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ABSTRACT  

 

The Norwegian railway network is under pressure, following the worldwide trend 

towards heavier axle loads, increased speeds and greater traffic density. These 

factors will contribute to a more rapid degradation of the railway track, which in 

turn, lead to reduction in service life of track components and higher maintenance 

costs.  

The track degradation has three different aspects: the sub-structural, the super-

structural and the geometrical. As the track geometry begins to deteriorate, higher 

dynamic wheel-rail contact forces are being induced, resulting in wear on the 

various components of the track construction, plastic deformation and Rolling 

Contact Fatigue (RCF) of the rails.  

Although safety is the most important reason why the track geometry is maintained, 

appropriate maintenance is also a precondition for the ride comfort. Track geometry 

faults cause poor ride quality and have a negative train performance impact. In 

extreme cases, these faults can lead to derailments. As a result, line closures and loss 

of public confidence are some of the potential consequences.  

The track geometry is measured on the Norwegian railway network by a dedicated 

Track Recording Vehicle (TRV). Different alert limits are generated when 

predefined threshold levels are exceeded, imposing inspections, repair or corrective 

maintenance. However, a broad consensus at Bane NOR is that the data being 

collected are used to a very limited extent for further analysis.  

A case study for the Norwegian heavy haul line was carried out to propose how 

decision makers can take more advantage of numerical data from track geometry 

measurements. Degradations trends and effectiveness of tamping were analysed. 

Infrastructure Managers (IMs) need a better understanding of the infrastructure 

behavior over time and a greater control over the efficiency of its maintenance. A 

successful predictive maintenance strategy relies on the ability to observe track 

behaviour in the past and predict behaviour in the future, as well as the remaining 

service life of an asset. It means cost saving through planning of required 

maintenance aspects and applying for track possession time. 
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SAMMENDRAG  

 

Det norske jernbanenettet er under press som følge av den globale utviklingen mot 

høyere aksellaster, økte hastigheter og større trafikktetthet. Disse faktorene vil 

medvirke til raskere nedbrytning av overbygningen som i sin tur vil redusere 

levetiden for sporets komponenter og gi høyere vedlikeholdskostnader.  

Nedbrytning av skinnegangen har tre ulike aspekter: underbygning, overbygning og 

geometri. Etter hvert som sporets geometri forringes, øker det dynamiske 

kontakttrykket mellom hjul og skinne, noe som fører til slitasje på de ulike 

komponentene i sporkonstruksjonen, plastisk deformasjon og rullende 

kontaktutmatting (RCF) av skinnene.  

Selv om sikkerhet er den viktigste årsaken til at sporgeometrien vedlikeholdes, er 

korrekt vedlikehold også en forutsetning for komforten om bord. Feil i 

sporgeometrien kan gi ubehagelig gange og påvirke togets ytelse negativt. I 

ekstreme tilfeller kan slike feil føre til avsporing. Stenging av strekninger og tap av 

omdømme er noen av de potensielle konsekvensene.  

På det norske jernbanenettet kontrolleres sporgeometrien med en egen målevogn. 

Ulike varsler utløses ved overskridelse av forhåndsdefinerte grenseverdier for 

inspeksjon, reparasjon eller feilretting. Det er imidlertid bred enighet i Bane NOR 

om at dataene som samles inn, brukes til videre analyse bare i svært begrenset grad.  

En case-studie for den norske godslinjen ble gjennomført for å finne ut hvordan 

beslutningstakerne kan få større utbytte av numeriske data fra sporgeometrimålinger. 

Nedbrytningstrender og effektiviteten av pakking av sporet ble analysert. 

Infrastrukturforvaltere trenger en bedre forståelse av infrastrukturens egenskaper 

over tid og bedre kontroll over vedlikeholdets effektivitet. En vellykket prediktiv 

vedlikeholdsstrategi er avhengig av at det er mulig å observere skinnegangen over 

tid og dermed kunne forutse både hvordan den vil utvikle seg fremover, og hvor 

lang levetid som gjenstår. Dette gir kostnadsbesparelser ved at nødvendige 

vedlikeholdsoppgaver og spordisponering kan planlegges bedre. 
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1 INTRODUCTION 

This chapter introduces the master’s thesis, starting with a background, followed by 

the problem statement. Thereafter the research purpose, objectives, research 

questions and methodology are presented. Finally, the research scope and limitations 

are declared.  

1.1 BACKGROUND 
 

In order to provide increased capacity in terms of both passengers and freight, the 

rail sector is moving towards higher train speeds, heavier axle loads and greater 

traffic density.  

High-speed railway lines require precise track geometry and deviations from the 

design must be kept to a minimum. Heavier axle loads and dense traffic result in 

larger forces acting on wheels and tracks, leading to a more rapid degradation. Those 

factors demand high maintenance needs and costs.  

 Infrastructure managers (IMs) have less time to maintain the track. Available track 

maintenance windows are short, and work must be performed quickly. In addition, 

there is a considerable maintenance backlog on the Norwegian railway network at 

present.   

Raising competence on track geometry deterioration mechanisms is therefore crucial 

to strengthen the basis for making decisions on priorities for maintenance and 

renewal work. 

1.2 PROBLEM STATEMENT 
 

The track geometry is affected by several factors including the condition of the 

superstructure elements (rails, fastening system, rail pads and sleepers), the 

condition of the substructure (ballast, sub-ballast and subgrade), traffic density, 

speed, axle load, environment and current maintenance strategies, among others.  
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Track geometry has been inspected by a self-propelled diagnostic vehicle on the 

Norwegian railway network. Alert reports are generated when track geometry 

exceeds predefined threshold levels. However, the data collected are used to a very 

limited extent for analysis to find root causes of track deterioration and to monitor 

track behavior over time.  

Detection of possible root causes of track degradation, effectiveness of tamping and 

analysis of patterns of track degradation over time are some of the potential use of 

the track geometry measurement data. 

 

1.3 RESEARCH PURPOSE, OBJECTIVES AND QUESTIONS 

 

1.3.1 Purpose 
 

The aim of this study is to suggest how raw data from track geometry measurements 

can be turned into information as a basis for maintenance decisions.  

 

1.3.2 Objectives 

 

More specifically, the objectives of this research are:  

1. To perform root cause analysis by integrating data from different sources. 

2. To find out the effectiveness of tamping. 

3. To identify degradation trends by comparing several measurements.  

 

1.3.3 Research questions 

 

1. How to perform root cause analysis based on the sensor data from the 

geometry measurements? 

2. How effective was the tamping action carried out on a specific track section? 
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3. What are the patterns of track geometry degradation on the Norwegian Heavy 

Haul Line?  

 

1.4 METHODOLOGY 

 

The research methodology consisted of a literature study conducted to establish a 

knowledge base for this master’s thesis, data collection, study visits, interviews with 

representatives from Bane NOR and a case study.  

This study makes use of both quantitative and qualitative methods. 

1.4.1 Literature study 

A comprehensive literature search was conducted using databases, including:  

• The NTNU University Library’s literature databases; 

• Oria: Bane NOR’s library. The search is extended to universities and 

university colleges in Norway;  

• Brage: access to full-text versions of material published by Bane NOR and 

the former agency Jernbaneverket (the Norwegian National Rail 

Administration). Also contains older material from NSB (the Norwegian 

State Railways); 

• E-books: access to Bane NOR's e-books; 

• Railway technology textbooks: the textbooks cover various railway 

technology disciplines; 

• ResearchGate: access to full-text versions of published material;  

• Google Scholar; 

• Standards, manuals and guidelines produced by Jernbaneverket and Bane 
NOR. 

Internet search engines generated more references than the author was able to read. 

It was paramount to be selective by concentrating on references that were 

recommended by the author’s supervisors or came from a trustworthy resource. 
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References that were cited in many other works and/or published in the last years 

were prioritized.  

1.4.2 Interviews  
 

Informal conversational interviews have been held with key persons as a qualitative 

data collection method. Interviewees were selected based on their expertise or 

involvement in the decision-making process regarding maintenance at Bane NOR. It 

was crucial to select interviewees from different regions along the Norwegian 

railway network, to gain a broad perspective.  

The result has indicated that track geometry measurement data is used to a very 

limited extent for further analysis. Root causes of track degradation have not been 

thoroughly investigated. It can lead to improper maintenance practices, as repeated 

tamping actions due to the underlying problems of insufficient drainage and/or bad 

soil conditions.  

One of the identified problems is the lack of powerful computational tools which can 

help decision makers to take more advantage of the numerical data. InOffice is the 

software adopted to interpret the raw data on a user-friendly module, however it 

does not allow modelling track degradation based on consecutive measurements. 

Finally, there was a broad consensus among the interviewees that it is crucial to 

verify the effectiveness of track maintenance. However, methods and tools to 

follow-up maintenance actions are unknown for most of the interviewees. 

 

1.4.3 Data collection 

 

The following databases were used for data collection:  

• BaneData: Bane NOR’s system for rail infrastructure database and 

maintenance activity records; 

• InOffice: a software to interpret the raw data from track geometry 

measurements on a user-friendly module; 



5 
 

• Pictures and video recordings from the external camera mounted on Roger 

1000 Track and Overhead Line Recording Car; 

• Accumulated tonnage (MGT) records. 

 

The Analysis ToolPak in Microsoft Office Excel was utilized for statistical analysis 

of the raw measurement data from the Track Recording Vehicle (TRV), and 

MAPLE was utilized for calculations of the degradation rate.  

 

1.4.4 Study visits 

A site visit guided by a representative from Bane NOR has been conducted during 

this research in order to increase the author’s knowledge on Ofotbanen. The study 

visit to this section of line has been important to get a general overview of the 

drainage conditions, since there was limited information available.  

Although the substructure is beyond the scope of this thesis, there is a broad 

consensus among track engineers that polluted ballast, bad subsoil condition and 

insufficient drainage increases the rate of degradation of track geometry. This is 

supported by the literature review. The line has apparently good drainage conditions.   

The author participated on a track measurement with Roger 1000 (Track and 

Overhead Line Recording Car) to gain more knowledge about the methods and 

procedures to measure track geometry.  

 

1.4.5 Case study 
 

Case study: the Ofoten Line (Norwegian: Ofotbanen) is a heavy-haul line with 30 

tons maximum axle load and more than 30 million gross tons of traffic per annum. It 

results in a fast deterioration of the track, leading to high maintenance needs and 

costs.  
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Root cause analysis was performed by correlating information from many sources: 

track geometry measurements, track layouts, traffic loads and work history. 

By utilizing data from the track geometry collected on Ofotbanen over 3 years, 

along with historical maintenance data during this period, track geometry 

degradation trends have been analysed. Track quality is given by the average 

standard deviation for longitudinal level for the left and right rails, with wavelength 

domain in the range of 3 – 25 m. This study analyzes trends for track geometry 

degradation for this specific line, as a function of traffic (MGT), and as a function of 

time.   

 

1.5 RESEARCH SCOPE AND LIMITATIONS 

 

The track deterioration from geometric aspects, its influencing factors and 

degradation models have been studied. 

Although track gauge, longitudinal level, alignment, cross level and twist are the 

principal track geometry parameters, the case study focuses on longitudinal level. 

This is the parameters which will be considered to assess the track quality and is 

often used for triggering preventive tamping. 

Only track geometry irregularities with wavelength domain in the range of 3 – 25 m 

will be considered.  

This master’s thesis will focus on maintenance operations with tamping.  

 

1.6 THESIS STRUCTURE 

 

This master’s thesis is divided into 6 chapters, which are structured as follows:  
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Chapter 1 introduces the master’s thesis, starting with a background, followed by 

the problem statement. Thereafter the research purpose, objectives, research 

questions and methodology are presented. Finally, the research scope and limitations 

are declared.  

 

Chapter 2 provides the theoretical foundations on the basis of which this master’s 

thesis is constructed.  

 

Chapter 3 presents a view of current methods and tools used to assess track 

geometry quality on the Norwegian railway network.  

 

Chapter 4 presents the case study carried out in this master’s thesis and the 

discussion of the results.  

 

Chapter 5 provides the final conclusions of the research carried out in this master’s 

thesis and proposals for future work. 

 

Chapter 6 presents a list of references. 

 

  

 

 

 

 

 

 



8 
 

2 LITERATURE REVIEW 

 

The aim of this chapter is to provide an overview of the ballasted railway track 

structure, followed by track geometry issues.  

 

2.1 OVERVIEW OF RAILWAY TRACK STRUCTURE  

 

The ballasted railway track system is divided into two sections: superstructure and 

substructure. The superstructure consists of rails, fastening system, rail pads and 

sleepers. The substructure consists of ballast, sub-ballast and subgrade.  

The ballast is used to provide stability, resilience and load distribution for the track 

superstructure. Further, it should allow for drainage and provide alleviation to frost, 

as well as easy adjustment of track geometry (Nielsen and Li, 2018).  

The sub-ballast gives a solid support for the top ballast and reduces the seepage of 

water from the underlying ground. This layer is consisted of small crushed stones 

(Solomon, 2001).  

The subgrade is particularly important in ensuring that the track quality reaches the 

standard necessary for the safe and comfortable operation of trains (Profillidis, 

2006). Providing a stable foundation for the sub-ballast and ballast layers is the main 

function of the subgrade.  

 

 

Figure 2-1 Cross-section of a railway track illustrating the main components (Hawari, 2018) 
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Rail is one of the most important and valuable components of the track structure. 

Figure 2-2 illustrates the terminology used for the common regions in rails:  

 

 

Figure 2-2 Terminology used for the common regions in rails (RailCorp Network, 2012) 

 

Many standards are used for rail profiles, which includes: 

• ASCE (American Society of Civil Engineers) standards: e.g. ASCE60, ASCE85 

• ARA (American Railway Association) standards: e.g. ARA-A, 100ARA-B 

• UIC (International Union of Railways) standards: e.g. 54E1 (UIC54), 54E3, 60E1 

Other standards for rail profiles include the British standards (BS 80A, BS 90A, BS 

100A), the Australian standards (D1, D2), the Chinese standards and the Indian 

standards.  

In Norway, 54E3, 60E1 and 60E2 are the rail profiles to be used in new 

constructions (Bane NOR, 2018).  

The rail fastening system connects the steel rails and sleepers together, preventing 

the horizontal and vertical movement of the rails.  
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Rail pads are resilient components installed on rail seats between the rail and sleeper 

in order to attenuate the impact loads and moderate track stiffness at the special 

locations (Ngamkhanong et al., 2018). 

Sleepers are essentially beams that span across and tie together the two rails 

(Tzanakakis, 2013). Some of the main functions of the sleepers are to hold the rails 

to correct gauge, to maintain the alignment of the track and to transfer the load 

safely to the subgrade. 

 

2.2 TRACK GEOMETRY PARAMETERS 

 

According to EN 13848-1 (European Standard, 2008), the principal track geometry 

parameters are: 

- Track gauge 

- Longitudinal level 

- Alignment 

- Cross level 

- Twist 

 

Track Gauge  

Track gauge is the distance between the gauge faces of the two adjacent running 

rails (Al-Douri et al., 2016). In Norway, nominal track gauge is set at 1435 

millimeters and is measured 14 millimeters down from the rail head (Bane NOR, 

2018). 

Tight or wide gauge are both a symptom of degradation and an indicator of the state 

of the track, and therefore causes further degradation of the track. 

Changing the distance between the two rails usually modifies the position of the 

wheel-rail contact. Tight or wide gauge will adversely affect the ride of trains. 
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Especially in switches and crossings (S&C), variations in gauge trigger rough riding 

conditions (Civil Enginnering Conference, 1999).  

Tight gauge in tangent track promotes gauge corner contact, trucks hunting (the 

propensity for the bogie to oscillate from side to side on straight track) and RCF. At 

the nominal gauge, more of contacts will be carried towards the crown of the rail 

where contact conditions are usually less severe. In curves, controlling wide gauge is 

essential for mitigating low rail damage associated with hollow wheels. Wide gauge 

curves are also more susceptible to dynamic rail rotation, which often contributes to 

unfavourable contact geometry (Magel et al., 2004). 

Correct track gauge extends the life of track components and train wheelsets, since 

the forces involved are minimized (Civil Enginnering Conference, 1999). 

According to (Wolf, 2015), the main cause of wide gauge is the excessive lateral 

pressure against the rail due to: 

• Incorrect curve elevation: insufficient elevation causing pressure of high rail 

or excessive elevation causing pressure on low rail 

• Pre-existing wide gage allowing greater wheelset angle of attack 

• Horizontal alignment kinks causing increase in flanging force  

• Lack of rail lubrication, particularly top of rail (extremely dry)  

• Poor steering due to poor wheel-rail contact geometry  

Various track conditions precipitate widening of the gage: 

• Deformation of wood fibers holding spikes 

• Broken screw spikes or cut spike fasteners 

• Worn shoulders on tie plates 

• Gage face wear on the rail 

• Differential tie plate cutting 

• Loose fasteners 

• Poor wheel contact geometry toward field side of rail head 

• Hollow worn wheels contacting field side of rail head 
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Longitudinal Level 

According to EN 13848-1 (European Standard, 2008), longitudinal level is defined 

as the deviation 𝑍𝑍𝑝𝑝’ in z-direction of consecutive running table levels on any rail, 

expressed as an excursion from the mean vertical position (reference line), and it is 

calculated from successive measurements. Figure 2-3 illustrates the running table (1) 

and the reference line (2). 

 

 

Figure 2-3 Longitudinal level (European Standard, 2008) 

 

Longitudinal level is the geometrical parameter that most influences vehicles and 

track dynamics in the vertical direction (Vale et al., 2011), and it is measured 

separately for both rails of the track. This is the parameter that is most associated 

with substructure condition (Berggren, 2005). 

The European Standard EN 13848-2 (European Standard, 2006) specifies that 

longitudinal level measurements shall either be made using an inertial system or by a 

versine system, or by a combination of both methods. It is also stipulated that the 

measurements should be performed under loaded condition. One important benefit 

of using a dedicated Track Recording Vehicle (TRV) or hauled Track Recording Car 

(TRC) is that the measured longitudinal level is a combination of contributions from 

irregularities in track geometry and track stiffness (Nielsen et al., 2013). 
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Cant 

Cant (also referred as superelevation) is the height of the vertical side of the right-

angled triangle related to nominal track gauge plus the width of the rail head (Al-

Douri et al., 2016).  

On curves, positive cant indicates that the outer rail is raised above the inner rail. 

Negative cant may be required in the diverging track near (or inside) canted 

turnouts. There are no sign rules for cant on a straight track. 

The cant angle (φ) can be determined by: 

 

 𝜑𝜑 = asin
ℎ𝑡𝑡
𝐷𝐷  (1) 

 

 

where, 

 D = 1.500 m on standard track gauge; 

ℎ𝑡𝑡= cant. 

 

 

Figure 2-4 Cant and cant angle, adapted from (Pombo and Ambrósio, 2003) 
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Twist  

Twist is the term used to describe the variation in actual track cross level, i.e. the 

difference in level of the two rails, over a defined length.  

Cant change in the transition of a curve is an example of a design twist and will have 

a maximum gradient of 1 in 400. Correctly maintained cant gradient is an acceptable 

form of twist that forms an essential part of the design of a railway curve. A twist 

fault is a condition where there is a difference in cross-levels between rails over a 

short distance (Civil Engineering Conference, 2002). 

In Norway, a Track Recording Vehicle (TRV) measures dynamic twist, when the 

track is loaded, using two criteria: short twist is measured over 2 meters and long 

twist is measured over 9 meters. It corresponds roughly with the length of a bogie 

inner wheelbase and the length of a wagon inner wheelbase, respectively.  

The twist is calculated according to the formula: 

 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 
(ℎ2 − ℎ1)

𝐵𝐵  (2) 

 

(‰ or mm / m)  

 

where, 

h1 and h2 = cants; 

 B = the basis for measurement. 

 

Twist faults may cause unloading of one or more of the wheels causing them to lose 

contact with the rail. Once contact with the running surface is lost, the wheel can 

flange climb and derail the vehicle. Good consolidation of ballast during relaying 

activities is crucial to avoid twist faults, after the line has been opened to traffic 

(Civil Engineering Conference, 2002).  
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Figure 2-5 illustrates how flange climb derailment may occur.  

 

Figure 2-5 Figure showing how flange climb derailment may occur (Civil Engineering Conference, 2002) 

 

Alignment 

Alignment is the mean horizontal position covering the wavelength ranges 

stipulated, then calculated from successive measurements (Al-Douri et al., 2016).  

 

Cross Level 

Cross level is the difference in elevation between the top surfaces of the two rails at 

any point of railroad track (Attoh-Okine, 2017). 

 

2.3 TRACK IRREGULARITIES 

 

Track irregularities are deviations from the design track geometry, generally within 

1-200 m wavelength range.  

Measurement of track geometry irregularities is the most automated condition 

monitoring technique in railway infrastructure maintenance. Most problems with the 

track are revealed as track geometry irregularities (Berggren, 2005). 
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For the detection of track geometry defects, measurements are traditionally assured 

using a dedicated track recording vehicle (TRV) or hauled track recording car (TRC) 

running around the rail network gathering track geometry data (Weston et al., 2015). 

The amplitude and wavelength are identified as two major parameters describing 

track irregularities (Bian et al., 2011). There are three stipulated wavelength ranges 

for evaluation of track geometry, according to the standard EN 13848 - 1 (European 

Standard, 2008): 

- D1 (3 – 25 m) 

- D2 (25 – 70 m) 

- D3 (70 – 150 m) 

 

2.4 INFLUENCING FACTORS ON TRACK GEOMETRY DEGRADATION 

 

There are many variables affecting the degradation. Those variables can be divided 

into three categories: from the rolling stock, the track and the surroundings (Lyngby, 

2009).  

The degradation process due to the interaction between the track and the rolling 

stock (engines, bogies and wagons) is affected by the following variables: the annual 

tonnage passing over the track, speed, axle loads, locomotive traction forces, 

locomotive braking forces, wagons braking forces and the wheel condition.  

According to (Greisen et al., 2009), high traffic volume, heavy axle loads and high 

train speed can produce large rail bending stresses which contribute to increased 

track deterioration.  

The wheel condition plays also a role in degradation of track geometry. If wheels 

suffer from geometrical defects (e.g. wheel flats or out-of-roundness), it causes an 

additional dynamic axle load component (Steenbergen and de Jong, 2015).  
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The substructure conditions 

Regarding the substructure, variations in layer thickness along the track and 

moisture content are useful information that allows a correlation between track 

geometry and substructure conditions. The moisture content indicates if there is a 

drainage problem.  

 

Ballast section and grading 

Ballast is an important component of the superstructure which provides the elastic 

support to track and sleepers. The thickness of the ballast and sub ballast layers 

should meet design criteria. The fine grade content indicates if the fouling limits are 

obeyed.  

According to (Pen and Powrie, 2011), the lateral resistance is important to maintain 

a high track shift resistance of the railway track. This resistance is provided through 

ballast-sleeper contact at the sleeper base, sides (crib) and ends (shoulder). The 

ballast gradation, stone quality and compaction of the ballast are some of the factors 

that influence the lateral resistance. Calculations suggest that the shoulder extent has 

a greater impact on the lateral resistance than the height of the ballast shoulder. 

 

Fouled and deteriorated ballast  

Fouled and deteriorated ballast are caused by ballast breakdown and/or infiltration 

from outside the track (Li et al., 2010). These conditions reduce the strength and 

stiffness of the track substructure and their extent are difficult to determine by visual 

inspection. According to (Li and Read, 2013), the use of GPR (Ground Penetrating 

Radar) technologies has been demonstrated to be capable of inspecting ballast 

fouling and drainage conditions.  

 

Differential Track settlement 

An important contribution to track geometry degradation is differential track 

settlement, which corresponds to a space-variant reduction in horizontal level of the 
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ballast/substructure surface over time. Due to dynamic track loading and variations 

in support conditions along the track, the resulting differential track settlement leads 

to irregularities in track geometry (Nielsen and Li, 2018). 

Settlement of ballasted track occurs in two phases. Immediately after the track 

construction, tamping or renewal work has been completed, a rapid settlement will 

arise until the ballast is consolidated. This first phase has an exponential relationship 

between degradation and load. The second phase is slower and there is more or less 

linear relationship between the degradation and load in the beginning. As the track 

degrades further, there is again an exponential relationship between degradation and 

load (Lyngby, 2009).  

On the Norwegian railway network, depending on rail temperature and sleeper type, 

the speed must be reduced until the ballast is sufficiently stabilized. The track is 

considered completely stabilized after 100.000 gross tons (Bane NOR, 2018). 

 

Frost heave  

Frost heaving of soil is due to the development of ice lenses in the soil. Ice lenses 

form due to capillary rise of water (Li et al., 2002). When ice melts, an excess of 

water remains, which causes softening or loss of strength of the soil. During this 

period of thaw softening, severe plastic deformation can occur with resulting rapid 

loss of track geometry and accelerate damage to track components (Selig and 

Waters, 1994).  

Frost susceptible subsoil, available water and subfreezing temperatures are the three 

prerequisites for the development of frost heave.  

 

Loss of neutral temperature 

Continuous welded rail (CWR) is laid at a Rail Neutral Temperature (RNT), the 

temperature at which the rails experience zero stress. In Norway, this temperature is 

set to 21˚C (+/- 3˚C) (Jernbaneverket, 2011).  

Many factors can affect RNT changes in continuous welded rails: maintenance 

activities, train operation and environmental conditions (Sluz et al., 1999). The 



19 
 

change of RNT is usually toward a lower number (Thompson, 1991). Thermal 

buckling can become a problem if the neutral temperature falls too far below its 

target value. Low RNT results in high compressive forces in rail in hot weather. It 

must therefore be controlled during rail laying and track maintenance.  

 

Initial misalignments 

Track condition can be weakened by misalignments present in the track. As rail 

temperature increases, consequently the compressive force P increases. This may 

produce some growth in the initial misalignment. Several experiments and field 

observations have shown that as rail temperature increase to a maximum critical 

level, the initial misalignment will increase to 𝑤𝑤𝐵𝐵,, as shown in Figure 2-6, which is 

an unstable equilibrium state (Kish and Samavedam, 2013). The track can suddenly 

buckle out into a new lateral position 𝑤𝑤𝑐𝑐, stretching over 2L.  

 

 

Figure 2-6 Pre-and post-buckled track configurations (Kish and Samavedam, 2013) 

 

The effects of tamping on degradation  

Maintenance also worsens the general condition of the ballast. The rate of track 

geometry deterioration tends to increase as the amount of maintenance performed to 

the ballast increase (Prescott and Andrews, 2013).  

Tamping interventions are performed to restore track irregularities by correcting the 

track geometry by lifting and lining the track. This maintenance activity is carried 

out by two different methods. Tamping on relative base, which is typically used for 

shorter sector (less than 1 km) and generally for corrective, non-planned 

maintenance. The track is brought back to its right position related to the axle of the 
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tamping machine. The other method is tamping on absolute base, which is typically 

used for preventive interventions longer than 1 km. The track is brought back to its 

absolute optimal position, achieving a better track geometry quality (Czichos, 2013).  

The ride comfort limits (Figure 2.7) was developed by UIC to define an intervention 

level for tamping based on the maximum allowable speed on the track and the 

standard deviation for the short wavelength (3 – 25 m) of longitudinal level defects. 

 

 

Figure 2-7 Intervention Level for Tamping (UIC - Infrastructure Department, 2008) 

 

2.5 TRACK GEOMETRY QUALITY ASSESSMENT METHODS 

 

According to (Sadeghi and Askarinejad, 2007), there are three aspects to track 

deterioration: 

• The sub-structural aspect (i.e., degradation of the track sub-structure) 

• The super-structural aspect (i.e., degradation of the track super-structure) 

• The track geometrical aspect (i.e., degradation of the track geometry) 

Track degradation models considered from the geometrical aspect use geometrical 

parameters as the main degradation criteria (Berawi et al., 2010). Typically, the 
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track is divided into several shorter sections and geometry statistics of the main 

geometry parameters are performed to each of these sections. Statistics are later 

summed up to give a measure of the overall track segment quality. This assessment 

technique provides the Track Quality Index (TQI).  

Track quality index (TQI) is a numerical value that represents the relative condition 

of the track surface geometries (El-Sibaie and Zhang, 2004). 

The standard deviation for the longitudinal level defects and the standard deviation 

for horizontal alignment defects are the main quality indicators related to railway 

track geometry degradation. For many European Infrastructure Managers, the 

standard deviation for the short wavelength (3 – 25 m) of longitudinal level defects 

is still recognized as the crucial indicator for planned maintenance actions (Andrade 

and Teixeira, 2015). 

In Norway, combined standard deviation is the method adopted by Bane NOR to 

assess the track geometry quality. The track is divided into 1000 m sections, and 

geometry statistics are performed to each section.  

Both the standards EN 13848-5 (European Standard, 2017) and EN 14363 

(European Standard, 2016) for track geometry quality assessment uses standard 

deviations and maximum values of alignment and longitudinal level.  

New and alternative methods for quality assessment were studied by a project called 

Dyno TRAIN, which is aimed to promote interoperable rail traffic in Europe by 

reducing costs of certification and closing “open points” in the TSI’s (TRIO TRAIN, 

2013). One of the purposes of this project is to find out which track geometry 

description method gives the best correlation to the force reaction of typical 

vehicles. The test covered 7500 km of track and recorded 4,7 terabytes of data. The 

project was broken down into six technical work packages (WPs). The WP2 

concerns track geometry quality. 

The work package WP2 has studied a huge number of track quality assessment 

methods and concluded that the current geometric methods (i.e. standard deviations 

and maximum values of alignment and longitudinal level) are still superior. Only in 

a few cases, small improvements were found, e.g. if the wavelength ranges are 

changed or if more than one track geometry parameter is used - 
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alignment/longitudinal level with twist or cross level (European Commission, 2014), 

as indicated by the up arrowss in Table 2-1. Up and down arrows simultaneously 

indicate the methods that show potential improvements, but up to now not for all 

vehicle assessment parameters. 

 

Alternative methods for track geometry quality assessment Evaluation 
Combination of wavelength ranges D1&D2 ↑ 
Combined standard deviation (EN 13848-6) ↑↓ 
Combination alignment/longitudinal level with cross level ↑ 
Combination alignment/longitudinal level with twist (2.5m / 14m) ↑ 
1. or 2. derivate of measured track geometry ↓ 
Point Mass Acceleration Method ↓ 
Wirkungsbezogene Gleislagebewertung ↓ 
Triangle Method  ↓ 
Mexican hat wavelet ↓ 
Pupil (Assessment filters modelling the vehicle behavior) ↑↓ 
FIR filters derived by adaptive filtering ↑↓ 

 

Table 2-1 Alternative methods for track geometry quality assessment, adapted from (Haigermoser, 2013) 

 

(Landgraf, 2016) presented an innovative approach to the evaluation of ballast and 

substructure conditions by fractal analysis of vertical alignment. The so-called 

Modified Divider Length Method enables to split vertical deflections into three 

different ranges of wavelengths: short-waved (0 m – 3 m), mid-waved (3 m – 25 m) 

and long-waved (25 m – 70 m) failures.  

It is assumed that the short-waved range covers an error characteristic that describes 

the sleeper condition, as well as the interaction between sleeper and ballast bed. The 

medium wavelength dimension ought to be capable of quantifying the ballast 

condition. Deflections caused by insufficient substructure conditions are more likely 

to occur within the long-waved range.  

Fractal analysis has been carried out to date on the main network of the Austrian 

Federal Railways, as well as within the network of Suisse Federal Railways 

(Landgraf and Hansmann, 2018). The methodology has shown good results for a 

condition evaluation of single track components.  
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2.6 TRACK DEGRADATION MODELS 

 

Different degradation models have been developed to predict the future condition of 

railway tracks, by considering the influencing parameters. The deterioration models 

can be classified into four general approaches (Elkhoury et al., 2018). 

 

Figure 2-8 Classification of rail degradation models (Elkhoury et al., 2018) 

 

Mechanistic models 

The mechanistic models are considered the primary and traditional models to 

forecast the level of degradation of railways. This model type is based on 

mechanical characteristics of track components which result in rail degradation 

(Falamarzi et al., 2018).  

(Elkhoury et al., 2018) highlighted that in general, mechanistic models reflect the 

actual physical interactions within materials or variables affecting the track structure 

that cause degradation. These variables may be difficult to quantify. Materials of the 

rail structure are not homogenous. Besides, this kind of model can be challenging, 

intensive and time consuming. 

A mechanistic degradation model presented by TU Graz to predict railway track 

degradation applies a quality number named MDZ, which reflects the riding 

comfort. The MDZ number comprises both horizontal and vertical deviations in 

track together with speed and lack of superelevation (Hummitzsch, 2004). 
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According to (Elkhoury et al., 2018) this model analyses the development of track 

quality from a passenger’s point of view. 

Experience indicates that the deterioration rate is lower when the initial quality is 

high. Nevertheless, comparative evaluation on different track with differing local 

factors shows wide variation in the rate of deterioration (b) (Veit and Lichtberger, 

2007). 

The analysis performed by TU Graz shows non-linear quality behaviour over time, 

caused by increasing dynamic forces due to the growth of track failures which is 

described by the following exponential function: 

 

 𝑄𝑄(𝑡𝑡) = 𝑄𝑄0 ∙  𝑒𝑒−𝑏𝑏∙𝑡𝑡 (3) 
 

where, 

Q(t): track quality at a certain point of time; 

𝑄𝑄0: initial track quality; 

b: deterioration rate over time; 

t: time. 

 

Figure 2-9 The non-linear quality behaviour over time (Veit and Lichtberger, 2007) 
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The deterioration rate b itself is a function, influenced by all boundary conditions of 

track, such as transport volume, superstructure and substructure.  

The track quality can be estimated by the deterioration rate under given traffic load, 

by the loss of alignment parameters and track support modulus with the time under 

given traffic load. Quality is delivered on one hand by capital investment or renewal, 

and on the other hand by maintenance effort (Veit and Lichtberger, 2007). 

 

Statistical models 

According to (Elkhoury et al., 2018), statistical models are based on observations of 

the rail track structure and influencing factors, such as traffic, track components and 

maintenance variables. These models try to simulate real-life conditions with 

mathematical equation to predict how tracks will degrade in the future. Statistical 

models can be classified into deterministic, probabilistic and stochastic.  

(M Quiroga and Schnieder, 2012) presented a stochastic model of track degradation 

using Monte Carlo simulation. The data source is from the French railway operator 

SNCF. The model assumes that track degradation occurs in two major phases: 

directly after a tamping activity, until the ballast is consolidated. This phase can be 

modelled with a lognormal function. The second phase is slower and can be 

modelled with an exponential function.  

(Vale and M. Lurdes, 2013) presented a stochastic model for the geometrical railway 

track degradation process of the Portuguese railway Northern Line, focusing on the 

standard deviation for longitudinal level defects. The Dagum distribution which was 

adopted fitted well the track degradation behavior for the selected line.  

(Spooner et al., 2015) have developed a model for the value of σH on a 200-meter 

track section, which accounts for the effect of tamping operations on the track. This 

model has successfully been implemented by Bane Danmark, together with a 

Tamping Planning Algorithm (TPA) developed by (Jensen, 2012) for planning 

preventive tamping. 
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Mechanical–empirical models  

According to (Ahac and Lakušić, 2017), mechanical-empirical models as based on a 

combination of mechanistic and empirical modelling. This approach is considered 

the most effective track degradation modelling approach. These models are based on 

track segmentation, i.e. the linear rail infrastructure is divided into segments with 

homogeneous characteristics (traffic load, speed, sleeper type, rail type, among 

others). Track measurement data per each segment is collected and statistical 

regression analysis is performed using least square method. The regression model 

defines the degradation rate of the dependent variable (the observed track quality 

parameter) as a function of the independent variable (the exploitation period 

expressed as time or exploitation intensity).  

 

Artificial intelligence models  

Artificial intelligence (AI) is an algorithm, a math model or a software that can improve its own 

performance with time (Pires, 2018).  

Artificial intelligence degradation models have been successfully used in civil engineering to 

predict degradation. They are becoming prominent among researchers from other disciplines, 

such as mechanical engineering (Elkhoury et al., 2018).  

(Guler, 2014) presented an alternative method for predicting track geometry deterioration using 

Artificial Neural Networks (ANNs). Models were developed for the main track geometry 

parameters and produced significant relationships between the variables.  
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3 TRACK GEOMETRY MEASUREMENTS AT BANE NOR 

 

Presently, Bane NOR uses a self-propelled diagnostic vehicle to measure 

geometrical irregularities.  

 

3.1 THE SELF-PROPELLED DIAGNOSTIC VEHICLE ROGER 1000 

 

Bane NOR (former Jernbaneverket) has developed with MERMEC S.p.A. of Italy a 

self-propelled track and overhead contact line diagnostic vehicle: Roger 1000. This 

was an important milestone for Bane NOR in the process of establishing a 

Recording Service. 

Roger 1000 weights 60 tons and has a top speed of 160 km/h when self-propelled 

(hauled: 200 km/h). It was designed to operate at temperatures ranging from -40 ˚C 

to +40 ˚. This diagnostic vehicle is equipped with ATP (Automatic Train 

Protection), anti-skid brakes, cruise control and full GPS location equipment. A 

GSM modem allows remote diagnosis of all operating equipment. Helical spring 

primary and second suspensions, and active lateral suspension enables Roger 1000 

to run through curves in the same condition as a passenger train (MERMEC, 2018).  

The task of Roger 1000 is to collect, process and store all types of infrastructure 

data, and provide relevant and specific information for each user group.  

All parameters are sampled at 500 mm intervals and the technique for track 

recording is based on contactless measurements methods. A high degree of 

automation enables Bane NOR to operate Roger 1000 with a crew of just two: a 

driver and a technician. However, it is expected that a representative from the track 

master is onboard in the track recording vehicle when measurements are being 

carried out on the respective track line. 

Roger 1000 is a travelling laboratory with hardware and software able to monitor 

and analyze: 
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• Loaded Track Geometry  
 

• Overhead Contact Line  
 

• Rail Profile  
 

• Integrated Track 
 

• Integrated Overhead 
 
 
Once these data are recorded, the next steps are pre-processing and full function, 

including integration with the driving controls. Local processing turns raw sensor 

data into information. Shortly after the recording, the results of measurements are 

normally available in a so-called InOffice. It is a software to interpret the data on a 

user-friendly module.  

 

 
 
 

 
 

Figure 3-1 Roger 1000, by Ingunn Halvorsen, 2017 

 
The measurement campaigns are defined for main tracks and running tracks. Those 

campaigns are centrally organized for the whole network. On high speed lines, 

measurements are carried out periodically 6 times a year. Due to the non-contact 

measurement system, snow in the winter period could cause a problem (Gåsemyr, 

2018).  
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On normal speed lines, measurements are performed twice a year: from the spring, 

after snow has melted until late autumn, before the snowfalls. On the heavy haul line 

with 30 tons axle load track recording is presently also performed twice a year.  

 

3.2 TRACK GEOMETRY QUALITY ASSESSMENT AT BANE NOR 

 

The track recording system for measuring the track quality in based on eight 

decisive parameters. The sampling distance is 0,5 m. The following parameters are 

identified:  

- Gauge 

- Twist 

- Cant 

- Longitudinal Level concerning right and left rail 

- Alignment concerning right and left rail 

- Horizontal curvature 

 

3.3 DEFINITION OF SPEED QUALITY CLASSES 

 

Bane NOR defines a speed class regime based on track quality. Depending on the 

speed, six classes are defined: 

 

Quality 
class 

K0 K1 K2 K3 K4 K5 

Speed 
(km/h) 

V > 145 125 < V < 
140 

105 < V < 
120 

75 < V < 
100 

45 < V < 
70 

V < 40 

 

Table 3-1 Speed quality class dependency 
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3.4 TRACK GAUGE MEASUREMENT  

 

The gauge is measured by laser optic measuring system from the laser stations. The 

laser stations are located: 

- In front of the car in driving direction. 

- In the middle of the car (located under the car body). 

- At the very back end of the car in driving direction. 

This laser non-contact technique allows measurements at very high speeds, at very 

low speeds and without the effects produced by rapid accelerations/retardation of 

measuring car. Besides, no frequent re-calibration is necessary. 

Roger 1000 measures the dynamic gauge, when the track is subject to train loading. 

It is an advantage when compared to devices that measure static gauge, which is 

without the influence of trains.  

Figure 3-2 illustrates how gauge is measured by laser optic measuring system from 

the laser stations.  

 

 

Figure 3-2 Gauge being measured using laser optic measurement system (MERMEC, 2001) 
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3.5 TWIST AND CANT MEASUREMENT 

 

In Roger 1000, an inertial system is used for the measurement of twist and cant. 

Parts of the laser optic system are also applied in order to measure cant. The twist is 

then calculated as described in this chapter. In order to measure the cant, two angles 

are measured. The difference of the two angles is the inclination of the track plane 

with the horizontal plane (Gåsemyr, 2018). 

The principles for measuring cant with the inertial system are presented in Figure 3-

3, and consist of: 

- Measuring the absolute vehicle roll angle γ between wagon body floor and 

horizontal plane using an inertial system. 

- Measuring the angle β between wagon body floor and wheelset which is 

parallel with the track plane. 

- The angle α is defined as (γ – β), which is converted to cant due to 

calculations. Two cants report the twist. 

Figure 3-3 illustrates the technique: 

 

Figure 3-3 Principles for measuring cant with inertial system, adapted from (MERMEC, 2001) 
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A system consisting of the following equipment is required to record the angle at 

high speeds: 

- An accelerometer, which is a compact device that measures non-gravitational 

acceleration. 

- A gyroscope for measuring the rate of rotation around the vertical axis (yaw). 

- A gyroscope for measuring the rate of rotation around the longitudinal axis of 

the wagon (roll). 

The combination of these two devices (accelerometer and gyroscope) provides 

information on both acceleration and orientation.  

 

 

Figure 3-4 Measurement system typical installation (MERMEC, 2018) 

 

A laser system illuminates the rail as video cameras capture full cross-sectional rail 

profiles. For Bane NOR's Roger 1000, a total of 20 PCs are used in network for 

processing, presentation and storage on board. 

 

 

Figure 3-5 Non-contact optical technology (MERMEC, 2018) 
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3.6 MAINTENANCE REGIME ADOPTED BY BANE NOR 

 

The maintenance regime adopted by Bane NOR is based on three limits: alert limits 

(AL), intervention limits (IL) and immediate action limits (IAL). Those limits 

depend on the maximum permissible train speed and are standardized in the EN 

13848 series (European Standard, 2006). 

Table 3-2 shows limit values for track gauge.  

 

Quality 
classes 

 

 Speed 
(km/h) in 

accordance 
with quality 
class regime 

Deviation in the track gauge (mm) 
New track AL – Alert 

Limit 
IL – 

Intervention 
Limit 

IAL – 
Immediate 

Action Limit  

K0 145 - +4/-0 +5/-3 +15/-5 +28/-7 
K1 125 - 140 +4/-0 +7/-3 +20/-5 +35/-8 
K2 105 - 120 +4/-0 +7/-3 +20/-5 +35/-9 
K3 75 - 100 +4/-3 +15/-5 +30/-8 +35/-9 
K4 45 - 70 +4/-4 +15/-5 +30/-8 +35/-9 
K5 - 40 +5/-5 +15/-5 +30/-8 +35/-9 

 

Table 3-2 Permitted gauge deviations from the nominal track gauge 1435 mm 

 

Other limits are applied to Ofotbanen and the Dunderland line (Gullsmedvik – 

Ørtfjell) with custom rail inclination 1:30 on the rail head, axle load > 25 tons and 

maximum speed ≤ 50 km / h. The allowed deviation in the track gauge from the base 

1435 mm given in Table 3-3. 

 

Quality 
classes 

 

 Speed (km/h) in 
accordance with 

quality class 
regime 

Deviation in the track gauge (mm) 
New track AL – Alert 

Limit 
IL – 

Intervention 
Limit 

IAL – 
Immediate 

Action Limit  
> 25 
tons 

≤ 50 +4/-3 +15/-5 +20/-8 +35/-9 

 

Table 3-3 Permitted deviation in the track gauge (Ofotbanen and Dunderland line) 
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The deviation in the track gauge is based on a chord length of 10 m. 

Quality 
classes 

 

 Speed (km/h) in 
accordance with 

quality class regime 

Measured changes in gauge (mm) based on a chord length 
of 10 m 

AL – Alert Limit IL – Intervention Limit 

K0 145 - 7 10 
K1 125 - 140 8 12 
K2 105 - 120 9 15 
K3 75 - 100 10 18 
K4 45 - 70 12 21 
K5 - 40 15 25 

 

Table 3-4 Measured changes in gauge based on a chord length of 10 m 

 

Quality 
classes 

 

 Speed (km/h) in 
accordance with 

quality class regime 

Unevenness in cant (+/- mm) 
New tamped 

track 
AL – Alert 

Limit 
IL – Intervention 

Limit 

K0 145 - 2 4 6 
K1 125 - 140 2 4 7 
K2 105 - 120 2 5 8 
K3 75 - 100 3 7 10 
K4 45 - 70 4 10 13 
K5 - 40 5 12 16 

 

Table 3-5 Unevenness in cant (+/- mm) 

 

Table 3-6 shows limit values for short twist measured over 2 meters. 

Quality 
classes 

 

 Speed (km/h) 
in accordance 
with quality 
class regime 

Short twist (+/- mm) 
New 

tamped 
track 

AL – 
Alert 
Limit 

IL – 
Intervention 

Limit 

IAL – Immediate 
Action Limit 

R ≥ 400 m R < 400 m 
K0 145 - 2 7 10 14 12 
K1 125 - 140 2 7 10 14 12 
K2 105 - 120 2 7 10 14 12 
K3 75 - 100 3 7 10 14 12 
K4 45 - 70 4 7 10 14 12 
K5 - 40 5 7 10 14 12 

 

Table 3-6 Limits values for twist measured over 2 meters (Bane NOR, 2018) 
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Table 3-7 shows limit values for long twist measured over 9 meters. 

Quality 
classes 

 

 Speed (km/h) in 
accordance with 

quality class 
regime 

Long twist (+/- mm) 
New 

tamped 
track 

AL – 
Alert 
Limit 

IL – 
Intervention 

Limit 

IAL – Immediate 
Action Limit 

R ≥ 400 m R < 400 m 
K0 145 - 6 24 31 43 34 
K1 125 - 140 6 24 31 43 34 
K2 105 - 120 6 24 31 43 34 
K3 75 - 100 9 24 31 43 34 
K4 45 - 70 12 24 31 43 34 
K5 - 40 15 24 31 43 34 

 

Table 3-7 Limits values for twist measured over 9 meters (Bane NOR, 2018) 

 

Table 3-8 gives an overview of maintenance regime related to isolated irregularities 

of longitudinal level with wavelength between 3 and 25 m (D1). The limits for 

maintenance depend on the maximum permissible train speed. 

 

Quality 
classes 

 

 Speed (km/h) in 
accordance with 

quality class regime 

Unevenness in level for each rail in the track (+/- mm) 
New 

tamped 
track 

AL – Alert 
Limit 

IL – 
Intervention 

Limit 

IAL – 
Immediate 

Action 
Limit  

K0 145 - 2 6 9 16 
K1 125 - 140 2 6 10 23 
K2 105 - 120 2 7 12 26 
K3 75 - 100 4 10 16 26 
K4 45 - 70 5 13 21 28 
K5 - 40 6 17 27 28 

 

Table 3-8 Maintenance regime regarding unevenness in longitudinal level for each rail (Bane NOR, 2018b) 

 

Track geometry is measured with the Track Recording Vehicle (TRV) every 0.5 

meters. The calculation basis in a wavelength range of 3-25 m is 200 m, which slides 

along the track. Over 1000 m of track, approximately 2000 measurements are 

gathered, and a new value for the standard deviation is calculated. The standard 

deviation values for the individual quality classes are listed in Table 3-9. 

The four parameters for which standard deviations are calculated are: 
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• Longitudinal level 𝜎𝜎𝐻𝐻 (mm) 

• Variation of cant 𝜎𝜎𝑅𝑅 (mm) 

• Alignment 𝜎𝜎𝑃𝑃 (mm) 

• Cooperation 𝜎𝜎𝑆𝑆 (mm) 

 

Cooperation is a parameter which reflects the comfort that can be experienced in a 

passenger car. It is calculated by summing alignment and variation of cant before 

calculating standard deviation. Standard deviation for alignment is calculated for 

outer rail in curves.  

The following equation shows the standard deviation: 

 

 

 σ = �
1

𝑛𝑛 − 1  .�(𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑚𝑚)2
𝑛𝑛

𝑖𝑖=1

 (4) 

 

where, 

σ = standard deviation in mm; 

n = number of measurement values; 

𝑥𝑥𝑖𝑖 = the measurement value in mm; 

𝑥𝑥𝑚𝑚 = the mean of all measurements. 

 

The standard deviation is usually considered over a stretch of 200 m or 1000 m 

segment. In Roger 1000, standard deviations will be calculated for different 

wavelength intervals, segment lengths and accuracy, given in Table 3-9. 
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Parameter Wavelength interval Measurement 

accuracy 

Calculation basis 

Standard deviation 

for longitudinal 

level 𝝈𝝈𝑯𝑯 

3 – 25 m 

25 – 70 m 

70 – 150 m  

± 0.2 mm 

± 0.5 mm 

± 1.5 mm 

200 m 

1000 m 

1500 m  

Standard deviation 

for alignment 𝝈𝝈𝑷𝑷 

3 – 25 m 

25 – 70 m 

70 – 150 m 

± 0.2 mm 

± 0.5 mm 

± 1.5 mm 

200 m 

1000 m 

1500 m 

Standard deviation 

for variation for 

cant σR 

3 – 25 m 

25 – 70 m 

± 0.2 mm 

± 0.5 mm 

200 m 

1000 m 

 

Table 3-9 Standard deviation calculation for Roger 1000 

 

 

The so-called K-number  

Bane NOR uses the so-called K-number as a Track Quality Index (TQI) to calculate 

the track quality. The K-number can be used on longer track sections. In Roger 

1000, this number is calculated every 1000 m. The K-number is not applicable for 

shorter track sections.  

K-numbers are primarily a comfort figure which reflects the experience as train 

passenger in the form of irregularities in the track. 

The K-number indicates how much of a stretch there all σ-values from Table 3-10 

are within the tolerance limits, and can be expressed by the following equation: 

 

 K = ∑𝑙𝑙
𝐿𝐿

 ∙ 100 % 
 

(5) 

 

where, 

 ∑ 𝑙𝑙 = the sum of track lengths where all calculated standard deviations are within 

the quality limits; 
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L = the track length inspected. 

The K-number can vary from 0 to 100% and should be as high as possible.  

 

Table 3-10 shows the quality limits for standard deviation, according to the quality classes. 

 

Quality 

class 

Speed (km/h) Quality limits (mm) 

Longitudinal 

level 𝝈𝝈𝑯𝑯 

Variation of 

cant 𝝈𝝈𝑹𝑹 

Alignment 

𝝈𝝈𝑷𝑷 

Cooperation 

𝝈𝝈𝑺𝑺 

K0  from 145  1,1 0,9 1,1 1,8 

K1 125 - 140 1,3 1,0 1,2 1,7 

K2 105 - 120 1,5 1,2 1,3 1,9 

K3 75 - 100 1.9 1,4 1,7 2,4 

K4 45 - 70 2,4 1,8 2,0 3,1 

K5 up to 40 2,9 2,2 2,4 3,6 
 

Table 3-10 Quality limits for standard deviation according to quality classes 

 

The quality figure (K-number) should be as high as possible. Low quality figures 

will, in addition to reducing comfort, speed up the degradation of the track.  

 

Quality 
classes 

 

 Speed (km/h) in 
accordance with 

quality class regime 

K - number 
New tamped 

track 
AL – Alert 

Limit 
IL – Intervention 

Limit 

K0 145 - 90 90 50 
K1 125 - 140 90 85 40 
K2 105 - 120 90 80 30 
K3 75 - 100 90 75 20 
K4 45 - 70 90 70 20 
K5 - 35 - - - 

 

Table 3-11 K-number limits according to quality classes 
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4 CASE STUDY: OFOTBANEN 

 

For the purpose of this master’s thesis, a case study for Ofotbanen is presented. The 

aim is to suggest how track geometry measurement data can be used for further 

analysis.  

Presently, the so-called K-number, which is the Track Quality Index (TQI) adopted 

by Bane NOR, describes numerically the track geometry quality over 1000 m. This 

case study shows how the standard deviation for the short wavelength (3 – 25 m) of 

longitudinal level defects (right and left rail) could be adopted as an indicator for 

planned maintenance actions.  

 

 

Figure 4-1 Ofotbanen (Bane NOR, 2019) 

 

4.1 HISTORY 

 

The Ofoten Line (Norwegian: Ofotbanen) is a 42 kilometres long railway, 

constructed from 1898 to 1902, which runs from the Port of Narvik to Riksgränsen 

on the Norway–Sweden border. The line continues as the Ore Line (Swedish: 

Malmbanen) from Riksgränsen to Port of Luleå. 

For more than 100 years, rail traffic on Malmbanen and Ofotbanen has been of 

regional and national significance both in Sweden and Norway, given the enormous 

volumes of iron ore transported. The annual tonnage exceeds 31 million gross tons 

(MGT).  

https://en.wikipedia.org/wiki/Port_of_Narvik
https://en.wikipedia.org/wiki/Riksgr%C3%A4nsen
https://en.wikipedia.org/wiki/Norway%E2%80%93Sweden_border
https://en.wikipedia.org/wiki/Riksgr%C3%A4nsen
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The problem of transporting the ore increased pressure for the line’s construction. 

The ore was previously transported by reindeer or river boat in the 17th, 18th and 19th 

centuries. Ofotbanen joins not only ore deposits in Norway and iron ore fields in 

northern Sweden, but also is part of a supply chain that links a harbor on the 

Norwegian cost to overseas customers.  

Ofotbanen is a railway of great historical significance. It demonstrates the 

technological and engineering achievements in railway construction from the turn of 

the century. Furthermore, the challenging track geometry is worthy of consideration. 

Railway engineers had to find means to overcome natural obstacles to build a 

railway through the Swedish-Norwegian mountains.  

Supply roads were constructed to transport tools and building materials. On the 

Swedish side, these roads stretched for more than 60 km from east of Torneträsk to 

the border. On the Norwegian side, they were 20 km long and very steep in some 

places (Theander, 1996).  

The line has contributed to the social and economic evolution of Narvik district. 

 

 

Figure 4-2 Ofotbanen, by Thor Brækkan 
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4.2 FEATURES OF THE LINE 

 

The track has a challenging geometry with small curve radii and steep gradients, 

from the Swedish border and down to the Port of Narvik. The vertical inclination 

downward is 14 – 15 mm/m (Gåsemyr, 2017).  

 

 

Figure 4-3 Curve distribution on Ofotbanen (Gåsemyr, 2017) 

 

The line is equipped with 60E1, 60E2 and 54E3 rails. There are some sections of line equipped 

with wooden sleepers and other sections with concrete sleepers. At some locations the ballast 

profile is characterised by thin ballast layer. Table 4-1 shows the new and the old construction 

on Ofotbanen.  

 

 Old construction New construction 
Rails 54E3 60E1/60E2 
Rail fastenings Pandrol (various types) Pandrol Fastclip 
Sleeper Wooden; 520 mm Concrete; 520 mm 
Ballast fraction Thin ballast height 25 mm – 50 mm Sufficient ballast 25 mm -50 

mm 
Rails Head to be ground for an inclination 1:30 
Turnouts Application with movable frogs 

 

Table 4-1 Features of the Section of Line - Ofotbanen 

 

21%

24%

15%

10%

7%

23%

Curve distribution on Ofotbanen

Straight track Curve radii R < 300 m

Curve radii 300 m < R < 500 m Curve radii 500 m < R < 1000 m

Curve radii > 1000 m Transition curves
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Ofotbanen is a single-track line. Trains can only pass or overtake each other at 

sidings. The speed of loaded heavy haul trains is 50 km/h.  

The line has been upgraded from axle loads of 25 to 30 tons and carries now much 

longer and heavier trains than it was designed to carry. However, many of the 

original features of the railway remain in use.  

The market forces Bane NOR to find ways to expand Ofotbanen’s carrying capacity. 

The forecast for rail traffic shows an increase that will exceed the maximum 

achievable capacity for this line. Today's traffic consists of freight trains and 

passenger trains. Within both categories, volumes are expected to increase steadily 

from about 2020 up to 2040. In particular, in the mining industry and ore transport, 

there are high expectations for increased production (Jernbaneverket, 2013). 

Capacity increasing measures, such as double-tracks, additional crossing loops and 

higher axle loads, have been considered and analyzed.   

One of the strategies that Bane NOR considers is to raise the allowable axle loads 

for freight cars on Ofotbanen. A research project has been initiated to determine if 

increasing from 30 tons to 32,5 tons axle load is technically feasible and 

economically desirable. On a trial bases, one 32,5 tons test train per day ran along 

the line. The remaining trains continued operating with axle loads of 30 tons (Einås, 

2017).  

The axle loads have most influence on the track deterioration on the Norwegian 

heavy haul line Ofotbanen. This parameter must be added to the greatest importance 

in weighted assessment. The low operational train speed of 60 km/h (loaded 50 

km/h) has less influence. Due to this fact, balance speed in all curves is achieved.  

The subarctic climate characterized by long and cold winters, imposes its own 

constraints, reducing the size of maintenance windows. 
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4.3 DATA COLLECTION AND ANALYSIS 

 

One of the purposes of this quantitative analysis is to correlated track geometry data 

from the measurement campaigns with operating conditions, weather, superstructure 

elements and maintenance activity history.  

Data were collected with the Roger 1000 Track and Overhead Line Recording 

Vehicle and IMV 200 Track Recording Train. This last one is operated by Infranord 

in Sweden. Track geometry measurements are performed twice a year on Ofotbanen. 

Since the laser system on Roger 1000 was replaced in 2013, all data recorded from 

2014 is assumed to be more accurate.  

The results presented are based on the data collected from two measurements per 

year during the last five years, from 2014 to 2018.  

The InOffice software interprets the raw data from track geometry measurements on 

a user-friendly module. The track geometry measurements are gauge, twist, cant, 

longitudinal level (right and left rail) and alignment (right and left rail). The standard 

deviation for longitudinal level 𝜎𝜎𝐻𝐻, standard deviation for alignment 𝜎𝜎𝑃𝑃, standard 

deviation for variation of cant 𝜎𝜎𝑟𝑟 and standard deviation for cooperation 𝜎𝜎𝑠𝑠 are 

calculated according to the EN 13848 series (European Standard, 2006) on a 200 m 

long segment. The wavelength domain is in the range of 3 – 25 m. The train quality 

class is K3.  

Mutual data alignment was possible by integrating Banedata and InOffice. This case 

study focuses on the main line. 

The K-numbers are derived from the data collected by Roger 1000 and were 

calculated for each measurement campaign. Figure 4-4 illustrates the variation of the 

K-number over time. 

 



44 
 

 

Figure 4-4 K-number variations for Ofotbanen over time 

 

Figure 4-4 shows that the K-number is usually lower for the measurements carried 

out in the spring than measurements carried out in autumn. These numbers reflect 

the impact of the extreme weather conditions during the winter on railways.  

 

The degradation of track geometry is distinguished by the increase of the standard 

deviation for longitudinal level defects (σH) for the wavelength range D1 (3 - 25 m), 

as shown in Figure 4-5 and 4-6.  

 

 

 

Figure 4-5 Evolution of standard deviation of longitudinal level between 2014-2015 
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Figure 4-6 Evolution of standard deviation of longitudinal level between 2017-2018 

In Norway, mechanized track maintenance (rail grinding, tamping, ballast cleaning, 

ballast plough and ballast addition) is commonly carried out after the snow has 

melted in spring and during the summer. It means that the effect of maintenance is 

shown on measurements taken in autumn (Figures 4-5 and 4-6). Problems due to 

frost heave can also give rise to increased standard deviation for longitudinal level 

(σH) on measurements taken in the spring.  

Figure 4-7 shows the distribution of the K-number along the line for a measurement 

campaign carried out on 13 September 2017.  

 
 

 

Figure 4-7 K-number variations for Ofotbanen for a specific measurement campaign  
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The K-number alone may not provide enough information that leads to maintenance 

actions or strategy. It is important to identity which parameters have a negative 

effect on the K-number. The quality limits are indicated in Table 4-2. 

  

Quality 

class 

Speed (km/h) Quality limits (mm) 

Longitudinal 

level 𝝈𝝈𝑯𝑯 

Variation of 

cant 𝝈𝝈𝑹𝑹 

Alignment 

𝝈𝝈𝑷𝑷 

Cooperation 

𝝈𝝈𝑺𝑺 

K3 75 - 100 1.9 1,4 1,7 2,4 
 

Table 4-2 Quality limits for Ofotbanen 

 

Figure 4-8 Variations of the standard deviation for the longitudinal level 

 

 

Figure 4-9 Variations of the standard deviation for cant 

 

0

1

2

3

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

St
an

da
rd

 d
ev

ia
tio

n 
of

 
lo

ng
itu

di
na

l l
ev

el
 σ

H
 (m

m
)

km from the reference (Narvik)

Variations of the standard deviation of 
longitudinal level along the track 

σH Threshold

0

0,5

1

1,5

2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

St
an

da
rd

 d
ev

ia
tio

n 
of

 ca
nt

 σ
R 

(m
m

)

km from the reference point (Narvik)

Variations of the standard deviation for cant
along the track

σR Threshold



47 
 

 

Figure 4-10 Variations of the standard deviation for alignment 

 

 

Figure 4-11 Variations of the standard deviation for cooperation 
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Figure 4-8 shows that the weakest point along the track, i.e. the point with highest 

standard deviation for longitudinal level, is between km 13 and 14.  

Presently, InOffice provides only the K-number for 1000-meter sections. As a means 

to assess track geometry quality for shorter track sections, i.e. 100- or 200-meter 

sections, the raw data from the track measurements were retrieved. In this case, the 

parameter of interest was the amplitude of the longitudinal level defects. The 

0

0,5

1

1,5

2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

St
an

da
rd

 d
ev

ia
tio

n 
of

 al
ig

nm
en

t 
σP

(m
m

)

km from the reference point (Narvik)

Variations of the standard deviation for 
alignment

σP Threshold

0
1
2
3
4

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

St
an

da
rd

 d
ev

ia
tio

n 
of

 
co

op
er

at
io

n σ
S 

(m
m

)

km from the reference point (Narvik)

Variations of the standard deviation for 
cooperation

σS Threshold



48 
 

standard deviation (σH) was then calculated for 200-meter track sections. The 

wavelength domain is in the range of 3 – 25 m, and the train quality class is K3.  

Table 4-3 shows a sample of the calculations based on the track geometry 

measurement carried out on 13 September 2017. 

Track segment  Standard deviation of 
longitudinal level (σH) 

km 13,0 - 13,2 3,03 
km 13,2 - 13,4 2,37 
km 13,4 - 13,6 4,03 
km 13,6 - 13,8 2,04 
km 13,8 - 14,0  1,45 

 

Table 4-3 Sample of calculations for the track segment km 13,0 - 14,0 

By correlating the track geometry measurement data and video recordings from the 

external camera mounted on the TRV, one could conclude that the railroad switch 

gives rise to the increased standard deviation for longitudinal level (σH).  

 

 

Figure 4-12 Ofotbanen km 13,04 (Bane NOR, 2017) 

 

At switches and turnouts, there is an abrupt change of vertical track stiffness, 

implying irregular wheel-rail contact forces. Such locations are more prone to 

develop track settlements due to the permanent deformation of the ballast and the 

substructure.  

The next weakest point of the track, i.e. the track segment where the predefined 

threshold level for σH is also exceeded, is between km 6 and 7.  
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Track segment  Standard deviation of 
longitudinal level (σH) 

km 6,0 - 6,2 2,27 
km 6,2 - 6,4 2,11 
km 6,4 - 6,6 2,40 
km 6,6 - 6,8 2,30 
km 6,8 - 7,0  2,00 

 

Table 4-4 Calculations for the track segment km 6,0 - 7,0 

 

 

Figure 4-13 Ofotbanen km 6,47 (Bane NOR, 2017) 

 

Figure 4-13 shows a view from the external camera mounted on the TRV at km 

6,47, right before the tunnel opening. Old tunnel constructions give rise to increased 

standard deviation for longitudinal level (σH). This is mainly due to the fact that 

tunnels on older track sections are not deeper as they should to get sufficient total 

height up to the tunnel top, and to be able to accommodate a ballast layer under the 

sleepers, as well as sleepers and rails.  

 

Underneath the ballast layer, it will then be a bedrock that is to be considered as hard 

ground, in the same way as bridges/culverts of concrete. In this case, sufficient 

spring and damping properties concerning the superstructure are not achieved, due 

to the very hard stiffness of the substructure. In normal conditions, correct elasticity 

as for a substructure of clay is achieved.  
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These conditions together often give rise to increasing standard deviations in the 

vertical position. A greater stress is induced on track components and ballast layer, 

which over time reduces the ballast quality in the form of crush down of the stones 

and the occurrence of fine materials. 

 

Another weak point of the track, i.e. a track segment where the predefined threshold 

level for σH is also exceeded, is between km 9 and 10.  

 

Track segment  Standard deviation of 
longitudinal level (σH) 

km 9,0 - 9,2 1,50 
km 9,2 - 9,4 1,31 
km 9,4 - 9,6 1,81 
km 9,6 - 9,8 2,53 
km 9,8 - 10,0  3,06 

 

Table 4-5 Calculations for the track segment km 9,0 - 10,0 

 

 

 

Figure 4-14 Ofotbanen km 9,8 (Bane NOR, 2017) 

 

Records from the external camera mounted on the TRV, between km 9,8 and 10 did 

not reveal any apparent drainage problems, although the quality limits for standard 

deviation for longitudinal level (σH) were exceeded. According to Banedata, this is 
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a track segment with small curve radii (< 350 m). A more rapid degradation of the 

track is expected.  

 

4.4 EFFECTIVENESS OF TAMPING  
 

For the purpose of this study case, some track segments were selected, and the 

effectiveness of tamping was evaluated based on the graph developed by UIC 

(Figure 4-15). The maintenance history for tamping actions was collected from 

BaneData.  

 

 

 

 

 

 

 

 

 

 

Figure 4-15 Effectiveness of tamping (UIC - Infrastructure Department, 2008) 

 

 

Maintenance Activity From km To km  Date Length (m) 
Tamping 11,27 12,52 02.08.2017 1250 

 

Table 4-6 Maintenance activity record for the track segments km 11,27 - 12,52 (Bane NOR) 
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Track segment Standard deviation of 
longitudinal level σH (mm) 

before tamping 
10.06.2017 

Standard deviation of 
longitudinal level σH (mm) 

after tamping 
13.09.2017 

Effectiveness of 
tamping  

km 11,2 – 11,4 2,51 2,15 bad 
km 11,4 – 11,6 2,10 1,23 good 
km 11,6 – 11,8 1,98 0,95 good 
km 11,8 – 12,0 1,84 1,06 good 

 

Table 4-7 Evaluation of the effectiveness of tamping, km 11,2 – 12,0 

 

Table 4-7 shows an evaluation of the effectiveness of tamping carried out on 2 

August 2017. One could conclude that the desired performance level after tamping 

was not achieved for the track segment km 11,2 – 11,4, according to the graph 

developed by UIC (Figure 4-15).    

Another track segment was randomly selected, and the effect of the tamping was 

evaluated. 

Maintenance Activity From km To km  Date Length (m) 
Tamping 14,65 15,28 05.08.2016 632 

 

Table 4-8 Maintenance activity record for the track segments km 14,65 - 15,28 (Bane NOR) 

 

Track segment Standard deviation of 
longitudinal level σH (mm) 

before tamping 
09.06.2016 

Standard deviation of 
longitudinal level σH (mm) 

after tamping 
01.09.2016 

Effectiveness of 
tamping  

km 14,6 – 14,8 1,70 1,03 good 
km 14,8 – 15,0 1,95 1,10 good 
km 15,0 – 15,2 1,80 1,72 bad 

 

Table 4-9 Evaluation of the effectiveness of tamping, km 14,6 - 15,2 

 

Table 4-9 shows an evaluation of the effectiveness of tamping carried out on 5 

August 2016. One could conclude that desired performance level after tamping was 

not achieved for the track segment km 15,0 – 15,2.  

The quality limit for the standard deviation of longitudinal level σH shown on Table 

3-10 not always has been maintained. This is probably due to budget constraints. 
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Figure 4-16 shows the evolution of σH along the time for the track segment km 9,8 – 

10,0. Although the threshold for the quality limit was exceed, the values for σH were 

within an acceptable level, according to the UIC tamping intervention graph shown 

on Figure 2-7.  

 

Figure 4-16 Variations of σH along the time for track segment km 9,8 – 10,0 

 

Measurement date 02.09.15 09.06.16 01.09.16 10.06.17 13.09.17 14.05.2018 08.09.18 

Standard deviations of longitudinal level σH (mm) 
km. 9,8 – 10,0  1,91 2,23 2,36 2,83 3,06 3,67 1.73 

 

Table 4-10 Values of σH along the time for track segment km 9,8 – 10,0 

 

Maintenance Activity From km To km  Date Length (m) 
Tamping 9,91 10,42 29.08.2018 510 

 

Table 4-11 Maintenance activity record for the track segments km 9,91 – 10,42 (Bane NOR) 

 

Tamping was carried out on 29 August 2018 to restore the track geometry in this 

segment of track, as the value of the standard deviation of longitudinal level σH 

exceeded the acceptable limit.  
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4.5 PREDICTING THE PROGRESSION OF THE STANDARD DEVIATION FOR LONGITUDINAL 

LEVEL DEFECTS  

 

One of the objectives of this case study is to determine empirically how the standard 

deviation for longitudinal level (right and left rail) defects behaves over time. This is 

the only parameters which will be considered to assess the track geometry 

degradation and is often used for triggering preventive tamping. Deterioration rates 

can be estimated based on several consecutive measurements over time, taken at the 

same position. 

The amplitude for the longitudinal level defects (wavelength range 3 – 25 m), 

derived directly from the raw signal, were collected from each measurement 

campaign. The quality signal is calculated by a moving average, within a 200-meter 

track segments. These data, together with the dates when the measurements where 

performed, were consolidated in Excel.  

Records of the annual tonnage for Ofotbanen were collected and organized, as 

shown in Table 4-12. 

Annual gross tonnage for Ofotbanen   
2014 2015 2016 2017 2018 

January 3 016 331 2 237 748 2 397 563 2 715 863 2 865 497 
February 2 983 975 2 213 338 2 481 744 2 624 183 2 596 848 
March 2 572 216 2 357 088 2 861 763 2 451 794 2 772 384 
April 3 031 601 2 260 304 2 934 167 2 710 857 2 460 156 
May 3 012 793 2 381 403 2 782 777 2 998 246 2 721 616 
June 2 390 040 2 180 108 2 434 453 2 182 481 2 500 888 
July 2 844 487 2 327 129 2 317 968 2 878 568 2 215 455 
August 2 909 273 2 374 883 2 474 039 2 414 705 2 429 061 
September 2 460 406 1 851 197 2 823 299 2 736 889 3 072 069 
October 2 856 668 2 363 249 2 482 465 2 611 935 2 398 176 
November 2 299 523 2 374 411 2 680 224 2 705 059 2 556 783 
December 2 535 880 2 407 064 2 611 437 2 875 653 2 975 110  

32 913 193 27 327 922 31 281 899 31 906 233 31 564 043 
 

Table 4-12 Annual gross tonnage for Ofotbanen between 2014-2018 

 

The accumulated tonnage between two consecutive track geometry measurements 

was calculated, as shown in Table 4-13. 
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Measurement date Days between  
two consecutive measurements 

Accumulated tonnage (gross tons) 

29.05.2014 N/A N/A 
25.08.2014 88 7 775 089 
05.06.2015 284 22 524 645 
02.09.2015 89 6 627 279 
09.06.2016 281 23 063 771 
01.09.2016 115 9 295 444 
10.06.2017 282 24 731 752 
13.09.2017 95 7 934 246 
14.05.2018 243 21 667 553 
08.09.2018 117 9 457 121 

 

Table 4-13 Accumulated tonnage between two consecutive measurements 

 

The track geometry measurements carried out on 29 Mai 2014 and on 5 June 2015 

were carried out by Infranord. Track geometry data from those two measurements 

campaigns were not considered for the degradation trend analysis.  

Statistical regression analysis has been performed to identify significant variables 

influencing the track degradation.  

A track segment was chosen to illustrate how regression analysis was performed for 

each track segment. In this case, no tamping actions were carried out between track 

geometry measurements. The accumulated tonnage was the first variable analyzed. 

 

Track segment km. 6,0 – 6,2 
Accumulated tonnage (MGT) σH (mm) Measurement date  
0 1,89 02.09.2015 
23,06 1,98 09.06.2016 
32,36 2,02 01.09.2016 
57,09 2,20 10.06.2017 
65,02 2,27 13.09.2017 
86,69 2,34 14.05.2018 
96,15 2,40 08.09.2018 

 

Table 4-14 Accumulated tonnage vs. sigma H for track segment km 6,0 – 6,2 
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Both linear and exponential regression were performed to find a line that best fits the 

data points.  

A linear trendline typically describes a continuous rise or fall over time, by the 

following equation: 

 

 𝑦𝑦 = 𝑏𝑏 ∙ 𝑥𝑥 + 𝑎𝑎 (6) 
 

where, 

b = the slope of the trend line; 

a = the y-intercept. 

 

Figure 4-17 shows the linear regression for accumulated tonnage vs. σH. The 𝑅𝑅2 

represents the goodness of the model. 𝑅𝑅2 = 0 means that the regression line does not 

fit the data at all. 𝑅𝑅2 = 1 means that the regression line fits the data absolutely. The 

𝑅𝑅2 = 0,985 is a very good fit.  

 

 

Figure 4-17 Accumulated tonnage vs. sigma H, linear regression, for track segment km 6,0 – 6,2 
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The exponential regression was than performed, represented by the following 

equation:  

 

 𝑦𝑦 = 𝑎𝑎 . 𝑒𝑒𝑏𝑏 .𝑥𝑥  (7) 
 

where, 

a, b = calculated coefficients; 

e = the mathematical constant e. 

 

 

 

Figure 4-18 Accumulated tonnage vs. sigma H, exponential regression, for track segment km 6,0 – 6,2 

 

Figure 4-18 shows the exponential regression for accumulated tonnage vs. σH. The 

𝑅𝑅2 = 0,985 is also fitting very well. 

The second variable analyzed is time (days), as shown in Table 4-15. 

 

 

 

y = 1,88e0,0026x

R² = 0,9845

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100 120

St
an

da
rd

 d
ev

ia
tio

n 
of

 lo
ng

itu
di

na
l 

le
ve

l σ
H

 (m
m

)

Accumulated tonnage

σH vs. accumulated tonnage



58 
 

Track segment km. 6,0 – 6,2 
Time (days) σH (mm) Measurement date 
0 1,89 02.09.2015 
281 1,98 09.06.2016 
396 2,02 01.09.2016 
678 2,20 10.06.2017 
773 2,27 13.09.2017 
1016 2,34 14.05.2018 
1133 2,40 08.09.2018 

 

Table 4-15 Time vs. sigma H for track segment km 6,0 – 6,2 

 

 

Figure 4-19 Time vs. sigma H, linear regression, for track segment km 6,0 – 6,2 

 

Figure 4-19 shows the linear regression for time vs. σH. The 𝑅𝑅2 = 0,9838 is a very 

good fit. 

The exponential regression was than performed, as shown on Figure 4-20. The 𝑅𝑅2 = 

0,9839 indicates that the exponential model also fits the data points.  

 

y = 0,0005x + 1,8668
R² = 0,9838

0

0,5

1

1,5

2

2,5

3

0 200 400 600 800 1000 1200

St
an

da
rd

 d
ev

ia
tio

n 
of

 lo
ng

itu
di

na
l 

le
ve

l σ
H

 (m
m

)

Time (days)

σH vs. time



59 
 

 

Figure 4-20 Time vs. sigma H, exponential regression, for track segment km 6,0 – 6,2 

 

Another track segment was arbitrarily selected, regression analysis was performed, 

and the results were compared. 

 

Track segment km 14,4 – 14,6 
Accumulated tonnage (MGT) σH (mm) Measurement date  
0 1,77 02.09.2015 
23,06 1,88 09.06.2016 
32,36 2,01 01.09.2016 
57,09 2,11 10.06.2017 
65,02 2,26 13.09.2017 
86,69 2,33 14.05.2018 

 

Table 4-16 Accumulated tonnage vs. sigma H for track segment km 14,4 – 14,6 
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Figure 4-21 Accumulated tonnage vs. sigma H, linear regression, for track segment km 14,4 – 14,6 

 

 

Figure 4-22 Accumulated tonnage vs. sigma H, exponential regression, for track segment km 14,4 – 14,6 

 

Track segment km 14,4 – 14,6 
Time (days) σH (mm) Measurement date 
0 1,77 02.09.2015 
281 1,88 09.06.2016 
396 2,01 01.09.2016 
678 2,11 10.06.2017 
773 2,26 13.09.2017 
1016 2,33 14.05.2018 

 

Table 4-17 Time vs. sigma H for track segment km 14,4 – 14,6 
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Figure 4-23 Time vs. sigma H, linear regression, for track segment km 14,4 – 14,6 

 

 

Figure 4-24 Time vs. sigma H, exponential regression, for track segment km 14,4 – 14,6 

 

From the regression analysis performed for track segments km 6,0 – 6,2 and 14,4 – 

14,6, it was concluded that both linear and exponential models fit the data points. 

Another conclusion is that the track segments have different degradation rates, 
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relationship between degradation and load. The exponential model was therefore 

chosen for further analysis.  

Tables 4-18 shows a sample of the data processing for the calculation of the 

degradation rate. 

 

Measurement date 02.09.15 09.06.16 01.09.16 10.06.17 13.09.17 14.05.2018 08.09.18 

Accumulated 
tonnage (MGT) 
between two 
measurements 

 23,06 9,30 24,73 7,93 21,67 9,46 

Standard deviations of longitudinal level σH (mm) 
km 9,0 – 9,2 1,90 1,50 1,99 3,04 1,50 1,67 1,33 
km 9,2 – 9,4  1,20 1,38 1,49 2,27 1,31 1,51 1,62 
km 9,4 – 9,6 1,19 1,43 1,48 1,84 1,81 2,14 2.27 
km 9,6 – 9,8 1,64 1,91 2,04 2,51 2,53 3,35 1.91 
km 9,8 – 10,0  1,91 2,23 2,36 2,83 3,06 3,67 1.73 

 

Table 4-18 Standard deviation for longitudinal level (σH) calculated for different track segments 

   
BaneData provided the maintenance history for all the mechanized track 

maintenance which was carried out between 2015 and 2018. Track segments where 

tamping have been carried out between two consecutive measurements, commonly 

show a decrease in the standard deviation for the longitudinal level. These values 

were eliminated from the data, i.e. not considered when calculating the degradation 

rate for 200-meters track segments. 

The degradation rate (b) was calculated for 200-meters track segments, as a function 

of tonnage. Table 4-19 shows a sample of the data processing. 

 

Track segment Standard deviations of longitudinal level σH (mm) b 
(mm/MGT) 

km 9,0 – 9,2 1,90 1,50 1,99 3,04 1,50 1,67 1,33 0,0171 
km 9,2 – 9,4  1,20 1,38 1,49 2,27 1,31 1,51 1,62 0,0074 
km 9,4 – 9,6 1,19 1,43 1,48 1,84 1,81 2,14 2.27 0,0077 
km 9,6 – 9,8 1,64 1,91 2,04 2,51 2,53 3,35 1.91 0,0071 
km 9,8 – 10,0  1,91 2,23 2,36 2,83 3,06 3,67 1.73 0,0073 

 

Table 4-19 Sample of the data processing 
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Based on the calculations shown on Table 4-19, one could conclude that the track 

segment km 9,0 – 9,2 has a high degradation rate b (mm / MGT).  A report 

generated from BaneData shows that a tunnel ends at km 9,04 and a turnout starts at 

km 9,19. Thus, there is an abrupt change of vertical track stiffness. This track 

segment is more prone to develop track settlements. 

 

 

Figure 4-25 Description of Ofotbanen given in Løfteskjema (Bane NOR, 2019) 
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The same data processing was then conducted for a thirteen kilometres pilot section 

of the Ofotbanen, from km 6,0 to km 19,0. The pilot section was divided into 200-

meter track segments. Table 4-20 shows the descriptive analysis of the degradation 

rates (mm / MGT) for Ofotbanen.  

 

 Descriptive analysis of the degradation rate (mm/MGT) for Ofotbanen 
Mean 0,0079 
Standard Error 0,00043 
Median 0,0061 
Mode 0,0041 
Standard Deviation 0,0071 
Sample Variance 5,01E-05 
Kurtosis 7,03 
Skewness 2,48 
Range 0,040 
Minimum 0,0006 
Maximum 0,040 
Sum 2,098 
Count 265 

 

Table 4-20 Descriptive analysis of the degradation rate as a function of tonnage 

 

 

Figure 4-26 Histogram plot for the degradation rate as a function of accumulated tonnage 
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The degradation rate (b) was also calculated as a function of time. In this case, the value chosen 

for the variable time (t) was 30 days.  

 

 Descriptive analysis of the degradation rate (mm/30 days) for Ofotbanen 
Mean 0,020 
Standard Error 0,0011 
Median 0,015 
Mode 0,012 
Standard Deviation 0,018 
Sample Variance 0,00033 
Kurtosis 6,61 
Skewness 2,42 
Range 0,103 
Minimum 0,002 
Maximum 0,105 
Sum 5,35 
Count 265 

 

Table 4-21 Descriptive analysis of the degradation rate as a function of time 

 

 

Figure 4-27 Histogram plot for the degradation rate as function of time 

 

From Figures 4-26 and 4-27, one could conclude that the distribution is right-

skewed. The target numbers in Tables 4-20 and 4-21 show that the median and mode 

values are lower than the means values. The median yields a more appropriated idea 
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of the data distribution, while the mean is influenced by the extreme values. If data 

were normally distributed, it would have been reasonable to use the mean value of 

the degradation rate as a function of time (or accumulated tonnage). However, in this 

case, this strategy would overestimate the degradation.  

A sample of the calculated values of the degradation rate (b) for each track segment 

is shown on Table 4-22. The track segments have small curve radii (300 m < R < 

500 m).  

 

Track segment Initial σH (mm) 
08.09.2018 

Degradation rate b as a function of accumulated tonnage  
(mm / MGT) 

km 7,4 – 7,6  1,10 0,0043 
km 11,6 – 11,8 1,28 0,0094 
km 12,8 – 13,0 1,21 0,0038 
km 15,4 – 15,6 1,09 0,0057 
km 16,0 – 16,2 1,27 0,0051 

 

Table 4-22 Sample of the calculated values of the degradation rate for each track segment with small curve radii 

 

 

Figure 4-28 Prognosis of degradation per track segment, small curve radii  

 

Figure 4-28 shows the prognosis of degradation for five track segments with small 

curve radii (300 m < R < 500 m). The graph indicates when the standard deviation 
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of longitudinal level σH will exceed the threshold value (1,9 mm). The track 

segment km 11,6 – 11,8 has an initial value for σH = 1,28 mm. The graph indicates a 

demand of preventive tamping action after approximately 10 MGT. The track 

segment km 7,4 – 7,6 has an initial value for σH = 1,1 mm and a demand of 

preventive tamping action after approximately 17 MGT. 

The values of the degradation rate (b) were also compared for straight track 

segments, as shown on Table 4-23. 

 

Track segment Initial σH (mm) 
08.09.2018 

Degradation rate b as a function of accumulated tonnage  
(mm / MGT) 

km 6,0 – 6,2  2,40 0,0024 
km 6,8 – 7,0 1,21 0,0055 
km 12,2 – 12,4 1,34 0,0073 
km 16,4 – 16,6 0,84 0,0070 

 

Table 4-23 Sample of the calculated values of the degradation rate for straight track segments 

 

 

Figure 4-29 Prognosis of degradation per track segment, straight tracks 

 

Figure 4-29 shows the degradation trends for four straight track segments. The graph 

indicates when the standard deviation of longitudinal level σH will exceed the 
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threshold value (1,9 mm). The value for σH have already been exceeded for the 

track segment km 6,0 – 6,2.  

As supported by the literature review, other factors than traffic conditions and 

curvature affect the degradation rate, causing some track segments to deteriorate 

significantly faster than others. Different superstructure types (e.g. rail profile, 

sleeper types, rail type), superstructure age, soil type, ballast condition and number 

of tamping actions performed since last renewal are some of the factors that 

additionally affect the infrastructure behaviour.  

The tale of the distribution (Figures 4-26 and 4-27) indicates that many track 

segments have a very high degradation rate. These segments require a more frequent 

monitoring, since measurement campaigns for Ofotbanen are only carried out twice 

a year, with intervals up to 283 days (or approximately 24 MGT). 

A more advanced degradation model could be developed using multiple regression 

analysis. This technique requires two or more independent variables (or explanatory 

variables). The literature review supports that tamping actions damage the track 

ballast. It would therefore be advisable to analyze the relationship between the 

number of tamping actions carried out on each track segment and the standard 

deviation of longitudinal level σH.  
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5 CONCLUSION AND FUTURE WORK 

 

The rail industry has experienced an important technological breakthrough the last 

few years. The Norwegian Railway Infrastructure Manager could benefit even more 

from the sensor technology and advanced analytics solution available at the time.  

Data collected from the track recording vehicle (TRV) have mainly been used to 

perform corrective maintenance when predefined thresholds levels are exceeded.  

A case study for the Norwegian heavy haul line was carried out to propose how 

decision makers can take more advantage of numerical data from track geometry 

measurements. By analysing records from different measurement campaigns 

together with maintenance history, one could conclude that some track segments 

require repeated tamping operations. Abrupt change of vertical track stiffness, 

insufficient thickness of the substructure and existing frost insulations are some of 

the root causes of repeated track geometry problems.  

A method to access the effectiveness of tamping operations based on numerical data 

from track geometry measurements reveals that the desired performance levels not 

always have been achieved. One possible explanation is that the track does initially 

achieve the desired performance level after the tamping action, but rapidly 

deteriorates again due to bad ballast or soil conditions.  

Another finding from the case study is that track segments with similar 

superstructure conditions and traffic load have different degradation rates. This 

might be explained by the unknown ballast, drainage and soil conditions.  

Predictive maintenance requires monitoring not only track geometry, but also the 

ballast and subsoil condition. GPR (Ground Penetrating Radar) technologies have 

been successfully used by many European Infrastructure Managers to inspect ballast 

fouling and drainage conditions. Thus, a more reliable condition assessment can be 

achieved.  

Handling and processing data from different sources together (track geometry, 

traffic density, maintenance history, subsoil and ballast condition, among others) 

require advanced methods and tools to manage large amounts of data. 
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Bane NOR should reassess its method of accessing track geometry quality. It should 

be an important aspect to reflect the latest research within the field. Methods that 

combine alignment, longitudinal level and twist (or cross level) have shown 

promising results. An innovative approach to the evaluation of ballast and 

substructure conditions by fractal analysis of vertical alignment implemented by the 

Austrian Federal Railways is also worthy of consideration.   

Finally, raising competence in track degradation mechanisms, together with 

advanced analytics capability will remain important elements. Collecting even more 

data is useless without the skills to interpret them.   
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