versus the camera-to-object angle. The number in the top left corner of
each graph indicates which ice floe is being evaluated, see figure 4.7.

Figure 4.13: Ice floe 5 in the reference camera image (left) and with a camera-to-
object angle of 77.8◦ (right).
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Chapter 5

Detectability of Objects at the Sea
Surface in Visible Light and Thermal
Camera Images

In a number of ocean surveillance and remote sensing applications, visible light
and thermal cameras are used to detect and identify objects at the sea surface.
Knowing beforehand what the camera can detect or not can be important, yet
highly difficult to determine. Optical models such as Modulation Transfer Functions
can help in evaluating a camera system, but requires a deeper knowledge in optics,
and detailed specifications of each component. The models also does not handle
noise coming from the scene background, which in many cases is the major limiting
factor of detectability. In this chapter, we evaluate the results of an edge detection
algorithm on images from two commercial off-the-shelf camera system – one visual
light and one thermal. We then draw conclusions on the detectability of objects
which commonly needs to be detected at the sea surface.

5.1 Introduction

In ocean surveillance and remote sensing applications, the first step in various
computer vision algorithms, is to detect the object in the camera image. Practical
examples include sea ice detection and monitoring for situational awareness and
environmental research [113], and detecting marine vessels and people in search
and rescue missions [79] [135].

Two common sensors used in maritime surveillance and remote sensing missions
are visible light and thermal cameras. Visible light cameras commonly provide a
high spatial and temporal resolution image sequence of the scene in the visible light
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spectrum, which makes it suitable to detect very small objects, and objects slightly
below the sea surface since the visible light penetrates water relatively well [38].
Thermal cameras commonly provide a lower spatial and temporal resolution image
sequence in the thermal spectrum. This makes thermal cameras suitable for detect-
ing objects with a different thermal footprint than the sea surface, in particular
during low visible light conditions. Since the sea surface radiance is more homoge-
neous in the thermal spectrum than the visible light spectrum, the segmentation
of objects at the sea surface is often also simpler in thermal camera images than
visible light camera images.

Determining beforehand what a camera system can detect can prove difficult. John-
son’s criteria [119] is still commonly used as the theoretical basis for object de-
tectability based on the number of line pairs (or pixels) that an object represents
in a camera image. Borghgraef et al. [15] evaluated different methods for detecting
objects at the sea surface, where a high detection accuracy can be obtained if the
background is uniform. This can also be seen in experimental results in e.g. [79]
and [152]. Some difficulties mentioned, however, are highly dynamic backgrounds
and a large camera to object angle, which causes objects to partly disappear behind
ocean waves. It also makes it more difficult to detect flat objects, as the area of the
object projection on the image sensor decreases with an increased angle. The work
by Borghgraef et al. uses a stationary camera at a low altitude, which poses dif-
ferent challenges than a moving airborne camera. Bloisi et al. [13] similarly uses a
stationary Pan-Tilt-Zoom visual light camera in order to evaluate the detectability.
The experimental data contain camera images during different lighting conditions
and camera angles, however these are not evaluated in regards to the detectability
of the objects.

In this chapter we aim to evaluate the detectability of common objects at the
sea surface as they appear in images captured with two commercial off-the-shelf
cameras – one visual light and one thermal – in order to evaluate how well objects
can be detected compared to the theoretical geometric limit. Special emphasis is put
on how the detectability varies with the distance and angle between the camera and
objects. The detectability metric is based on the performance of an edge detection
algorithm, which commonly forms the basis for more advanced computer vision
algorithms [105]. Although a number of specialized edge detection algorithms have
successfully been used to detect objects at the sea surface, e.g. by Can et al. [23]
and Zhang and Skjetne [154], this chapter uses a Sobel filter for edge detection due
to its general and common usage.
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5.2 Methodology

The aim of the methodology is to find how well objects can be detected in the
camera images. Edge detection accuracy is chosen as the detectability metric due
to that many higher level algorithms depend on the accuracy of the edge detection,
such as object recognition and image segmentation [105]. This section first describes
three general initial steps in edge detection algorithms – converting the image to
grayscale, reducing the noise, and calculating the gradient of the image. These steps
are performed in e.g. the Canny edge detection algorithm, which remains one of the
most commonly used algorithms for edge detection [99]. Finally the edge detection
algorithm, the method for determining the position of the objects in the camera
images, the camera to object distance and angle calculations, the detectability
metric, and the edge detection algorithm parameter tuning are explained.

5.2.1 Grayscale Conversion

The images from the visible light camera are in RGB (Red-Green-Blue) format, i.e.
each pixel contains intensity data for the red, green, and blue spectra separately.
Since the subsequent methods work with one intensity value per pixel, the im-
ages first need to be converted to grayscale. Four different methods are considered
for grayscale conversion: an average of the three color spectra, only using the red
spectrum, only using the blue spectrum, and only using the green spectrum respec-
tively. Due to the sea surface generally containing higher intensities in the green
and blue spectra than the red, the choice of method can affect the result of the
edge detection algorithm. The different methods are considered in the parameter
tuning for the visual light camera dataset.

The thermal camera images contain only one intensity value per pixel, hence no
grayscale conversion is required.

5.2.2 Noise Reduction

Noise can come from different sources: the image acquisition process (e.g. sensor
noise), or from the scene background. At the sea, the water surface is a major source
of noise, and can make it difficult to detect small objects. A common method for
reducing noise is to apply a low-pass filter on the data. For images, a common
low-pass filtering method is to convolve the image with a Gaussian kernel, which
is a discrete approximation of a two-dimensional Gaussian function [17]. The two-
dimensional Gaussian function is described in equation (5.1), and an example of
a Gaussian kernel of size 3x3 is shown in equation (5.2).
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g(x, y, σ) = e−
x2+y2

2σ2 (5.1)

g =

1 2 1

2 4 2

1 2 1

 (5.2)

The parameters used in Gaussian smoothing are σ, which determines the width and
height of the peak in the Gaussian function, and the size of the Gaussian kernel, s.
A larger σ and size will smoothen the image more, resulting in less noise, but also
less defined edges.

5.2.3 Edge Detection

In order to find the amplitude of the edges in an image, the gradient of the image is
calculated. The method commonly used in e.g. the Canny edge detection algorithm
is the Sobel operator [99]. Other methods exists, such as Robert’s cross and the
Prewitt operator, but they are generally outperformed by the Sobel operator [99].
Thus only the Sobel operator is considered in this chapter.

The Sobel operator consists of two kernels, one for the horizontal edges, sx, and
one for vertical edges, sy. An sx of size 3x3 is shown in equation (5.3), and sy is
the transpose of sx, see equation (5.4). Larger Sobel kernels, commonly 5x5 and
7x7, can also be used.

sx =

1 0 −1

2 0 −2

1 0 −1

 (5.3)

sy =

 1 2 1

0 0 0

−1 −2 −1

 (5.4)

The kernels are convolved with the image in order to calculate an approximation
of the image gradient in each direction, and finally the complete image gradient is
calculated according to

G(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (5.5)
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where Gx(x, y) and Gy(x, y) are the results of convolving sx and sy with the image,
respectively.

The parameter used in edge detection is the size of the Sobel kernel, s. Three
different sizes are considered: 3x3, 5x5, and 7x7.

5.2.4 Locating Objects in the Images

In order to find the location of the objects in the images, their positions were semi-
automatically determined. The procedure varies between visual light images and
thermal images due to the different noise characteristics – the visual light camera
images are taken at an angle and at a high resolution resulting in a complex scene,
making robust object detection difficult. In the method used, the location of the
boundaries of the objects were manually selected by a human camera operator in
every nth camera image, while the position of the boundaries in the intermediate
images were found via linear interpolation. n was chosen to be 10, which gave a good
compromise between an accurate position estimate and a low manual workload.

The thermal camera images are taken close to vertically at a lower resolution
resulting in a homogeneous background, which is a good precondition for robust
automatic object detection. A Gaussian Mixture Model [134] (GMM) was first
used to find the position of the objects in the images. The GMM segments the
image into background and foreground, and is suitable for thermal images at the
sea since there are two distributions present in the incoming radiance: the radiance
reflected from the sky and the heat emitted from the water. The GMM algorithm
used was implemented as part of the Background Subtraction Library [129]. The
algorithm detected most objects in the thermal image dataset, but the detections
were manually corrected by a human camera operator to improve the detection
quality.

5.2.5 Distance and Angle

In order to evaluate the detectability of the objects in relation to the distance
and angle between the camera and the objects, the distance and angle need to be
calculated. The distance refers to the three-dimensional Euclidean distance between
the camera and the object at a given time. The angle refers to the angle between
the vector pointing from the camera towards the Earth and the vector pointing
from the camera towards the object. See figure 5.1 for an illustration of the angle.

In order to calculate the distance and the angle, the world position of the camera
and objects need to be determined. The world position of the camera and boat
and pallet are obtained from their onboard GNSS. In order to find the world
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position of the human and buoys, the attitude and position data of the camera are
used together with the assumption that the object altitude is zero to project the
object image position onto the world coordinate system using the pinhole camera
model [108]. In order to improve the camera attitude estimate, the roll and pitch
angles are corrected by solving Wahba’s problem [93], where the position of the boat
and pallet in the image coordinate system are aligned with their world positions
projected onto the image coordinate system.

5.2.6 Geometric Limits

In order to find the geometric limit of whether an object is detectable or not, its
apparent area (perpendicular to the camera sensor) is projected onto the cam-
era sensor. The geometric limit for detecting an object is considered to be when
an objects smallest apparent dimension (width or height) is represented by one
pixel in the camera image. The following approximations are made regarding the
dimensions of the objects:

• The boat has a height of 1.2 meters. Due to the complex geometry, this is a
rough approximation.

• The human is 0.5 meters wide, and sticks out 0.25 meters from the water
surface.

• The surface of the pallet is at the water surface.

• The buoys are floating on top of the water surface.

Figure 5.1: The angle between the camera and object, α.

5.2.7 Error Metric and Evaluation

In order to quantitatively evaluate the detectability of objects, a metric needs to
be chosen for how well the objects were detected in the camera images. The goal
of the metric is to give a higher score when the difference between the object edges
and background edges are larger.
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The proposed method first generates a number of windows at random locations
in the image. The windows are generated so to not contain any object, i.e. they
represent the background. For the visual light camera images, the background
windows also does not contain any part of the sky or land areas. An object is then
considered detectable if its average edge value (the intensity of the image gradient)
is larger than the average edge in a predefined fraction of the background windows.

5.2.8 Parameter Tuning

In order to obtain results which are not affected by poorly chosen parameters, the
parameters of the edge detection algorithm are tuned using grid search. A random
sample consisting of 20% of the images from the visual light camera and thermal
camera datasets are selected to tune the parameters for each of the datasets. As the
optimal parameters will differ between the visual light and thermal camera images
due to their difference in resolution, scene, and noise, they are tuned independently.

A summary of the parameters and their ranges are shown in table 5.1 for the visual
light camera, and table 5.2 for the thermal camera.

Table 5.1: Algorithm parameters for the visual light camera images.

Grayscale conversion

Type average, only red, only green, only blue

Blurring

Gaussian kernel size 1x1 – 15x15

Gaussian σ 0.5 – 7.5

Edge detection

Sobel kernel size 3x3 – 7x7

Table 5.2: Algorithm parameters for the thermal camera images.

Blurring

Gaussian kernel size 1x1 – 7x7

Gaussian σ 0.5 – 7.5

Edge detection

Sobel kernel size 3x3 – 7x7
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Each combination of the parameters in table 5.1 and 5.2 are tested on the visual
light and thermal camera datasets, and the parameters producing the highest de-
tectability rate for the worst case object type (boat, pallet, human, buoy) are chosen
as the best parameters, which will be used in the final evaluation of detectability.

5.3 Experimental Data

This section describes the datasets used in this chapter. The dataset consists of
images captured by a visible light and a thermal camera, as well as the position
and orientation of the cameras. The cameras were attached to UAVs and flown at
varying positions relative to the objects. The subsections describe the objects and
information about the visible light and thermal cameras.

5.3.1 Objects

The objects placed at the water surface was a 26 foot boat, an EUR-pallet, a human
wearing an immersion suit, and two red buoys with a diameter of 60 cm, which
were chosen as common objects to detect in maritime missions such as search and
rescue and seismic operations. The objects are shown in figure 5.2.

Figure 5.2: The objects present in the scene. Upper left: boat, upper right: human
in immersion suit, lower left: EUR-pallet, lower right: buoy.

The boat and pallet were equipped with GNSS (Global Navigation Satellite Sys-
tems), which means that their world position data is available.
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5.3.2 Visible Light Camera Data

The visible light camera is a DJI FC350, which provides images at a 3840 px x
2160 px resolution at 25 Hz in 24 bit H.264 format. The lens has a focal length of
3.61 mm, providing an angle of view of 83.6◦ x 50.2◦. A subset of the whole dataset
is used for the detectability evaluation – 2000 images for when the UAV is moving
towards the objects, and the objects transitions from not detectable to detectable.
See figure 5.3 for a sample image from the dataset. It can be seen that the lighting
conditions varies throughout the image – the upper left part is brighter than the
lower right part. Different lighting conditions can result in under- or overexposure
of the objects, which might decrease the detectability.

Figure 5.3: A sample image from the experiment dataset captured by the visible
light camera.

The position and orientation of the camera is available as metadata. This is used
to calculate the distance and angle between the camera and object for each image,
as well as determining the world position of some of the objects (see section 5.2.5).
Figure 5.4 shows the distances and angles between the camera and the objects.
The camera altitude is kept steady at 63–65 meters throughout the dataset.

5.3.3 Thermal Camera Data

The thermal camera is a FLIR Tau2, which provides images at a 640 x 512 pixels
resolution at 9 Hz in 16 bit raw format. The lens has a focal length of 19 mm,
providing an angle of view of 32◦ x 26◦. See figure 5.5 for a sample image from
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Figure 5.4: The distances and angles between the visual light camera and the
objects at the sea surface.

the dataset. A total of 1974 thermal camera images, containing at least one object
each, are used to evaluate the detectability of the objects.

Position and orientation data of the camera is also available as metadata. The
thermal images are taken close to vertically, i.e. with the camera pointing straight
down. Because of this, the total number of detections are evaluated rather than
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Figure 5.5: A sample image from the experiment dataset captured by the thermal
camera. The boat is visible in the upper left corner, and a human or buoy is visible
below the boat.

the distance and angle between the camera and objects. The altitude of the camera
varies between 235 and 250 meters during the flight.

5.4 Experimental Results

The datasets were processed according to the methods described in section 5.2. At
first the parameters were tuned for the visual light and thermal camera datasets,
and the best performing parameters were evaluated. The best performing param-
eters were then applied on the full data sets, and the results were evaluated in
relation to the camera to object distance and angle.

5.4.1 Parameter Tuning – Visual Light Camera

The parameter were tuned using 100 background windows with a width and height
of 200 pixels for each image. An object is considered detectable when it has an
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average intensity larger than 90% of the background windows.

The detection rate for each type of object for different parameters can be seen in
figures 5.6–5.9.

Figure 5.6: The fraction of objects detected for different methods for converting the
image to grayscale in the visual light camera image test dataset. 1: RGB average,
2: only red, 3: only green, 4: only blue.

The grayscale conversion parameter influence on detectability can be seen in fig-
ure 5.6. The method of converting the RGB image to grayscale has a noticeable
effect on the detectability of humans and buoys. For detecting the human, using
only the green channel produces the best results, while this yields the worst de-
tectability of the buoys. Only using the red channel produces the best detectability
for buoys, while it produces among the worst detectability for the human. Since
both objects are closest to red, while the sea surface is closest to blue, it would
be expected that only using the red channel would produce the best results. The
poor detectability for the human when only using the red spectrum might be due
to image compression artifacts, rendering the colors of the human closer to its
surrounding.
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Since the human has the lowest detectability of all objects, this will be the deciding
factor, thus only using the green channel is set as the best parameter for grayscale
conversion.

Figure 5.7: The fraction of objects detected for different noise reduction σ in the
visual light camera image test dataset.

The noise reduction parameter influence on detectability can be seen in figure 5.7
and 5.8 for σ and size respectively. The noise reduction algorithm uses two param-
eters – σ and kernel size. An increase of either parameter reduces the noise more,
but produces less defined edges. It can be seen that the detectability is greatly
improved for all objects when applying minor blurring. For the larger objects, in
particular the boat, it keeps increasing, while for the smaller objects the detectabil-
ity decreases after a Gaussian kernel size of 5x5 px, and σ of 1.5 for the human
and around 5.5 for the buoys.

Since the human has the lowest detectability of all objects, this will be the deciding
factor, thus a σ of 1.5 and kernel size of 5x5 is chosen as the best parameters for
noise reduction.

The edge detection parameter influence on detectability can be seen in figure 5.9.
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Figure 5.8: The fraction of objects detected for different noise reduction kernel sizes
in the visual light camera image test dataset.

It can be seen that for all objects except the pallet, using a Sobel kernel size of 5x5
produces a better detectability. A kernel size of 7x7 seems to be able to increase
the detectability of certain objects, but in general the 5x5 Sobel kernel produces
the best results.

Since the human has the lowest detectability of all objects, this will be the deciding
factor. The parameter set which produces the best results had a Sobel kernel size
of 3x3, and is thus chosen as the best parameters for edge detection.

The parameter set which provided the best detectability for the visual light camera
dataset is shown in table 5.3.

A sample image before and after applying the edge detection algorithm using the
best and worst parameter set is shown in figure 5.10. It can be seen that an edge
detector reducing noise rather than emphasizing the edges produces better results.
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Figure 5.9: The fraction of objects detected for different edge detection kernel sizes
in the visual light camera image test dataset.

5.4.2 Detectability – Visual Light Camera

The optimal parameters were used to run the algorithms on the full visual light
camera dataset. The results are visualized in figures 5.11 – 5.15 as its detectability
status (detectable by the algorithm, detectable by the operator, or not detectable)
in graphs showing the distance between the camera and the objects, and the number
of pixels in the smallest dimension when projected onto the camera image plane.
The status ”detectable by the operator” means that the human camera operator
was able to locate the object in the camera image (see section 5.2.4). The status
”not detectable” is thus only available for the boat and the pallet since their world
position is available from their GNSS.

It can be seen that the boat is detectable by both the operator and edge detection
algorithm throughout the image dataset. The algorithm misses the boat in two
images, which can be considered outliers. This is as expected, as the number of
pixels representing the smallest dimension of the boat in the image barely dips
below 4.
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Table 5.3: The parameters producing the best results in the thermal test dataset.

Grayscale conversion

Type Only green

Blurring

Gaussian kernel size 5x5

Gaussian σ 1.5

Edge detection

Sobel kernel size 3x3

The pallet can be detected by the operator until its smallest dimension reaches
around 1.5 pixels, while the algorithm can detect the pallet until it reaches 2.5
pixels.

The human remains very detectable by both the algorithm and operator until a
camera to object distance of around 300 meters. At that distance, the human is
represented by slightly above 1 pixel. The greater detectability of the human than
the pallet can be explained by that the human is at a brighter part of the sea
surface, creating a larger contrast between the object and the background and
thus a larger edge intensity.

The first buoy is more detectable then the second buoy, both for the algorithm
and the operator. Looking the the images, this is mainly caused by the lighting
– the first buoy has less sun reflections, and thus has a deeper red color in the
camera images. The more red color separates it better from the sunlight reflections
in the sea surface. See figure 5.16. The buoys are sporadically not detectable by the
algorithm, but when their size is close to 3 pixels, there are no missed detections.

5.4.3 Parameter Tuning – Thermal Camera

The parameter were tuned using 100 background windows with a width and height
of 30 pixels for each image. An object is considered detectable when it has an
average intensity larger than 100% of the background windows.

The detection rate for each type of object for different parameters can be seen in
figure 5.17–5.19.

It can be seen that the Sobel kernel size has the largest effect on the detectability,
with a larger kernel resulting in more objects detected. The effect on boats, which
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Figure 5.10: A visual light camera image (top), and its edges using the best pa-
rameters (middle) and worst parameters (bottom).

are larger, is minor, while the detectability of humans/buoys and pallets are greatly
increased, and often reach 100% using a Sobel kernel size of 7x7.

The parameter set which provided the best detectability for the thermal camera
dataset is shown in table 5.4.

A sample image before and after applying the edge detection algorithm using the
best and worst parameter set is shown in figure 5.20. It can be seen that an edge
detector emphasizing edge detection over noise reduction produces better results.
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Figure 5.11: The detectability of the boat compared to the distance between the
camera and the number of pixels representing the smallest dimension of the boat.

Figure 5.12: The detectability of the pallet compared to the distance between the
camera and the number of pixels representing the smallest dimension of the pallet.

Figure 5.13: The detectability of the human compared to the distance between the
camera and the number of pixels representing the smallest dimension of the human.

5.4.4 Detectability – Thermal Camera

Using the best parameter set from the parameter tuning, the algorithm is applied
for the full thermal camera dataset. The number of detections are summarized in
table5.5. In order to estimate how well the objects can be detected geometrically,
the pixels representing the objects in the camera images are shown in table 5.6.
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Figure 5.14: The detectability of the first buoy compared to the distance between
the camera and the number of pixels representing the smallest dimension of the
first buoy.

Figure 5.15: The detectability of the second buoy compared to the distance between
the camera and the number of pixels representing the smallest dimension of the
second buoy.

Table 5.4: The parameters producing the best results in the thermal test dataset.

Blurring

Gaussian kernel size 1x1

Gaussian σ 1

Edge detection

Sobel kernel size 5x5

Table 5.6: The size of the objects in pixels, assuming a vertical photo at an altitude
of 240 meters.

Object Size [px]
Boat 38 x 12

Pallet 5.7 x 3.8

Human 2.4 x 1.4 – 2.4 x 8.1

Buoy 2.9 x 2.9
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Figure 5.16: The first buoy (left) versus the second buoy (right), as they appear in
a visual light camera image.

Figure 5.17: The fraction of objects detected for different noise reduction σ.

It can be seen that all boats and pallets in the dataset were detected. 6 hu-
mans/buoys were not detected, representing 0.4% of all objects of the same class.
As can be seen in table 5.6, most objects are above 2 pixels in their smallest
dimension, which is the general limit for detectability according to Johnson’s crite-
ria [119]. An exception is the human, which can fall below 2 pixels when standing
upright (only the head and shoulders are above the water surface).

5.5 Conclusions

In this chapter we have evaluated the detectability of objects that commonly needs
to be detected in maritime surveillance missions. The detectability metric was the
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Figure 5.18: The fraction of objects detected for different noise reduction kernel
sizes.

Figure 5.19: The fraction of objects detected for different Sobel kernel sizes.

average edge intensity of an object compared to 100 randomly located background
windows in the same image, after applying grayscale conversion, noise reduction,
and edge detection algorithms on the images. In order to avoid poorly chosen algo-
rithm parameters, parameter tuning was performed using 20% of the full datasets.
The detectability was then evaluated in relation to the number of pixels represent-
ing the smallest dimension of the objects when projected onto the camera image
plane for the visual light camera images, and the total number of detections for
the thermal camera images.

The results show that objects can be reliably detected when the smallest dimension
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Figure 5.20: A thermal image (top), and its edges using the best parameters (bot-
tom left) and worst parameters (bottom right).

Table 5.5: The number of objects considered detected in the thermal camera image
dataset.

Object Detected Total Fraction
Boats 869 869 100%

Pallets 787 787 100%

Humans/buoys 1504 1510 99.6%

is around 3 pixels or larger. At lower pixel counts, the noise from the sea surface,
e.g. waves, is too large compared to the contrast between the sea surface and the
objects. The lighting is also shown to have a certain affect on the detectability,
where two buoys of the same size and color have a different detectability due to
their different lighting conditions.

Further work should be done to generalize detectability for different algorithms fur-
ther, e.g. evaluating other noise reduction and edge detection algorithms, as well
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as other object detection algorithms. Due to their good object detection and clas-
sification performance, the results of Convolutional Neural Networks could be used
to determine detectability of the objects. In order to develop a more sophisticated
model of object detectability at the ocean surface, more advanced camera sensor
and optics models, as well as water surface models, could be used. E.g. could the
modulation transfer function (MTF) be used to model how well the camera can
detect the objects. The lighting conditions for the different objects should also be
further investigated, since it was shown to be an important factor of detectability
when the objects were represented by a very small number of pixels in the camera
images.
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Chapter 6

Object Classification in Thermal
Images using Convolutional Neural
Networks for Search and Rescue
Missions with Unmanned Aerial
Systems

In recent years, the use of Unmanned Aerial Systems (UAS) has become common-
place in a wide variety of tasks due to their relatively low cost and ease of operation.
In this chapter, we explore the use of UAS in maritime Search And Rescue (SAR)
missions by using experimental data to detect and classify objects at the sea sur-
face. The objects are chosen as common objects present in maritime SAR missions:
a boat, a pallet, a human, and a buoy. The data consists of thermal images and a
Gaussian Mixture Model (GMM) is used to discriminate foreground objects from
the background. Then, bounding boxes containing the object are defined and used
to train a Convolutional Neural Network (CNN). The CNN achieves the average
accuracy of 92.5% when evaluating a testing dataset.

6.1 Introduction

Maritime Search and Rescue (SAR) operations are usually based on the drifting
trajectory, which is influenced by the water streams and winds. In such operations,
it is common to estimate the drift by deploying buoys with GPS sensors to transmit
their positions [66]. Since changes in the environment at the search region are
common, the search parameters might change many times during the mission,
leading to the necessity of the reconfiguration of the mission itself. The search is
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usually performed using manned aircraft and vessels and is limited by the costs,
the availability of human resources, and the mental and perception limitations of
the human operators. All these limitations impose that a method for automatic
classification of objects would be beneficial to the SAR mission as an additional
assistance to the operators, due to its ability to process multiple inputs at higher
speeds and with an invariable reliability rate, as it is not subject to exhaustion.

The use of Unmanned Aerial Systems (UAS) has grown rapidly, especially because
of their high endurance, reduced cost, rapid deployment and flexibility. They also
offers reduced risk for humans and impact on the environment compared to manned
aircraft. Therefore, intelligent autonomous UAS equipped with image recognition
capabilities to classify vessels, wrecks, people and objects pose are well suited tools
to assist maritime SAR operations.

In these missions, it is fundamental to identifying key objects in aerial images using
the techniques of object detection, classification and tracking. However, it might
be more challenging to solve these classic computer vision problems when using
UAS, especially because of real-time requirements and relatively fixed view angles.
Moreover, running computationally intensive algorithms, such as image processing
algorithms and deep neural networks with many filters and convolution layers, can
be an additional challenge due to UAS power consumption limitations, and space
and weight constraint for embedded hardware.

Leira et al. [79] used thermal camera images captured by UAS to detect, classify,
and track objects at the sea. The solution presented arises as a useful tool for SAR
operations. The object detection algorithm used relies on static filter parameters
and thresholds, which are determined manually a posteriori. The classifier used
is based on the object area, the average object thermal radiation, and its general
shape. However, there are a number of scenarios where this classification would
be challenging, e.g., when motion blur is present or when the object is moving
across an image with varying sensor intensity, which can be caused by an uneven
scene radiance or sensor noise. Therefore, a deep learning algorithm could be a
more effective tool for the object classification, since it can handle variations on
the images affected by environmental changes, as long as these effects are widely
present in the dataset.

Convolutional Neural Networks (CNN) are the state-of-the-art deep learning tools
for classification of images. Using convolution and pooling layers, it is possible to
efficiently extract the most relevant features of the images. Some works were done
with CNN and UAS, as in [125], where bounding boxes of images captured by
a camera mounted on a UAS at a high altitude were classified in real-time into
four classes: building, ground, tree and road. In [75], ground animals were detected
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using CNN in aerial images captured by a camera mounted on a low-cost UAS in
Namibia and the step of object detection for bounding boxes prediction was also
explored in the work. Sea animals were detected in aerial images in [92], where the
bounding boxes were defined by the confidence of each pixel of being the center of
a window containing a mammal and then a CNN is used to classify the images.
Regarding the use of CNN to classify objects in aerial images taken by a UAS in
maritime environments, a work was done by [27], where RGB images were used and
bounding boxes were classified into two classes: boat or notboat. SAR, CNN and
UAS are used together in [8], where near real-time object detection was performed
by a UAS for avalanche SAR missions. A pre-trained CNN did the object detection
and a Support Vector Machine (SVM) was used to classify the proposed human
bodies. All of these works were done using datasets of RGB images, but there are
also some works using CNN with thermal images, as in [68], to monitor machine
health and in [71], to detect pedestrians. However, there were not found any works
using CNN to classify objects at the sea in aerial thermal imagery and this is
particularly important in night time during low visibility SAR operations.

In this chapter, a CNN is trained to classify boats, buoys, people and pallets in im-
ages captured by a thermal camera mounted on a fixed-wing UAS. The foreground
objects were detected by modeling the background as a mixture of Gaussian dis-
tributions and subtracting the foreground [134]. This method is computationally
cheaper than other object proposal methods such as sliding windows [102] or se-
lective search [139] because it is particularly suitable for thermal images at the
sea, as there are two modes present in the distribution: the radiance reflected from
the sky, and the heat emitted from the sea [15]. Subsequently a window was fitted
around the objects and padded to ensure that the full objects were included in
the window. One other novelty brought by this study is the use of the estimated
observed area as an extra feature in the fully connected layer of the CNN.

6.2 Dataset

The dataset consists of images captured by a thermal camera mounted on a fixed-
wing UAS. The thermal camera used is a FLIR Tau2, which provides analogue
video data at a 640 × 512 pixels resolution. The lens has a focal length of 19 mm,
which produces a 32◦ × 26◦ angle of view. The analogue video data is converted
to digital using a 16 bit analogue-to-digital converter. In order to create 8 bit
images, the 16 bit images are normalized between 0 and 255 for the smallest and
largest intensity in the full dataset. The UAS was also equipped with an Inertial
Measurement Unit (IMU) and Global Navigation Satellite System (GNSS) unit, in
order to find the surface area of the objects in the images (see section 6.2.3).
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Four different objects were placed in the ocean: a 26 feet boat, a euro pallet, a
human wearing an immersion suit, and a buoy with a 60 cm diameter. The ob-
jects were chosen as common objects present in maritime SAR missions, where e.g.
pallets are a common object to search for when trying to locate fish aggregating
devices. The objects can be seen in higher resolution visual light camera images
in figure 6.1. The human varied between different actions during the experiment:
floating horizontally on the surface (creating a large, long surface), swimming (cre-
ating a medium sized surface varying in shape), and standing vertically (creating
a small surface, down to 20 cm across).

Figure 6.1: The different objects present in the scene, as captured by a higher
resolution, visual light camera. Top: boat and pallet, bottom left: human, bottom
right: buoy. The images were captured at different altitudes.

The total dataset consists of around 22,000 images that were captured during a
time span of 50 minutes. The objects were only fully inside in the camera field of
view in a limited subset of the full dataset, leading to a smaller number of images
used in the CNN.

Various imperfections were present in the images. Several images contain motion
blur caused by the dynamics of the UAS. This effect is minor for larger objects such
as the boat, however for smaller objects such as a human head sticking out from the
water, it can greatly affect the shape, size, and intensity of the object. See figure 6.2
for an example of how motion blur changes the object size and dimensions. The
pixel intensity is also varying throughout each image, which makes the same object
take on intensities between 97 to 110 in an example 8 bit image sequence. This
might be caused by noise in the uncooled thermal image sensor, internal camera
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intensity calibrations, or varying scene radiance. The background varies between
81 and 98 in the same image sequence. See figure 6.3 for an average of all images
without objects, where the intensity variation can be seen.

Figure 6.2: The same object (human) without motion blur (left) and with motion
blur (right). The shape, size, and intensity is greatly affected.

Figure 6.3: The mean image without any objects, with its intensity stretched to
show the varying image intensity.

In order to find the objects in the images and label them, their boundaries were
first found (section 6.2.1). The objects were then automatically labeled based on
the physical area of the boundary (see section 6.2.1 for definition of the physical
area) and finally manually corrected (section 6.2.2). The number of labeled objects
in the dataset used in the CNN is summarized in table 6.1.

Table 6.1: Number of labeled objects in the dataset

Boats 620

Pallets 739

Humans 313

Buoys 276

6.2.1 Bounding Boxes

In order to discriminate the foreground objects from the background in the im-
ages, the background pixels were modeled using an adaptive background Gaussian
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Mixture Model (GMM) [134]. The GMM provides robust foreground segmentation
and is suitable for thermal images at the sea since there are two modes present in
the distribution: the radiance reflected from the sky, and the heat emitted from the
sea. It can also model the varying sensor noise, but might fail when the thermal
camera is performing sudden noise corrections. The algorithm was implemented
using the Background Subtraction Library [129]. A study by Borghgraef et al. [15]
showed that more advanced algorithms, such as ViBe and the behaviour subtrac-
tion algorithm, outperformed the GMM for detecting objects at the sea surface in
thermal images. However, this was for a static camera at a highly slant angle, which
means that the study is not completely applicable to the scenario of this chapter.
For this application, the GMM is chosen as a good balance between robustness and
simplicity. The bounding box was then defined as the smallest box that encloses
the boundary of the object. The bounding boxes of all objects were then padded
to the size of the largest bounding box found in the dataset. See figure 6.4 for a
sample boundary and bounding box.

Figure 6.4: The border around the extracted foreground object (red), and the
bounding box (green).

6.2.2 Labeling

In order to use the extracted foreground objects in the supervised learning algo-
rithm, each object needs to be properly labeled. The objects were first assigned
one of three labels based on their observed area in square meters (see section 6.2.3)
- boat, pallet, or human/buoy. Each label was then manually verified and adjusted
if deemed incorrect.

Due to the low ground resolution and their similar dimensions, discriminating hu-
mans from buoys was not possible only using the size as a criterion or by looking
at individual images due to the varying shapes of the human and other effects, e.g.,
motion blur. A manual classification was therefore done by analyzing the shape of
each object appearing in a sequence of images, taking into consideration that the
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buoy is completely round while the human has a more elliptical and varying shape.
See figures 6.5 and 6.6 for examples with a boat, a pallet, a human, and a buoy in
the images.

Figure 6.5: The different objects which were labeled. Top left: boat, top right:
pallet, bottom left: human, bottom right: buoy. The images are scaled to show
more detail.

Figure 6.6: Objects in a different color map, in order to aid in manually discrim-
inating humans from buoys. Top left: boat, top right: pallet, bottom left: human,
bottom right: buoy.
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6.2.3 Object Area

The observed area of each object in square meters is used as an extra feature in the
fully connected layer of the CNN. The real observed area is defined as the area of
the object as seen by the camera, when projected at the plane spanning the North
and East axes (NE-plane) at an altitude of zero (D = 0). See figure 6.7 for a visual
description of the observed area of an object.

Figure 6.7: The observed length, l, of an object. The observed area is the corre-
sponding feature in two dimensions.

The pinhole camera model [108] is used to calculate the observed area of the bound-
ary of each object. First, the observed area of the center pixel within the boundary
is calculated, which is then multiplied by the number of pixels within the boundary.
In order to perform these calculations, it is necessary to know the roll and pitch
angles and altitude of the camera. This data is obtained from the IMU and GNSS
data, and is represented in the form of the extrinsic camera matrix. The intrinsic
camera matrix is calculated from the camera specification. No lens distortion is
considered – due to the relatively small angle of view of the lens, the distortion will
likely be low and not affect the results in a significant way.

The observed area distributions for each object is shown in figure 6.8. It can be seen
that boats and pallets can be almost completely classified based on their observed
area (with minor overlap between pallets and humans), while there are major
overlaps between humans and buoys. This is however an artifact of this dataset
– in other datasets, buoys and boats can take on a variety of sizes. As previously
mentioned, humans can take on a wide variety of sizes due to the different poses.

The real observed area of a buoy with a diameter of 60 cm should be 0.28 m2. As
can be seen in figure 6.8, the area is biased towards higher values. One reason for
this is that a 60 cm circle can appear in 16 pixels (figure 6.9), when the observed
area of each pixel is 17.9 cm – which is the case when flying at an altitude of 200 m
with no roll or pitch using the camera system used in the experiment performed.
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Figure 6.8: Distribution of observed areas for the objects present. From top to
bottom: boats, pallets, humans, buoys.

This gives an observed area of 0.52 m2. Additionally, the motion blur sometimes
cause the object to appear larger than it really is.

Figure 6.9: A buoy with a diameter of 60 cm can appear in 16 pixels, when the
observed width and height of each pixel is 17.9 cm.

6.3 Convolutional Neural Network

Traditionally, supervised learning based image analysis combines feature extrac-
tion with classical machine learning methods [141]. Convolutional Neural Network
(CNN) is an alternative trend for image classification that has been proven to
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Figure 6.10: CNN architecture. If the Estimated Object Area is used, one more
element is added in the flatten layer, resulting in an output of 3.376 elements.

produce high accuracy in image classification tasks [146] without requiring any
task-specific feature engineering [97]. It is considered the most successful machine
learning model in recent years [78] and the most eminent method in computer
vision [26], in part because it consists of a powerful image feature extractor [10].

A CNN is based on neuroscience research about the processes that mammalian
visual cortex uses to recognize images [46]. Typically several basic stages compose a
CNN. Each stage consists of concatenation of convolution, normalization, activation
(nonlinear), and pooling layers [145]. In this work, two distinct architectures were
used. The difference between them was the employment of the observed object area
as an input of the fully connected layer.

6.3.1 Architecture

Regarding the architecture (see Figure 6.10), the proposed network starts with an
input layer containing the image window. This layer is followed by the convolution
layer which produces 30 feature maps from filters of size 5×5. The convolutional
layer has a set of learnable filters called kernels. By the convolution between one
kernel and a chunk of values from the layer, a feature map is generated, which
consists of a presence representation of a specific feature in the image. The next
layer is a max pooling with a filter of size 2×2, whose purpose is extracting the
hierarchical features of the input image [88]. It works by mapping the bigger value
from a 2×2 chunk to only one value in the next layer. Pooling helps to make the
representation approximately invariant to small translations of the input [46]. This
function is also responsible for reducing the width and the height of the feature
map. Reducing this dimension, the computational demand is reduced due to the
reduction of the number of parameters, which helps to avoid over-fitting. Then, it
comes another convolution layer with 15 feature maps of size 3×3, and finally one
more max pooling layer composed by 2×2 filters.
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The next layer is a flatten layer used to adjust the tensor dimensions to the fully
connected layers. At this point, the two architectures become different. One network
has the estimated object size as an input and the other one does not. Then, it
follows 2 fully connected layers composed respectively by 128 and 50 neurons using
the rectifier activation function. The last fully connected layer is used to provide
the predicted classification, using the softmax activation function. This is the most
common solution for the regulation of the output values within the range from
0 to 1 [87], which assigns a multinomial probability distribution to the output
vector [153]. It enhances the discriminative modeling power of the CNN, providing
the probability of the input to belong to each possible class, namely: boat, buoys,
human or pallet.

6.3.2 Dropout

One technique widely used to improve the performance and avoid the over-fitting
(which is often a serious problem for a CNN [149]) is the dropout. The term
“dropout” refers to dropping out units (hidden and visible) in a neural network
during the training phase. By dropping a unit out, it means temporarily removing
it from the network in the current epoch, along with all its incoming and outgoing
connections [130].

The dropout parameter controlled in this chapter was the independent probability
of deactivating a neuron. This parameter was tested with 2 values: 0.2 and 0.5.

6.3.3 Cross-validation

In order to evaluate the generalization capacity of the classifiers, it is preferable
that the dataset used in the evaluation process is different from the one used
during the training process. Typically, the formation of the training and test set
is based on non-repetitive sampling techniques, such as the k-fold cross validation
method [118]. Cross-validation is a robust statistical technique for estimating the
true risk function [5] (or the generalization error), the most important operational
performance metric of a trained network [74].

In this chapter, the database is divided into five sets of equal size. During each
execution of the algorithm, one set is chosen to be excluded in the training phase,
which will be the corresponding test set. This process is repeated five times, and
the performance metric is inferred for each of the datasets that were left out of the
training process. The value of the overall performance metric will be defined by
the average of the values obtained for each of the five executions.
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6.3.4 Stopping criterion

In the neural network training phase, a stopping criterion has to be used to stop
the training of the neural network. To ensure that the training was stopped in a
way to provide an appropriate generalization, a validation based early stopping is
used in this work [107]. A small part of the training dataset is sorted out to be
used as a validation set. At each epoch, the performance index is evaluated for
the new training set and for the validation set. When the performance metric of
the validation set stops to decrease, i.e., when the training starts to over-fit, the
training is stopped.

6.4 Results

After testing the convergence for different parameters, the first CNN was chosen
and trained for the 5-folds of images in 8 bit format, without taking into consider-
ation the estimated size of the objects. The maximum number of epochs was 500
and the early stopping was set to stop the training after 50 validation evaluations
without improvements. The validation split was 0.18 and dropout was 0.50. After
doing 10 executions to get an indicative statistical performance, the average ac-
curacy was 92.0% with 0.50% of standard deviation. This result shows that the
configuration of the training algorithm was well set, so that the performances of
all executions for all folds were similar.

Figure 6.11: Accuracy for different configurations.

When using the estimated objects size as an extra input of the fully connected layer,
the resulted accuracy is higher as shown in figure 6.11 for 8 bit and 16 bit images,
achieving 92.5% and 92.1% of accuracy, respectively. Regarding the classification,
it is possible to notice that classifying between buoys and humans is a challenge
as seen in the Confusion Matrix (table 6.2). However, the use of the estimated
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object size helps the CNN to get better results (table 6.3). When looking to the
Confusion Matrix for buoys, there are fewer cases when the buoy is classified as a
human. There is even a case of a boat being classified as a pallet when the estimated
object size was not used (table 6.2).

Figure 6.12: Probability that a human is either a human (blue) or buoy (red).

Figure 6.13: Probability that a buoy is either a human (blue) or buoy (red).

The ability of the CNN to classify humans vs. buoys is further investigated in
figures 6.12 and 6.13, where the probability of each human and buoy test sample
being either a human or a buoy are shown. In the humans samples, it is possible
to notice that it is easier for the CNN to differentiate them from buoys. However,
when analyzing the classification probabilities of the buoys samples, it shows that
it is very challenging to the CNN to decide if it is a buoy or a human.

Regarding the comparison of the performance between 8 and 16 bit images, even
with the fact that the 16 bit images have more detail, the accuracy was sightly
higher for the configuration with 8 bit images. This might be caused by the reduc-
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tion of noise when reducing the bit depth, e.g., small intensity variations in the sea
surface.

Table 6.2: Confusion Matrix for 8 bit images without using object size.

Predicted
Boat Human Buoy Pallet

True

Boat 128 0 0 1
Human 0 36 18 0
Buoy 0 15 45 1
Pallet 0 0 1 145

Table 6.3: Confusion Matrix for 8 bit images using object size.

Predicted
Boat Human Buoy Pallet

True

Boat 114 0 0 0
Human 0 41 13 0
Buoy 0 7 64 0
Pallet 0 0 1 150

Images of three vessels from a different dataset (Figure 6.14) were used to evaluate
the performance of the CNNs.

The observed areas of the vessels were estimated and chosen to be 200 m2, 25 m2

and 10 m2 for the big, medium and small boat, respectively.

When using the CNN where the observed area is not used, all the three sam-
ples achieved 100% of probability of being a boat. Regarding the CNN where the
observed area is used as an input, the big and medium vessel achieved 100% of
probability of being a boat and the small vessel was classified as a pallet.

Figure 6.14: Images of vessels from an external dataset. Top left: big vessel, top
right: medium vessel, bottom: small vessel.
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6.5 Discussion

To obtain the images of the objects, the bounding boxes were defined as the smallest
box that encloses the boundary of the object. Then, the bounding boxes of all
objects were padded to the size of the largest bounding box found for the set of
objects of the same class. However, in the SAR mission, it is not possible to know
the class of the object a priori, therefore, another strategy need to be used to define
the bounding boxes. One solution could be to define a specific number of pixels
pad the boundaries of the detected object with, to ensure that the whole object
will be inside the bounding box. This number of pixels should be defined by the
altitude of the UAS when the image is being captured and also the estimated size
of the object. Thus, effects by the distance to the scene would also be mitigated.

The observed area, as well as its appearance in the thermal images, are greatly
affected by motion blur. For larger objects this does not pose a major problem, but
for objects being just a few pixels in size, the difference can be of major concern.
An actively stabilized gimbal and carefully chosen exposure times based on the
UAS dynamics could prevent this. Another mitigating solution would be to collect
a larger dataset in order to be able to properly classify objects even with motion
blur.

The major difficulty of the CNN is to properly distinguish between humans and
buoys, which is likely due to the low resolution of the thermal image sensor and
relative high altitude, resulting in the objects being represented by very few pixels
in the images. In real world maritime SARmissions, however, a buoy being classified
as a human would not be a major issue, as the operator would still be notified, and
could dismiss the notification from the CNN. Incorrectly classifying a human as a
buoy could potentially cause a missed person, but could be solved by lowering the
human probability threshold for notifying the operator.

In the dataset used in this work, all boat samples have similar observed areas.
Therefore, when evaluating the classification performance for images of vessels
from an external dataset, the result was superior when using the CNN where the
object area was not considered as an input. However, the generalization power of
the CNN containing the observed area can be improved by using a dataset with
more samples of boats of different sizes. Also, in general, it is beneficial to have
more data, especially at different angles and altitudes.

6.6 Future Work

In the mission carried out to gather the data used for this work, an Electro-Optical
(EO) camera was also equipped in the UAS to capture RGB images. However, the
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thermal and the RGB images were not obtained during the same flight, so it is not
possible to use the two images together as inputs of the same CNN.

Therefore, a future step is to develop a CNN to classify the objects in the RGB
images, as done by [27]. Then, investigating a method to use both datasets together,
for example, trying to use the results of each independent CNN multiplying the
probability of each sample to be one of the classes.

For the CNN proposed by this work, the classification of images of vessels obtained
in another mission in totally different conditions was evaluated. However, it is
important to evaluate the classification for images of humans, buoys and pallets as
well. Thus, it would be possible to estimate how well the CNN could perform in a
real mission.

Another aspect that requires evaluation is how to improve the discrimination be-
tween humans and buoys, especially in the case of buoys, where the calculated
probability of a buoy sample being a buoy is very close to the probability of being
a human. Examples of this approach would be to use an actively stabilized and
sweeping gimbal together with a lens with higher focal length, in order to get a
higher ground resolution.

6.7 Conclusion

In this chapter, the algorithm for detecting and classifying objects at the sea sur-
face in thermal camera images taken by Unmanned Aerial Systems (UAS) has been
discussed. The algorithm uses a Gaussian Mixture Model (GMM) in order to dis-
criminate foreground objects from the background in the images. Then, bounding
boxes around the objects are defined and used to train and test a Convolutional
Neural Network (CNN). The observed area of the objects was also estimated and
used as an input. The CNN was evaluated using the k-fold method with 5 folds
and achieved an average of 92.5% of accuracy. Images of vessels from an external
dataset were also evaluated and all of them achieved 100% of probability of being
a boat when using the CNN where the observed area was not used. The results and
the robustness of the CNN algorithm prove it to be a useful tool to assist maritime
SAR operations, and be a central part in a future fully autonomous UAS operation
in SAR missions.
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Chapter 7

Concluding Remarks and
Recommendation for Future Work

In this thesis, the accuracy of optical imaging systems mounted on sUAS have been
analyzed, with a special focus on sUAS operations in maritime environments.

The thesis research body starts off by introducing problems that arises with a
volatile and vibrating camera platform (i.e. a small UAS) in chapter 2. The main
sources are vibration are presented, along with suggestions on how to solve them
by choosing the right camera and optics, or software that is either dependent or
independent of additional sensors. This research forms the foundation for selecting
a suitable camera, as the camera requirements and limitations (such as weight and
exposure time) are partly set by the capabilities, vibrations and movements of the
sUAS platform.

Chapter 3 presents an algorithm for improving the accuracy in camera image geo-
referencing applications. The algorithm works by estimating the attitude of the
camera by matching a horizon detected in the camera image with a horizon syn-
thetically generated from a Digital Surface Model. It achieves record accuracy in
the roll, pitch, and yaw angles, while running in near real-time. The chapter also
serves as a statement of the geometrical performance and capabilities of camera
systems, which aids in the camera component selection and performance estima-
tion.

Chapter 4 uses in part the algorithm presented in the previous chapter in order to
estimate the size and shape of ice-floes in a mission taking place in the Bothnian
bay in Northern Europe. The chapter presents a method for estimating the size of
individual ice-floes using alpha shapes, as well as a metric to evaluate the accuracy
of the size estimation. The method showed that the size and shape of ice-floes can
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be accurately estimated even at very steep angles, which shows the high spatial
accuracy of camera systems.

In Chapter 5, data from an experimental mission is used to evaluate the detectabil-
ity of objects commonly present in maritime surveillance missions. The sensors used
for the evaluation was a thermal infrared camera and a visible-light camera, where
the detectability was based on edge detection performance. The chapter concludes
that the objects can be detected fairly robustly when the smallest dimension of the
object allocates at least three pixels in the camera images. When the objects are
smaller in the image plane, the scene noise makes object detection difficult. This
shows the importance of not only understanding the camera system performance
and noise, but also the scene properties such as noise.

Chapter 6 extends the previous chapter by attempting to classify the objects de-
tected in the thermal infrared camera images. The method uses a Gaussian Mixture
Model to first segment the image into foreground and background, and then a Con-
volutional Neural Network to classify the objects found. The algorithm achieved
an accuracy of 92.5%. The objects that proved difficult to classify were humans
and buoys, which in many cases just occupied a few pixels in the image plane, and
would also be difficult for a human to classify without any additional information.
This problem of low resolution could be solved by flying at a lower altitude, by
using a higher resolution camera, or by using a larger focal length.

The main activities of recommended future work are grouped as the following.

• Camera system simulations: In order to easier predict how a camera sys-
tem will perform, the camera system could be simulated beforehand. Models
such as Modulation Transfer Function [14] and image sensor noise models
described in e.g. [40] can be used to give a good indication of the camera
system performance. An important factor in the simulation would be to find
a suitable scene simulation engine. For this, an evaluation of game engines
and databases of high quality (low noise and high resolution) camera images
could be done to find the most accurate and flexible scene simulation method.
Other factors such as blur caused by camera motion could also be included
in such simulation in order to find a suitable camera stabilization platform.

• Attitude estimation: The attitude estimation algorithm presented in this
thesis is shown to be highly accurate, and using it gives enough accuracy
to e.g. estimate the shape of ice-floes at very slant camera-to-object angles.
However, it lacks robustness, and low visibility or a difficult to segment cam-
era image can render it useless part of the time. In order to circumvent this
limitation, a complimentary method could be used to estimate the attitude
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when the camera-based attitude estimate is not available. This could be done
by e.g. using a Bayesian filter such as the Kalman filter or a particle filter to-
gether with data from an IMU. Such system could also calibrate the IMU, and
provide a better starting point for the camera-based attitude estimate. An-
other improvement would be to use a more robust horizon detection method.
This could be more recent improvements in image processing or using ma-
chine learning methods.

• Multi-camera object classification: In Chapter 6, research was done on
the classification of objects commonly present in maritime search-and-rescue
missions. It proved that object classification is fairly dependent on the objects
having a high enough resolution. High resolution thermal infrared cameras
can be very costly, so future work could be to solve this problem. One solution
could be to reduce the altitude of the UAV when an object has been detected.
This would allow the thermal infrared camera to capture higher resolution
images of the object that has been detected, but may not be possible due
to air space restrictions. Another solution could be to use two cameras: one
thermal infrared, which has the benefit of easily detecting objects at the sea
surface; and one visible-light camera which commonly has a much higher
resolution.
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Appendix A

Autonomous Unmanned Aerial
Vehicles in Search and Rescue
missions using real-time cooperative
Model Predictive Control

Unmanned Aerial Vehicles (UAVs) have recently been used on a wide variety of
applications due to their versatility, reduced cost, rapid deployment, among other
advantages. Search and Rescue (SAR) is one of the most prominent areas for the
employment of UAVs in place of a manned mission, specially because of its limi-
tations on the costs, human resources, and mental and perception of the human
operators. In this chapter, a real time path-planning solution using multiple co-
operative UAVs for SAR missions is proposed. The technique of Particle Swarm
Optimization is used to solve a Model Predictive Control problem that aims to
perform search in a given area of interest, following the directive of international
standards of SAR. The solution is able to be embedded in the UAVs on-board com-
puter, using the Ardupilot autopilot and DUNE, an on-board navigation software.
The performance is evaluated in a software-in-the-loop environment with the JS-
BSim flight dynamics model. Results show that when employing three UAVs, the
group reaches 50% of Probability of Success 2.25 times faster than when a single
UAV is employed.

A.1 Introduction

Over the last years, Unmanned Aerial Vehicles (UAVs) are becoming an important
and indispensable tool in a wide variety of applications due to their versatility, low
cost, rapid deployment, among other advantages.
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Search and Rescue (SAR) is one of the fields where the employment of UAVs brings
many advantages over manned missions, such as its reduced costs, lower use of hu-
man resources, and mental and perception limitations of human operators. [122]
was one of the first works to perform experimental tests of a complete autonomous
single UAV SAR solution. A probability density function (PDF) that expressed
the likelihood of the target’s location was one of the main inputs of the system.
Video data from the UAV was transmitted to the ground station, that processed it
in real time using computer vision techniques to detect the presence of the target
and update the PDF. Paths were generated by the ground station to maximize
the probability of finding the targeted object. The experimental flights showed
satisfactory results in searching and detecting the target. The main necessary im-
provements identified by the authors were to implement on-board computing and
to use multiple UAVs in the future.

Search and Rescue missions with autonomous UAVs are usually defined as an ex-
ploration problem. Exploration approaches can be used in a wide range of applica-
tions. For example, ice management, such as proposed by [55], where a Centralized
Model Predictive Search Software was used for surveillance and tracking of ice
using multiple UAVs. In this reference, the optimization finds a set of optimal
waypoints that are sent to the autopilot. The solution was tested in a Software-
In-The-Loop environment and the results were evaluated for a different number
of UAVs. A broad literature review about the persistent surveillance problem was
done by [98] focusing on the use of multiple UAVs. Persistent surveillance is a
type of exploration problem where the areas must be revisited over time. Among
the many topics that the literature review covers, grid decomposition and path-
planning techniques are the ones of the most interest for this work. The author
reviews the most common types of grid decomposition classifying the rectangu-
lar one, that is also used by the enhanced solution proposed by this chapter, as
the most popular. Regarding the path-planning techniques, the author states that
the most common methods are classical search methods such as A* [67], decision
theoretic methods such as Mixed Integer Linear Programming (MILP) [42], and
Spanning Tree Coverage (STC) methods [43]. Model Predictive Control (MPC) is
mentioned as a topic less studied compared to the other planning techniques, but
with significant advantages because it directly incorporate dynamic constrains, it
is less heuristic and can react to changes in the environment.

Model Predictive Control [22] is a receding horizon control technique where the
motion constraints are integrated to the control problem, which is particularly
interesting for problems with fixed-wing UAVs. Also, as the optimization is done
for a finite time horizon, the technique is proper for real-time problems where the
environment can dynamically change during the mission execution. In [128], MPC

118



A.1. Introduction

was used for sea Search and Track (SAT) missions using an autonomous UAV.
Hardware-In-The-Loop tests were performed. Waypoints were optimized and sent
to the autopilot. Gimbal attitude was also optimized and sent to the servo system.
The MPC optimization was not run on-board but on a dedicated computer in
the ground control station. In [29], a cooperative multiple UAV solution using
MPC was used to close the communication link between a moving Autonomous
Surface Vehicle and the ground station. Each UAV had to minimize a local cost
function that took into consideration the planned states of the adjacent UAVs. In
[32], a multiple UAVs receding horizon strategy was proposed for a cooperative
surveillance problem. A potential field method was used for collision avoidance
and network topology control management. The cooperative searching model was
established based on the detection probability of the UAVs on targets in cells.
In addition, a forgetting factor was included to indicate how fast the detection
efforts are forgotten, so the UAVs can revisit the areas that were searched before.
Simulations for different parameters were compared. Also, the performance of the
proposed method was compared to the performance of a parallel sequence search.
In [138], a multi-vehicle cooperative search solution was proposed using MPC.
Decoupled, centralized, cooperative and greedy approaches were compared.

In this chapter, a multiple UAVs cooperative Nonlinear Model Predictive Control
solution to search a given area is proposed. The coordinated turn vehicle model is
implemented considering the effects of wind. The search area is divided into cells
and each cell has an associated reward, that in this work is defined according to the
international Search and Rescue directives. The algorithm is fully implemented in
an embedded system to run in the UAV on-board computer and interfaced to the
flight controller board. A Software-In-The-Loop (SITL) environment with flight
dynamics simulations is used to test the solution.

As mentioned, research about the use of receding horizon techniques for exploration
is limited. Also, the solutions found in the literature are developed with simplified
vehicle models, in which the effects of wind are not considered either. In addition,
the solutions are only simulated in environments without embedded programming
restrictions and where vehicle dynamics are not simulated. This makes results not
close enough to what is expected from real-life applications. Implementing the solu-
tion in an embedded software for real-time applications brings additional challenges
such as communication delays, processing time, actuator limitations, among others.
This chapter contributes to the field by filling this gap in the literature.

The main contents of this chapter are the following. First, the exploration Model
Predictive Control problem is detailed including a coordinated turn kinematic
model that takes the wind into consideration. Second, a finite time horizon grid
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search cost function with cells rewards and terminal cost is proposed. Third, the
algorithm is fully implemented in an embedded software and tested in a real-time
SITL environment that also simulates the flight dynamics, bringing results that
are very close to reality. Forth, international SAR directives are used to define the
performance indicators and the mission scenario in order to test the solution in a
relevant case.

A.2 Optimal Control Problem

A.2.1 Coordinated Turn Model

A two-dimensional kinematic model is used based on the Coordinated Turn model
[7] [120] [109] [9] [29]. In this model, the UAV turns by changing its roll angle and
therefore there is no net side force acting on the UAV.

As wind is a major issue on UAV missions as it can likely reach more than half of
the UAV’s maximum airspeed, the Coordinated Turn model used in this project
was developed to consider the influence of wind on the UAV kinematics.

For level flight in the presence of wind:

ẋẏ
χ̇

 = f(x,u) =

 vg cosχ

vg sinχ
g
vg

tanuφcos(χ− ψ)

 , (A.1)

where g is the gravitational acceleration of 9.81 m/s2, x = (x, y, χ) are the north
and east positions in the NED frame in [m] and the course angle in [rad], respec-
tively. u = (uv, uφ) are the airspeed control input in [m/s] and roll control input
in [rad], respectively, and with the ground speed (vg in [m/s]):

vg =
√

(uv cosψ + vw cosψw)2 + (uv sinψ + vw sinψw)2, (A.2)

where vw is the wind speed in [m/s], ψw is the wind heading in [rad] and with the
aircraft heading (ψ in [rad]) calculated using the law of sines:

ψ = χ− arcsin
(vw
uv

sin (ψw − χ)
)
. (A.3)

The model is discretized by the forward Euler method:
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xk+1 = fd(xk,uk) = xk + Tsf(xk,uk), (A.4)

where Ts is the sampling period.

A.2.2 Model Predictive Control Problem

To reach the mission goal, a centralized optimization approach might not be feasible
because the problem would be too complex with too many control inputs. In a non-
convex problem with a very long vector of variables to optimize, falling very early
in a local minima is a common issue. In addition, the necessary processing power
to optimize so many control inputs would be difficult to achieve by the on-board
processing unit of the UAV. In the other hand, optimizing the controls of all UAVs
in a ground station would not be an ideal solution, due to communication range
limitations and because that in case of a communication failure, the UAVs would
not receive its controls, which could compromise the mission.

Therefore, in this research, the problem is addressed as a cooperative control prob-
lem, where each UAV optimizes its own control inputs to update its state so that
a local cost function is minimized. The cost function also takes into consideration
the planned states of the other UAVs. As each UAV follows the same process, it is
expected that the global mission goal is achieved cooperatively. Collision avoidance
between UAVs is also considered.

Considering I UAVs (xi,∀i ∈ {0, ..., I − 1}), the algorithm finds a control input se-
quence U ik = {ui0,ui1, ...,uiK−1} ∈ R2×K for the ith UAV, which solves the following
optimal control problem:

minimize δ(Cx̄K) +

K−1∑
k=0

Li(Cx̄k,uik) (A.5)

subject to xik+1 = fd(xik,u
i
k), (A.6)

vamin ≤ uivk ≤ vamax , (A.7)

φmin ≤ uiφk ≤ φmax, (A.8)

|C(xik − xjk)| > rc,∀j ∈ {0, ..., I − 1}\{i}, (A.9)

where

δ(x̄K) = F (CxK)− aJ(Cx̄K), (A.10)
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and

Li(Cx̄k,uik) = aJ(Cx̄k) + b(uivk − u
i
vk−1

)2 + c(uiφk − u
i
φk−1

)2. (A.11)

Consider uv−1
and uφ−1

as the commanded airspeed and roll angle, respectively,
in the previous optimization loop, x̄k = [x0

k, ...,x
I−1
k ] as the states of all UAVs,

K as the number of horizon steps and rc as the minimum safe distance between
the UAVs to avoid collision. a, b, c are constant weighting factors and C ∈ R2×3

is used to define that only the x (north) and y (east) positions are used from the
state vector:

C1 =

[
1 0 0

0 1 0

]
. (A.12)

The function J represents the grid search function, which is the sum of the rewards
of unvisited cells. F is the terminal cost (cost-to-go) function, which is the distance
from the terminal position to the unvisited cell with highest reward. Both functions
are described in detail in Section A.4.

A.3 SAR directives applied to UAVs equipped with remote
sensing

The Search and Rescue (SAR) consists, according to the Department of Defense
(DoD) of the United States of America, in "the use of aircraft, surface craft, sub-
marines, and specialized rescue teams and equipment to search for and rescue
distressed persons on land or at sea in a permissive environment" [101]. This work
focuses on the sea cases, therefore, the following description emphasizes sea SAR
missions. Also, as only Unmanned Aerial Vehicles (UAVs) are used in this work,
only the directives for aircraft facilities are studied.

A.3.1 Search Area

According to the International Aeronautical and Maritime Search and Rescue
(IAMSAR) Manual [65], the Total Adjusted Search Area (At), which is the mis-
sion’s actual search area, is calculated based on the Total Available Search Effort
(Zta), the Optimal Search Area (Ao) and the targeted Probability of Detection
(POD). The first is a measure of the total area that a set of search facilities can
effectively search within limits of search speed, endurance, and sweep width. The
second is the search area which will produce the highest probability of success
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when searched uniformly with the search effort available and is essentially calcu-
lated based on the leeway and the Datum probable position error. Leeway is the
the movement of a search object through water caused by winds blowing against
exposed surfaces and Datum is a geographic point, line, or area used as a reference
in search planning, such as the "Last Known Position" or the "Estimated Incident
Position".

If the Total Available Search Effort (Zta) is smaller than the Optimal Search Area
(Ao), a strategy must be chosen to balance the Probability of Detection (POD)
and the Total Adjusted Search Area (At). Usually, the chosen strategy is to fly on
higher altitudes, increasing the sensor’s footprint or the crew’s field of view while
decreasing the POD. However, in this work, as UAVs equipped with automated
remote sensing are assumed to be used, resolution requirements usually can not
be relaxed. Therefore, no trade-off between the POD and the search area is made
and the POD is set to its maximum value of one, which makes the Total Adjusted
Search Area (At) equal to the Total Available Search Effort (Zta).

In order to calculate the Total Available Search Effort (Zta), the sweep width (W )
must be defined. When employing UAVs equipped with automated remote sensing
in such missions, the sensor being used has a direct influence on this parameter.
Altitude, view angle and image quality may affect the capability of identifying a
survivor or an object on the sea. This is specially important to be taken into account
because if the image does not contain the object of interest properly recorded, the
computer vision algorithm will not identify it, independently of the ability that
the algorithm has on identifying an important occurrence on an image. This can
occur due to low image quality or too long sensing distances, making the object of
interest imperceptible.

In the IAMSAR manual, the sweep width is calculated based on the altitude of the
aircraft, the visibility and the sensor system specifications. In SAR sea missions
with aircraft facilities and visual search, the Corrected Sweep Width (W ) is ad-
justed regarding the weather, velocity and crew fatigue correction factors. However,
these factors can be excluded from the equation when automated remote sensing
systems are used and the system’s velocity constraints are respected. Therefore,
in this work, the Corrected Sweep Width (W ) is considered equal to the original
Uncorrected Sweep Width (Wu).

Finally, the Search Effort (Za), which represents the area which can be covered by
a specific facility, is calculated by:

Za = V × T ×W, (A.13)
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where V is the Search Facility Speed (average speed) in [m/s], T is the Search
Endurance in [s] and W is the Sweep Width in [m].

Note is that the Search Endurance is the time available for the facility to fly looking
for the survivors. The IAMSAR manual considers this time as 85% of the lower
value between the Daylight Hours Remaining and the On-Scene Endurance. This
is due to the fact that human crew is often only able to search with visible light.
Despite of it, UAVs are often capable to equip sensors that are not affected by that,
such as infrared cameras, which allows the task to be held even along the night. This
is a considerable advantage of using UAVs equipped with remote sensing systems.

By summing the Search Effort of all facilities, the Total Available Effort (Zta in
[m2]) can be found:

Zta =

F∑
f=1

Zaf , (A.14)

where F is the number of facilities.

As described above, in this work the Total Adjusted Search Area (At) is equal to
the Total Available Effort (Zta). Therefore, for Single Point Datum, the Length and
the Width of the search area are given by the square root of the Total Available
Effort (Zta) as defined by the IAMSAR manual.

A.3.2 Probability Map

The Probability of containment (POC) distribution in the search area is very im-
portant to guarantee an efficient employment of the SAR facilities. When the initial
indications do not provide enough information about the area, a standard distri-
bution is assumed. The two most used types of standard distributions are the
standard normal distribution and the uniform distribution, according the nature
of the datum. For datum point and lines, the standard normal distribution is used.
For datum areas, the uniform distribution is the most used. In this work, only the
single point datum is studied. Single point datum occurs, for example, when there
is no significant leeway (e.g. when the target is a person in water [19]).

The probability map is a set of grid cells where each cell is labelled with the prob-
ability of containing (POC) the search object in that cell. As the the probability
map follows a probability distribution function, the total sum of all cells should be
equal to 100%. An example of probability table for single point datum with 12×12

cells is shown in Figure A.1:
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Figure A.1: Initial probability table. Source: IAMSAR Manual

A.4 Cost Function

An exploration cost function was developed based on [138] to search a given area.

The region of interest is divided into M × N square cells of a width (re in [m]),
which value must be chosen to be smaller than the optical imaging sensor’s footprint
radius (Re in [m]) times the square root of 2. The sensor radius is equal to the radius
of the circle inscribed in the sensor’s footprint. Figure A.2 shows an example of a
4× 4 grid with 100 m of cell width (re) and a UAV at position Cx equipped with
a sensor with 100 m of radius (Re).

The matrix Bi ∈ RM×N is used to identify if a cell was visited by the ith UAV.
The matrix bi ∈ RM×N is used to identify if a cell is planned to be visited by the
ith UAV in the MPC horizon. In every M ×N matrix used to identify if the cells
are visited, each element has an associated value of 1 if the referring cell is visited
or 0 if it is unvisited. Each cell has also an associated reward, given by φ ∈ RM×N .

The function J(x̄k) is the sum of all cells associated value (1 or 0) in the step k
times the correspondent reward:

J(x̄k) =

M−1∑
m=0

N−1∑
n=0

φmnymnk(x̄k), (A.15)

with

ymnk(x̄k) =(‖Cxk − r1mn‖< Re ∧ ‖Cxk − r2mn‖< Re∧
‖Cxk − r3mn‖< Re ∧ ‖Cxk − r4mn‖< Re) ∨ ymnk−1

,
(A.16)
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where r1mn, r2mn, r3mn and r4mn are the four vertices of the cell (Figure A.2) and
ymnk−1

is the associated value of the cell in the previous horizon step.

Figure A.2: Cells grid example.

The starting value of ymn0
is given by the logical sum of the matrices of already

visited cells of all UAVs and the matrices of cells planned to be visited by other
UAVs:

ymn0
= Bi

mn ∨B
j
mn ∨ b

j
mn,∀j ∈ {0, ..., I − 1}\{i}. (A.17)

Finally, F (xK) is the terminal cost. This function is necessary for the algorithm to
consider the search beyond the prediction horizon by having a cost-to-go term. It
is given as the minimum euclidean distance from the latest state of the UAV in the
horizon, to the center of the closest unvisited cell, weighted by the correspondent
reward, in the end of the horizon:

F (CxK) = min
∀m∈O,∀n∈P

‖CxK − rmnK‖
φmn

, (A.18)

where O ⊆ M and P ⊆ N are subsets of all unvisited cells and r = [x, y] are the
north and east positions of the cell’s center.

A.5 Embedded System

The path-planning algorithm was implemented as a task in DUNE: Unified Naviga-
tion Environment [104]. DUNE is a software framework that allows the operation
of a wide variety of robots using the same environment. This facilitates the devel-
opment because the communication between DUNE and the different control units
is transparent to the user.
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Regarding the communication with the UAV control unit, it connects DUNE and
the Ardupilot [2] autopilot via MAVLink Micro Air Vehicle Protocol [3]. To com-
mand the Ardupilot, the task must dispatch a message with the desired command,
which will be interpreted by DUNE’s Ardupilot control task and then sent to the
Ardupilot via MAVLink.

The communication between DUNE tasks is done via the IMC: Intermodule Com-
munication API protocol [104], which is also part of LSTS’ toolchain. This protocol
basically works by dispatching and consuming messages. So, if a message is dis-
patched by a task, another task that is waiting for that message will consume
it.

Figure A.3: Simplified embedded system block diagram.

Figure A.3 shows a simplified block diagram describing how the embedded system
blocks are associated. DUNE communicates with the Ardupilot via MAVLink and
with other UAVs and ground station via IMC. The systems must be in the same
network and IP addresses and TCP and UDP ports must be configured.

Inside DUNE resides the MPC task, which is outlined at Figure A.4. The com-
mands to control the UAV are given by the DesiredSpeed and DesiredRoll IMC
messages, which carry, respectively, the airspeed and roll control inputs given by
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Figure A.4: Simplified DUNE block diagram.

the optimization. These messages are interpreted by the Ardupilot control task,
that sends the correspondent MAVLink message to the Ardupilot. The Ardupilot
control task is also responsible for receiving the pose and attitude information of
the UAV and to dispatch it in the IMC messages EstimatedState and Indicated-
Speed. These messages are consumed by the MPC task to be used as the current
state of the UAV.

The communication between the UAVs is done by the multiagent message, which
was created and included in the IMC messages list specifically for this application.
This message carries the information that the UAVs need to share, such as planned
control inputs and current state.

Each UAV waits for the multiagent messages from all other UAVs before running
the MPC optimization. Once all messages are received, the optimization is done
and then the UAV dispatches its multiagent message containing all information
that need to be shared with the other UAVs. This flow is described in Figure
A.5. It is important to mention that the UAV states are predicted according to
the communication and MPC delay and to the planned control inputs before being
used by the MPC algorithm. Therefore, the control inputs that are obtained by the
MPC optimization and sent to the Ardupilot correspond to the predicted state that
is expected to be close to the real state of the UAV after the MPC optimization.

Note that, in an extension of the method, measures can be employed to protect the
system from communication failures, so that the UAV does not wait for delayed
messages for too long.
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Figure A.5: UAV agents flowchart.

A.5.1 Optimization Technique

In this application, the Particle Swarm Optimization (PSO) [35] technique is used
to find an optimal set of airspeed (uv) and roll angle (uφ) that minimizes the cost
function. PSO, which is described in the Appendix, is a meta-heuristic optimization
method where the particles (solutions) are updated every iteration based on the
best global and local solutions. In this application, a standard PSO algorithm was
implemented using CUDA C programming language in order to benefit from the
parallelism of the Nvidia Graphics Processing Unit that is assumed to be used in
the UAV on-board computer.

The algorithm was set to run a fixed number of iterations on every loop. In addition,
the number of particles must be defined. These two parameters affect the processing
time and need to be fine-tuned according to the requirements.

The initial solutions are initiated with random values following the uniform dis-
tribution, where the minimum and maximum values are the defined boundaries of
the airspeed and roll angle control inputs.

A.6 Software-In-The-Loop environment

To evaluate the proposed solution, a Software-In-The-Loop (SITL) environment
was set up. In this environment, the original Ardupilot and DUNE embedded
software are used. The aircraft platform is simulated by JSBSim [11], an open
source Flight Dynamics Model. Therefore, it is able to compute the UAV dynamics
according to the actuator controls of the Ardupilot.

The JSBSim was modified to use in its calculations the same wind map that is
used by the MPC optimization. Also, an aircraft platform model must be chosen
for JSBSim flight dynamics calculations. In this work, the X8 UAV (Figure A.6)
model [48] was used.
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Figure A.6: X8 UAV. (Source: NTNU)

Figure A.7 shows the interconnection between modules. For each UAV, an Ardupi-
lot SITL instance must be started linked to a JSBSim module. Each Ardupilot
instance uses a different TCP port. Therefore, one DUNE module must be started
for each UAV, set with the correspondent TCP port. Finally, Neptus [104], a com-
mand and control software which is also part of the LSTS’ toolchain, is used to
visualize the UAVs telemetry and location and to give commands to the UAVs,
such as take off, loiter and to start/stop the Search and Rescue mission.

Figure A.7: Software-In-The-Loop setup.

A.7 Mission Simulation Scenario and Parameters

In this section, the parameters that define the mission scenario are described.

A.7.1 Aircraft platform

In this work, the Skywalker X8 UAV (Figure A.6) was chosen to be the aircraft
platform. The X8 is a battery powered small UAV which can fly for around 80
min with the automated remote sensing payload and proper battery. The radius
of the remote sensor is equal to 200 m, which is half of the width of the sensor’s
footprint. This footprint was chosen assuming that a computer vision algorithm,
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such as the one described in the Appendix (same as in [116]), can detect the target
in images captured at 400 m of altitude by an infrared camera with 7.5 mm of lens
focal length, 640× 480 pixels of resolution and 17 µm of pixel size.

A.7.2 Search Domain

The reference search area used in this work is equivalent to the Search Effort (Za)
of one X8 UAV, calculated by Equation A.13. Considering the total endurance of 80
min, the On-Scene Endurance (T ) is equal to 60 min (85% of the total endurance).
The Search Facility Speed (V ) is equal to the average airspeed of the aircraft, in
this case 16 m/s. The Sweep Width (W ) is equal to 400 m, which is the lateral
length of the required sensor footprint. Therefore, the search area is equal to 23.04
km2, which gives a length and width equal to 4.8 km as the area has a squared
shape because the datum is a single point.

A.7.3 Cells Grid

The grid was built with a cell width of 100 m. Therefore, the 23.04 km2 were
divided into 48× 48 cells.

A two dimensional normal distribution curve was fitted to the single point datum
reference table provided by the IAMSAR manual (Figure A.1).

The fitted curve of the probability (Figure A.8), that gives the reward of each cell
is given by:

φmn = 0.002946 exp
(
−
( (m− 23.5)2

108.28
+

(n− 23.5)2

108.28

))
(A.19)

where m and n are the horizontal and vertical indexes of the cell, respectively.

A.7.4 MPC Parameters

The boundaries and constraints of the control problem were chosen as follows.

The airspeed range was chosen to be between 12 to 22 m/s. The reason for this
choice was to keep the airspeed around the cruise speed, so that the battery con-
sumption does not get too high. The roll angle range was chosen to be between
-45 and 45 degrees so that the aircraft performs smoother maneuvers but still with
freedom. The safe distance between UAVs was chosen to be 100 m and a wind of
9.9 m/s pointing to 45 deg was considered both in the optimization and in the
flight dynamics simulation.
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Figure A.8: Reward of cells.

The time horizon of 20 s and 20 horizon steps were the parameters chosen for the
MPC problem. With, for example, a ground speed of 17 m/s, this means 340 m
of straight distance, or a 180 deg turn. The weighting factor a was chosen to be
10000, because the rewards are of a very low value (the sum of all cells rewards is
equal to one). The weighting factors b and c were chosen to be 0, so the algorithm
does not consider the airspeed and roll angle constraints for aggressive maneuvers.
Therefore, the algorithm is free to only consider the search performance in the
optimization.

Regarding the PSO parameters for the optimization, a total of 384 particles was
used and the algorithm runs 35 iterations with local and global coefficients of 1.

A.7.5 Simulation platform

With these parameters, each UAV is able to run the optimization in around 400
ms when 3 UAVs perform the optimization at the same time. The optimization
algorithm was written in CUDA C programming language in order to benefit from
the parallelism, with the goal to embedded it on a NVIDIA Jetson board in the
future for field tests.

The simulations were run in a laptop with the NVIDIA 940MX graphics card,
which has around five times processing power more than the NVIDIA Jetson TX2,
according to performance tests available in the manufacturer’s website. Therefore,
it is expected that the embedded board will also be able to run the optimization
at 400 ms with just a fine tunning of the parameters. Another possibility is to
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implement a optimization stopping feature that will run as many iterations as
possible within a given time, instead of a fixed number of iterations.

It is also relevant to mention that the optimization time was adjusted to 400 ms
also when using only one or two UAVs. This was done by inserting a delay, so the
optimization time in each UAV is the same for simulations when one, two or three
UAVs are used. Therefore, this gives a fair comparison of the results.

A.8 Results and Discussion

Three operational profiles were evaluated for the mission scenario: employing only
one UAV; employing two UAVs; or employing three UAVs. Five missions were
executed for each one of the profiles in order to obtain the average performance.

The reference search area was the Total Adjusted Search Area (At) for one UAV
facility and Probability of Detection (POD) equal to 1, as described in the previous
sections.

The area was kept the same when employing two or three UAVs in order to allow
a proper performance comparison between the profiles. Figure A.9 illustrates one
mission with three UAVs being monitored by the Command and Control software
Neptus. The light red area is the search area and the dark red cross in the middle
is the single point datum.

Figure A.9: Snapshot of a mission with 3 UAVs being monitored with Neptus.

In all missions the UAVs departed from the same region (southeast of the search
area as shown in Figure A.10) where they were loitering and waiting for the com-
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mand. After receiving the command, the UAVs departed to the search area and the
mission time started to count from when the first UAV collected the first reward.

Figure A.10: Snapshot of the beginning of a mission.

The IAMSAR manual describes the Probability of success (POS) as the probability
of finding the search object with a particular search. For each sub-area searched,
POS = POD × POC. It is therefore the way to measure search effectiveness. As
the Probability of detection (POD) is kept at 1, the POS is equal to the POC of
the searched area, which in this work is the sum of all rewards collected by the
group of UAVs.

The boxplot of the time to reach 50% of POS is shown in Figure A.11 for the three
operational profiles: employing one; two; or three UAVs. It is possible to notice
that the gain when a pair of UAVs is used is very significant when compared to
the single UAV profile, reaching 50% of POS 75% faster. When adding a third
UAV, the gain was less significant: on average, the group reached 50% of POS 28%
faster than when employing a pair of UAVs. The decrease on the gain is probably
due to the fact that the UAVs are often flying over areas that have already been
flown. A possible solution to avoid this situation is to reduce the width of the cells,
increasing the resolution of the grid. Therefore, the UAVs would better tune their
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maneuvers and still have the cells inside the UAVs’ sensor radius. However, this
will increase the required computational power. This issue could be mitigated by
optimizing the algorithm, for example.

Figure A.11: Time to reach 50% of Probability of success (POS).

Figure A.12 shows the average POS during 20 min of mission. It is possible to notice
that the results match the observed behavior when the missions were monitored.
From the mission start to around 4 min the UAVs fly to the area close to the
datum, where the reward (Probability of containment) is higher. When two UAVs
are employed, they fly parallel so that they cover more cells than when employing a
single UAV. However, when three UAVs are employed, even if they form a parallel
path, they fly close to each other and, therefore, do not visit more cells than the
pair of UAVs. This happens because in case the three UAVs get far enough from
each other to not visit the same cells, they would take a longer path to arrive at
the central area (highest rewards), not being a cost beneficial solution.

After reaching the area close to the datum at around 4 min, the curve of rewards
collection grows steadily and the difference between the three operational profiles is
clear. When three UAVs were employed, the group reached 50% of POS 2.25 times
faster than the single UAV. The gain, however, reduces over time. For example, to
reach 65% of POS, the group of three UAVs did it 2.04 times faster than the single
UAV. The reason of the decrease on the gain is that the more cells are already
visited and rewards collected, further the UAVs have to fly to visit new cells and
collect new rewards (that are also lower in value). Therefore, the closer it is to
the end of the missions, smaller is the difference between the performance of the
different operational profiles.
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Figure A.12: Average Probability of Success in time.

Figure A.13: Probability of success (POS) in 20 minutes of mission.

Figure A.13 shows the boxplot of the POS after 20 min of mission for the three
operational profiles. According to the IAMSAR Manual calculations, the single
UAV is expected to reach 100% of POS in 60 min. It is possible to notice that the
group of three UAVs is able to reach close to 90% of POS in 20 min, showing that
the improvement of adding extra UAVs is approximately linear.

Finally, a pre-made path where the UAV flies from the origin to the grid midpoint
then flies a spiral path was created (Figure A.14) in order to compare to the
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performance of the single UAV with the real-time MPC optimization. This spiral
path is close to the standard path suggested by the IAMSAR Manual.

Figure A.14: Spiral path.

In the spiral path, the lanes are equally spaced allowing the best coverage by the
sensor’s footprint. This would be the best possible simple standard path for the
mission scenario being investigated. Also, the UAV is assumed to first fly to the
center of the area and then start the spiral path.

Figure A.15 shows that for the same average airspeed of 15.5 m/s, the performance
of the MPC path-planning was superior in the first 20 minutes of mission. Also, in
the spiral path, 50% of POS was reached in around 13 min, while it took less than
11 min when the MPC optimization was used.

In the spiral path, wind was not considered and the UAV keeps the ground speed
constant, while in the MPC path-planning the UAV optimizes its speed to reach
higher coverage, for example reducing the airspeed to achieve a steeper turn when
needed. Another advantage, that is perhaps the most important, is that the MPC
solution has the capability to deal with dynamic changes in the environment and
mission parameters during the mission, as it is a real-time optimization. These
changes can be wind variations, updated search and rescue reports or even the lost
of one UAV in the middle of the mission due to technical problems or the addition
of extra UAVs that arrived later when the mission had already started.
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Figure A.15: Probability of Success.

A.9 Conclusions

In this chapter, a real-time path-planning for search and rescue with Model Pre-
dictive Control solved by Particle Swarm Optimization was proposed. The solution
was implemented on a fully embedded software and tested in a Software-In-The-
Loop environment with flight dynamics simulations. The search area was defined
using the International Aeronautical and Maritime Search and Rescue (IAMSAR)
directives. Also, the area was divided into a grid of cells, where each cell had a
correspondent reward, referred to the IAMSAR’s Probability of containment. Re-
sults were analyzed for missions where one, two or three Unmanned Aerial Vehicles
(UAVs) were employed. To reach 50% of Probability of success, the performance
of the group of three UAVs was on average 2.25 times faster than the single UAV
search. The performance of the single UAV was also compared to a standard search
pattern based on the IAMSAR’s suggested pattern. The search using the proposed
solution outperformed the standard search pattern in the first 20 min, with the ad-
ditional advantage of being a real-time method that can deal with environmental
dynamic changes and new mission directives.
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