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Several approaches can be used to estimate neural activity. The main differences

between them concern the a priori information used and its sensitivity to high

noise levels. Empirical mode decomposition (EMD) has been recently applied to

electroencephalography EEG-based neural activity reconstruction to provide a priori

time-frequency information to improve the estimation of neural activity. EMD has the

specific ability to identify independent oscillatory modes in non-stationary signals with

multiple oscillatory components. However, attempts to use EMD in EEG analysis have

not yet provided optimal reconstructions, due to the intrinsic mode-mixing problem

of EMD. Several studies have used single-channel analysis, whereas others have

used multiple-channel analysis for other applications. Here, we present the results of

multiple-channel analysis using multivariate empirical mode decomposition (MEMD) to

reduce the mode-mixing problem and provide useful a priori time-frequency information

for the reconstruction of neuronal activity using several low-density EEG electrode

montages. The methods were evaluated using real and synthetic EEG data, in which

the reconstructions were performed using the multiple sparse priors (MSP) algorithm

with EEG electrode montages of 32, 16, and 8 electrodes. The quality of the source

reconstruction was assessed using the Wasserstein metric. A comparison of the

solutions without pre-processing and those after applying MEMD showed the source

reconstructions to be improved using MEMD as a priori information for the low-density

montages of 8 and 16 electrodes. The mean source reconstruction error on a real EEG

dataset was reduced by 59.42 and 66.04% for the 8 and 16 electrode montages,

respectively, and that on a simulated EEG with three active sources, by 87.31 and

31.45% for the same electrode montages.

Keywords: multivariate empirical mode decomposition, brain mapping, EEG signals, neuronal activity

reconstruction, time-frequency decomposition, low-density EEG
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1. INTRODUCTION

EEG is an indicator of neural activity and is used to study
complex brain dynamic processes, such as cognitive processes,
memory, and the recognition of emotion (Lin et al., 2016;
Soleymani et al., 2016). The analysis of EEG signals is challenging
for both the time and frequency domains due to their non-
stationary nature. However, hidden information can be extracted
for the early detection of different disorders using advanced
signal processing and analysis techniques (Subha et al., 2010).
In recent years, Hilbert Huang Transform (HHT) has been
increasingly used for the analysis of such signals (Bueno-López
et al., 2018). However, the extraction of information for certain
applications has been hampered by the mode-mixing problem
that appears in the empirical mode decomposition (EMD)
when frequency components are relatively close or exhibit
intermittency. A mode-mixing problem can be identified when
a set of signals of widely disparate scales appears in an intrinsic
mode function (IMF) or a signal with a similar scale appears
in different IMF components. Mode-mixing is a consequence of
spectral proximity of the frequency components, a relationship
between the amplitude components, or signal intermittency.

Mode-mixing can hamper the physical interpretation of the
process, which is normally described by the individual IMFs
(Rilling and Flandrin, 2008; Wu and Huang, 2009). The mode-
mixing problem has been studied in applications in several fields.
For example, in a study by Xue et al. (2016), the authors examined
the influence of mode-mixing on hydrocarbon detection based
on EMD. They used several variations of EMD to eliminate
the mode-mixing effects. Specifically, they applied ensemble
EMD (EEMD) and complete ensemble EMD (CEEMD), to
identify the peak frequency volume and above-average peak
amplitude volume.

In 2009, a new strategy was presented in a study by Rehman
and Mandic (2009), in which a multivariate version of EMD
called multivariate empirical mode decomposition (MEMD),
was proposed. MEMD is a method that reduces the mode-
mixing problem and is a good alternative for multichannel
data analysis, such as that of EEG signals. Several studies have
reported the use of EMD for neural activity reconstruction, as
well as other applications in bioengineering (Men-Tzung et al.,
2008; Okcana, 2016; Bueno-Lopez et al., 2017a,b), but the use
of MEMD for this application has been little investigated. In
a study by Yin et al. (2012), the authors presented a method
for data analysis based on MEMD in which they applied a pre-
processing step with independent component analysis (ICA) to
calculate and evaluate the energy presented in an EEG recording
from quasi brain deaths and evaluate their brain activity. Zahra
et al. (2017) proposed a data-driven method for classifying ictal
(epileptic activity) and non-ictal EEG signals using the MEMD
algorithm. They extracted and selected suitable feature sets to
classify neural activity based on a multiscale time-frequency
representation of the EEG signals by applying MEMD. In
Khosropanah et al. (2018), a fusion between MEMD, source
reconstruction algorithms, and an unsupervised wavelet eye blink
artifact remover were introduced. The fusion of those methods
was applied for the accurate localization of epileptogenic sources

in five subjects, the results of which suggest than MEMD
can improve source localization when the standardized low-
resolution tomography (sLORETA) inverse method is applied.
However, they did not evaluate the influence of reducing the
number of electrodes, and the information about the selection of
the MEMD intrinsic mode functions was not provided.

She et al. (2017) proposed a novel identification method
of relevant intrinsic mode functions based on noise-assisted-
MEMD and Jensen-Shannon distance measurements.

Here, we present the application of multivariate time-
frequency EEG signal analysis for source reconstruction, we
applied MEMD method as a pre-processing step to separate
the source activity by frequency and filtering the noise
components before applying source localization algorithms.
MEMD decomposes the signal into several intrinsic mode
function IMFs, in which the information of the underlying
brain activity is separated into frequency bands. MEMD reduces
the mode-mixing problem, due to the relation between the
information in each channel, making it possible to understand
the effect of a stimulus on different regions of the brain. Next,
selected information of the decomposed EEG signals is used to
perform neural activity reconstruction with higher accuracy than
when using the raw electrode information directly. Therefore,
a lower number of electrodes can, in principle, extract and
provide such underlying time-frequency information due to
the properties of MEMD and the redundancy of high-density
EEG in a given neuro-paradigm. We tested this hypothesis
using simulated EEG data and real EEG signals from a face-
evoked potentials paradigm (Henson et al., 2011; Wakeman
and Henson, 2015). Other different methods to MEMD have
also been used for the reconstruction and estimation of the
neuronal activity. In Giraldo-Suarez et al. (2016) the authors
present an iterative regularized algorithm (IRA) for neural
activity reconstruction that explicitly includes spatiotemporal
constraints. For improving the spatial accuracy provided by
EEG signals, they explore a basis set that describes the
smooth localized areas of potentially active brain regions. Also,
they enhance the time resolution by adding the Markovian
assumption for brain activity estimation at each time period. In
Shen et al. (2019) was presented a brain decoding and image
reconstruction from functional magnetic resonance imaging
(fMRI) activity using Deep neural networks (DNNs). The main
problem with that method is the training because the size of
available data is thought to be insufficient. Another alternative for
estimate neural activity was presented in Croce et al. (2016). Due
to the complementary nature of electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI), and given
the possibility of simultaneous acquisition, the authors proposed
the use of information from both methods and finally they built
a dynamic Bayesian framework in order to perform joint neural
activity time course estimation.

In this paper, we first performed MEMD on the sets of
EEG data and then applied source activity reconstruction using
multiple sparse priors (MSP). Based on the work of Jatoi and
Kamel (2018), the MSP algorithm performs better than other
well-known algorithms to solve the EEG inverse problem, such as
minimum norm estimation (MNE), low-resolution tomography
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(LORETA), and beamforming, using a reduced set of seven
electrodes. Here, we evaluated source reconstruction using 32, 16,
and 8 electrodes to analyze the effects of channel reduction with
the proposed methodology.

2. MATERIALS AND METHODS

2.1. Empirical Mode Decomposition
EMD is a locally adaptive method based on the local
characteristic timescale of the data and directly depends on the
data without the need of an a priori systemmodel. The aim of this
method is to decompose a non-linear and non-stationary signal
y(tk) into several intrinsic mode functions (IMFs), in which each
satisfies the two following conditions (Huang et al., 1998):

1. The number of extrema and zero crossings must be the same
or differ at most by one.

2. At any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima
are zero.

EMD is applied to y(tk) to obtain γi(tk), i being the intrinsic mode
function (IMF), and

y(tk) =

N∑

i=1

γi(tk)+ r(tk) (1)

in which N represents the number of IMFs and r(tk) residual
information. Recently, several optimization techniques have been
proposed to improve the performance of EMD (Hou and Shi,
2013; Xu et al., 2016).

FIGURE 1 | Three configurations of electrode positions for EEG

measurements.

Having obtained the intrinsic mode function components, we
can apply the Hilbert transform to each IMF component, and
compute the instantaneous frequency according to Equation (2).

fi(t) ,
1

2π
·
dθi(t)

dt
, (2)

in which θi(t) is the function phase of each IMF, calculated
from the associated analytical signal (Boashash, 1992).
Finally, the instantaneous frequency can be observed in the
Hilbert Spectrum.

2.2. Multivariate Empirical Mode
Decomposition (MEMD)
The main purpose of the EMD algorithm is to process the
original signal and calculate its local mean. The critical step
during this process is to find the local extrema. If it is necessary to
process multivariate signals, the first option is to apply EMD to
each channel to obtain the IMFs for each, but multivariate data
are characterized by generalized oscillations (joint rotational
modes), whichmust be treated consistently to reach ameaningful
estimated T-F (Rehman and Mandic, 2009).

Univariate EMD can be applied channel-wise if the channels
are not strongly coupled. Furthermore, it is known that the
EEG channels are strongly coupled, and this approach may
hide certain information. According to Mandic et al. (2013) the
univariate EMD has the following limitations:

1. Non-uniform signals: standard EMD can not always guarantee
the same number of IMFs for each channel.

2. Scale alignment: it is not possible to guarantee that the
corresponding scales have the same modes.

3. To constrain the number of IMFs for every channel could
compromise T-F estimation; it is the nature of IMFs to vary
in number.

The signal in EMD is the sum between a slow and a fast
oscillation, whereas the signal in the MEMDmethod is the result
of the sum of a slow rotation and fast rotation. Therefore, MEMD
decomposes the multivariate signal in p-variate signals s(t) as:

s(t) =

M∑

m=1

cm(t)+ r(t) (3)

in which s, c, r ∈ R
p. In this case, the p-variate IMFs {cm}

M
m=1 are

the joint rotational modes and r is the residual.

One of the biggest problems when using the standard EMD
in multivariate systems is that single channel decomposition
not always generate the same number of IMFs and it is
necessary to select the appropriate number for the neural activity
reconstruction and this can produce a loss of information. Direct
MEMD algorithms were first developed for the bivariate case and
include the complex EMD, which exploits univariate analysis of
data channels but does not guarantee coherent bivariate IMFs
(Rehman and Mandic, 2009). Another topic that is important
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to mention when we compared MEMD with EMD is noise
reduction. Previous studies have shown that noise reduction with
MEMD is significant against the use of EMD (Ur Rehman et al.,
2013; Miao and Cao, 2017). Noise reduction allows localized
instantaneous frequency with a more accurate level.

To analyze a true signal using EMD, it is necessary to
compute the local mean by interpolating among local minima
and maxima to calculate the mean of the upper and lower
envelopes. Nevertheless, the use of “oscillatory modes” for
multivariate signals is a confusing concept for the definition
of their IMFs, because the local maxima and minima can
not be defined directly. The solution has been to propose a
method to generate multiple n-dimensional envelopes, which
are computed using the projections of the signal over different
directions in n-dimensional space. These projections are then
averaged to calculate the local mean (Rehman andMandic, 2009).

MEMD algorithm (Mandic et al., 2013):

1. The V-point Hammersley sequence is generated for uniformly
sampling a p-dimensional sphere.

2. For each direction vector xθv , qθv (t) projections of the signal
s(t) will be calculated with the same orientation xθv . Therefore,
a set of projections of {qθv (t)}

V
v=1 will be gave for v = 1, ...,V

3. Find the time instants {tiθv }
V
v=1 that correspond to the maxima

of the set of projections of signals {qθv (t)}
V
v=1.

4. Interpolate [tiθv ,s(t
i
θv
)] to obtain the envelope curves

{eθv (t)}
V
v=1.

5. The mean of the P multidimensional envelopes is calculated

m(t) =
1

V

V∑

v=1

eθv (t) (4)

6. Extract the “detail” d(t) = s(t) − m(t). If d(t) fulfills the
stoppage criterion for a multivariate IMF, apply the above
procedure to s(t)− d(t). Otherwise repeat for d(t).

MEMD has many advantages over the EMD. The most relevant
one is the “mode alignment” property which is a potential of the
algorithm to find common oscillatory modes within multivariate
data by computing the local mean in contrast with the local
extrema of univariate EMD. The mode alignment property helps
to make use of similar scales in the different channels and
by that offer also the possibility of direct multi-channel data
analysis preserving the common channel properties. Also, then
data channels have the same number of scale-aligned IMFs and
although mode mixing remains its impact is reduced.

2.3. IMF Selection: Entropy Function
An entropy-based cost function is applied over each IMF γi(tk) as
follows (Bueno-López et al., 2019; Muñoz-Gutiérrez et al., 2019):

FIGURE 2 | Simulated activity for one source (A) using 10 Hz and 32, 16, or 8 EEG channels. Simulated activity for three sources (B) using 4, 12, and 20 Hz

windowed sinusoidal activity and 32, 16, or 8 EEG channels. Simulated activity for five sources (C) using 2, 6, 10, 15, and 20 Hz windowed sinusoidal activity and 32,

16, or 8 EEG channels.

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Soler et al. Neural Activity Reconstruction Using MEMD

ei = −
∑

k

‖γi(tk)‖
2
2 log(‖γi(tk)‖

2
2) (5)

ei being the entropy of each IMF, and e = [e1 . . . eN]. With the
objective to rebuild the EEG signal ỹ(tk), a selection of the IMFs,
based on the IMFs with highest entropy is applied according to
the measured entropy ei.

ỹ(tk) =
∑

i∈O

γi(tk) (6)

in which O represents the subset of IMFs that have been selected
to build the filtered EEG signals.

2.4. Source Reconstruction Algorithm
The relationship between the brain activity at cortical areas
(source activity) and the measurement electrodes in the scalp is
represented by the forward problem equation:

y(tk) = Mx(tk)+ ε(tk) (7)

for which y(tk) ∈ R
d×T the EEG signals for d electrodes with

T samples, x(tk) ∈ R
n×T contains the amplitude of n sources

distributed over the cortical areas, ε(tk) is a noise covariance,
assumed to have a Gaussian distribution with a mean of zero, and
M ∈ R

d×n is the lead field matrix or volume conductor model

and represents the physical model based on head anatomy. This
model explains how the potentials travel from the brain to the
electrodes, and is based on the conductivities of the various layers
between the current sources and the electrodes, such as the scalp,
skull, CSF, gray matter, and white matter.

The source reconstruction involves the solution of the EEG
inverse problem, which is mathematically ill-posed and ill-
conditioned, due to the high number of unknown sources of
activity (thousands of sources) and the reduced quantity of
observations (tens of electrodes). To overcome such challenging
characteristics, several approaches have tackled the inverse
problem as a minimization problem with spatial constraints,
in which the solutions are smooth in the source space as
MNE (Hämäläinen and Ilmoniemi, 1994) or LORETA (Pascual-
Marqui et al., 1994). However, the MSP algorithm, using a
Bayesian approach, has been gaining attention due to the
sparse solutions outcome and its high performance in terms
of localization error and free energy, as shown by Friston
et al. (2008) and validated by López et al. (2014) and Jatoi
and Kamel (2018). We thus chose MSP to perform brain
mapping and to evaluate the effects of using MEMD as a
priori information. This method can be found in SPM12
software (Friston et al., 2007) as a package for MATLAB (The
MathWorks, Inc.).

2.5. Generation of Synthetic EEG Signals
We assessed the solution for the neuromagnetic inverse
problem using EEG signals, by performing simulations

FIGURE 3 | Block diagram of the methodology followed for processing the EEG from the dataset.
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with several scenarios for which the brain activity is
known. Therefore, it was necessary to use a lead field
matrix (head model, preferably a realistic representation)
that allows the generation of EEG signals with active
sources in predefined or random positions, with specific
activity function.

The head model used to generate the synthetic EEG signals
can be found in the Multi-modal Face Dataset at http://www.fil.
ion.ucl.ac.uk/spm/data/mmfaces/ of SPM software. This dataset
was obtained using the same paradigm reported in Henson
et al. (2003) and contains EEG, MEG, and fMRI data for one
subject. This paradigm has been used in several studies for
source reconstruction and applied to evoked responses (Friston
et al., 2006; Henson et al., 2007, 2009, 2011; Gramfort et al.,
2013; Fukushima et al., 2015). The head model used corresponds
to the first subject of the dataset. It contains a cortical mesh
with 8, 196 vertices as distributed sources and relates them to

128 electrodes. However, we reduced the number of channels
to 8, 16, and 32 (Figure 1). This reduction was carried out
to analyze the quality of the reconstruction vs. the number
of measurements.

Eighteen EEG signal configurations were tested. We
considered three different numbers of active sources: 1, 3,
and 5. For each number of active sources, the synthetic EEG
was generated considering 8, 16, or 32 electrodes, and two
levels of signal-to-noise ratio of 10 and −5 dB. One of our
goals was to show that MEMD can reduce the mode-mixing
generated in the process of obtaining the IMFs. MEMD allows
better selection of the frequencies inside the IMFs. The source
activity for 1, 3, and 5 active sources was thus simulated at
various frequencies and in various instants of time. Moreover,
we performed the source reconstruction tests at various
levels of measurement resolution, i.e., 8, 16, and 32 channels
(Figure 1).

FIGURE 4 | Layout according to the 10–10 system for 70 electrodes and the reduction performed for (A) 32, (B) 16, and (C) 8 electrodes. (D) Brain model with 8, 196

distributed sources and the names and positions of electrodes used in the channel reduction.
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The brain activity was simulated for each source using a
windowed sinusoidal activity, as follows:

xi(tk) = e
− 1

2 (
tk−ci

σi
)
sin(2π fitk) (8)

where σ = 0.12 determines the Gaussian window width. The
parameter fi represents the desired frequency for the source, and
ci the center time of the windowed activity, which is expressed
in seconds.

The signals were generated in a time interval from 0 to 6 s with
a sampling frequency fs of 200Hz. The activity frequencies were
selected within the typical ranges for brain frequencies, e.g., alpha
or beta brainwaves, to generate a realistic scenario. In addition,
in the cases of three and five active sources, certain sources were
located at low brain frequencies, e.g., theta or delta, to observe the
performance of MEMD for several frequency range. For the case
of one active source, the activity was generated in t = 1s, with
f = 10Hz and the active source was at vertex number 4, 000 of
the head model (Figure 2A).

For three and five active sources, the activities were simulated
at different instants of time. For three active sources, the first
activity was generated at the source located at vertex 4, 000 of the
head model, at t = 1s, at f = 20Hz. For the second source, it was
located at vertex 5, 020 at t = 3s at f = 12Hz, and for the third
source at vertex 150 at t = 5s at f = 4Hz (Figure 2B).

Finally, for five active sources, the signals were generated and
centered at times t = 1, 2, 3, 4, and 5s, at f = 20Hz at vertex
4, 000 of the head model, f = 15Hz for vertex 5, 020, f = 10Hz
for vertex 150, f = 6Hz at vertex 8, 100, and f = 2Hz at vertex
2, 200 (Figure 2C).

Common evaluation of inverse problem solutions is generally
performed using simulated sources for which the underlying
activity is known. Here, we used single and multiple simulated
sources with windowed sinusoidal activity to evaluate the
performance of MEMD in terms of its ability to separate source
activity in the frequency domain. Thus, simulated EEG activity
was obtained for 1, 3, and 5 sources that were spatially and
temporally located at different points. Source frequencies (fi) in
the range of 2–20 Hz were tested and the temporal localization
of sources was in the range of 1 to 5 s. Source reconstruction

FIGURE 5 | MEMD for one source with 10 Hz sinusoidal windowed activity and 8 EEG channels.
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was performed in two ways: (1) using MSP directly from the
synthetic EEG without any pre-processing step, such as the use
of raw signals, and (2) using MEMD prior to MSP, in which the
main IMFs were selected according to the entropy function in
Equation (5), for which those IMFs which presented the highest
entropy were used to recalculate the EEG.

The simulating procedure started with the generation of
each source, using the windowed sinusoidal activity. The
active sources were located in predetermined locations, the
activity x(tk) was calculated, and the synthetic EEG was then
obtained using:

y(tk) = Mx(tk)+ ǫ(tk) (9)

Then, noise was added to the EEG signal y(tk), with a signal-
to-noise ratio of SRN = 10dB and SRN = −5dB. Three
configurations were considered for the measurements: 32, 16,
or 8 EEG channels. A reduced lead field matrix was used for
each synthetic EEG for each number of channels to perform the
brain mapping and the source reconstruction was then calculated
directly using MSP (raw MSP) and applying MEMD to the
electrode space (MEMD-MSP). Finally, the reconstructions were
compared using a spatial accuracy measurement.

2.6. Real EEG Signals Dataset
A multi-subject, multi-modal human neuroimaging dataset was
used to evaluate the MEMD method and its application to
real EEG signals. The experiment included 16 participants for

FIGURE 6 | Ground truth activity, MEMD-MSP reconstruction, EMD-MSP reconstruction, and raw-MSP reconstruction (Center). The sources were simulated at 4,

12, and 20 Hz with a sinusoidal windowed activity and the source reconstruction was performed using 16 EEG channels. For the depicted MEMD-MSP

reconstruction, IMFs 2, 4, and 6 (Left) were added to rebuild the EEG. For the depicted EMD-MSP reconstruction, IMFs 2 and 3 were used (Right).

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Soler et al. Neural Activity Reconstruction Using MEMD

whom the stimuli consisted of images projected onto a screen
(Wakeman and Henson, 2015). Three types of stimuli were
tested: familiar faces (famous), unfamiliar faces (non-famous),
and scrambled faces. The study used EEG, MEG, and fMRI to
estimate neural activity and its location over the cortical areas
of the brain by applying a multi-modal technique reported by
Henson et al. (2011). The EEG recordings were taken using 70
AgCl electrodes and a layout according to the 10–10 system.
Each subject in the dataset has their own head model and their
ground truth activity. The lead field matrix that modeled the
head conductivity was made using 8, 196 distributed sources.
The lead field matrix was used to solve the inverse problem
and the ground truth activity was used to compare the solutions
obtained with the MEMD method a priori information for the
MSP and that obtained using the raw EEG data directly for the
MSP. The dataset contains the event-related potentials (ERPs)
of the experiment. We thus considered the ERPs around 170 ms

(the N170 component) for the experiments with scrambled and
familiar faces. In addition, we reduced the number of channels
from 70 to 32, 16, or 8, as for the simulated data, to evaluate
the performance of the brain mapping solution with MSP using
one or several IMFs from MEMD and compare the results with
those for MSP with raw data. We evaluated the activity around
the N170 component by establishing a time region of interest
referred across the document as time-ROI, as in Henson et al.
(2011), the window was defined between 100 and 220 ms. The
methodology followed for processing the high-density data is
presented in Figure 3.

Channels were selected from the high-density EEG according
to the number of electrodes to be evaluated. The reduced channel
data was directly processed by MSP to obtain the so-called
raw inverse solution. In addition, the reduced channel data was
also processed using MEMD and one or several IMFs were
selected to obtain the inverse solution with MSP. Finally, we

FIGURE 7 | Ground truth, MEMD-MSP, and raw-MSP neural activity mapping considering the evolution in time for three sources at time t = 1, t = 3, and t = 5 s with

16 EEG channels.
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compared both reconstructions of the source activities to the
ground truth to evaluate the spatial accuracy of the solution
using the Wasserstein metric, this metric is explained in section
2.7. The lead field matrix was reduced according to the position
of the electrodes following a similar procedure as that used for
the synthetic EEG signals, the channels selected to maintain
as maximum possible their equal spatial distribution over the
scalp. The layout of the reduction is shown in Figures 4A–C

for 32, 16, and 8 electrodes, respectively. In addition, the 8, 196
distributed sources of one of the subjects, the reduction of
electrodes for 32, 16, and 8 channels, and their positions are
shown in Figure 4D.

2.7. Accuracy Assessment
The Wasserstein metric (Wm) (also known as Earth-Movers
Distance, Rubner et al., 2000) was used as a quality index
of the source reconstruction accuracy. This index provides a
spatial comparison between the ground truth and the estimated
source activity, for which, Wm∈ R

+, and measures the work
required to transform the estimated power distribution of sources
into the ground truth power distribution by “transporting” the

probability of mass (Castano-Candamil et al., 2015). A lower
Wm value represents better spatial accuracy of the source
reconstruction. This metric has been used to compare EEG/MEG
inverse solutions to obtain a meaningful measure of estimated
source distributions (Haufe et al., 2008). To obtain a source
reconstruction, we applied a pre-processing method (MEMD or
EMD), then the EEG was rebuilt based on the selected IMFs.
Finally, the whole segment was used as input for the MSP
method, obtaining a source activity estimation for each time
instant. Generally, the mean activity during the complete EEG
segment is compared to the mean ground truth activity to assess
source localization, as the Wm is considered to be a spatial
accuracy index. In addition to offering a temporal assessment of
the reconstructed activity, the solutions were also evaluated using
small time windows (time-ROIs). For the synthetic EEGs, the
time-ROIs were defined as 250 ms before and after the time of
maximum activity for each of the simulated sources and for the
real dataset assessment, the time-ROI was defined between 100
and 220 ms. In general, the mean activity in the time-ROI was
calculated and then compared to the mean activity of the ground
truth during the same time-ROI.

FIGURE 8 | Ground truth, MEMD-MSP, and raw-MSP neural activity mapping considering the evolution in time for five sources at time t = 1, t = 2, t = 3, t = 4, and

t = 5 s with 32 EEG channels.
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3. RESULTS

3.1. Synthetic EEG Data Study
We generated and processed the EEG signals for the nine
aforementioned cases. An example of the application of MEMD
for the reconstruction case of one source with 10 Hz and 8 EEG
channels is shown in Figure 5. Following MEMD, IMF2 showed
only noise activity with no identifiable source activity, whereas
IMF3 unmixed the source activity, which was clearly identifiable,
with no underlying noise. In addition, the reconstruction of the
brain activity by MSP without preprocessing using MEMD (raw-
MSP), split the source activity into two sources, on which one had

an acceptable location. However, the main activity, represented
in red, was located not in the pre-forntal cortex but at a lateral

position, far from the original source, explaining the higher

Wm (= 6.23) than that of the MEMD-MSP reconstruction. In

contrast, a Wm value of= 1.26 was obtained using MEMD-MSP
and the main activity in the source map was correctly located.

Although spurious activity appeared at the same position as that

found with raw MSP, its value was attenuated. The appearance

of this “ghost” activity may be due to the channel reduction.

However, it is remarkable that the value obtained using MEMD-
MSP was lower and the main activity clearly identifiable.

MEMD was able to separate from the noisy signal the
frequency activity for one source (Figure 5). This effect was also
observed for the three and five active sources. In addition, for
the multiple source cases, no mode-mixing was presented in the
extracted IMFs, as can be seen in Figure 6 at left, for the three
source case. In contrast, when using univariate EMD, it can be
seen the mode-mixing at IMF2 and IMF3. As a consequence, the
source reconstruction was clearly affected by its effects, which
become evident in the EMD-MSP reconstruction (Figure 6 at
right-bottom) by the higher Wm value, due to the error in

the location of sources and the ghost activity. The main IMFs
decomposed by MEMD over 16 EEG channels, and the resulting
brain reconstruction for three sources is shown in Figure 6.
Decomposition using MEMD clearly split the activity into three
IMFs as follows: the activity around 20 Hz is shown in IMF2,
that around 12 Hz in IMF4, and that around 4 Hz in IMF6.
There was no mode-mixing in the MEMD decomposition. In
addition, in the MEMD-MSP achieved a Wm = 10.14, which is
substantially less than that achieved using raw MSP (= 15.57)
when the neural activity reconstruction averaged over time was
analyzed. Moreover, the MEMD-MSP reconstruction correctly
identified the position of the three simulated sources, even if
some spurious activity also appeared. In contrast, in the raw-
MSP reconstruction, the position of the second source, located
in the left hemisphere of the visual cortex, was incorrectly
assigned and spurious activity appeared in various areas, with
even higher intensity than the main source, shown by the higher
Wm values obtained.

The spatial and temporal evolution of the neural activity for
the ground truth and the reconstructions usingMEMD-MSP and
raw-MSP are shown in Figure 7 for the three source at times,
t = 1, t = 3, and t = 5 for the 16 EEG channels. The neural
activity reconstruction obtained by the MEMD-MSP was better
than that obtained from the raw data in terms of theWm for each
source. The time evolution of the neural activity for the MEMD
was obtained by mixing the resulting brain mapping for IMF2,
IMF4, and IMF6 of the MEMD, as the activity corresponding
to each sources was clearly divided between the selected IMFs
(Figure 6).

A similar evaluation of the spatio-temporal evolution to
that of Figure 7 is shown in Figure 8, in which five active
sources with 32 EEG channels were analyzed. In this analysis,
MEMD-MSP outperformed raw-MSP, with the reconstructed

FIGURE 9 | Mean Wm and standard deviation of the reconstruction considering two levels of noise 10 and −5 dB and three levels of electrode resolution 8, 16, and

32. The Wm was calculated in each time-ROI around the simulated sources at times 1, 3, and 5 s. *Significant improvement for p < 0.001.
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neural activity by raw-MSP showing lower spatial accuracy in
almost all the sources. Raw-MSP gave a lower Wm value than
MEMD-MSP for only the third source at t = 3. However,
the raw-MSP reconstruction contained several spurious activities
for this source. In addition, it is possible to observe the
effects of anterior and posterior sources in the other source
reconstructions. In contrast, these effects were reduced when
MEMD decomposition was applied, for which only attenuated
activity from the third source is visible in the fourth reconstructed
source. Furthermore, the Wm values were smaller than those for
raw-MSP for almost all sources. Such a reduction of spurious
activity and the attenuation of effects from other sources
appeared when the EEG signals were decomposed into IMFs,
and is arguably due to the rejection of noisy information in the
IMF selection process and the attenuation ofmode-mixing effects
by MEMD.

We compared the Wm index between MEMD-MSP and
raw-MSP for the mean reconstruction and each source for the
source at the times instants t = 1, t = 3, and t = 5 s
with 32, 16, and 8 electrodes (Figure 9). In general, the effects
of channel reduction are visible by the higher inaccuracy of
raw-MSP than MEMD-MSP for eight channels. These results
suggest that brain reconstruction with MEMD-MSP can still be
performed without loss of accuracy by reducing the number
of EEG channels by a factor of two. Although the Wm index
increases with channel reduction, its slope is small and the
reconstruction quality can be considered reasonable. In contrast,
the raw-MSP reconstruction showed an exponential increase
in the Wm value when electrode reduction was performed.
In several cases the inclusion of the MEMD step improve
significantly the performance of the brain mapping method,
specially with a lower number of electrodes. With 32 electrodes,
no significant difference was found, this fact can be explained
by the MSP estimation itself, due to the fact that when the
estimations are made using a higher number of electrodes, the
noise estimation in the EEG made by MSP became feasible and
accurate, resulting in a similar Wm values between MEMD-
MSP and raw-MSP. However, when the number of electrodes is
reduced, theMSPmethod accuracy decreases significantly, which
effect is attenuated by the pre-processing step by MEMD. These
significant differences (presented in Figure 9) were obtained
by performing two-sided pairwise t-tests with an alpha level
of p < 0.05 using Bonferroni adjustment for multiple
comparisons. The software used to run the statistics was IBM
SPSS Statistics for Windows, version 24 (IBM Corp., Armonk,
N.Y., USA).

In general, the results for the synthetic EEG signals
suggest that the use of the information extracted by MEMD
improves the MSP brain mapping method. In all analyzed
cases, MEMD-MSP attenuated the appearance of spurious
activity and the joint MEMD-MSP approach retained spatial
accuracy during electrode reduction. In addition, according to
the reconstruction showed at Figure 7 for the three sources
case and Figure 8 for the five sources case, it is remarkable
that with MEMD-MSP the reconstructions seem cleaner of
ghost sources, localizing the source in the same place or
near to the place where the original activity was simulated.

FIGURE 10 | Mean Wm and standard deviation according to the number of

electrodes for 16 subjects. The red line point out the similar error obtained

between raw-MSP with 32 electrodes and MEMD-MSP with 8 electrodes,

even when the electrode number with MEMD-MSP was lower than raw-MSP.

In contrast, in the reconstructions made by raw-MSP, the
existence of ghost sources is due to the influence of the sources
that have occurred before and after the analyzed source, an
effect that is clearly attenuated due to the pre-processing step
by MEMD.

3.2. Results for the EEG Dataset
We applied the methodology described in Figure 3, in which the
dataset was processed using MEMD as a pre-processing step,
the brain mapping solutions obtained using MSP for MEMD
and directly from the ERP data, and the average compared to
its own ground truth activity for each subject. A general vision
of the results is shown in Figure 10, in which the general mean
of the Wm is presented with its standard deviation across all
subjects and conditions, comparing raw-MSP and MEMD-MSP
with the ground truth activity by the number of electrodes.
Electrode reduction directly affected the quality of the source
reconstruction, for which the solutions with MEMD-MSP had a
lower mean and standard deviation than those with raw-MSP in
all the cases. The inaccuracy of raw-MSP increased as the number
of electrodes was reduced with a steep slope. In contrast, MEMD-
MSP retained a constant quality index when the brain mapping
was performed with 32 or 16 electrodes, and increased slightly
when eight electrodes were used. However, with eight electrodes,
MEMD-MSP reached aWm value and standard deviation similar
to that obtained with raw-MSP with 32 electrodes, for which
there was no significant difference between raw-MSP using
32 electrodes and MEMD-MSP using eight electrodes when
a two-sided pairwise t-test was applied using an alpha value
of p < 0.05.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Soler et al. Neural Activity Reconstruction Using MEMD

FIGURE 11 | Mean Wm and standard deviation according to the number of electrodes used in the reconstruction and the type of stimuli presented.

We labeled the Wm indexes according to the condition of
the EEG signals (familiar or scrambled faces) and the number
of electrodes used to perform the inverse solutions to provide
another vision of the results (Figure 11). The mean Wm value
was slightly higher for scrambled faces with eight electrodes
with MEMD-MSP than that obtained with raw-MSP with 32
electrodes. However, raw-MSP with 32 electrodes obtained a
lower Wm value for familiar faces (24.43% less) than MEMD-
MSPwith eight electrodes. However, MEMD-MSP outperformed
raw-MSP in all the cases for comparisons between the same
condition and the same number of electrodes.

The improvement of the results by applying the MEMD can
be explained by the separation of IMFs, as shown in Figure 12,
in which, eight electrode EEG signals are presented together
with their IMF4 EEG reconstruction obtained by MEMD. The
figure depicts how the main information of the evoked response
is extracted around the established time-ROI, where the sparse
temporal and frequency information provided by the IMF is
sufficient to obtain better source localization of the activity than
by using all the components of the EEG signal.

The location of the neural activity in the brain is shown
in Figure 13. Its activity was found in the visual cortex, by
Henson et al. (2011) and Wakeman and Henson (2015) using
a multi-modal technique involving EEG + MEG + fMRI. The

figure provides the ground truth activity and the brain mapping
reconstruction with 8, 16, and 32 electrodes with raw-MSP and
MEMD-MSP.

The reconstructions using MEMD-MSP showed a little
variation between the different numbers of electrodes involved in
source localization (Figure 13). In contrast, the localization of the
reconstructed sources varied without pre-processing the data in
the raw-MSP, according to the number of electrodes. Moreover,
these solutions showed activity in different brain areas, whereas
the MEMD method focused solely on the visual cortex, which is
directly involved during the visual face stimulus. Therefore, the
use of certain IMFs provided by MEMD resulted in consistent
accurate localization of the neural activity and an attenuation of
background activity, represented by the lower Wm values.

4. DISCUSSION AND CONCLUSIONS

It is well-known that the brain can exhibit activity at frequencies
between 0.5 Hz for Delta waves to 45 Hz for Gamma
waves. The use of time-frequency decomposition methods for
EEG signals is generally applied to study brain processes
associated with activity at certain frequencies and changes
in brain wave oscillations during a number of experimental
situations, e.g., ERP studies. EMD is a method that has
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FIGURE 12 | Eight-channel real EEG (Top) and the IMF4 component by MEMD (Bottom). The topographic plot at 170 ms of the IMF4 represents the activation of

the occipital region after the stimuli presentation.

shown the ability to separate signals using time-frequency
decomposition in various contexts. However, EEG signals are
challenging due to the frequency proximity of the source
activity. Thus, EMD solutions are generally hampered by mode-
mixing during IMF decomposition. MEMD attenuates such
effects when sources exhibit close frequency, as shown by
Muñoz-Gutiérrez et al. (2018).

We investigated the multivariate version of EMD combined
with the source reconstruction algorithm MSP to evaluate the
effects of MEMD as a pre-processing step during the calculation

of brain mapping solutions and their performance for three
different electrode montages: 32, 16, and 8 channels. We
compared the solutions obtained with MEMD-MSP to those
obtained by raw-MSP for synthetic EEG signals, for which, we
tested three scenarios of source activity: one active source, three
active sources, and five active sources, which, were simulated at
frequencies from 2 to 20 Hz. The solutions were also compared
using a real dataset of EEG signals from 16 subjects who
participated in a behavioral study of face perception, as reported
by Henson et al. (2003).
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FIGURE 13 | Brain activity reconstruction using a multi-modal technique involving EEG + MEG + fMRI. Ground truth activity from Henson et al. (2011). Brain activity

reconstruction using MEMD-MSP with 8, 16, and 32 electrodes (Left). Brain activity reconstruction using raw-MSP with 8, 16, and 32 electrodes (Right).

The use of a pre-processing step with MEMD improves the
accuracy of source reconstruction by MSP for all the evaluations.
The results for synthetic and real EEG data showed that the
quality of the solutions obtained by MEMD-MSP remained
stable when 16 or 32 electrodes were used, and decreased
slightly only when using eight channels. The reconstructions
using MEMD-MSP with eight channels achieved similar values
as raw-MSP with 32 channels for simulated sources (Figure 9)
and for real data (Figure 11), for which no significant differences
were found between the reconstructions. Moreover, adding the
decomposition stage withMEMD and using selected information
during the source reconstruction process, clearly makes it
feasible to perform this process using low-density EEG, for
which the small number of electrodes and sparse information
of IMFs from MEMD are sufficient to retain the accuracy of
the source reconstruction and reduce the effects of noise in
the brain mapping solution. Besides, this accuracy retention
is reached because the mode alignment allows obtaining the
same frequency mode in the same IMF for each channel
of the original signal. This property allows us to separate
the noise in the first IMFs and after this, the other modes
are decomposed in aligned form. This could be useful when
designing an automatic algorithm to choose the IMFs with the
relevant modes.

We performed a temporal evaluation focused on time-ROIs
defined by time windows around the appearance of sources in the
synthetic EEG signals test and around the evoked activity for the
real dataset. Reconstruction with MEMD-MSP generally showed
a clear attenuation of the background activity (Figures 6–8, 13).
This effect can be explained by the frequency decomposition and
attenuation of mode-mixing resulting fromMEMD, in which the
analysis of the frequency information of the EEG channels allows
MSP to focus on the source activity presented in the selected
IMFs (Figures 6, 12), resulting in solutions with a lower Wm
index for the combination of methods.

In conclusion, we show that adding a priori time-frequency
information as input to theMSP source reconstruction algorithm
makes it possible to obtain better solutions, even when
information from only a small number of electrodes is used.
MEMD should allow extraction of the main time-frequency
information of sources that are hidden within the electrode
data and then its used to obtain a good quality reconstruction,
comparable to that obtained using the same MSP method with
a high number of electrodes and without any prior information.
Moreover, source activity is clearly separable in the MEMD-MSP
solutions, resulting in an unmixing effect in the source space.
The application of MEMD with other methods and the unmixed
activity for brain connectivity will be studied in the future. We
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consider that the presented methods can be applied for source
activity reconstruction studies using low-density EEG systems. In
addition, due to the temporal accuracy showed by the MEMD-
MSP, we consider that this method could be suitable to study
brain connectivity at source levels.

Recently, in Rehman and Aftab (2019), a new method of
time-frequency decomposition for multivariate signal called
multivariate variational mode decomposition (MVMD) was
presented, this method as the MEMD decomposes the signal
in intrinsic mode functions while keeping the mode-alignment
property. The MVMD was applied to EEG signals showing
robustness to noise. We consider that such characteristics can
be useful for source reconstruction applications as the MEMD.
Here we showed that MEMD has a strong impact on the
source reconstruction due to its intrinsic properties, therefore,
we consider that multivariate time-frequency decomposition
methods based on mode decomposition are a good tool for
unmixing source activity and they impact will be continue
studied in future works.
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