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Abstract

In this paper, we demonstrate how simulation studies can be used to answer

questions about identifiability and consequences of omitting effects from a

model. The methodology is presented through a case study where identifiability

of genetic and/or individual (environmental) maternal effects is explored. Our

study system is a wild house sparrow (Passer domesticus) population with

known pedigree. We fit pedigree-based (generalized) linear mixed models (ani-

mal models), with and without additive genetic and individual maternal effects,

and use deviance information criterion (DIC) for choosing between these mod-

els. Pedigree and R-code for simulations are available. For this study system,

the simulation studies show that only large maternal effects can be identified.

The genetic maternal effect (and similar for individual maternal effect) has to

be at least half of the total genetic variance to be identified. The consequences

of omitting a maternal effect when it is present are explored. Our results indi-

cate that the total (genetic and individual) variance are accounted for. When an

individual (environmental) maternal effect is omitted from the model, this only

influences the estimated (direct) individual (environmental) variance. When a

genetic maternal effect is omitted from the model, both (direct) genetic and

(direct) individual variance estimates are overestimated.

Introduction

I have a biological hypothesis I want to test for my favorite

study system. Is my data set large enough and does it have

enough structure to verify my hypothesis? Is the test I use

appropriate? And if I leave out important terms in my mod-

els what happens with the estimates of the other parameters?

Most quantitative biologists working with natural pop-

ulations are in this situation of doubt regularly. In this

paper, we describe through a case study how simulation

studies can be used to answer some of these questions.

Even though simulations are an established methodology

(Ripley 2009), it is not common practice in evolutionary biology

for natural populations, examples of simulations studies based

on natural populations are found in Charmantier and R�eale

(2005); Kruuk and Hadfield (2007); Morrissey et al. (2007);

Hadfield (2008); Hadfield et al. (2011); Larsen et al. (2014).

In this paper, we provide guidelines on how to set up a

relevant simulation study for pedigree-based models for a

case study based on a study system of a natural insular

population of house sparrows (Passer domesticus) (see

Ringsby et al. 2002; Jensen et al. 2008; P€arn et al. 2009;

Hagen et al. 2013; Baalsrud et al. 2014; Holand et al.

2015; Nossen et al. 2016, and references therein). This

case study is based on the same data set as in Holand

et al. (2013) and the pedigree is available. We want to

know if maternal effects are identifiable for this study sys-

tem. Further, we want explore the consequences when

maternal effects are present, but left out of the model.

Maternal effects have been found to be important in

animal breeding (e.g., in mammals Bradford 1972; Koch

1972) for both selection response (Willham 1980; Meyer,

1992, 1997) and predicting rates of inbreeding

(R€onneg�ard and Woolliams 2003).
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Maternal effects are present when an individual’s trait

is not only influenced by its own genes (inherited from

the mother and father) and individual (environmental)

effects, but also directly by its mother’s genes and/or

individual effects. These effects can be interpreted as a

case of social effects (a common environment effect for

all offspring of a mother) (Willham 1963; Bijma et al.

2007; Kruuk and Hadfield 2007). If there is a maternal

genetic effect, this will contribute to the heritable varia-

tion and may influence adaption and evolution of the

trait (Kirkpatrick and Lande 1989; Mousseau and Fox

1998; Wolf et al. 1998; Wolf 2003). However, as identify-

ing maternal effects requires a large amount of data and

certain pedigree structures, it has not been much studied

in an evolutionary context (Reale et al. 1999; Kruuk et al.

2002; Wilson et al. 2005; Kruuk and Hadfield 2007).

How the population structure affect the estimation of

maternal effects has been studied (Thompson 1976; Will-

ham 1980; Robison 1981; Meyer , 1992, 1997; Kruuk and

Hadfield 2007).

A pedigree-based (generalized linear) mixed model

often called the animal model can be used to identify dif-

ferent genetic and environmental (individual) effects,

including maternal effects (Lynch and Walsh 1998; Soren-

sen and Gianola 2002). Maternal effects are included as a

random effect of the identity of each individual’s mother

in an animal model.

We apply Bayesian animal models (Sorensen and Gia-

nola 2002) and model choice using difference in

deviance information criterion (DIC) (Spiegelhalter et al.

2002). The ability of DIC to distinguish between models

has been questioned (Claeskens and Hjort 2008; Fong

et al. 2010; Gelman et al. 2014). Therefore, we want to

validate DIC’s ability to choose between models with

and without maternal effects for our study system, as

well as to find a threshold of difference in DIC to apply.

Holand et al. (2013) showed that for this study system

(direct) additive genetic effect is identifiable using the

difference in DIC.

The simulation study methodology is not tied to these

choices of inference and models. The same protocol

could be used for maximum likelihood estimation with

AIC for model selection. In practices, a simulation study

requires the ability to do fast simulations and fast

inference. This is available for Bayesian animal models

using integrated nested laplace approximations (INLA)

(Rue et al. 2009; Steinsland and Jensen 2010; Holand

et al. 2013).

The aim of the paper was to propose a protocol for

testing whether a given study system is structured enough

to accurately identify random effects, for example, mater-

nal effects. The R-code is available (see Data accessibility

section).

Materials and Methods

Study system

To ensure that our case study is realistic it is based on

the pedigree and missing structure of a study system of

house sparrow (Passer domesticus) populations on six

islands off the coast of Helgeland, Northern Norway

(66�N, 13�E). The pedigree spans over seven generation,

it consists of np ¼ 3574 individuals and observations are

available for our focus trait (bill depth) for nd ¼ 1025 of

the individuals in the pedigree (nd\np). The study sys-

tem was used in Holand et al. (2013), and we refer to it

and references therein for more in depth descriptions.

Animal models

To model direct additive genetic and maternal effects, we

use an animal model:

yi ¼ b0 þ ai þmmðiÞ þ pmðiÞ þ �i; (1)

where yi are the observed trait for individual i,

i ¼ 1; :::; nd. b0 is the intercept, ai is the (additive direct)

genetic effect for individual i, mmðiÞ is the additive mater-

nal genetic effect of individual i’s mother (m(i) is the

index of the mother of individual i). ai and mmðiÞ are

modeled as random structured effects. pmðiÞ is the mater-

nal individual effect that affect individual i and �i is the

(direct) individual effect for individual i. pmðiÞ and �i are

modeled as an independent identical distributed (i.i.d.)

effects. Further, each of them (ai and mmðiÞ, and �i and

pmðiÞ) are assumed to be independent. For the population,

the additive genetic effect is assumed to follow a Gaussian

distribution

a j A; r2a �Nð0; r2aAÞ;
where A is the relationship matrix (see e.g., Lynch and

Walsh 1998; Sorensen and Gianola 2002), given by the

pedigree, and r2a is the additive genetic variance. Simi-

larly, the maternal genetic effects are assumed to follow

m j A; r2m �Nð0; r2mAÞ;
where r2m is the maternal genetic variance. Both individ-

ual effects are assumed to be independent and Gaussian;

p�Nð0; r2pIÞ, where I is the identity matrix and r2p is the

maternal individual variance, and ��Nð0; r2� IÞ, where r2�
is the individual (direct) variance. Individual effects are

often referred to as environmental effects. To complete

the Bayesian modeling, priors are assigned to parameters.

The variances r2a, r2m, r2p, and r2� are given InvGamma

(0.5, 0.5) priors, and b0 is assigned a flat prior.

In this paper, we use four different animal models,

denoted M1–M4. The first model, M1, is an animal
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model without any maternal effects. M2 and M3 are

extensions of M1, including only one of the maternal

effects; the genetic maternal effect is included in M2

and the individual maternal effect in M3. M4 is the full

model specified in (eq. 1). These models are summa-

rized in Table 1.

Simulation studies

Traditionally, hypothesis tests are performed for a param-

eter. Under the null hypothesis, the parameter has a

specific value, often zero. Based on a test statistic (often

the estimator of the parameter), its sampling distribution

and a chosen significant level a, we reject the null hypoth-
esis if the probability of getting a more extreme test

statistic is less than a.
If we do not know the sampling distribution, we can

find the critical value by simulations: For each simula-

tion s, we sample a data set from the model when H0

is true, and calculate the test statistics. We repeat this S

times, and the (empirical) distribution of the corre-

sponding S test statistics is an approximation to our

samplings distribution from which we can find critical

values of interest. An important property of a test is its

power. The power of a test is the probability to reject

the null hypothesis when it is not true, that is, to cor-

rectly reject H0. The power function can be obtained by

performing simulations studies for a set of values for

the parameters. The proportion of the simulated data

sets that are rejected is an estimate of the corresponding

power.

Model selection and simulations

There are two basic questions we want to answer by simu-

lation studies: (1) Are maternal effects identifiable for our

study system? and (2) What is the effect of not including a

maternal effect in the model when it is present?

The question about identifiability can be set up in a

hypothesis setting. For example, the null hypothesis is the

model without maternal effects (M1 in Table 1), and the

alternative hypothesis include genetic maternal effects

(M2 in Table 1):

H0 : M1 yi ¼ b0 þ ai þ �i (2)

H1 : M2 yi ¼ b0 þ ai þmmðiÞ þ �i (3)

We want to find when we can reject H0 and conclude

with H1 based on (simulated) data. To compare the mod-

els, we use difference in DIC, DDIC. If the difference is

above a critical value CDDIC we conclude that the H1 is

true, and we have identified a maternal effect.

Now several choices arise, and we provide suggestions

for how to approach these using simulations. Different

versions of the generic simulation algorithm below will be

used.

Simulation algorithm

Step 1: Set parameters.

Step 2: Simulate S new data sets, ys, s = 1, 2,. . .S accord-

ing to H0 and/or H1.

� Set NA values according to the missing structure

of the data set.

Step 3: For each data set ys, fit model(s) according to H0

and/or H1, and calculate and/or store relevant quantities.

Q1: Which critical value CDDIC should I use to
choose between models?

The difference in DIC between the two models is calcu-

lated as DDIC ¼ DICðH0Þ � DICðH1Þ. We suggest that

CDDIC is based on a chosen significance level a and calcu-

lated as the corresponding quantile CDDIC of DDIC based

on simulations. In step 2 in the simulation algorithm, we

sample according to the model under H0. In step 3 mod-

els, under both H0 and H1 are fitted, and

DDICs ¼ DICðH0Þ � DICðH1Þ is calculated and stored.

We choose a significance level, for example, a = 0.05.

The appropriate limit for rejecting H0 (CDDIC) is then cal-

culated from the 95% quantile of the empirical simulated

distribution of DDIC.

Table 1. Models and parameter values used in the simulation studies.

Model

M1

yi ¼ b0 þ ai þ �i

M2

yi ¼ b0 þ ai þ mmðiÞ þ �i

M3

yi ¼ b0 þ ai þ pmðiÞ þ �i

Parameter

r2a 0.6 (0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0) 0.6

r2m – (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) –

r2p – – (0, 0.1, 0.2, 0.3, 0.4)

r2� 0.4 0.4 (0.4, 0.3, 0.2, 0.1, 0)
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Q2: Is my study system good enough to identify
maternal effects?

The power of a test is the probability that the H0 is

rejected when H1 is true. If H0 is rejected, we have identi-

fied a maternal effect. The power is a function of the

magnitude of the effect, that is, r2m for the test in (eq. 3).

Hence, the question about identifiability translates into:

How do I calculate the power function of the hypothesis test?

To find the power for a specific magnitude of the mater-

nal effect (e.g., a specific value of r2m), we can use simula-

tions. In step 2 of the algorithm data sets are simulated

from H1, and in step 3 both models (H0 and H1) are fit-

ted and DDICs calculated and stored. The power is then

estimated by the proportions of the DDICs that are larger

than CDDIC . The power function can be estimated by

doing similar simulations for a range of values for the

maternal variance.

Q3: What are the consequences of omitting a
maternal effect from the model when it is present?

To answer this question, we can do simulations similar to

those we used to find the power function. For a specific

value of the maternal variance, data sets are simulated

from the model under H1 (step 2), and in step 3 the

model under H0 is fitted. The posterior of the parameters

(or some of its summary statistics, e.g., posterior mean

and 95% credibility interval) are stored. From the poste-

rior means, we have the sampling distribution of the

(other) variance parameters when maternal effects are

present in the system, but not in the model.

Q4: Do my estimates behave well?

If we fit the same model as we have simulated from sev-

eral times, we want our estimates (i.e., posterior mean) to

be close to centered around the true parameter and that

the credibility interval is a good quantification of the

uncertainty. In statistical terms, we want our estimator to

be (close to) unbiased, that is, when the experiment is

repeated (many simulations), the mean of the estimates

approaches the true parameter. Further, we want the

credibility interval to have the right coverage, that is, to

be (close to) having the property of a frequentist confi-

dence interval: In the long run, the true parameter should

be in the 95% confidence interval in 95% of the simula-

tions. We can check our estimators by simulations. In

step 2, we simulate from a model, say H1. In step 3, the

same model is fitted, that is, H1, and posterior quantities

such as that posterior mean, median, and the 95% credi-

bility interval are stored. Afterward we can compare the

mean of the posterior means with the true parameter val-

ues. Further, the coverage can be found by finding the

proportions of the credibility intervals that contain the

true parameter value.

How should I set the parameter values such that
my simulation study is relevant?

The results obtained from the simulation study depend

on the values chosen for the parameters. How should we

choose the values for the parameters so that they are real-

istic to the trait in question? We suggest that the true

data set first is fitted to the simplest model we consider,

(A) (B)

Figure 1. Graphical presentation of the

models used in simulation studies (S1) and

(S2). (A) Model M2. (B) Model M3. The models

in (A) and (B) are given in Table 1. Direct

individual effects are indicated by e, direct

additive genetic effects are indicated by a,

maternal genetic effects are indicated by m,

maternal individual effects are indicated by p,

phenotypic trait values are indicated by y,

subscript i and j indicate individual i and j,

respectively, subscript m indicate mother,

subscript f indicate father, phenotypes are

visualized by green squares and random effects

are visualized by blue ellipses.
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that is, an animal model without maternal effects (M1)

for our study. Denote the estimated variances from this

model r̂2a;M1 and r̂2�;M1. These estimates can be used to

guide the parameter choices in the simulation studies.

Both because of computational cost, and to be able to

interpret results, it is practical to make some restrictions.

We suggest that the genetic and individual effects should

be hold constant and equal to r̂2a;M1 and r̂2�;M1, respec-

tively. For model M1 and M4 that means that values for

r2a and r2m are chosen such that r2a þ r2m ¼ r̂2a;M1 and for

model M3 and M4 r2� þ r2p ¼ r̂2�;M1.

Simulation settings in the house sparrow case study

We show results for two simulation studies. Simulation

study 1 (S1) is according to the tests; H0 : M1 versus

H1 : M2 (no maternal effects vs. genetic maternal effects),

and simulation study 2 (S2) is according to the test

H0 : M1 versus H1 : M3 (no maternal effects vs. individ-

ual maternal effects). See Figure 1 for a graphical descrip-

tion of model M2 and M3. We also explored what

happens when we go from one to two maternal effects,

that is, H0 : M2 versus H1 : M4 and H0 : M3 versus

H1 : M4, but these results are not presented. Only Gaus-

sian traits were considered, and all simulations and infer-

ence were performed using AnimalINLA R package

(Holand and Martino 2013) with sum to zero constraints

on the direct and maternal genetic effects,
P

ai ¼ 0 and
P

mi ¼ 0 (Steinsland and Jensen 2010). For each param-

eter set, we simulated S = 1000 data sets.

We set parameters according to our suggestions for set-

ting parameters in section How should I set the parameter

values such that my simulation study is relevant?, and set

r̂2a;M1 ¼ 0:6 and r̂2�;M1 ¼ 0:4, giving us a phenotypic

variance r2P ¼ 1, and b0 ¼ 0. The phenotypic data are

only used for this purpose. Further, a discretization of 0.1

was used for the variance parameters. The parameter val-

ues used in the simulation studies S1 and S2 are summa-

rized in Table 1.

Results

Simulation study (S1)

In the first simulation study (S1), we consider H0 : M1

versus H1 : M2, that is, an animal model without mater-

nal effects versus one with maternal genetic effects.

Q1: Which critical value CDDIC should I use to
choose between models?

We first find the critical value CDDIC . The sampling distribu-

tion for DDIC when M1 is true is given by the boxplot for

r2m ¼ 0 in Figure 2A. The critical value is found to be

CDDIC ¼ 110 and is marked by a horizontal dotted line.

Q2: Is my study system good enough to identify
maternal effects?

Next, we want to find how large the genetic maternal effect

has to be to be identified. The sampling distributions for

different values of the maternal genetic variances (r2m) are
visualized by boxplots in Figure 2A, and the corresponding

power function can be found in Figure 2B. We see that the

maternal genetic variance of r2m ¼ 0:3 is needed to get a

power of 0.8. Hence, a substantial portion of the genetic

effects needs to be maternal (remember r2a þ r2m ¼ 0:6) to

have a high probability to identify it.

Q3: What are the consequences of omitting a
maternal effect from the model when it is present?

The effect of not including the maternal effects in the

model when they are present can be explored in Figure 2C

and D (gray lines). From Figure 2C, we find that fitting a

model without maternal effects (M1) gives a higher esti-

mate of the additive genetic variance (r2a) than the model

including additive maternal effects (M2). But not all the

genetic variance (they sum to 0.6) are taken up by r2a.
Indeed, we see from Figure 2D that also the estimated

direct individual variance r2� increases when the maternal

effect is high. That is, it seems that excluding the mater-

nal genetic effect from the model causes both the additive

(direct) genetic variance estimate (r2a) and (direct) indi-

vidual variance estimate (r2� ) to increase.

Q4: Do my estimates behave well?

To explore the properties of the variance estimators, we look

at the coverage (Fig. 2B) and the mean of posterior means

and mean of 2.5% and 97.5% posterior quantiles for model

M2. We have biased estimator, when either r2m or r2a is a

relative small part of the total genetic variance (r2a þ r2m ¼
0:6). This is also found in Holand et al. (2013) for models

with only direct additive genetic effects and is due to prior

sensitivity. The coverage for r2m has to be 0 for r2m ¼ 0 as it

is the lower limit of the parameter’s domain. We find that

also the coverage is poor when one of the genetic effects is

small. This might also be due to prior sensitivity.

Simulation study (S2)

In the second simulation study (S2), we consider

H0 : M1 versus H1 : M3, that is, an animal model with-

out maternal effects versus one with maternal individual

effects.
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Q1: Which critical value CDDIC should I use to
choose between models?

The results are summarized in Figure 3 in the same way

as in for the S1. The critical value is found to be

CDDIC ¼ 7.

Q2: Is my study system good enough to identify
maternal effects?

From Figure 3B, we find that the power function increase

fast and is 0.6 for r2p ¼ 0:1 and close to 1 for r2p ¼ 0:2.

But, this is still a substantial proportion of the individual

variances (remember r2� þ r2p ¼ 0:4).
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Figure 2. Results from simulation studies (S1). (A) Boxplots of simulated values of DDIC against the true value of r2m in (M2). CDDIC ¼ 110 is

indicated (dotted line). (B) Posterior mean (filled squares/solid lines) with mean 95% credible interval (dashed line) for r2m (M2), power of the

model selection test (x‘es/dotted line), coverage (C) (x‘es/solid line) of the 95% CI for the posterior mean of r2m (M2). (C) Posterior mean for r2a
and mean 95% credible interval (dashed lines) for r2a when fitting (M1) (gray) and (M2) (black), coverage (C) of the 95% CI for the posterior

mean of r2a (M1) (x‘s/dotted line, gray) and (M2) (x‘es/solid line, black). (D) Posterior mean of r2� and mean 95% credible interval (dashed lines)

for r2� when fitting (M1) (gray) and (M2) (black), coverage (C) of the 95% CI for the posterior mean of r2� (M1) (x‘s/dotted line, gray) and (M2)

(x‘es/solid line, black). A 1:1 function of true versus estimated parameter values are indicated in (A), (B), and (C) (gray line).
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Q3: What are the consequences of omitting a
maternal effect from the model when it is present?

To evaluate the consequences of not including the mater-

nal individual effects in the model when they are present,

we study Figure 3C and D. From Figure 3D, we find that

the estimated direct individual variance (r2�) when fitting

the model M1 (without maternal effects) is approxi-

mately 0.4 (r2� þ r2p ¼ 0:4) independently of the true

maternal individual variance (r2p). Further, from Fig-

ure 3C, we find that when fitting M1 the additive

genetic variance estimate (r2a) does not change systemat-

ically as a function of the individual maternal variance

r2m. In this situation, it seems as the omitted maternal
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Figure 3. Results from simulation studies (S2). (A) Boxplots of simulated values of DDIC against the true value of r2p in (M3). CDDIC ¼ 7 is
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individual effects are taken up by the direct individual

effects only.

Q4: Do my estimates behave well?

To explore the properties of the variance estimators, we

look at the coverage (Fig. 3B) and the mean of posterior

mean and mean of 2.5% and 97.5% posterior quantiles for

model M3. We find that the individual maternal variance

estimate is downward biased, while the direct individual

variance estimate is upward biased, especially for small val-

ues of r2� . This might also cause the poor coverage of r2�
and r2p. As for (S1), the coverages are poor when one of

the variances is small (Fig. 3B–D). This may be due to

prior sensitivity as discussed above. We further notice that

the coverage for r2a when fitting the wrong model (M1) is

good for all values of r2� . On the other hand, when fitting

the correct model (M3) coverage is poor for r2a for small

values of r2� . From this we learn that for our study system

it is not possible to estimate variance parameters in model

M3 precisely, the estimates are biased, and the confidence

intervals do not have the right coverage.

The ability to identify and distinguish both genetic and

individual maternal effects (M4) can be explored simi-

larly. The results (not presented here) show that this

study system neither has the right properties to identify

both individual and genetic maternal effects, nor to esti-

mate the maternal variances precisely.

Discussion

We have used simulation studies to explore and gain

understanding of our study system’s ability to identify

maternal effects as well as the consequences of omitting

maternal effects from the model when they are present.

We have learned that maternal effects can (only) be iden-

tified if they are substantial. For our study system, the

genetic maternal effect has to be about half of the (total)

genetic to be identified. We also get similar result for

individual maternal effect.

We have considered a Gaussian trait and maternal

effects. The same methodology can also be used for non-

Gaussian traits, and other effects, for example, additive

genetic effects or sex-linked effects or the consequences of

missing not at random (Holand et al. 2013; Larsen et al.

2014; Steinsland et al. 2014).

We have used DIC to choose between models and have

found critical values using simulations. This ensures a cer-

tain significance level. The use of DIC has been questioned.

Our two different tests (S1 and S2) gave very different crit-

ical values (CDDIC ¼ 110 and CDDIC ¼ 7). This indicates

that using one fixed critical value independent of the mod-

els compared (e.g., CDDIC ¼ 10 as performed in Holand

et al. (2013)) might give unintended properties. The ability

of other model selection criteria of choosing the correct

model can be explored with similar simulation studies.

Fitting a model without maternal effects when maternal

effects are present will affect the estimated variance

parameters. Generally, the total true variance seems to be

accounted for. When the maternal individual (environ-

mental) effect is omitted from the model, only the (di-

rect) individual variance seems to be affected, and it is

estimated to be the sum of direct and maternal individual

effects. This result is in accordance with the findings in

Larsen et al. (2014). They performed a simulation study

where they simulated a trait with both autosomal and

sex-linked additive genetic effects. They found that when

fitting the trait in a model without sex-linked genetic

effect, this gave an estimate of the autosomal genetic vari-

ance corresponding to the total amount of (additive)

genetic effect in the trait.

When a maternal genetic effect is omitted from the

model, it influences estimates of both direct genetic and

direct individual variances. The total (genetic and individ-

ual) variance are accounted for in the results, but the total

amount of genetic variance (direct and maternal) is not

always picked up by the estimated (direct) genetic variance.

Hence, it is not generally true that all genetic effects are

accounted for by a (direct) additive genetic effect.

The simulation studies showed that when at least one

of the variance parameters are close to zero, we might

have biased estimates, and poor coverage for several of

the variance parameters. This indicates prior sensitivity,

and we have learned that priors needs to be carefully cho-

sen, and prior sensitivity should be checked.

For complex systems, it is difficult to have an intu-

ition for our study system’s ability to identify effects of

interest and how omitting effects that are present influ-

ence parameter. Simulations studies are a powerful tool

in this situation. Fast simulation and inference make

simulations studies more attractable. We are able to

explore identifiability properties and the consequences of

omitting effects from the model for our study system

with the models (including priors) and inference method

we have chosen.

Data Accessibility

The house sparrow pedigree and R-code for performing

the simulation studies are archived in the AnimalINLA
R package (available at www.r-inla.org).
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