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Multi-biometric Identification with
Cascading Database Filtering

Pawel Drozdowski, Christian Rathgeb, Benedikt-Alexander Mokroß, Christoph Busch

Abstract—The growing scale and number of biometric deployments around the world necessitates research into technologies which facilitate
fast identification queries and high discriminative power. In this context, this article presents a biometric identification system which relies on a
successive pre-filtering of the potential candidate list using multiple biometric modalities, coupled with a weighted score-level information fusion.
The proposed system is evaluated in a series of experiments using a compound dataset constructed from several publicly available datasets; an
open-set identification scenario is considered with the enrolment database containing 1,000 chimeric instances. This evaluation shows that the
proposed system exhibits a significantly increased biometric performance w.r.t. a weighted score-level or rank-level fusion based baseline, while
simultaneously providing a consequential computational workload reduction in terms of penetration rate. Lastly, it is worth noting that the proposed
system could be flexibly employed in any multi-biometric identification system, irrespective of the chosen types of biometric characteristics and the
encoding of their extracted features.

Index Terms—Biometric Identification, Information Fusion, Computational Workload Reduction
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1 INTRODUCTION

Various market value studies (see e.g. [1], [2], [3]) evince
the rapid growth of interest and investment in biometric
technologies. Biometrics are being used by various govern-
mental organisations around the world for purposes such
as law enforcement and forensic investigations (see e.g. [4],
[5], [6]), border control (see e.g. [7], [8], [9], [10]), national
ID systems (see e.g. [11], [12]), as well as during elections
for voter registration (see e.g. [13], [14]). The largest of
such deployments to date is located in India, where the
Unique Identification Authority of India operates a national
ID system (Aadhaar) which accommodates, at the time of
this writing, almost 1.3 billion enrolled subjects (see e.g.
the online dashboard [15]). Additionally, the prevalence
and computing power of mobile devices (especially smart-
phones) has been steadily increasing. Together with the
advances in embeddable high-quality sensors, those trends
have sparked interest in (single and multi modal) mobile
biometrics, which has become an active area of research and
product development (see e.g. [16], [17], [18], [19], [20]).

With the aforementioned increase of the popularity and
sizes of biometric systems in the governmental and com-
mercial sectors alike, it is important to develop technolo-
gies which facilitate accurate and efficient processing of
large amounts of biometric data. In particular, guaranteeing
practical system response times by means of algorithmic
solutions, rather than merely the scaling of the hardware
architecture is of utmost interest. Those considerations are
especially important for biometric identification (and du-
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plicate enrolment check) scenarios, where the conventional
biometric systems typically conduct an exhaustive search
(entailing one-to-many comparison) to identify the biomet-
ric probes. Daugman, the pioneer of iris recognition, stated
(in a recent interview) that performing accurate and efficient
biometric identification (i.e. without an exhaustive search) is
one of the most important, unsolved issues in biometrics in
general. From the governmental side there exists a strong
interest for computationally efficient biometric algorithms,
as evidenced by multiple competitions and benchmarks (e.g.
1:N Evaluation under Face Recognition Vendor Test (FRVT)
[21], one-to-many evaluations under Iris Exchange (IREX)
[22], and Biometric Technology Rally [23]).

In recent years, a significant research effort has been
devoted to addressing this topic by developing methods
for computational workload reduction in biometric systems
(see subsection 2.2 and a recent survey of Drozdowski et
al. [24] for more details). The contribution of this work in
this context is a proposal of an information fusion scheme,
as well as an experimental evaluation thereof on a large
compound dataset in the biometric open-set identification
scenario. The scheme is based on a successive filtering
of candidate shortlists coupled with information fusion
on score level. It is shown that the proposed scheme in-
creases the biometric performance w.r.t. the weighted score-
level or rank-level fusion based baseline by an order of
magnitude, while simultaneously significantly reducing the
computational workload (in terms of penetration rate) of
the biometric identification transactions. In related works,
several authors utilised dimensionality reduction and/or
binarisation to create short-length templates, which are used
to pre-filter the enrolment database in a two-stage frame-
work (see e.g. Gentile et al. [25], Billeb et al. [26], and Pflug
et al. [27]), whereas Drozdowski et al. [28] used biometric
image morphing in a similar manner. All of those methods
considered single-modal systems. A decision-based cascade
operating on the principle of sequential fusion of fingerprint



IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE (T-BIOM) 2

and iris recognition systems was presented by Elhoseny
et al. [29]. Lastly, database pre-filtering based on demo-
graphic and geographic metadata is a known and widely
used method of searching in large-scale databases (see e.g.
Gehrmann et al. [30]). Soft biometrics (see e.g. Dantcheva et
al. [31]) can also be used in an analogous manner. Best to the
authors’ knowledge, previous research has not considered a
multi-modal fusion utilised in a cascading manner for the
simultaneous purpose of computational workload reduction
and biometric performance improvement.

The remainder of this article is organised as follows: sec-
tion 2 provides a background overview of the two relevant
related work areas – biometric information fusion and com-
putational workload reduction. In section 3, the proposed
system is described. The details of the experimental setup
are outlined in section 4, while the results of the experiments
are presented in section 5 and discussed in section 6. A
summary and concluding remarks are given in section 7.

2 BACKGROUND AND RELATED WORK

In this section, relevant background information and related
work w.r.t. the two main topics of this article are outlined.
Specifically, subsection 2.1 addresses biometric information
fusion, while subsection 2.2 deals with computational work-
load reduction in biometric systems. Furthermore, the scope
of this article and the proposed system is demonstrated
within the overall overview of those research areas.

2.1 Biometric Information Fusion

One of the key goals of biometric information fusion is to
increase the overall discriminative power of a biometric
recognition system. Systems where biometric information
fusion is utilised are referred to as multi-biometric sys-
tems. In such systems, multiple information sources are
considered and combined (fused) with each other. In the
context of biometrics, following main fusion categories can
be distinguished (see e.g. Ross et al. [32] and ISO/IEC TR
24722 [33]):
Multi-type Information from multiple biometric character-

istics (e.g. face and fingerprint) is used.
Multi-sensorial Biometric data is acquired using several

complementary sensors (e.g. visible wavelength and
near-infrared camera).

Multi-algorithm Biometric samples are processed using
multiple complementary algorithms (e.g. texture and
keypoint based image descriptors for feature extraction
and/or different concepts for comparison).

Multi-instance Information from multiple instances of the
same characteristic is used (e.g. left and right iris).

Multi-sample Multiple samples (acquisitions) of the same
characteristic are used (e.g. for sample quality assurance
or detection of reliable regions).

The system proposed in this article pertains to the first
scenario. Specifically, three types of biometric characteristics
are chosen and are subsequently used in a pre-filtering and
fusion scheme. In addition to the coarse categories above,
several levels of the biometric processing pipeline can be
distinguished where information fusion can be performed
(see e.g. Ross et al. [32]):

Sensor Information from multiple sensors or multiple sam-
ples (e.g. on the pixel level for images or phase level
for audio/video signals) is combined prior to any other
processing steps. See e.g. Jain et al. [34] and Kusuma et
al. [35].

Feature Information from multiple extracted feature sets
is consolidated. The data could come from the same
biometric characteristic (e.g. multiple, complementary
feature extractors are used) or different biometric char-
acteristics (e.g. a common feature representation is used
for the fusion). See e.g. Kanhangad et al. [36] and Yan et
al. [37].

Score The comparison scores acquired from multiple infor-
mation channels are combined (e.g. summed or aver-
aged). Depending on the used biometric comparators,
this often requires normalisation of the scores to a
common domain. See e.g. Snelick et al. [38] and Jain et
al. [39].

Rank First, the ranks (order) of potential matches of a
probe against an enrolment database are established.
Subsequently, heuristics (e.g. choosing the best rank or
majority vote) are used to consolidate the information
from multiple systems. See e.g. Abaza et al. [40] and
Kumar et al. [41].

Decision The decisions (i.e. accept/reject) reached by multi-
ple systems are combined using heuristics (e.g. majority
voting or statistics-based rulesets). See e.g. Prabhakar et
al. [42] and Paul et al. [43].

In the context of this work, information fusion on score
and rank level is of most interest. This is partially because
score-level fusion is amongst the most popular and best
performing of the aforementioned methods (see Ross et
al. [32]), and partially because the proposed system (see
section 3) is designed to work at those levels of the biometric
pipeline, i.e. irrespective of the chosen biometric characteris-
tics, acquisition methods, and feature extraction algorithms.

Several extensive works and surveys on the topic of
biometric information fusion have been published in the
scientific literature. The interested reader is therefore re-
ferred to e.g. Ross et al. [32] for a comprehensive general
introduction to this topic, Jain et al. [39] and Snelick et al. [38]
for score-level fusion specifically, as well as Radu et al. [44],
Dinca et al. [45], and ISO/IEC TR 24722 [33] for more recent
works concerning the overall topic of biometric information
fusion.

2.2 Computational Workload Reduction
There exists a broad variety of ways in which biometric
systems can operate. The main two of them (quoted directly
from the ISO/IEC international standards [33], [46], [47])
are:
Biometric verification Referring to the “process of confirm-

ing a biometric claim through biometric comparison”.
Biometric identification Referring to the “process of

searching against a biometric enrolment database to
find and return the biometric reference identifier(s)
attributable to a single individual”.

In the context of biometric identification, two main sce-
narios can be distinguished, namely closed-set identification,
where it is known that the enrolment database contains
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all the potential system users as data subjects, and open-set
identification, where it is possible that some potential users
(impostors) are not enrolled in the system.

Open-set biometric identification, which is, arguably, the
most challenging from the practical point of view, is the
focus of this article. Due to the necessity of protecting
against impostors not enrolled with the system, as well as
the lack of an identity claim during a transaction, in the
worst case an exhaustive search (i.e. comparisons between
the probe and the entire enrolment database) is required
in order to make a decision. Unfortunately, two non-trivial
problems are quickly encountered by this naı̈ve approach:
Computational costs With an increasing size of the en-

rolment database, the response times become propor-
tionally slower, hence requiring hardware investment
and/or software optimisations to facilitate the growing
number of the data subjects.

False positives costs Daugman [48] has pointed to a de-
manding relationship facing biometric identification
systems:

PN = 1− (1− P1)
N (1)

This equation denotes the probability (PN ) of at least
one false positive occurrence in an identification trans-
action within a system which comprises N enrolled
users and has a P1 false positive probability of a one-
to-one template comparison. Even when P1 is very low
(i.e. the system would exhibit good biometric perfor-
mance in verification mode), PN raises very quickly to
unacceptable levels as N increases1.

Since the overall computational costs in a biometric
identification scenario are dominated by performing the
biometric comparisons (see e.g. Drozdowski et al. [24]), most
computational workload reduction approaches are aimed at
that step in the system pipeline. It should be noted, that due
to certain properties of biometric data (i.e. lack of inherent
ordering, within-subject variability, and high dimensional-
ity), many traditional approaches (such as normal database
indexing) are often unsuitable or perform poorly (see Hao et
al. [49]). Therefore, approaches specifically tailored to those
properties have been developed. In particular, two main
approach classes can be distinguished:
Pre-selection Approaches in this category concentrate on

reduction of the potential search space, i.e. the number
of necessary template comparisons (penetration rate)
during a biometric identification transaction. Three
principal sub-categories can be distinguished here:

1) Pre-filtering Multiple algorithms or feature rep-
resentations are used. The idea is to first use
computationally efficient (but somewhat inac-
curate) methods to create a candidate shortlist,
whereupon a computationally expensive (but
accurate) method is used on this small, pre-
filtered subset of the database (see e.g. Ratha et
al. [50], Gentile et al. [25], and Billeb et al. [26]).

1. Although this equation ignores other system errors, such as the
failure-to-acquire rate and also assumes that at a given threshold all
subjects have the same false-match-rate (which likely is not the case), it
nonetheless is a useful approximation through which the challenges of
the biometric identification systems can be illustrated quantitatively.

2) Binning The database is split into distinct
bins/partitions based on some coarse auxiliary
features. Examples include metadata (such as
demographic and geographic attributes, see e.g.
Gehrmann et al. [30]) or biometric characteristic
specific features, such as fingerprint classes (see
e.g. Drozdowski et al. [51]). During a biomet-
ric identification only the bins corresponding
to the sample are considered, thereby reduc-
ing the search space. As an alternative to such
handcrafted features, unsupervised clustering
can also used (see e.g. Ross et al. [52] and Pflug
et al. [53]).

3) Datastructures The enrolment database is reor-
ganised to take advantage of efficient ordering
principles, for example based on search trees
(see e.g. Proença [54] and Rathgeb et al. [55])
or fuzzy hashing (see e.g. Cappelli et al. [56]
and Kaushik et al. [57]), thereby enabling sub-
linear/logarithmic search time.

Feature transformation Approaches in this category con-
centrate on reducing the computational cost of the
individual template comparisons. Typical approaches
in this category accomplish this by reducing the dimen-
sionality of the biometric templates by extracting the
most discriminative parts (see e.g. Gentile et al. [58] and
Rathgeb et al. [59]), utilising more efficient comparators
such as integer/bit-based instead of float-based (see e.g.
Lim et al. [60] and Drozdowski et al. [61]), or providing
sample alignment invariance (see e.g. Rathgeb et al. [62]
and Damer et al. [63]).

An exhaustive survey of this research area is out of
scope for this article – for more details, the interested
reader is referred to other works on this topic. Specifically,
in a recently published work of Drozdowski et al. [24], a
biometric characteristic-agnostic, concept-based taxonomy
of computational workload reduction approaches in biomet-
rics has been proposed. Additionally, the authors conducted
a comprehensive survey of computational workload reduc-
tion in biometric identification systems in the context of
said taxonomy. For biometric characteristic-specific works,
surveys by Schuch [64] (fingerprint), Proença et al. [65] (iris),
and Kavati et al. [66] (fingerprint, face, iris) are of interest.

In the context of the above categories of computa-
tional workload reduction approaches, the pre-selection
(more specifically, pre-filtering) one is most relevant to this
work. This is because, as previously mentioned, this article
presents (see section 3) a method which relies on a succes-
sive candidate shortlist filtering, and works irrespective of
the chosen type of biometric characteristics and their feature
representations, thereby precluding any approaches which
rely on specific feature transformations.

3 PROPOSED SYSTEM

Consider a biometric enrolment database with references of
N data subjects for K different biometric modalities (i.e.
types of biometric characteristics). A standard approach for
a biometric identification transaction would be to conduct
the comparisons (C) exhaustively (i.e. #Cbaseline = K · N
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Fig. 1: Overview of the proposed system

comparisons) for all the modalities and to fuse the scores
using one of the traditional strategies (such as score or rank
level fusion) described in subsection 2.1. This approach will
serve as a baseline later on in the experiments. Here, an
alternative method is proposed with the aim of improving
the biometric performance and reducing the computational
workload.

The conceptual overview of the proposed system (for
K = 3) is shown in figure 1. On the biometric database
side, the stored modalities are given a specific order (see
subsection 3.2 and section 5 for more details on the ordering
of the chosen types of biometric characteristics). The key
idea is to successively filter the list of potential candidates
based on the comparisons within the individual modalities,
thus creating a multi-stage (K-stage), cascading filtering
system. In the illustrated example, a biometric identification
transaction would proceed as follows:

1) Features are extracted for each of the probe sample
of each biometric type (i.e. modality).

2) Modality 1 (face) probe is compared exhaustively
(N comparisons) against the enrolment database.
Based on the sorted comparison scores, a certain
fraction (denoted s2) of the most promising candi-
dates (a candidate shortlist) is passed onto the next
level.

3) Modality 2 (fingerprint) probe is compared against
the (s2 · N ) most promising candidates. A fraction
of those (s3) is then passed onto the last level.

4) Modality 3 (fingervein) probe is compared against
the (s2 · s3 ·N ) most promising candidates to reach
the final identification decision.

The types of biometric characteristics (face, fingerprint,
and fingervein) were chosen based on the criteria that the
three types be not correlated, that they are widely deployed
(in various operational systems), and exhibit desirable prop-
erties w.r.t. presentation attack detection (the latter espe-
cially concerning the fingervein). However, it should be
noted that the system is not in any way reliant on those spe-
cific characteristics or this particular ordering thereof – the
system design is applicable irrespective of the participating
biometric characteristics and their feature representations.

The order of the characteristics in the cascade is also flexible
– more on this topic in subsection 3.2 and the experimental
evaluation in section 5.

The sizes of the candidate lists passed between the levels
of the cascade (values in si) are estimated empirically in a
training step, see subsection 3.1 for more details. Since at the
first level the whole database is used for the comparisons,
s1 would equal 1.0 and is not depicted in figure 1. The
theoretical impact of the proposed system on the biometric
performance and computational workload is described in
subsection 3.2.

3.1 Shortlist Size Estimation
For each considered type of biometric characteristic, a toler-
able pre-selection margin of error in terms of false negative
identification rate is determined. This margin is denoted as
ε ∈ [0% . . . 100%] and can be set arbitrarily low or high
by the system operator depending on the system policy.
The extreme values are unlikely in a practical scenario and
are listed for the purposes of the mathematical definition
only. This parameter is used for the purpose of shortlist
size estimation for the pre-selection algorithm described
in the previous subsection. The goal is to find the mini-
mum fraction (denoted s) of candidate identities to pass
between two levels of the cascade, so that the selected
tolerable margin of error is not violated. Estimating s for
a biometric type happens in a dedicated training step on a
disjoint dataset, where a closed-set identification experiment
is carried out and a cumulative match characteristic (CMC)
curve is computed. Using the CMC curve, one first needs to
calculate the minimum rank (r), so that IR ≥ 100%−ε; then,
r is expressed relative to the size (Ntrain) of the training
enrolment database (Etrain ). An abstract, formal description
of this concept is given in algorithm 1.

For a concrete example of the concept, see figure 2.
There, a CMC curve for an example system (purely for
illustrative purposes; the chosen type of biometric charac-
teristic does not matter in this case) with 30 enrollees has
been computed. Two operational points (with different ε
values) are considered, expressing different system policies:
a liberal one, wherein some pre-selection (false negative)
errors are acceptable (depicted with the orange line), and a
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Algorithm 1 Shortlist size estimation
Input: Etrain , ε
Output: sε

1: CMC ← COMPUTECMC(Etrain)
2: rε ← min {r ∈ {1 . . . N} | CMC (r) ≥ 100− ε}
3: Ntrain ← LENGTH(Etrain)
4: sε ← rε

Ntrain

5: return sε

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Rank

93

94

95

96

97

98

99

100

Id
en

tif
ica

tio
n 

ra
te

 (i
n 

%
)

Example system with Ntrain = 30

CMC curve
= 0%
= 1%

Fig. 2: Determining sε based on a training CMC curve and ε

stringent one, which seeks to minimise pre-selection errors
(depicted with the blue line). Consequently, in the case
of the ε = 1% policy, the lowest rank satisfying the IR
constraint (see line 2 in algorithm 1) is 9, meaning that
the candidate shortlist passed onto the next level would
be around sε=1% = 9

30 = 30% of the enrolment database.
On the other hand, for the ε = 0% policy, the constraint is
satisfied only at rank 27, thus making the passed candidate
shortlist sε=0% = 27

30 = 90% of the enrolment database.
Thus, for each considered modality and ε, a theoretically

optimal candidate shortlist size, expressed as a fraction of
the enrolment database (s, s ∈ {x ∈ R | 0.0 < x ≤ 1.0}),
can be ascertained w.r.t. the system policy. A multi-stage
system with K modalities would then have Sε = [s1 . . . sK ]
shortlist sizes, with s1 always equal to 1.0. Generally, more
liberal (i.e. higher) values of ε mean smaller candidate short-
lists (i.e. lower penetration rate), but increased potential of
pre-selection (false negative) errors. On the other hand, the
reduction of penetration rate contributes to reducing the
false positive error rate. This is because the reduction in
penetration rate corresponds to the factor N in equation 1
being reduced, i.e. there being fewer potential comparisons
in a biometric identification transaction where an impostor
could, just by chance, get a better comparison score against
a reference in the enrolment database. Note, that this is true
insofar there exists no correlation between the comparison
scores of the biometric characteristics in the system, i.e. that
they be statistically independent. Certain biometric modal-
ities can exhibit explicit or hidden symmetries and correla-
tions (see e.g. Gomez-Barrero et al. [67] and e.g. Kumar et
al. [68]). Such correlations have a non-trivial impact on the
biometric performance of information fusion schemes (see
e.g. Ulery et al. [69]). Generally speaking, the utility (in terms
of increase of information entropy, see e.g. Adler et al. [70]) of
correlated modalities may be lower than that of uncorrelated
ones. Furthermore, specifically for the proposed scheme,

using correlated modalities for the pre-filtering stage would
be counter-productive, as computational workload would
have to be expended on performing the comparisons, but
little or no additional information would have been gained
for the pre-selection of candidates. In other words, while
the proposed scheme technically supports any combination
of biometric modalities by the virtue of operating at the
level of comparison scores, some attention is nevertheless
required w.r.t. the choice of the modalities participating
in the scheme. Ideally, completely uncorrelated modalities
should be used. If correlated modalities are chosen, the re-
sults in terms of biometric performance and computational
workload reduction may be degraded. Therefore, care and
awareness is advised w.r.t. the choice of biometric modalities
for the proposed scheme. Note, that this caveat of correlated
data is also applicable to other existing biometric informa-
tion fusion schemes. In this article, three uncorrelated bio-
metric characteristics have been chosen for the experiments
(see subsection 4.1).

3.2 System Ordering

The modalities participating in the cascade can be ordered
arbitrarily – the number of possible permutations for a
system with K modalities is K!. The ordering is expected
to have a non-trivial impact on the computational workload
and biometric performance. If the computational cost of
individual template comparisons is also considered (see
section 6), the system ordering has an impact not only on the
biometric performance, but also the overall computational
workload. The total number of comparisons in the proposed
system is:

#Cproposed = N +
K∑
k=2

k∏
i=1

si ·N (2)

The key idea behind equation 2 being that #Cproposed �
#Cbaseline, i.e. reducing the penetration rate of the search.
The lower bound of the penetration rate is then p = 1

K + 1
N ,

i.e. in the case of a 3-level system the minimum penetration
rate could be around 33.(3)%. This limit is due to exhaustive
search always having to be be conducted for the first modal-
ity in the cascade. A potential extension of the proposed
system could consider another scheme of computational
workload reduction (e.g. binning) to be used prior to the
first level of the cascade in order to avoid the necessity of
conducting an exhaustive search there.

3.3 Combination with Weighted Score-level Fusion

The system proposed in the previous subsections uses the
comparison scores in the shortlist from the final level of
the cascade to make a decision. It is, however, also possible
to combine the traditional weighted score-level fusion with
the proposed scheme. Specifically, such a combined scheme
would work as follows:

1) Conduct the cascading filtering with K modalities
as described in the previous subsections.

2) Retrieve the identities of the subjects in the can-
didate shortlist produced at the last level of the
cascade.
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3) Retrieve the comparison scores corresponding to the
candidate shortlist for the modality at the final level
of the cascade and the previous levels of the cascade.

4) Fuse the scores.

In other words, the database is first filtered to find the
most likely candidates using the individual modalities in
the cascade, whereupon the comparison scores (for all the
modalities) of the candidates in the shortlist are fused. In
theory, such a system should exhibit a decreased computa-
tional workload, as well as an increased biometric perfor-
mance. This idea is evaluated experimentally in addition to
the system proposed in the previous subsections.

4 EXPERIMENTAL SETUP

The following subsections outline the details of the experi-
mental setup. The chosen datasets and processing pipelines
are described in subsections 4.1 and 4.2, respectively. The
baseline and proposed system configurations, as well as the
evaluation metrics are described in subsections 4.3 and 4.4.

4.1 Datasets
The research conducted in this paper is aimed at cooperative
systems, i.e. ones where biometric samples of reasonably
good quality can be expected. Hence, in-the-wild, large
time-scale, and occluded facial datasets (or parts thereof),
as well as latent fingerprint datasets were not considered.
Since none large-scale multi-modal datasets were available
to the authors, it was decided to create a virtual dataset from
existing single-modal ones.

While there exist several datasets with very large num-
bers of biometric samples, their size in terms of data sub-
jects is typically much smaller. As such, several facial and
fingervein datasets had to be considered in order to obtain
a suitable number of data subjects. For the fingerprint and
fingervein datasets, the individual instances (fingers) are not
correlated and can therefore be treated as separate subjects.

The fingerprint database was used directly without any
filtering. For the facial datasets, frontal images without in-
tentional occlusions (e.g. scarves or sunglasses) were chosen,
while some images with exceedingly poor quality were
removed from the fingervein and facial datasets (to facilitate
reproducible research, the lists of chosen images and other
experimental setup details will be made available online
after this article is accepted for publication). It should be
noted that the facial and especially fingervein data is ex-
tremely inhomogeneous across the chosen datasets. The im-
ages were acquired using different cameras/sensors, under
varying lighting conditions, and the images have been saved
in several distinct resolutions. The chosen datasets are listed
in table 1 (the numbers given in the table are after the
filtering was applied). Example images from the datasets
are shown in figure 3.

Following the selection, the datasets of the same bio-
metric characteristic have been merged and a compound
dataset was constructed. This was done by repeatedly (ten
times) shuffling the instances and samples from the original
datasets to construct new chimeric instances. The ten copies
of the dataset enable a tenfold cross-validation in the ex-
perimental evaluation. Each of the copies consists of 2,500

(a) FERET (b) FRGC (c) ARFace (d) FEI

(e) BioSecure (f) PEAL (g) CASIA (h) MCYT

(i) UTFVP (j) IDIAP (k) PolyU

(l) SCUT-FV (m) FV-USM (n) SDUMLA

Fig. 3: Example images from the selected datasets

TABLE 1: Used datasets

Characteristic Dataset Instances Samples

Face FERET 994 2,716
FRGC 453 2,754
ARFace 136 1,526
FEI 200 600
BioSecure 210 840
PEAL 429 3,274
CASIA 725 3,072

Fingerprint MCYT 3,300 39,600

Fingervein UTFVP 360 1,440
IDIAP 220 440
PolyU 312 3,132
SCUT-FV 600 3,600
FV-USM 492 5,904
SDUMLA 636 3,816

instances and approximately 15,000 samples (depending on
availability, since different datasets contain different number
of samples per instance). Finally, the resulting compound
dataset has been split into two partitions:
Training Consists of 1,000 instances. Used for computing

CMC curves in a closed-set identification scenario to
approximate the appropriate shortlist sizes for each
modality. Additionally used for computing information
necessary for comparison score normalisation.

Testing Consists of 1,500 instances. Used for evaluating
the baselines (for each modality individually and for
several popular information fusion schemes) and the
proposed system in an open-set identification scenario.

4.2 Processing Pipelines
The images were processed using exclusively open-source
frameworks. While commercial frameworks may have of-
fered a better or even errorless biometric performance on
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the dataset used in the experiments (see subsection 4.1),
facilitating reproducible research has been deemed a higher
priority, hence favouring the open-source frameworks. Fur-
thermore, it has been shown both theoretically and in
practice (see e.g. Daugman et al. [71] and Grother et al.
[72]), that the biometric performance in the identification
scenario decreases with the growing size of the enrolment
database. In other words, in large-scale systems, optimal
biometric performance is not to be expected, even from the
commercial systems. Lastly, to evaluate the proposed fusion
methods, the key metric is the relative biometric performance
gain/loss w.r.t. to a baseline and not the absolute biomet-
ric performance achieved. Following tools and frameworks
were used to extract features from the images and compare
the resulting templates:
Face A neural-network based approach is used. Specifically,

the FaceNet CNN of Schroff et al. [73] is used with a
pre-trained model made available by the authors2. The
network learns to map facial images to Euclidean space,
whereby the produced templates (embeddings) can be
directly compared using Euclidean distance.

Fingerprint The features (minutiae triplets, i.e. 2-D location
and angle) are extracted using a neural-network based
approach. In particular, the FingerNet CNN of Tang et
al. [74] is used with a pre-trained model made available
by the authors3. To compare such templates, a minutiae
pairing and scoring algorithm of the sourceAFIS system
of Važan [75] is used4.

Fingervein A minutiae based approach is used. Specifically,
the maximum curvature algorithm of Miura et al. [76] is
used to extract the skeleton of the fingervein patterns,
which is subsequently thinned using the method pre-
sented by Guo et al. [77]. The minutiae are retrieved
from the vein skeleton with a convolution kernel pro-
posed by Olsen et al. [78]. Lastly, using the method of Xu
et al. [79] and Hartung et al. [80], [81], the variable-sized
minutiae vector is translated into the Spectral Minu-
tiae Representation (SMR), which is fixed-length and
additionally offers certain implicit rotation and scaling
invariance. Such templates can be compared using a
simple correlation measure (likewise presented in [79]),
which is a common approach in image processing.

Table 2 summarises the information about the utilised
data processing pipelines.

TABLE 2: Data processing pipelines

Characteristic Extraction Representation Size Comparison

Face FaceNet 1-D embedding 512 floats Euclidean distance
Fingerprint FingerNet Minutiae triplets set Variable Minutiae pairing
Fingervein Spectral minutiae 2-D matrix 256×128 floats Correlation

For the biometric fusion, two scenarios were considered
(see e.g. Jain et al. [39], Snelick et al. [38], and Ho et al. [82]
for details):

2. https://github.com/davidsandberg/facenet
3. https://github.com/felixTY/FingerNet
4. The original algorithm uses minutiae quadruplets, i.e. additionally

considers the minutiae type (e.g. ridge ending or bifurcation). Since
minutiae triplets are extracted by FingerNet, the algorithm has been
modified to ignore the type information. Using FingerNet instead of
the native minutiae extractor provided by sourceAFIS is preferred, as it
has yielded higher biometric performance.

Score level The scores were normalised using Z-score
method, which is one of the most commonly used score
normalisation methods and relies on the arithmetic
mean and standard deviation of the scores data. This
method is expected to perform well when prior knowl-
edge about the score distributions is available – which is
the case in this experimental setup (see subsection 4.1).
Subsequently, the normalised scores were fused with
a sum-rule method (using those methods, very good
biometric performance has been observed in general,
see e.g. Jain et al. [83] and ISO/IEC TR 24722 [33]).

Rank level A Borda count based method (see Black [84]),
which is a group consensus function and a general-
isation of the majority vote, was used. The method
relies on summing the ranks assigned to the probe-
reference pairs based on the comparison scores during
a biometric identification transaction and requires no
prior training.

In both cases, a weighted variant was also included,
whereby the individual types of biometric characteristics
are assigned relative weights, which are multiplied with
the normalised scores prior to the fusion. The optimal
weights’ combinations were estimated experimentally (see
subsection 4.3).

4.3 Baseline and Proposed System Configurations

To establish the baseline, against which the results of the
proposed methods can be benchmarked, the following ex-
periments were conducted on the testing subset of the
compound dataset in an open-set identification scenario:

• Each of the 3 modalities individually.
• Weighted score-level and rank-level fusion (see sub-

section 4.2) of all possible combinations of 2 modali-
ties and of all 3 modalities.

Pairs of weights in the interval [0.05 . . . 0.95] with a step
size of 0.05 were considered for the score and rank level
fusion, thus yielding a total of 19 and 171 weights combina-
tions for the fusion of 2 and 3 modalities, respectively.

Two versions of the proposed system were evaluated:

• Cascading filtering.
• Cascading filtering + weighted score-level fusion

with a sum-rule.

For the second item above, same combinations of
weights as in the baseline were used. Furthermore, all
possible orderings of the modalities in the cascade were
evaluated. All the experiments with the baseline and the
proposed system were conducted using a tenfold cross-
validation, as mentioned in subsection 4.1. Table 3 lists the
number of configurations in each of the experiment types.

TABLE 3: Configurations per experiment

Experiment Modalities Orderings Weights Epsilons Total

Individual baseline 1 3 — — 3
Weighted fusion baseline 2 1 19 — 19
Weighted fusion baseline 3 1 171 — 171
Cascading filtering 2 6 — 7 42
Cascading filtering 3 6 — 7 42
Cascading filtering + weighted score fusion 2 6 19 7 798
Cascading filtering + weighted score fusion 3 6 171 7 7,182
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Fig. 4: Baseline results

TABLE 4: Baseline results (with 95% CI)

Method Modality PR τ EER (in %) FPIR0.1 (in %) d’

Individual FA 1.000 22.240 ± 0.773 6.648 ± 0.473 22.216 ± 0.583 3.153 ± 0.079
FP 1.000 47.234 ± 3.435 2.864 ± 0.238 47.202 ± 2.592 3.638 ± 0.066
FV 1.000 29.204 ± 0.401 11.958 ± 0.508 29.186 ± 0.302 2.218 ± 0.044

Rank fusion FA+FP 1.000 2.784 ± 0.373 1.491 ± 0.199 2.594 ± 0.300 2.540 ± 0.038
FA+FV 1.000 6.360 ± 0.544 3.081 ± 0.250 6.280 ± 0.416 2.404 ± 0.047
FP+FV 1.000 6.332 ± 0.501 3.212 ± 0.314 6.252 ± 0.383 2.478 ± 0.034
FA+FP+FV 1.000 3.127 ± 0.374 1.862 ± 0.200 2.960 ± 0.297 3.502 ± 0.059

Score fusion FA+FP 1.000 25.340 ± 2.157 0.959 ± 0.152 25.253 ± 1.632 4.561 ± 0.082
FA+FV 1.000 17.830 ± 0.336 5.049 ± 0.303 17.802 ± 0.254 3.033 ± 0.053
FP+FV 1.000 14.587 ± 1.347 0.732 ± 0.092 14.430 ± 1.026 4.267 ± 0.048
FA+FP+FV 1.000 5.615 ± 0.481 0.379 ± 0.112 5.295 ± 0.382 4.851 ± 0.054

Rank fusion weighted FA(0.55)+FP(0.45) 1.000 2.743 ± 0.393 1.582 ± 0.195 2.550 ± 0.317 2.540 ± 0.039
FA(0.40)+FV(0.60) 1.000 6.153 ± 0.573 3.342 ± 0.265 6.070 ± 0.438 2.391 ± 0.051
FP(0.70)+FV(0.30) 1.000 5.970 ± 0.835 2.921 ± 0.294 5.884 ± 0.640 2.510 ± 0.043
FA(0.40)+FP(0.55)+FV(0.05) 1.000 2.349 ± 0.303 1.564 ± 0.117 2.121 ± 0.254 3.532 ± 0.049

Score fusion weighted FA(0.80)+FP(0.20) 1.000 5.107 ± 0.574 0.992 ± 0.146 4.901 ± 0.440 4.739 ± 0.079
FA(0.80)+FV(0.20) 1.000 10.511 ± 0.309 3.311 ± 0.367 10.459 ± 0.234 3.632 ± 0.072
FP(0.30)+FV(0.70) 1.000 8.533 ± 0.394 1.704 ± 0.103 8.459 ± 0.299 3.541 ± 0.049
FA(0.55)+FP(0.20)+FV(0.25) 1.000 1.986 ± 0.160 0.324 ± 0.063 1.504 ± 0.136 4.985 ± 0.063

4.4 Evaluation Metrics

The systems were evaluated on two key aspects, using
ISO/IEC standard methods and metrics [47] as well as
additional, commonly used ones:
Biometric performance DET curves, equal-error-rate

(EER), and false negative identification rate at a certain
(here 0.1%) false positive identification rate (denoted
FPIR0.1). Additionally, the decidability index over the
genuine and impostor score distributions (defined as:
d′ =

|µg−µi|√
1
2 (σ

2
g+σ

2
i )

, where µ and σ stand for the means

and standard deviations of the genuine and impostor
score distributions, respectively) is reported.

Computational workload Penetration rate (PR), i.e. the
number of the pre-selected candidate templates as a
fraction of the total number of templates in the enrol-
ment database.

Additionally, a metric which brings the two aspects
together (adapted from Proença et al. [65]) is used. The
metric (τ ) calculates the Euclidean distance from the optimal
operating point (i.e. FPIR0.1 = 0 and PR ≈ 0) and is defined

as follows: τ =
√
(FPIR0.1)2 + PR2.

5 RESULTS

In this section, the experimental results are presented. First,
in subsection 5.1, the baseline is established. Subsequently,
subsection 5.2 shows the empirical shortlist sizes estimation
for the proposed system, while its results are presented in

subsection 5.3. All the tables and figures in this section use a
short notation for the biometric characteristics: FA (face), FP
(fingerprint), and FV (fingervein). For the weighted fusion
variants, the relative weights are written in parentheses
immediately following their corresponding biometric char-
acteristics.

5.1 Baseline

The results of the baseline experiments are shown in figure
4 and table 4. All possible combinations of modalities are
shown; whereas for the weighted scenario, the results of
the configuration with the lowest FPIR0.1 value for each
modality combination are given. Looking at the baseline
results, following conclusions can be reached:

• The biometric performance of the individual modal-
ities is only moderate. This is to be expected due
to open-source tools being used, as well as the high
degree of homogeneity and sometimes poor quality
of the facial and fingervein data. However, it is also
demonstrated that the biometric performance can be
improved to useful levels by applying information
fusion.

• The score-level fusion performs better than the rank-
level fusion.

• The results can be further improved by applying rela-
tive weighting of the modalities. This is especially the
case in terms of FPIR0.1 for the score-level fusion and
less so for the rank-level fusion. It should be noted
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that the exact optimal weights are only pertinent
for a particular experimental setup (i.e. the specific
databases, algorithms, etc.) and should not be used to
reach general conclusions about weighted biometric
fusion.

• The biometric performance in terms of EER of the
best combination of 2 modalities and weights is
around 1%, whereas using all 3 modalities reduces
the EER down to around 0.35%. However, it should
be noted that the FPIR0.1 is relatively high in both
cases – around 5% and 1.5% for 2 and 3 modalities,
respectively.

• Since the baseline setup relies on an exhaustive
search method, the penetration rate is 1.0 and τ
depends solely on the values of FPIR0.1.

5.2 Shortlist Size Estimation

To estimate the shortlist sizes, the methodology outlined
in subsection 3.1 is followed. Accordingly, CMC curves are
computed on the training partition of the dataset and then
used to estimate the shortlist size for several ε values. In
figure 5, the CMC curves are shown, along with the relation
between the ε value and the shortlist size. It can be seen,
that relatively high identification rate is achieved at very
low ranks; however, it takes a while before 100% is reached,
especially for the fingerprint and fingervein modalities. It
should be noted, that those CMC curves do not provide a
general statement w.r.t. to the relative strength of the chosen
types of biometric characteristics; they merely provide a
benchmark and overview relevant to the particular exper-
imental setup (i.e. the specific databases, algorithms, etc.)
used in this work.
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Fig. 5: Estimation of the shortlist sizes

5.3 Proposed

The results of the experiments with the proposed system
are shown in figure 6 and table 5. All possible modality
combinations and orderings are shown; whereas for the
weighted scenario, the results of the configuration with the
lowest τ value for each modality combination and ordering
are given. Looking at the results of the proposed system,
following conclusions can be reached:

• Using the proposed technique alone improves the
biometric performance for 2 modalities. For 3 modal-
ities, a relatively good biometric performance is

reached, albeit it is somewhat lower than the base-
line.

• By combining the proposed technique with a
weighted score-level fusion, the biometric perfor-
mance is significantly improved (by an order of mag-
nitude in some cases, c.f. table 6). The best baseline
weighted score-level fusion configuration achieves
approximately 0.992% and 0.324% EER for 2 and
3 modalities, respectively. The best configuration of
the proposed scheme achieves approximately 0.254%
and 0.109% EER for 2 and 3 modalities, respectively.
Even more significant improvements can be seen in
the higher security region of the error curves. The
best baseline weighted score-level fusion configu-
ration achieves approximately 4.901% and 1.504%
FPIR0.1 for 2 and 3 modalities, respectively. The
best configuration of the proposed scheme achieves
approximately 0.333% and 0.125%. It should be noted
that the exact optimal weights are only pertinent
for a particular experimental setup (i.e. the specific
databases, algorithms, etc.) and should not be used to
reach general conclusions about weighted biometric
fusion.

• In all the cases, the penetration rate (and hence the
computational workload) is significantly reduced –
down to 0.545 and 0.388 for 2 and 3 modalities,
respectively. Those results are close to the theoreti-
cal maximum reduction (i.e. down to ∼ 1

K ) for the
proposed scheme as described in subsection 3.2.

6 DISCUSSION

This section expands on the discussion items provided
directly with the results in the previous section. Specifically,
the results in terms of biometric performance and compu-
tational workload reduction are addressed in subsections
6.1 and 6.2, respectively. Lastly, subsection 6.3 outlines and
discusses the potential limitations of this work.

6.1 Biometric Performance
It appears that the most successful system ordering fol-
lows the training CMC curves, i.e. preferring the type
of biometric characteristic with the highest identification
rate at low ranks to be used first. Accordingly, the best
orderings (in terms of the τ metric) in the experiments
were Face-Fingerprint and Face-Fingerprint-Fingervein for
2 and 3 modalities, respectively. In general, as has been
demonstrated in the previous section, the proposed system
increases the biometric performance when benchmarked
against the baseline. This increase happens both in terms
of FPIR0.1, as well as EER. Although the FNIR can be
somewhat higher than that of the baseline (c.f. figure 7), this
happens at values of FPIR which are considered impractical
for operational systems. Those errors occur due to the pre-
filtering – if, for example, at the first level of the cascade a
sample of bad quality is filtered out, the proposed system
cannot recover, whereas a score-fusion based system might,
provided excellent scores for the other modalities. On the
other hand, by the act of pre-filtering the database, the
potential for false positives is decreased (recall subsection
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Fig. 6: Proposed system’s results

TABLE 5: Proposed system’s results (with 95% CI)

Method Modality ε PR τ EER (in %) FPIR0.1 (in %) d’

Cascading FA+FP 1.0 0.501 2.769 ± 0.602 1.719 ± 0.172 2.721 ± 0.093 4.408 ± 0.093
FA+FV 1.5 0.500 18.015 ± 2.582 6.365 ± 0.446 18.008 ± 0.390 2.777 ± 0.050
FP+FA 1.5 0.501 4.333 ± 1.387 1.983 ± 0.162 4.302 ± 0.210 4.929 ± 0.118
FP+FV 1.5 0.501 17.518 ± 1.622 6.226 ± 0.356 17.511 ± 0.245 2.787 ± 0.044
FV+FA 1.0 0.525 7.252 ± 1.176 4.308 ± 0.348 7.232 ± 0.178 3.747 ± 0.141
FV+FP 1.0 0.525 5.015 ± 0.749 3.816 ± 0.342 4.987 ± 0.114 3.941 ± 0.082
FA+FP+FV 1.0 0.335 10.461 ± 2.695 3.011 ± 0.220 10.456 ± 2.033 3.426 ± 0.054
FA+FV+FP 1.5 0.334 2.652 ± 0.524 1.920 ± 0.177 2.630 ± 0.398 4.513 ± 0.093
FP+FA+FV 1.5 0.334 9.829 ± 1.967 3.069 ± 0.212 9.823 ± 1.484 3.409 ± 0.047
FP+FV+FA 1.0 0.335 3.673 ± 0.990 1.913 ± 0.125 3.657 ± 0.749 4.951 ± 0.098
FV+FA+FP 0.5 0.382 3.017 ± 0.424 2.172 ± 0.215 2.992 ± 0.322 4.444 ± 0.094
FV+FP+FA 0.5 0.386 5.028 ± 0.809 3.269 ± 0.267 5.013 ± 0.611 4.243 ± 0.140

Cascading + score fusion weighted FA(0.70)+FP(0.30) 0.05 0.545 0.648 ± 0.079 0.254 ± 0.051 0.333 ± 0.102 5.702 ± 0.083
FA(0.70)+FV(0.30) 0.05 0.545 2.713 ± 0.770 1.335 ± 0.171 2.654 ± 0.591 4.293 ± 0.076
FP(0.30)+FA(0.70) 0.5 0.541 0.838 ± 0.168 0.509 ± 0.101 0.626 ± 0.159 5.640 ± 0.099
FP(0.30)+FV(0.70) 1.5 0.501 2.440 ± 1.035 1.163 ± 0.144 2.380 ± 0.794 4.415 ± 0.061
FV(0.30)+FA(0.70) 0.1 0.710 2.685 ± 0.742 1.327 ± 0.172 2.583 ± 0.576 4.275 ± 0.080
FV(0.55)+FP(0.45) 0.5 0.573 1.482 ± 0.881 0.832 ± 0.134 1.338 ± 0.697 4.583 ± 0.064
FA(0.60)+FP(0.20)+FV(0.20) 0.05 0.388 0.409 ± 0.012 0.109 ± 0.022 0.125 ± 0.027 6.356 ± 0.076
FA(0.55)+FV(0.20)+FP(0.25) 0.05 0.386 0.407 ± 0.013 0.111 ± 0.027 0.121 ± 0.036 6.522 ± 0.073
FP(0.20)+FA(0.55)+FV(0.25) 0.1 0.537 0.592 ± 0.022 0.215 ± 0.041 0.242 ± 0.042 6.215 ± 0.071
FP(0.25)+FV(0.30)+FA(0.45) 0.1 0.605 0.642 ± 0.020 0.176 ± 0.047 0.204 ± 0.047 6.186 ± 0.077
FV(0.20)+FA(0.60)+FP(0.20) 0.1 0.483 0.553 ± 0.036 0.239 ± 0.065 0.259 ± 0.064 6.243 ± 0.085
FV(0.30)+FP(0.25)+FA(0.45) 0.1 0.554 0.597 ± 0.026 0.185 ± 0.048 0.213 ± 0.053 6.184 ± 0.077

3.2), thus yielding better results in terms of FPIR0.1. In other
words, the proposed scheme can be used to increase the
security of biometric identification systems which already
employ information fusion of multiple biometric modalities.

6.2 Computational Workload Reduction
In addition to the aforementioned biometric performance
improvement, the proposed system has an impact on
the computational complexity of a biometric identification
transaction. In this context, two scenarios can be distin-
guished depending on the cost of template comparisons for
the used modalities:
Same cost irrespective of the modality In this case, the

computational workload depends exclusively on the
penetration rate (recall equation 2). To minimise it,
the modalities should be ordered corresponding to the
ascending order of their respective shortlist sizes, i.e.
S = {s1 . . . sK | si ≤ sj ,∀i < j}. The computational
workload (W ) of an identification transaction in such a
setup would be equal to the total number of compar-
isons, i.e. W = #Cproposed.

Different cost This case adds an extra factor (wk) in the
equations, representing the cost of the template com-
parison for the k’th modality, to be multiplied with
the shortlist and enrolment database sizes. To minimise
the computational workload, the ordering of the system

would be S′ = {s′1 . . . s′K | s′i∗wi ≤ s′j∗wj ,∀i < j}, and
the total computational workload for a biometric identi-
fication transaction W = N ·w1+

∑K
k=2

∏k
i=1 S

′
i ·N ·wk.

In this work, exclusively the first scenario was consid-
ered, due to the difficulty of consistently estimating the
computational cost of individual template comparisons (see
e.g. Drozdowski et al. [24] for a more detailed discussion on
this topic). The main reason for this are the different feature
representations and comparators across the modalities. One
could, in theory, measure the execution time; however,
this effectively amounts to measuring the efficiency of the
software implementation and/or the underlying hardware
architecture. This limited general use notwithstanding, such
experiments would be useful for a specific system imple-
mentation (e.g. a commercial deployment).

6.3 Limitations
In terms of computational workload reduction, the main
limitation of the proposed system is a hard limit of the
potential penetration rate reduction, as described in sub-
section 3.2. Specifically, the biometric comparisons need to
be conducted exhaustively on the first level of the cascade,
thereby effectively limiting the minimum penetration rate
to 1

K , where K is the number of modalities in the cascade.
Indeed, as reported in subsection 5.3, the results of the
proposed system closely approach this maximal penetration
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TABLE 6: Summary of the results – best configuration for each of the tested fusion methods (with 95% CI)

Method Modality ε PR τ EER (in %) FPIR0.1 (in %) d’

Rank fusion weighted FA(0.55)+FP(0.45) — 1.000 2.743 ± 0.393 1.582 ± 0.195 2.550 ± 0.317 2.540 ± 0.039
FA(0.40)+FP(0.55)+FV(0.05) — 1.000 2.349 ± 0.303 1.564 ± 0.117 2.121 ± 0.254 3.532 ± 0.049

Score fusion weighted FA(0.80)+FP(0.20) — 1.000 5.107 ± 0.574 0.992 ± 0.146 4.901 ± 0.440 4.739 ± 0.079
FA(0.55)+FP(0.20)+FV(0.25) — 1.000 1.986 ± 0.160 0.324 ± 0.063 1.504 ± 0.136 4.985 ± 0.063

Proposed cascading fusion FA(0.70)+FP(0.30) 0.05 0.545 0.648 ± 0.079 0.254 ± 0.051 0.333 ± 0.102 5.702 ± 0.083
FA(0.60)+FP(0.20)+FV(0.20) 0.05 0.388 0.409 ± 0.012 0.109 ± 0.022 0.125 ± 0.027 6.356 ± 0.076
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Fig. 7: Summary of the results – best configuration for each
of the tested fusion methods

rate reduction, while simultaneously improving the biomet-
ric performance. The proposed scheme could, however, be
extended by considering another method of computational
workload reduction (e.g. binning) prior to the cascade in
order to further reduce the penetration rate and avoid the
exhaustive search at the first level of the cascade.

Another potential limitation is the necessity of the train-
ing step, in order to facilitate the shortlist sizes estimation,
as well as score normalisation. This, however, is a common
property of many (if not most) effective biometric informa-
tion fusion systems.

In terms of a practical implementation, it should be
noted that fully parallelised computations of the comparison
scores across all the cascade levels are not possible. Specif-
ically, while the computations on the individual cascade
levels are, naturally, trivially parallelisable, it is not possible
to compute all the cascade levels simultaneously. This is
because the computations at each subsequent level of the
cascade need to wait for the completion of the previous
level, i.e. the creation of the candidate shortlist.

7 SUMMARY

This article presented a biometric information fusion-based
system which addresses two of the main challenges asso-
ciated with biometric identification: biometric performance
and computational workload. By successively filtering the
candidate lists using the individual modalities and subse-
quently fusing the remaining comparison scores, the bio-
metric performance in the region of the DET curve which
is relevant for security sensitive applications, can be sig-
nificantly improved, while simultaneously reducing the
penetration rate (computational workload) of a biometric

identification transaction. The proposed method could be
seamlessly integrated into many operational multi-modal
biometric identification systems, as it is designed to work
irrespective of the chosen biometric characteristics or their
respective feature representations, and only requires a
straightforward training step for the purpose of parameter
estimation.

A summary of the results (best configurations in terms
of τ ) for each of the fusion methods is shown in figure 7
and table 6. It can be seen that, w.r.t. using the weighted
score-level or rank-level fusion alone, the proposed system
has the following effects:
Biometric performance is improved in terms of of EER and

FPIR0.1 – by an order of magnitude.
Computational workload is reduced in terms of penetra-

tion rate – down to around 55% and 39% for 2 and 3
modal system, respectively.

Operational flexibility is retained due to lack of depen-
dence on specific biometric characteristics or template
representations.

Future work in this area could consist of, for example,
testing the proposed system with an even larger database
(albeit those are difficult to come by in the research context),
as well as using commercial off-the-shelf biometric recog-
nition systems to assess the practicability of the proposed
concept in the context of real biometric applications and
operational (not virtual) datasets.
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