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PREFACE  
 

The present thesis is submitted to the Norwegian University of Science and Technology (NTNU) 

for partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.).   

 

The research work in this thesis had been conducted at the Department of Civil and Environmental 

Engineering, NTNU, in Trondheim, mainly under the supervision of Professor Knut Alfredsen, 

NTNU. Research scientist Thomas Skaugen from Norwegian Water Resources and Energy 

Directorate (NVE) and Associate professor Tone Merete Muthanna, from the Department of Civil 

and Environmental Engineering, NTNU were the co-supervisors. 

 

The research was financed as a 3-year Ph.D. position at the department of Civil and Environmental 

Engineering, NTNU, granted by the Research Council of Norway and several partners through the 

Centre for Research-based Innovation “Klima 2050 project” (project number 237859). In addition 

to the Klima 2050 project, the research work has got a financial support from the BINGO project 

(EU Horizon 2020, grant agreement 641739) for the research work related to hydrological impact 

of climate change on small catchments.   

 

In accordance with the requirements of the Faculty of Engineering at NTNU, the present thesis 

comprises an introduction to the research work which is composed of three scientific papers.  
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ABSTRACT 
 

Flow data are important information for water resources management such as flood risk 

management, water utilization, and environmental impact assessment in a changing environment. 

However, most of the catchments that we are interested in are ungauged which makes a method to 

predict flow in ungauged catchments an important prerequisite. Reliable estimation of continuous 

streamflow in ungauged catchments has remained a fundamental challenge in hydrology, although 

significant insights have been gained in recent years. Flood is the most typical example of natural 

risk and causes significant economic damage worldwide. Flood risk will become more frequent in 

the future because of climate and land use changes and may cause increased impacts on human 

health and economic losses. Growing economic losses are evidence of the increasing intensity of 

floods draining from small catchments to small watercourses which are usually not sufficiently 

considered by the flood risk management approaches. Knowledge of hydrological impacts of 

climate change is essential to aid infrastructure owners in managing the impacts on existing and 

planned water infrastructures. To provide a meaningful climate impact results at ungauged small 

rural catchments, it is necessary to use high spatial and temporal resolutions of climate data that 

can be used to force high resolution hydrological models; however, rainfall-runoff modelling in 

such catchments is hampered by a lack of both observed discharge and precipitation data and high-

resolution climate data. To address the challenges of flood risk management, a parsimonious 

continuous rainfall-runoff model (Distance Distribution Dynamics) with high resolution climate 

data has been used as the main tool to predict flow and to study impact of climate change; however, 

the parameters of the model cannot be obtained by calibration on the flow data and hence need to 

be obtained by regionalization. 
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The Distance Distribution Dynamics (DDD) model has been regionalized for 41 gauged small 

rural catchments in Norway (area ≤ 50km2). Three regionalization methods: multiple regression, 

physical similarity (single-donor and pooling-group based methods) and a combination of the two 

methods, are used in this study. Seven independent catchments, which are not used in the 

regionalisation process, are used for validation of the regionalization methods. The combined 

method (multiple regression and pooling-group type of physical similarity) performs the best of 

all methods. The DDD model like many other rainfall-runoff models, underestimates floods in 

many cases in the continuous simulations. To improve the prediction of flood peaks in a continuous 

simulation, a dynamic river network method is conceptualized and implemented in the DDD 

model. The method is applied for 15 catchments in Norway and tested on 91 flood peaks. The 

performance of the method is evaluated using relative errors and mean absolute relative errors and 

the simulated flood peaks are improved significantly with the method. The mean absolute relative 

error of the simulated peaks is reduced from 32.9% (without dynamic river networks) to 15.7% 

(with dynamic river network method). The 0.75 and 0.25 quantiles of the relative errors of the 

simulated flood peaks are reduced from 41% to 23% and from 22% to 1% respectively. The 

regionalized DDD model with dynamic river network has been used to study the hydrological 

impacts of climate change on six ungauged small rural catchments in Bergen area of Norway using 

a new high-resolution regional climate projection with improved performance with regards to the 

precipitation distribution. The results show that in the future period (2070-2100), there will be an 

increase in the mean annual flow compared to the reference period (1981-2011). The maximum 

increase is 33.3%, and the minimum increase is 16.5%. The mean autumn, winter and spring flows 

show an increase for the study catchments and contributed significantly for the increase in mean 

annual flows, but there will be a decrease in the mean summer flows from the study catchments. 
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The maximum decrease in the mean summer flow is 35.2% and the minimum decrease is 7.2%. 

The results also show that the mean annual maximum flows (floods) increases by 28.9% to 38.3% 

in the future period. The results of the flood frequency analysis show that there will be an increase 

of floods (16.1% to 42.7%) with a return periods of 2, 5, 10, 20, 25, 50, 100 and 200 years in small 

rural catchments at Bergen area of Norway. 
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CHAPTER ONE 
 

Introduction 

Flow data are important to address a range of water resource management challenges including 

water abstraction and flood risk management. Catchments, where no flow data are available, are 

termed ungauged and most catchments of the world are ungauged. There are operational and 

academic drivers for pursuing rainfall-runoff modelling of ungauged catchments (Günter, 2006). 

The former include design applications (spillways, culverts, and embankments), forecasting 

operations (flood warning and hydropower operation), and catchment management applications 

(water allocations, climate impact studies), the later are geared towards understanding the 

catchment functioning and how the individual processes combined to produce catchment response 

(Günter, 2006). For ungauged catchments, the parameters of rainfall-runoff models cannot be 

obtained by the calibration on the flow data and hence need to be obtained by other methods. 

Regionalization is the most widely used method to date, which relates parameters of the rainfall-

runoff model to catchment characteristics (Saliha et al., 2011).  

 

Flood is the most typical example of natural risk and causes significant economic damage 

worldwide. Flood risk will become more frequent in the future as a result of  climate and land use 

changes and will cause increased impacts on human health and economic losses (Annamo & 

Kristiansen, 2012; Hall et al., 2014). Increasing intensity of floods on small rural watercourses 

(flash floods) which are usually not sufficiently considered by the flood risk management 

approaches and unplanned human settlements in flood-prone areas are among the major causes for 

increasing economic losses and number of fatalities (Borga et al., 2011; Di Baldassarre et al., 2010; 
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Jakubínský et al., 2014). For flood risk assessment and management, information about possible 

extreme floods, is essential and therefore, flood characteristics need to be derived to serve as a 

bases for inundation map, risk zooning or the design of flood defense infrastructure (Winter et al., 

2019). While estimates usually refers to the flood magnitude, the severity of the flood is also 

defined by the duration and runoff volume of a flooding event (Brunner et al., 2017; Grimaldi et 

al., 2012; Lamb et al., 2016; Mediero et al., 2010). Uncertainty in the flood estimation methods 

from small catchments remains high and there is a need to develop and test improved methods for 

planning appropriate flood risk management strategies under the climate and land use changes 

(Faulkner et al., 2012).  

 

Impacts of climate change on the ecology, human health and the economy are already apparent 

and will probably increase in the future. Infrastructure systems, which are required to be 

operational over very long-time scales are increasingly to experience the impact over their life 

time. In the future, climate change is expected to increase in the magnitude and hence frequency 

of extreme events like floods (Asadieh & Krakauer, 2017; Hirabayashi et al., 2013). Knowledge 

of hydrological impacts of climate change is essential to aid infrastructure owners manage the 

impacts on both the existing and planned infrastructures (Balston et al., 2017; Räikkönen et al., 

2017). To provide a meaningful climate impact results at small catchments, it is necessary to use 

high spatial and temporal resolutions of  projected climate data that can be used as forcing in high 

resolution hydrological models (Lespinas et al., 2014; López-Moreno et al., 2013; Reynolds et al., 

2015; Tofiq & Guven, 2014); however, getting a high temporal resolution climate data is a 

challenge.  
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Water resource management problems are increasingly approached using continuous time rainfall-

runoff modelling, rather than the traditional statistical or event-based models (Swain & Patra, 

2017; Winter et al., 2019). Continuous simulation methods of flood estimation are better than 

event-based methods because the event-based methods have the following limitations: 

(i) The return period of design rainfall is identical with the return period of the resulting 

flood magnitude, which remains questionable. 

(ii) The pre-event catchment state and the design rainfall duration are defined subjectively 

(iii) Not suitable for studying impacts of climate and land use changes on flood risks for 

proposing adaptation strategies.  

Therefore, the continuous simulation methods are promising because of their potential to link the 

state of the catchment and processes ahead of the flooding event with the flood happening in the 

catchment to avoid subjective assumptions and to provide full hydrograph characteristics (Lamb 

et al., 2016). To use such methods for flood estimation at ungauged small rural catchments, we 

need to follow the following procedures: 

(i) Select an appropriate continuous hydrological model and regionalize the model 

parameters with high temporal resolution (e.g. hourly). 

(ii) Evaluate the model in predicting the observed flood peaks and improve the capability 

in simulating flood peaks by introducing appropriate method in the model. 

(iii)  Use high resolution climate data to study impacts of climate change on flow and 

floods. 
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The International Prediction in Ungauged Basins (PUB) initiative recommends the use of an 

appropriate model structure for predicting flow in ungauged catchments (Blöschl et al., 2013), and 

the choice of appropriate model structure helps in reducing predictive uncertainty (Son & 

Sivapalan, 2007).  Flash floods are usually localized disasters that occur in small catchments with 

response times of a few hours or even less and their high risk potential is related to their rapid 

occurrence and to the spatial dispersion of the areas which may be impacted by these floods (Borga 

et al., 2011; Borga et al., 2007). The short lead time and small area collectively enhance the 

difficulty of flood management in such catchments (Miao et al., 2016). 

 

Small catchments 

In general, different definitions of small rural catchments exist worldwide. In Norway, Stenius 

(2012) considers catchments up to 50km2 as small. Many small catchments are ungauged, and this 

condition makes flood estimation in such catchments difficult. Moreover, rainfall-runoff 

modelling in such catchments is hampered by a lack of both observed discharge and precipitation 

data (Fleig & Wilson, 2013). 

 

It has been pointed out by Fleig and Wilson (2013) that the flood estimation in small catchments 

is particularly difficult due to the following reasons: 

(1) Flood peaks in small catchments are more susceptible to the influence of local features. 

(2) Local extreme precipitation events can result in higher peak flows relative to the average 

flow than in larger catchments. 
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(3) Appropriately describing the local hydrological processes is crucial for reliable flood 

estimation which is difficult in small catchments. 

(4) Flow data are not available or not adequate for the calibration of hydrological models. 

(5)  Observed flow data should be available in high temporal resolution, due to the fast 

response and flow fluctuation in small catchments. In particular, mean daily observations 

can differ considerably from observed instantaneous flood peaks in small fast responding 

catchments. 

(6) Observed precipitation data from representative station are rare and would be needed in 

high temporal resolution. 

In Norway, the data availability has been improved for catchments smaller than 50km2 (Stenius, 

2012). Therefore, this PhD research work addresses some of the difficulties of estimating flood 

peaks in small ungauged rural catchments (≤ 50km2) using a continuous rainfall-runoff model to 

contribute for flood risk management under climate change.  

 

Scope of the work  

This thesis focuses on flow and flood prediction methods and the applicability of the methods for 

climate impact studies at ungauged small rural catchments in Norway. The developed methods 

also provide support to flood risk assessment and planning of adaptation strategies to 

infrastructures (e.g. culverts and bridges) located at the outlet of the ungauged small rural 

catchments. More specifically, the thesis aims at answering the following research objectives: 

 What are the best regionalization methods of Distance Distribution Dynamics (DDD) 

model parameters with hourly resolution to predict flow at ungauged small rural 

catchments in Norway?  
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 How can we predict observed flood peaks as accurate as possible in the continuous 

simulations using the DDD model? 

 How does climate change affect the flow pattern and flood frequency at small ungauged 

rural catchments in Bergen area in western Norway in the future period (2070 – 2100) 

compared to the reference period (1981 – 2011)? 

Three scientific research papers, appended in the appendix section of the thesis, are produced to 

address the research objectives.     

 

CHAPTER TWO 
 

 General methods  

In this Ph.D. research work, a parsimonious continuous rainfall-runoff model has been used as the 

main tool. A model can be considered as a simplified representation of a real world system (Devia 

et al., 2015). Physically based models, which use differential equations in describing a physical 

process in a catchment, need simplifications related to the identification of the parameter values, 

the uncertainties in the input and output observations and the point nature of physically based 

equations. Therefore, the best model might be the one which gives results close to reality with the 

use of a minimum  numbers of parameters and reduced model complexity (Masseroni et al., 2016). 

Accordingly, in this thesis a continuous semi-distributed conceptual parsimonious rainfall-runoff 

model (Distance Distribution Dynamics) has been used.  Figure 1 shows the structure of the DDD 

rainfall-runoff model. 
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The DDD model is written in the R programming language (R Core Team, 2017) and currently 

runs operationally with daily and three-hourly time steps at the Norwegian flood forecasting 

service at NVE. Subsurface and dynamic runoff are the two main modules of the model. The 

volume capacity of the subsurface water reservoir, M (mm), is shared between a saturated zone 

with volume S (mm) and an unsaturated zone with volume D (mm). If the saturated zone is high, 

the unsaturated volume has to be small (Skaugen & Onof, 2014). The actual water volume present 

in the unsaturated zone is described as Z (mm). The subsurface state variables are updated after 

evaluating whether the current soil moisture, Z(t), together with the input of rain and snowmelt, 

G(t), represent an excess of water over the field capacity, R, which is fixed at 30 % (R = 0.3) of 

D(t) (Skaugen & Onof, 2014). If G(t) + Z(t) > R*D(t), then the excess water X(t) is added to S(t). 

The DDD model has three main groups of parameters. The first group are those determined by 

model calibration against observed discharge, the second group are those estimated from observed 

hydro-meteorological data and the third group are those estimated from geographical data.  
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Figure 1.  Structure of the Distance Distributions Dynamics model adapted from Skaugen and 

Onof (2014) . Left panel: the storage model and right panel: hydrographs of hillslope and river. 

The methods used in addressing the research objectives are described into the following three 

sections and the location of the study catchments are presented in Fig.2. 

 

Methods in paper I 

Forty-one gauged small rural catchments (area ≤ 50km2), with an hourly discharge observation, 

have been selected from the Norwegian Water Resources and Energy Directorates (NVE) HYDRA 

II database and the following data have been prepared for calibration and validating the DDD 

model: 

a) The precipitation and temperature data, with hourly temporal resolution and 1km X 1km 

spatial resolution, have been extracted from the Norwegian Meteorological Institute data 

base (http://thredds.met.no/thredds/catalog.html) for the selected catchments. 

b) The second and third group of DDD model parameters have been computed from observed 

discharge (using an R-script) and from topography data (using a GIS).  

After deriving the DDD model parameters which do not need calibration, and input climatological 

data (precipitation and temperature), the DDD model has been calibrated and evaluated with 

hourly time resolution for the 41 gauged small catchments in Norway. The uncertainty of the 

calibrated parameters has been analyzed before conducting the regionalization study.  

 

Three methods of regionalization are evaluated for transferring the DDD model parameters 

needing regionalization from the 41 gauged catchments to the ungauged catchments. The methods 
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are multiple regression, physical similarity (single-donor and pooling-group types) and a combined 

method. The nine parameters needing regionalization are: maximum liquid water in snow, degree 

hour factor for snow melt, degree hour factor for refreezing, degree hour factor for 

evapotranspiration, celerity for river flow, shape parameter of λ (the parameter of the unit 

hydrograph of storage level), scale parameter of λ, shape parameter of Λ(the slope of change per 

time of the observed flow recession in log-log space)  and scale parameter of Λ. For the 

regionalization, catchment descriptors (CDs) (from land use, topography and hydro-climatic data) 

have been extracted for the selected 41 catchments. In multiple regression method, equations 

which are used to relate the CDs with the model parameters are fitted to the calibrated model 

parameters of the 41 catchments. The physical similarity method transfers entire parameter sets 

from gauged to ungauged catchments instead of establishing links between model parameters and 

CDs. The 9 model parameters needing regionalization come from two groups with different 

estimation methods. In the combined method, the new parameter set is derived by combining 

regression and physical similarity methods (recession parameters estimated from multiple 

regression and calibrated parameters estimated from the pooling-group method of physical 

similarity). The regionalization methods are validated with seven independent catchments (test 

catchments) which are not used in the initial calibration of the DDD model. The 41 gauged study 

catchments and the 7 test catchments locations are shown in Fig.2. 
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Fig.2 Locations of gauged small rural catchments used in the research paper I. The red study 

catchments are used to evaluate (calibrate and validate) DDD model and the green catchments are 

used for evaluating the regionalization methods.  

 

Methods in paper II 

The performance of DDD model has been evaluated for predicting flood peaks using visual 

inspection of the observed and simulated flood hydrographs of the 41 study catchments defined in 

paper I. Even if the model performance is adequate in terms of Kling-Gupta Efficiency (KGE) and 
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BIAS (ratio of mean simulated to observed runoff) during calibration and validation, the DDD 

model, like many other rainfall-runoff models, underestimate flood peaks in the continuous 

simulation. To improve the prediction of the flood peaks, a dynamic river network method has 

been conceptualized and implemented in the DDD model. The performance of the model with 

dynamic river network routine has been evaluated in predicting flood peaks at a number of small 

catchments.  

 

The river network indicates where the subsurface water flow becomes surface water flow. Stream 

networks in a catchment expand and contract as the catchment wets and dries, both seasonally and 

in response to individual precipitation events, and this dynamics of stream networks give an 

important information to the pattern and process of runoff generation (Godsey & Kirchner, 2014; 

Ward et al., 2018). The network system governs the dynamics of runoff for conditions where we 

have no overland flow from the hillslope in that there is a significant (orders of magnitude) 

difference in water celerity for flow through the soils and flow in the river network (Robinson et 

al., 1995). In case of overland flow, however, we can imagine a dynamic river network (and hence 

dynamic overland flow unit hydrograph) as a function of overland flow ( ). To compute the 

dynamic hillslope overland flow unit hydrograph, a critical flux (an overland flow in cubic meter 

per second required to initiate and maintain a stream network) is introduced as a calibration 

parameter in the dynamic river network method. The critical flux is defined as the product of 

overland flow and critical supporting area (the minimum catchment area from which the generated 

overland flow is enough to initiate and maintain a stream network). Once the critical flux is 

calibrated for a catchment, the critical supporting area ( ) is dynamic for different overland flows 

i.e. the higher the overland flow, the lower the Ac and vice versa.  To use the dynamic river network 
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method at ungauged small rural catchments, multiple regression is carried out to estimate the 

critical flux of the dynamic river network routine from the CDs. Figure 3 shows the expansion of 

a river network during flooding events.  

 

 

Fig.3 Expansion of observed river networks during flooding conditions in the dynamic river 

network method for prediction of floods. During flooding conditions, the  required to initiate 

and maintain stream becomes smaller than the  required for observed stream networks, and the 

mean of distances between points in the catchment to nearest river reach also becomes smaller. 

Methods in paper III 

Six small ungauged rural catchments, upstream of culverts and buildings in the Bergen area in 

western Norway, have been selected for studying impacts of climate change on flow patterns and 
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frequency of floods. Figure 4 shows the locations of the ungauged small rural catchments. Bergen 

is selected because it is one of the locations in western Norway where heavy precipitation and 

associated flooding are major concerns under both present climate conditions and projected future 

scenarios, and it was also the BINGO project site (Pontoppidan et al., 2018; Pontoppidan et al., 

2017).  

 

The precipitation and temperature data used to drive the DDD model are obtained from a 

simulation performed by the Weather Research and Forecasting model (WRF) version 3.8.1 

(Skamarock et al., 2008). The model is non-hydrostatic and widely used for weather forecasting 

and research purposes. The simulation has a spatial grid resolution of 4 km x 4 km and the 

precipitation and temperature are available every 3 hours.   However, regional models, as WRF, 

inherit biases from the boundary conditions used to drive the model. These biases may lead to 

misrepresentation of important features in the models, e.g. the known bias of the North Atlantic 

storm track (Zappa et al., 2013) leads individual storms into central Europe instead of a more 

northern path along the Norwegian coast as observations suggest. Therefore, the global climate 

model NorESM1-M used as forcing data at the boundaries in WRF was corrected for such biases 

before the regional downscaling. This led to a more realistic representation of the North Atlantic 

storm track and the precipitation distribution in southern Norway (Pontoppidan et al., 2018). 

Ultimately this leads to a more local representation of precipitation and temperature.  

 

The precipitation and temperature data, from the high-resolution (3 hours and 4km X 4km) climate 

model have been extracted for the selected catchments using an R-script both for the reference 

(1981 – 2011) and future (2070 – 2100) periods. To run the regionalized DDD model with the 
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climate data at the ungauged catchments, the DDD model parameters needing regionalization are 

computed for the selected catchments using the methods outlined in paper I and II. The climate 

data are forced to the DDD model for the two periods for generating time series of discharge. 

Finally, the changes in the flow patterns and flood frequencies between the reference and future 

periods are analyzed to assess the hydrological impacts of climate change on the study catchments.  
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Fig.4 Locations of the study catchments and gridded climate data used in the climate impact 

study in paper III. 
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CHAPTER THREE 
 

The DDD model parameters have been regionalized for hourly simulation and then the model is 

improved with a dynamic river network method for predicting floods and finally it is used in a 

climate impact study in Bergen.   

Summary of results by papers 

Results of paper I 

Paper I: Predicting hourly flows at ungauged small rural catchments using a parsimonious 

hydrological model  

All the three methods (the multiple regression, pooling-group, and combined methods) of 

regionalizations perform satisfactorily (0.5 ≤ KGE < 0.75). The model parameters which describe 

the recession characteristics of a hydrograph are estimated better by the regionalization methods 

than those estimated locally from short period of data for some test catchments. The combined 

method (which combines multiple regression and pooling-group) performs slightly better than the 

other methods. The satisfactory performance of the combined method shows that regionalization 

of the DDD model parameters is possible by combining multiple regression and physical 

similarity. The single-donor method did not perform satisfactorily. Table 1 presents the results of 

the performance and Fig.5 shows the observed and the simulated hydrographs using the 

regionalization methods for two of test catchments. 
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Results of paper II 

Paper II: A dynamic river network method for the predication of floods using a 

parsimonious rainfall-runoff model. 

The dynamic river network method is applied for 15 small rural catchments in Norway and tested 

on 91 flood peaks. The performance of DDD in terms of KGE and BIAS  is the same with and 

without dynamic river network, but the relative errors and mean absolute relative errors of the 

simulated flood peaks have improved significantly in the simulations with dynamic river networks. 

The 0.75 and 0.25 quantiles of the relative errors of the simulated flood peaks are reduced from 

41% to 23% and from 22% to 1% respectively. The mean absolute relative error of the simulated 

peaks is reduced from 32.9% to 15.7%. Figure 6 shows the flood peaks simulated using DDD with 

and without river dynamic network. Table 2 presents the observed and simulated floods with and 

without dynamic river networks.  
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Fig.6 Samples of hydrographs of continuous simulations results of DDD rainfall-runoff models 

with flood peaks i.e. observed, simulated with and without dynamic river network for 6 of 

the 15 study catchments. 
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Results of paper III 

Paper III: Hydrological impacts of climate change on small ungauged catchments  

Generally, the results of  the six study cathments in Bergen show that there will be an increase in 

the mean annual flow and mean annual maximum floods in the future period.  The results also 

show that there will be also an increase in the mean autumn, mean winter and mean spring flows 

and a decrease in the mean summer flow.  The maximum increase in the mean annual flow is 

33.3%, and the minimum increase is 16.5%. The increase in the mean autumn, winter and spring 

flows contributed significantly in the increase of the mean annual flow. The maximum decrease in 

the mean summer flow is 35.2% and the minimum decrease is 7.2%. The mean annual maximum 

floods increase by 28.9% to 38.3%. The floods with a return periods of 2, 5, 10, 20, 25, 50, 100 

and 200 will increase by 16.1% to 42.7%. Figure 7 Shows distributions of the mean annual 

maximum and seasonal maximum flows. Table 3 shows the changes in floods with return periods 

ranging from 2 to 200 years.  
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Fig.5 Distributions of the annual and seasonal maximum flow values of the 30 years period both 

for the reference and future periods for all the study catchments. 
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CHAPTER FOUR 
 

Discussion and conclusion 

The continous stream flow predictions at ungauged small rural catchments in Norway has been 

carried out using regionalizations of DDD model parameters. Since the regionalization process is 

inherently involved with catchment descriptors, it is not possible to establish a universal approach 

as the best method for all of the catchments. Therefore, a specific study needs to be done on any 

region of interest to identify the best regionalization method among rainfall runoff models (Razavi 

& Coulibaly, 2013). Accordingly, three regionalization methods using DDD model have been used 

in this study. The use of rainfall-runoff models causes uncertainities due to errors in computing 

local and regional  model parameters, errors in the relationship between local parameters and 

catchment descriptors and because of the uniqness of the catchment (Wagener & Wheater, 2006). 

Therefore, the DDD model parameters uncertainity is evaluated before regionalizating the 

parameters, and it was found that the uncertainity is small.  

 

All the three methods of regionalizations performed satisfactorily (0.5 ≤ KGE < 0.75) in 

prediciting continous flow series at ungauged small rural catchments in Norway. The combined 

method of regionalization performs slightly better than multiple-regression and physical-similarity 

methods. The best performance of combined method is the result of combining the advantages of 

physical similarity in transferring the calibrated parameters and multiple regression in the transfer 

of recession parameters (Arsenault & Brissette, 2014; Kokkonen et al., 2003; McIntyre et al., 2005; 

Oudin et al., 2010; Parajka et al., 2005). The recession parameters describe the integrated 

information of how different factors influence the flow process (Fiorotto & Caroni, 2013). 

Recession parameters are used in the DDD model to estimate the subsurface storage capacity 
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(Skaugen & Mengistu, 2016), and they can also be used to model streamflow recession for 

regionalization and prediction (Stoelzle et al., 2013). Regression procedures for estimating 

hydrograph recession parameters generally work well (Vogel & Kroll, 1996), which is supported 

by our findings in that the recession parameters estimated using multiple regression are slightly 

better than those estimated by physical similarity.  

 

Dynamic river networks and hence dynamic overland unit hydrographs are introduced and 

implemented in the DDD rainfall-runoff model to improve the predicition of flood peaks. The 

dynamic river network method expands the observed river networks during excess overland flow 

events which generate floods. The expansion means that the  required to initiate and maintain a 

stream decreases. Smaller  results in smaller mean distance distribution ( ) of the points in 

the catchment to the nearest river reach. The smaller  value results in shorter travel times of 

points in the catchment to the nearest river reach. The shorter travel time distribution generates 

overland unit hydrographs (OUHs) with a higher peak and shorter scale for the hillslopes. The 

dynamic OUHs are superpositioned with the other four subsurface unit hydrographs of DDD to 

give a single dynamic unit hydrograph of a catchment during flooding events. D'Odorico and 

Rigon (2003) found that shorter hillslope distances result in shorter travel times and hence higher 

flood peaks which supports our finding.  

 

The study of the hydrological impacts of climate change on ungauged small rural catchments in 

Bergen, Norway shows that there will be an increase in the mean annual flows. The increase in the 

mean annual flow is due to the increase in the mean autumn, winter and spring flows in the future 

period (2070-2100) compared to the reference period (1981 - 2011). In the future period, there will 
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be a decrease in the mean summer flows. The mean annual maximum flow increases in the future 

period. The finding that mean annual maximum flows (floods) increases by 28.9% to 38.3% in our 

study is supported by different studies. Lawrence and Hisdal (2011) have done ensemble 

modelling based on locally adjusted precipitation and temperature data from 13 regional climate 

scenarios to assess likely changes in hydrological floods between a reference period (1960 – 1990) 

and two future periods (2021-2050) and (2071 - 2100), for the 115 catchments distributed 

throughout Norway. Their results showed that western regions of Norway (where Bergen is 

located) is associated with the largest percentage increases in the magnitude of the mean annual 

floods (> 20%).  Lawrence and Hisdal (2011) also pointed out that increase in autumn and winter 

rainfall throughout Norway will increase the magnitude of peak flows during these seasons and at 

areas already dominated by autumn and winter floods, the projected increases in floods magnitude 

will be large which aligns with our findings. Lawrence (2016) used ensembles of regional climate 

projections from EURO-CORDEX together with HBV model to assess possible effects of climate 

change on floods on 115 catchments in Norway for two future periods (20131-2016 and 2071-

2100). The assessment result shows that the minimum increase in the 200 years flood for 

catchments less than 100km2 at Møre og Romsdal, Sogn og Fjordane, and Hordaland counties is 

20% which is generally in agreement with our findings. 

 

This thesis provides a methods for predicitng continous stream flow and floods at ungauged small 

rural catchments (area ≤ 50km2). The developed methods have been tested in the hydrologic 

impacts of climate change on ungauged small rural cathcments in Bergen, Norway. The findings 

of the impacts study are in agreement with the results of previous studies conducted by different 

reseachers. Therefore, the thesis contributes for flood risk mangments in small rural catchments 
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and offers promising methods which could be adapted and tested for application in Norway and 

other parts of the world after adressing the limitations.  

 

Recommendations for further work 

For efficient flood risk management at ungauged small rural catchments using the DDD model in 

the changing environment (e.g. under climate and land use changes), the following topics are 

recommended as future research works: 

 Evaluate different approaches and recommend the best approach to be used in computing 

the distance distribution of points in the catchment to the nearest river reach in the DDD 

model (e.g. Euclidean distances used in this thesis against distances along the steepest 

descent path). 

 Evaluate different approaches and recommend the best approach in estimating the actual 

evapotranspiration routine in the DDD model ( e.g. the degree day model used in this thesis 

against energy balance method). 

 The spatial variability of the critical support area, , has been observed when  at the 

head of the observed stream network is analysed using GIS. Therefore, a more detailed 

investigation, supported by field work should be carried out to assess how the combination 

of these factors control  and hence critical flux,  . The field work could include 

mapping of the slope, geology, vegetation cover and soil of a catchment at the head of first 

order streams of observed river networks and mapping of the pattern of expansion of first 

order streams during flooding events. 

 Generate continous flow data using the methods developed in this thesis (hydrographs 

generated by the regionalized DDD model) at ungauged small rural catchments and then 
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calibrate a distributed hydrological model and study impacts of land use changes on flow 

and floods. 

 When several high temporal (e.g. hourly) and spatial resolution (e.g. 1km x 1km) regional 

climate models are available in the future, conduct uncertainity analysis of impacts of 

climate change on ungauged small rural cathcments. 
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A B S T R A C T

Streamflow data is important for studies of water resources and flood management, but an inherent problem is

that many catchments of interest are ungauged. The lack of data is particularly the case for small catchments,

where flow data with high temporal resolution is needed. This paper presents an analysis of regionalizing

parameters of the Distance Distribution Dynamics (DDD) rainfall-runoff model for predicting hourly flows at

small-ungauged rural catchments. The performance of the model with hourly time resolution has been evaluated

(calibrated and validated) for 41 small gauged catchments in Norway (areas from 1 km2–50 km2). The model

parameters needing regionalization have been regionalized using three different methods: multiple regression,

physical similarity (single-donor and pooling-group based methods), and a combination of the two methods.

Seven independent catchments, which are not used in the evaluation, are used for validation of the re-

gionalization methods. All the three methods (the multiple regression, pooling-group, and combined methods)

perform satisfactorily (0.5≤KGE < 0.75). The combined method (which combines multiple regression and

pooling-group) performed slightly better than the other methods. Some model parameters, namely those de-

scribing recession characteristics, estimated by the regionalization methods, appear to be a better choice than

those estimated locally from short period of hydro-meteorological data for some test catchments. The single-

donor method did not perform satisfactorily. The satisfactory performance of the combined method shows that

regionalization of DDD model parameters is possible by combining multiple regression and physical similarity

methods.

1. Introduction

Streamflow is important information for water resources manage-

ment applications such as flood risk management, water resources

planning, and environmental impact assessment (Parajka et al., 2013;

Westerberg et al., 2014). However, most of the catchments that we are

interested in are ungauged which makes a method to predict flow in

ungauged catchments an important prerequisite (Bloschl et al., 2013;

Parajka et al., 2013; Tegegne and Kim, 2018). Reliable estimation of

continuous streamflow in ungauged catchments has remained a fun-

damental challenge in hydrology, although significant insights have

been gained in recent years (Steinschneider et al., 2014; Wagener and

Wheater, 2006; Wagener et al., 2004). To solve the challenges posed by

ungauged catchments, a number of predictive tools have been devel-

oped and tested [e.g. data driven models, such as multiple linear re-

gression (MLR), autoregressive moving average (ARMA), and artificial

neural networks (ANNs); lumped models (e.g., Hydrologiska Byråns for

Vattenbalansavdelning model (HBV)); distributed models (e.g., MIKE-

SHE) and statistical regionalization] that allow objective and quanti-

tative decision-making with respect to water resources management,

but considerable uncertainties remain (Sivapalan et al., 2003). The

International Prediction in Ungauged Basins (PUB) initiative re-

commends the use of an appropriate model structure for predicting flow

in ungauged catchments (Blöschl et al., 2013), and the choice of ap-

propriate model structure helps in reducing predictive uncertainty (Son

and Sivapalan, 2007). Flash floods are usually localized disasters that

occur in small catchments with response times of a few hours or even

less (Borga et al., 2007). The short lead time and small area collectively

enhance the difficulty of flood management in such catchments (Miao

et al., 2016). In addition, small catchments and short time scales are the

most under-observed and problematic in terms of prediction and de-

sign, and should be identified as a priority in water resource and flood
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management (Spence et al., 2013).

Water resource management problems are increasingly approached

using continuous time rainfall-runoff modelling (Lamb and Kay, 2004;

Swain and Patra, 2017), rather than the traditional statistical or event-

based models. Simple concept models such as the rational formula and

its more sophisticated derivatives are criticized for containing para-

meters which are difficult to estimate (e.g. the runoff coefficient) or for

being founded upon questionable assumptions (e.g. identical return

period for precipitation and resulting peak flow) (Viviroli et al., 2009).

The advantage of continuous simulation approaches is that the catch-

ment moisture state prior to the flow-producing rainfall event is im-

plicitly incorporated within the modeling framework provided that the

model produces reasonable simulations (Pathiraja et al., 2012). Fur-

thermore, getting the right answers for the right reasons is crucial for

getting the right answers at all, if conditions shift beyond the range of

prior experience (due to extreme precipitation events, climate change,

or shifts in land use) (Kirchner, 2006).

Catchment size has an effect in hydrological modelling, and hy-

drological responses of small catchments are likely to be different from

and more variable than those of large catchments (Pilgrim et al., 1982).

Small catchments need to be modelled using shorter time steps (Blöschl

and Sivapalan, 1995; Bronstert, 2003; Vormoor and Skaugen, 2013;

Wetterhall et al., 2011). Until the 1990s, hydrologists had to rely mostly

on data with a daily time step, e.g. accumulated rainfall amounts re-

corded once a day by observers, and this caused limitations to the ap-

plicability of rainfall–runoff models for problems (e.g. flooding)

needing short time steps (Blöschl and Sivapalan, 1995; Creutin and

Obled, 1980). However, over the last two decades, the availability of

hourly and even sub-hourly data is increasing in many countries,

especially with the implementation of automatic rain gauge networks

and rainfall radars (Berne and Krajewski, 2013; Creutin and Borga,

2003).

A rainfall-runoff model is one of the tools used to predict flows in

ungauged catchments (Nruthya and Srinivas, 2015). This method re-

quires estimation of the model parameters using regionalization (Zhang

et al., 2014). There are different types of rainfall-runoff hydrological

models and regionalization methods. One method may work well for

one type of model and another method may work well for another

model in different regions (Razavi and Coulibaly, 2013) because each

model has its own unique characteristics and respective applications

(Devi et al., 2015). Conceptual rainfall-runoff models, such as HBV and

Identification of Unit Hydrographs and Component Flows from Rainfall,

Evaporation and Stream Data (IHACRES) have emerged as the most

frequently used models for estimating continuous stream flow at un-

gauged catchments (Razavi and Coulibaly, 2013). The three commonly

used regionalization methods are regression, physical similarity and

spatial proximity (Bao et al., 2012; Bárdossy, 2007; Merz and Blöschl,

2004; Oudin et al., 2008; Parajka et al., 2005). Some hydrologists have

tried to compare and evaluate the methods, but the results are not

consistent (Kay et al., 2006; McIntyre et al., 2005; Oudin et al., 2008;

Young, 2006; Zhang and Chiew, 2009). Young (2006) regionalized the

Probability Distributed Model (PDM) in 260 catchments in the UK and

found that the regression method was more accurate than the spatial

proximity method. Skaugen et al. (2015) regionalized the Distance

Distribution Dynamics (DDD) model in 84 catchments ranging from

small to large sizes in Norway using daily data and found that multiple

regression equations performed well in predicting flows at ungauged

catchments. Kay et al. (2006) tried to compare the performance of re-

gression and physical similarity methods with two models [PDM and

Time–Area Topographic Extension (TATE)] for 119 catchments across

the UK but did not obtain consistent results. For the PDM, physical si-

milarity was more accurate, but regression outperformed physical si-

milarity for TATE. Merz and Blöschl (2004) found that the multiple

regression method of regionalization at 308 catchments in Austria,

using HBV model involving 11 calibration parameters, gave sig-

nificantly poorer results than the spatial proximity method. Oudin et al.

(2008) used two lumped rainfall-runoff models with daily data on 913

French catchments and found that when a dense network of gauging

stations is available, the spatial proximity method provides the best

regionalization solution, while the regression method shows the least

satisfactory results, and the physical similarity method is in between

the two others in accuracy. Magette et al. (1976) used 21 catchments in

USA in the regionalization of six selected parameters of the Kentucky

Watershed Model (KWM) using hourly data and found that a multiple

regression method was successful in estimating model parameters from

catchment descriptors, but a simple linear regression model was un-

successful. Kokkonen et al. (2003) used 13 catchments in North Car-

olina, USA, in the regionalization of six parameters of IHACRES model

with daily data and found that the arithmetic mean method of re-

gionalization gave poorer results than regression and similar hydrologic

behavior methods.

The major goal of the international PUB initiative was to reduce the

uncertainty in the prediction of runoff by shifting away from tools that

require calibration and curve fitting to tools that need little or no ca-

libration (parsimonious models) (Spence et al., 2013). The PUB synth-

esis book states that the starting point for predicting the runoff hy-

drograph in ungauged catchments using rainfall–runoff models is the

choice of an appropriate model structure (Blöschl et al., 2013).

Sivapalan et al. (2003) pointed out that for predicting flow at ungauged

catchments, it is important to challenge and overcome the potential

problem posed by the “uniqueness in place” (Beven, 2000) of catch-

ments. It is hence important that the hydrologic models are para-

metrically efficient (parsimonious), and their parameters are identifi-

able from the available catchment data (Young and Romanowicz,

2004). DDD is a parsimonious rainfall-runoff model with few calibra-

tion parameters recently developed by Skaugen and Onof (2014), and

many of its other parameters can be estimated from the topography and

land use of a catchment (Skaugen and Onof, 2014). Previous experience

in using DDD for estimation of flow at ungauged catchments with daily

data showed satisfactory results (Skaugen et al., 2015). Since DDD is

one of the hydrological models which has features acknowledged for

prediction of flow at ungauged catchments, we used it in this study.

During the calibration of hydrological models, it is common and

probable that multiple calibration periods yield multiple optimum

parameter sets. Different sets of optimum parameter values may yield

similar performances, and this is designated as “equifinality” (Beven,

2006). Since conceptual hydrological models can be viewed as an em-

pirically derived combination of mathematical operators describing the

main features of an idealized hydrological cycle, one cannot rely on a

uniquely determined model parameter set or model prediction (Kuczera

and Parent, 1998). Consequently, attention should be given to un-

certainties in hydrological modelling. Prediction uncertainties in hy-

drological modelling arise from a variety of sources, such as errors as-

sociated with input data and data for calibration, imperfection in model

structure, calibration accuracy and uncertainty in model parameters

(Benke et al., 2008; Jin et al., 2010; Montanari, 2011). In this study,

uncertainty of the calibrated model parameters has been addressed.

Most of the regionalization methods applied so far are based on

daily temporal resolution in catchments ranging from small to large

sizes (Masih et al., 2010; Merz et al., 2006). Hailegeorgis et al. (2015)

and Viviroli and Seibert (2015) have done regionalization studies with

hourly resolution, but the studies are not specific to small catchments.

Response times of small catchments are typically less than 24 h, and

thus for flood forecasting purposes, hydrological models are required to

provide simulations at high temporal resolution (Reynolds et al., 2017).

Therefore, regionalization of model parameters for small catchments

with sub-daily time resolution is important.

In this study, we have regionalized the DDD model parameters for

small catchments with hourly time resolution in order to predict flows

at ungauged rural small catchments in Norway. The specific research

objectives are:
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1. To evaluate the performance of the DDD rainfall-runoff hydrological

model on rural small catchments with hourly temporal resolution

(areas from 1 km2–50 km2). It includes the selection of parameters

to calibrate, or to fix, the model goodness of fit and uncertainties in

the calibration parameters.

2. To evaluate multiple regression-based regionalization against a

physical similarity-based regionalization method.

3. To analyze and assess whether there is a combined regression and

physical similarity method for regionalizing DDD model parameters.

2. Study area and data

Forty-one gauged small rural catchments located across Norway are

used in the study. We selected the catchments from the Norwegian

Water Resources and Energy Directorate (NVE) HYDRA II database of

gauged catchments. Our definition of a small catchment follows that of

Fleig and Wilson (2013) with an upper area limit of 50 km2. The

number of catchments is limited by the availability of hydro-meteor-

ological data with the required temporal resolution of 1 h and a length

of record that makes calibration possible. Seven additional gauged

catchments, which are not used in the model calibration, have been

used in validation. Fig. 1 shows the location of the study and test

catchments.

Time series of precipitation, temperature and discharge are the

main input data for running and calibrating the DDD model.

Precipitation and temperature are based on a 1×1 km gridded product

of the Norwegian Meteorological Institute (http://thredds.met.no/

thredds/catalog.html) with hourly temporal resolution (Lussana et al.,

2016). Since the data is available from 2010 onwards, we have used a

total of five years of data for calibration and validation. The DDD model

uses distributed precipitation and temperature data as input for the

model’s 10 elevation zones extracted from the hypsographic curve of a

catchment. The elevation of the center of each temperature and pre-

cipitation grid cell has been extracted from the 10×10m digital ele-

vation model (DEM) of Norway. For the model elevation zone that

contains more than one grid cell, mean of the values of temperature and

precipitation is used. Hourly discharge data have been obtained from

the Norwegian Water Resources and Energy Directorates (NVE) HYDRA

II database.

The constant model parameters during the simulation period are

derived from an analysis of hydro-meteorological, topographical and

land use data for a catchment using GIS. The source of the topography

and land use data is the Norwegian Mapping Authority (www.statkart.

no). The 10×10m DEM, the river network and the 1: 50 000 scale

land use data have been retrieved and used in the study. The DEM has

been re-conditioned to the naturally occurring river network using the

DEM reconditioning tool from Arc Hydro to create a hydrologically

correct terrain model that can improve the accuracy of watershed

modeling (Li, 2014). The re-conditioned DEM is further used to de-

termine the distance distributions of hill slopes and river networks as

needed by DDD.

3. Methodology

3.1. Model structure

The DDD model is written in R programming language (R Core and

Team, 2017) and currently runs operationally with daily and three-

hourly time steps at the Norwegian flood forecasting service at NVE.

Subsurface and dynamic runoff are the two main modules of the model.

The volume capacity of the subsurface water reservoir, W (mm), is

shared between a saturated zone with volume S (mm) and an un-

saturated zone with volume D (mm). If the saturated zone is high, the

unsaturated volume has to be small (Skaugen and Onof, 2014). The

actual water volume present in the unsaturated zone is described as Z

(mm). The subsurface state variables are updated after evaluating

whether the current soil moisture, Z(t), together with the input of rain

and snowmelt, G(t), represent an excess of water over the field capacity,

R, which is fixed at 30% (R=0.3) of D(t) (Skaugen and Onof, 2014). If

G(t)+ Z(t) > R*D(t), then the excess water X(t) is added to S(t).

X t Max G t Z t
D t

D tExcess water ( ) ( ) ( )
( )

R, 0 ( )=
+

(1)

dS
dt

X t Q tGroundwater ( ) ( )=
(2)

d Z
dt

G t X t Ea tSoil water content ( ) ( ) ( )=
(3)

dD
dt

dS
dt

Soil water zone =
(4)

Ep cea TPotential evapotranspiration = (5)

Ea Ep S Z
W

Actual evapotranspiration =
+

(6)

Q t( ) is runoff, and Ea t( ) is the actual evapotranspiration which is
estimated as a function of potential evapotranspiration and the level of

storage. A degree hour factor (cea) is positive for positive temperature

(T) and zero for negative temperature. Ea is drawn from Z. This is in-

deed a simplification, but experience from Skaugen and Onof (2014)

shows that the evapotranspiration routine in DDD calculates similar

values to the approach used in HBV (Bergström, 1976). A recession

analysis of the observed runoff from the catchment is used to estimate

the catchment scale fluctuations of storage (the capacity of the sub-

surface water reservoir, W, see Skaugen and Mengistu, 2016).

The dynamics of runoff in DDD has been derived from the catch-

ment features using a GIS combined with runoff recession analysis. The

method for describing the runoff dynamics of a catchment is built on

the distance distribution derived from the catchment topography. The

distances from the points in the catchment to the nearest river reach are

calculated for marsh and soil (non-marsh) parts of a hillslope. Previous

studies in more than 120 catchments in Norway showed that the ex-

ponential distribution described the hillslope distance distribution well,

and the normal distribution described well the distances between points

in the river network and outlet of a catchment (Skaugen and Mengistu,

2016; Skaugen and Onof, 2014). Fig. 2 shows a map of the distance

distributions of the marsh and soil (non-marsh) parts of the hillslope

and river network for the Valen catchment and the corresponding

empirical cumulative distribution functions. Fig. 3 shows the structure

of the DDD model. All GIS work is done with ArcMap 10.3, and the

recession analysis is done using the R script.

In the model, water is conveyed through the soils to the river net-

work by waves with celerity determined by the actual storage, S(t), in

the catchment (Skaugen and Mengistu, 2016; Skaugen and Onof, 2014).

The celerity associated with the different levels of subsurface storage is

estimated by assuming exponential recessions with parameter Λ in the

equation Q t Q e( ) t t
0

( )0= , where Q0 is the peak discharge im-

mediately before the recession starts. is the slope of change per time

(t) of the recession in the log-log space and calculated using Eq. (7). The
distribution of Λ is modeled using a two-parameter gamma distribution.

t Q t Q t( ) log( ( )) log( ( t))
t

=
+

(7)

The celerity, v, is calculated as a function of Λ using Eq. (8).

v d
t
mean

=
(8)

dmean is the mean of the distances from points in the catchment to

the nearest river. The capacity of the subsurface reservoir W (mm), is

divided into storage levels i corresponding to the quantiles of the dis-

tribution of Λ under the assumption that the higher the storage, the

higher the value of Λ. Each storage level is further assigned a celerity

A.T. Tsegaw, et al.



i
d

t
i mean

= (see Eq. (8)), where i is the parameter of the unit hydro-

graph for the individual storage level i, and estimated such that the

runoff from several storage levels will give a unit hydrograph equal to

the exponential unit hydrograph with a parameter i. With the as-

sumption that the recession and its distribution carry information on

the distribution of catchment-scale storage, we can consider that the

Fig. 1. Locations of the study and test catchments used in Norway.
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temporal distribution of catchment-scale storage, S(t), is a scaled ver-

sion to that of Λ. S(t) is calculated using Eq. (9), and its distribution is
modelled using a two-parameter gamma distribution.

S t
e

( ) Q(t)
1 t( )=

(9)

3.2. Model parameters and calibration

The model has three main groups of parameters. The first group are

those determined by model calibration against observed discharge (the

upper 5 in Table 1), the second group are those estimated from ob-

served hydro-meteorological data (the lower 4 in Table 1 and the upper

3 in Table 2), and the third group are those estimated from geo-

graphical data (all in Table 2 except the upper 3). The calibration of the

Fig. 2. Map of distance distribution of marsh, non-marsh (soil) part of hill slope and river network and the corresponding empirical cumulative distribution functions

for catchment Valen.

Fig. 3. Structure of the Distance Distributions Dynamics model adapted from Skaugen and Onof (2014). Left panel: the storage model and right panel: hydrographs of

hillslope and river.
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model is performed using the probability particle swarm optimization

(PPSO) algorithm (Lu and Han, 2011). The Kling-Gupta efficiency cri-

teria (KGE) has been used as an objective function for the calibration

(Gupta et al., 2009), and the KGE and BIAS (ratio of the mean of si-

mulated to observed discharge) have been used to evaluate the cali-

brated results. In addition, the hydrographs of all catchments are vi-

sually inspected.

The calibration intervals of the parameters are set based on litera-

ture and experience in using the DDD model (Skaugen and Mengistu,

2016; Sælthun, 1996). Since cea and degree hour factor for snow melt

(Cx) are sensitive to the temporal resolution, we used the DDD model

calibration results from 84 catchments with daily time step (Skaugen

et al., 2015) as a starting point, and literature review for setting the

intervals of hourly time step. The mean celerity for river flow (rv) has a

standard value of 1m/s in using DDD with catchments ranging from

small to large sizes (Skaugen and Mengistu, 2016) with daily time steps,

but it has been calibrated with an interval of plus or minus 0.5 m/s of

the standard value for hourly resolution. From experience and field

measurements, we have set the calibration interval of maximum liquid

water content of snow (pro) between 3% and 10% (Fierz et al., 2009;

Saloranta, 2012).

For the 41 study catchments, we have calibrated the model on

2–3 years of data and validated on 1–2 years. The selection of the period

is mainly based on the availability of flow and gridded precipitation

and temperature data. The gridded precipitation data in Norway is

highly uncertain due to rugged terrain and few precipitation stations in

elevated areas. The data used does not include the correction for un-

dercatch due to the wind, and the relation between the precipitation

and elevation is introduced only locally around the station locations. As

a result, the predicted precipitation field may potentially underestimate

the actual precipitation, especially at higher elevations where the

station network is sparser such as at the mountainous region of the

southern part of Norway (Frauenfelder et al., 2017; Lussana et al.,

2018). Accordingly, we introduced a precipitation correction factor to

take this into account so that the long-term water balance is correct.

The correction factor is applied to those catchments that give BIAS less

than 0.8, and the correction factor is the ratio of long-term mean annual

discharge to mean of simulated discharge. For purely ungauged

catchments, the long-term mean annual discharge is estimated from a

gridded map of average annual runoff for Norway for the period

1961–1990 (Beldring et al., 2003). The threshold temperature for rain

or snow and snow melt are fixed with a value of 0.5 °C and 0.0 °C, re-

spectively, based on literature (Saloranta, 2012; Skaugen, 1998). This is

done to avoid regressed parameters that do not have a clear physical

relationship with any of the catchment descriptors, but which can be

fixed on a physical or an empirical basis. Removing parameters from

calibration also strengthens the parsimony of the model. Table 1 lists

the nine model parameters needing regionalization (five calibrated and

four estimated from recession analysis), and Table 2 lists the non-re-

gionalized model parameters. The snow routine in DDD has two non-

regionalized parameters. The shape parameter (a0) and the decorrela-

tion length (d) of the gamma distribution of snow and snow water

equivalent (SWE) (Skaugen and Weltzien, 2016) are estimated from the

previous calibration of 84 catchments in Norway (Skaugen et al., 2015).

3.3. Uncertainty analysis of calibrated parameters

We calibrated the model using probability particle swarm optimi-

zation (PPSO) algorithm with 500 calibration runs for each study

catchment and sampled sets of parameters from the calibration runs for

uncertainty analysis. To select behavioral sets of parameters, we used a

threshold KGE value of 70th percentile (a value below which at least

Table 1

List of nine model parameters needing regionalization.

Parameters Description of the parameter Method of estimation Unit Intervals of calibration

pro Maximum liquid water content of snow Calibration fraction 0.03 ─ 0.1

cx Degree hour factor for snow melt Calibration mm °C−1 h−1 0.05 ─ 1.0

CFR Degree hour factor for refreezing Calibration mm °C−1 h−1 0.001 ─ 0.01

cea Degree hour factor for evapotranspiration Calibration mm °C−1 h−1 0.01 ─ 0.1

rv Celerity for river flow Calibration meter/second 0.5 ─ 1.5

Gshape Shape parameter of λ Recession analysis of observed runoff Positive real number not calibration parameter

Gscale Scale parameter of λ Recession analysis of observed runoff Positive real number not calibration parameter

GshInt Shape parameter of Λ Recession analysis of observed runoff Positive real number not calibration parameter

GscInt Scale parameter of Λ Recession analysis of observed runoff Positive real number not calibration parameter

Table 2

Non-regionalized model parameters which are unique to the local catchment of interest.

Symbol of parameters Description of the Parameter Method of estimation

a0 Parameter for new spatial distribution of SWE, shape parameter From spatial distribution of observed precipitation

d Parameter for new spatial distribution of SWE, decorrelation length From spatial distribution of observed precipitation

MAD Long term mean annual discharge From long term observed mean annual flow data

area Catchment area GIS

maxLbog Maximum distance of marsh land portion of hillslope GIS

midLbog Mean distance of marsh land portion of hillslope GIS

bogfrac Areal fraction of marsh land from the total land uses GIS

zsoil Areal fraction of DD for soils (what area with distance zero to the river) GIS

zbog Areal fraction of distance distribution for marsh land (what area with distance zero to the river) GIS

midFl Mean distance (from distance distribution) for river network GIS

stdFL Standard deviation of distance (from distance distribution) for river network GIS

maxFL Maximum distance (from distance distribution) for river network GIS

maxDl Maximum distance (from distance distribution) of non-marsh land (soils) of hill slope GIS

midDL Mean distance (from distance distribution) of non-marsh land (soils) of hill slope GIS

midGl Mean distance (from distance distribution) for Glacial GIS

stdGl Standard deviation of distance (from distance distribution) for Glacial GIS

maxGl Maximum distance (from distance distribution) for Glacial GIS

Hypsographic curve 11 values describing the quantiles 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 GIS
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70% of the values lie) from the 500 runs for each study catchment.

Evaluating several thousand calibration runs with an hourly resolution

at 41 study catchments is computationally costly. To check whether the

500 runs used in the calibration give different behavioral sets from

several thousand calibration runs, we ran the model with 2000 runs at

one catchment, and 5000 and 10,000 runs at another catchment. All the

study catchments are run with the behavioral sets of parameters, but

the results are presented only for four randomly selected catchments.

For each timestep, we sampled the number of discharge values equal to

the number of behavioral parameter sets for each catchment, and the

minimum and maximum discharges are used to estimate the width of

the uncertainty bounds.

3.4. Regionalization methods

We used 41 catchments with KGE greater than or equal to 0.55 for

the regionalization of the model parameters. For the three re-

gionalization methods used in this study, 19 catchment descriptors

(CDs) readily available from catchment data are used at the start and

later refined based on their significance in estimating model parameters

(Table 3). Since the selected catchments are widely spread across

Norway, the spatial proximity method of regionalization may not be

favored and is not considered in this study (Oudin et al., 2008). Vali-

dation of the regionalization methods is done assuming a selected

number of gauged catchments to be ungauged and then comparing si-

mulated runoff (using the regionalized parameters) with observed

runoff.

3.4.1. Multiple regression method

The multiple regression equations, which are used to relate the CDs

with the model parameters, are fitted to the calibrated model para-

meters of the 41 catchments. We used a stepwise regression procedure

for building the regression model. We build the model from 19 candi-

date CDs by entering and removing CDs in a stepwise manner into the

regression model until there is no convincing reason to enter or remove

any more. Before starting to use the step wise procedure, we removed a

CD which is highly correlated with another CD(s). To identify the

correlation between the CDs, we have plotted the scatter plot matrix of

the CDs (predictors). When R-Squared of correlation between two CDs

is greater than or equal to 0.5, they are considered as highly correlated.

The stepwise procedure is described in detail as follows:

i) We set a significance level of 0.2 for deciding when to enter into

and remove from the stepwise model. We set the significance level

so that it is not too difficult to enter CDs into the model and not too

easy to remove CDs from the model.

ii) We fit each of the one-predictor models that regress each model

parameter with all CDs one by one. Example: celerity of river flow

(rv) against bare mountain (B), rv against forest (F), etc.

iii) Of those predictors (CDs) whose P-value is less than 0.2, the first

predictor introduced to the stepwise model is the CD that has the

smallest P-value. Accordingly, bare mountain is the first predictor

for celerity of river flow.

iv) If no predictor (CD) has a P-value less than 0.2, stop fitting the

regression model (CFR is a typical example for this step).

v) Now, we fit each of the two-predictor models that include the first

CD as a predictor. Example: rv on B and Rs, rv on B and U, etc.

vi) Of those predictors whose P-value is less than 0.2, the second

predictor put in the stepwise model is the predictor that has the

smallest P-value. For the celerity of river flow (rv), river slope was

deemed the “best” second predictor, and it is therefore entered

into the stepwise model.

vii) Now, since the bare mountain was the first predictor, we step back

and see if entering river slope into the stepwise model somehow

affects the significance of the bare mountain predictor. That is,

check whether the P-value of bare mountain is less than 0.2 or not.

If the P-value is less than 0.2, the first predictor (bare mountain) is

retained in the stepwise model.

viii) Continue the steps as described above until adding an additional

predictor does not yield a P-value below the significant level

chosen.

Both linear and non-linear (logarithmic) forms of the response

variables (model parameters needing regionalization) and predictors

(CDs) are tested in the regression model. If the non-linear values con-

tribute significantly, then the non-linear form is retained in the model

with the transformed value.

3.4.2. Physical similarity method

The physical similarity method relies on the assumption that the

same parameter set should be successful in physically similar catch-

ments (Merz and Blöschl, 2004; Oudin et al., 2008; Parajka et al., 2005;

Zhang and Chiew, 2009). The transfer can be made from one or several

Table 3

Statistics of the catchment descriptors (CDs) of the study catchments used in the regionalization.

S.no Catchment Descriptors Symbol Minimum Maximum Average Unit

1 Topographic

1.1 Area A 1 50.7 28.2 km2

1.2 Mean of grid to grid slope Mg 8 64.8 28.4 %

1.3 Mean of elevation Me 59.6 1372 654 m

1.4 Mean of non-marsh land distance from the river Ms 131.1 434.2 236.7 m

1.5 Mean of marsh land distance from the river Mm 0 389.4 140.1 m

1.6 Mean of river length from the outlet Mr 421.3 11422.5 5459.6 m

1.7 Standard deviation of river length from the outlet Sr 262 5583.6 2531.2 m

1.8 River Slope Rs 7.5 146 49 m/km

2 Land Uses

2.1 Lake L 0 13.6 5.63 %

2.2 Effective lake Le 0 11 2.3 %

2.3 Bare mountain B 0 93.7 48.2 %

2.4 Cultivated land C 0 35 1.8 %

2.5 Forest F 0 94.3 32.7 %

2.6 Marsh land M 0 28.9 4.6 %

2.7 Urban U 0 1.5 0.1 %

2.8 Glacial G 0 5.1 0.3 %

3 Hydro-meteorological

3.1 Mean annual precipitation Mp 679 3090 1543 mm

3.2 Mean annual temperature Mt −2.5 7.2 2.6 oC

3.3 Specific discharge Sq 11.3 150.8 58 l/(s*km2)
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donor catchments on the basis of a chosen similarity method (McIntyre

et al., 2005). The method transfers entire parameter sets from gauged to

ungauged catchments instead of establishing links between model

parameters and CDs. In this study, we used two types of physical si-

milarity methods i.e. single-donor based, and pooling-group based. We

used 12 CDs (2 hydro-climatic, 4 land uses, 3 topographic and 3 that

can describe the runoff dynamic processes in DDD). The CDs used are:

area, mean elevation, mean of soil (non-marsh land) distance from a

river, mean of marsh land distance from the river, mean of river dis-

tance from outlet, river slope, effective lake percentage, forest, urban,

mean annual precipitation, specific discharge and bare mountain.

For the single-donor type, we used a rank accumulated method of

physical similarity in selecting a donor catchment to a test catchment

(Oudin et al., 2008; Zhang and Chiew, 2009). For each CD, the catch-

ment with the most similar descriptor to the test catchment is assigned

rank 1, the catchment with the second most similar descriptor is as-

signed rank 2, and so on. When two or more catchments have the same

value of CDs with the test catchment, they have been assigned the same

rank. The rank numbers of CDs have been added for each of the study

catchments. Each CD used for regionalization is given equal weight in

the ranking system (Oudin et al., 2008). All the 41 catchments are

considered in the selection of the most similar catchment to each of the

7 test catchments. The single gauged catchment with the smallest total

rank is used as a donor catchment.

In the pooling-group type, the parameters for an ungauged site are

estimated from the calibrated parameters of a pooling-group, i.e., a set

of gauged catchments considered to be most similar to the target un-

gauged catchment in terms of some set of CDs (Kay et al., 2006, 2007).

Kay et al. (2006) defined physical similarity by Euclidean distance in a

space of CDs that was determined for each model parameter as shown

in Eq.10.

dist
X X

a b
j
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a j b j

x j
,

1

, ,

,

2

=

= (10)

where j indicates one of a total of J CDs (12 in this study), Xa j, is the
value of that CD at the ath test catchment, Xb j, is the value of the CD at

bth study catchment, and x j, is the standard deviation of the CD across

all the N study catchments (41 in this study). Kay et al. (2007) suggests

that around a 10-member pooling group is preferable to a much larger

number, particularly when many CDs are used to define Euclidean

distance for the pooling group. K (7 in this study) closest neighbors

(minimum distance) are selected to create a pooling group for the test

catchments.

After identifying the pooling group, the estimate of the model

parameter at the test catchment a ( a
PG) is calculated as a weighted

average of the corresponding parameters from the study catchments in

the pooling group. Kay et al. (2007) stated that it is more appropriate to

write the expression for the model parameter as a weighted average of

the estimated parameter values, m, for all catchments (N) as shown in

Eq. (11).
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Catchments not in the pooling group are given a weight ham equal to
zero, but those in the pooling are assigned weights to reflect their im-

portance which is based on the distance measure dista b, as defined in

Eq. (10). The weights of the pooling group members are estimated by

Eq. (12).

h S1am am= (12)

where

S
dist dist for linearly decreasing weights
dist dist for quadratically decreasing weights

/
( / )am

a b a max

a b a max

, ,

, ,
2=

Where dista max, is set to be 10% larger than the maximum distance of a

pooling group member from the test catchment, a. In this study, we

used a linear weight assigning method.

3.4.3. Combined method

The 9 model parameters needing regionalization come from two

groups with different estimation methods. In the combined method, the

new parameter set is derived by combining regression and physical

similarity methods, i.e., when regression is used for the first group,

physical similarity is used for the second group and vice versa.

4. Results

4.1. Calibration

To evaluate the performance of the DDD model in calibration and

validation, we used the KGE, BIAS and visual inspection of hydro-

graphs. The model performs satisfactorily (0.5≤KGE < 0.9) both for

the study (for calibration and validation) and for the test catchments

(for calibration). The minimum and maximum KGE values during ca-

libration of the study catchments are 0.55 and 0.89 respectively while

the median is 0.71. The minimum and maximum KGE values during

validation are 0.4 and 0.88 respectively while the median is 0.66. The

median BIAS value for calibration and validation is 0.88. As stated in

Thiemig et al. (2013), 0.75≤KGE < 0.9 is good, 0.5≤KGE < 0.75

is intermediate and 0.0≤KGE < 0.5 is poor. When validating, 5, 27

and 9 study catchments show poor, intermediate and good KGE values

respectively. Except for one catchment, all test catchments give sa-

tisfactory calibration results. The visual inspection of the hydrographs

shows underestimation of floods caused by heavy precipitation.

4.2. Uncertainty of calibrated parameters

From parameter samples of different sizes at two of the study

catchments, the frequency histograms and dotty plots of the behavioral

calibrated parameters show the same optimal value for the different

sizes. Fig. 4(a) and (b) show the histogram and dotty plot for one ca-

librated parameter (celerity of river flow), respectively. The results

show that we have the same value of optimal parameter at 500, 5000

and 10,000 iterations, and hence a sample size of 500 appears to be

sufficient for the uncertainty analysis of calibrated parameters.

The frequency histograms of behavioral calibrated parameters for

the 41 study catchments are analyzed. The results of histograms (pro,

cea, rv and cx) for the four randomly selected study catchments are

shown in Fig. 5(a) to (d). The histograms show that the calibrated

parameters have a well-identifiable modal value. The parameters max

out the calibration interval except for rv. For each timestep, we used

discharge values simulated from 170, 156, 183 and 179 behavioral

parameter sets in the calibration period to plot the uncertainty bounds

for the catchments with identification numbers (ID) 6.10, 19.107, 73.27

and 123.29 respectively. Examples of simulated ranges and observed

discharges are shown in Fig. 6.

4.3. Regionalization results

4.3.1. Regression method

The multiple regression equations are shown in Eqs. (13)–(20). The

overall multiple regression model for CFR is statistically insignificant,

hence the mean of the 41 calibrated catchments (0.007) has been used

as the regionalized model parameter. For catchments with a CD value of

zero in a logarithmic expression, a value of 1 has been assigned. The

units of the model parameters are presented in Table 1. There is a

probability that parameters estimated using the multiple regression

equations can lie outside of the calibration intervals. In this case, we

will use the nearest boundary value from the calibration interval.
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Cx M M Mexp( 4.2 0.41log( ) 0.87log( ) 0.95log( ))e p s= + + (14)
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M

exp( 8.78 0.28log( ) 1.17log( ) 0.26log( )

0.22log( ) 0.003F)
e p m

r

= + +

+ + (15)

rv R0.83 0.05log( ) 0.003Bs= + + (16)

Gscale L S Mexp( 5.12 0.12 0.22 ln( ) 0.3 log( ))e q e= + + (17)

Gshape M S0.82 0.0005 0.009p q= + (18)

GshI Gshape2.047 0.658= (19)

GscI Gscale0.49 0.0014= (20)

The standardized residuals of the regression model for the response

variables show a distribution close to normal (Fig. 7). Fig. 7 shows that

few large and small values deviate from the approximated straight line

of normal probability plot while many of the residuals lie along the

straight line. Fig. 8 shows the actual (calibrated and estimated from

observed hydro-meteorological data) and predicted values of the re-

sponse variables with the multiple regression model. The standard error

of estimate is a measure of the accuracy of the regression model pre-

dictions and informs how much uncertainty is associated with the

model prediction. The standard error result of the regression model

shows that there is uncertainty in the predicted values. Table 4 presents

the summary of the multiple correlation coefficient (R2), their sig-

nificance and standard errors for the 41 catchments used in the re-

gionalization. The non-parametric Spearman rank correlation was used

(Seibert, 1999).

4.3.2. Physical similarity method

For the single-donor type, Table 5 summarizes the smallest total

rank used to select a donor catchment. For the pooling-group type, we

analyzed different numbers of group members (3–20) to get an over-

view on the dependency of KGE values on the number of group mem-

bers. The KGE values are slightly sensitive to the number of group

members (Table 6). Table 7 presents the seven pooling-group members

for test catchment 19.79, with Euclidian distance, the weights and the

weighted-average value (regionalized value) for celerity of river flow

(rv).

4.3.3. Combined method and comparison of methods

The DDD model parameters needing regionalization are two groups.

The first group is estimated from calibration, and the second group is

estimated from observed hydro-meteorological (described in detail

under Section 3.4.3). Table 8 presents the regionalized model para-

meters using the three methods (physical similarity, multiple regression

and combined) for one of the test catchments (ID 25.32) and compares

with the calibrated parameters and parameters derived from recession.

The KGE and BIAS performance results for the three regionalization

methods are presented in Table 9. KGE and BIAS values have an op-

timum value of 1. Fig. 9 presents the observed and predicted hydro-

graphs using the three regionalization methods for two of the test

catchments, and Table 10 compares the performance of calibration

against regionalization methods.

5. Discussion

5.1. Model performance and parameters

The evaluation of calibration and validation results shows that the

DDD model performs satisfactorily, but we have observed under-

estimation of floods caused by heavy precipitation events. The main

reason for the underestimation of floods is likely an underestimation of

the higher precipitations in the gridded data. Comparisons of the

gridded precipitation with gauged data for the Svarttjønnbekken (ID

123.29 and area 3.6 km2) and Hokfossen (ID 123.28 and area 8.1 km2)

catchments show that the gridded value is lower than the gauge-re-

corded data for several floods. Since we do not have rain gauges in-

stalled within the other small catchments used, we have to rely on the

gridded data for the nationwide study. Another reason could be the

assumption that the GIS- derived model parameters are constant during

low, medium and high flows. The distance distributions of the marsh

land and soil (non-marsh) land of hillslope and the distance distribution

of the river network could be different during the three flow conditions.

During heavy precipitation events (that can cause damaging floods), the

river network transporting overland flow could increase and produce

faster runoff generation, and it will be a topic for further investigation.

Fig. 4. Frequency histogram and dotty plot of celerity of river flow for three different sample sizes at the study catchment with identification number 19.107.
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5.2. Uncertainty of calibrated parameters

Both the dotty plots and the frequency histograms of the 5000 and

10,000 sample sizes have the same shape and distribution as the 500-

sample size for the behavioral parameters. The histograms and dotty

plots of the river flow celerity for the catchment with ID 19.107

[Fig. 4(a) and (b)] show that the optimum celerity parameter is iden-

tifiable and has the same value (1.25m/s) for sample sizes of 500, 5000

and 10000. Similar findings have been obtained using sample sizes of

500 and 2000 at another study catchment.

The calibrated parameters show one clear peak or most frequent

value for almost all the study catchments even if the peak is at the

extreme boundaries of the calibration interval for some parameters. The

sharp and peaked distributions are associated with well-identifiable

parameters, and the parameter estimates can unambiguously be in-

ferred as modal values, while flat distributions indicate more parameter

uncertainty (Blasone et al., 2008; Jin et al., 2010). The identifiability of

the parameters and their small uncertainty resulted in the narrow width

of uncertainty bounds (the difference between the maximum and

minimum discharge for each hour). The small uncertainty of the cali-

brated model parameters reduces uncertainty in the model predictions

at ungauged catchments. Two model parameters (degree hour factor for

evapotranspiration and snow melt) show sharp, peaked and skewed

distribution to the lower boundary of the calibration intervals. Since the

intervals are set based on experience, field results and literature, the

skewness indicates that we can get a higher performance criteria (KGE)

if we let the calibration parameters go beyond the specified intervals.

However, we believe that gaining a higher KGE value in these cases

comes with a cost of less realistic model parameters, and it was decided

to keep the parameter intervals within a reasonable value.

5.3. Regionalization methods

5.3.1. Multiple regression and physical similarity

The multiple regression performs satisfactorily in regionalizing the

DDD model parameters, despite the uncertainty in the regression

model. The pooling-group method also performs satisfactorily in re-

gionalizing the model parameters despite the slight sensitivity of the

method to the number of pooling-group members.

Significant correlations have been obtained between model para-

meters and CDs for the regression equations. Effective lake percentage,

mean annual precipitation, specific discharge and mean elevation of the

catchments are used to estimate the shape and scale parameters of λ

and Λ. The scale parameter of λ is correlated with the effective lake

percentage, the mean elevation and the specific discharge in the

catchment. The shape and scale parameters of Λ are highly correlated

Fig. 5. Frequency histograms of liquid water in snow (pro), degree hour factor for evapotranspiration (cea), degree hour factor for snow melt (cx) and celerity of river

flow (rv).
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Fig. 6. Uncertainty bounds of DDD simulations due to calibrated parameters and observed discharges at four of the study catchments selected randomly.

Fig. 7. Normal probability plots of the standard residuals of the multiple regression model.
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with the shape and scale parameters of λ (0.98 and 0.99, respectively).

This correlation is expected since the latter is derived from the former

(see Skaugen and Onof, 2014). Accordingly, we estimate the shape and

scale parameters of Λ from the shape and scale parameters of λ with

multiple linear regression.

The performance of the multiple-regression method in this study

strengthens the statement that relating model parameters to catchment

characteristics offers a possibility for estimating hydrological model

parameters to predict flow at ungauged catchments (Magette et al.,

1976). The results obtained in this paper are consistent with what

Magette et al. (1976) obtained using 21 catchments in USA in the re-

gionalization of six selected parameters of the KWM hydrological model

using hourly data. They found that the hydrological model with the

regressed parameters was successful in predicting flow at ungauged

small catchments. The satisfactory performance of the multiple re-

gression equations is in agreement with the recent results of Skaugen

et al. (2015) who used daily data on small and large catchments in

Norway. The finding that multiple-regression method gives better re-

gionalization is also supported by Young (2006) who compares mul-

tiple-regression against a nearest-neighbor-based method. The perfor-

mance of the multiple- regression method is also supported by the study

results of Post and Jakeman (1999). They regressed six IHACRES model

parameters from six landscape attributes, and the predictions made at

the daily stream flow at ungauged catchments gave very good results

for some catchments.

The pooling-group type performs better than the single-donor type

for group members ranging from 3 to 20. The pooling group perfor-

mance is as good as the multiple regression if we vary the number of

members in the pooling group (Table 6) for each test catchment (e.g. if

we take catchment ID of 19.79 and 104.22, a pooling group of 17 and 7

members gives as good KGE as the multiple regression, respectively). If

we select fixed number of group members, multiple regression performs

Fig. 8. Actual and predicted values of the response variables using the multiple regression model.

Table 4

Summary of the multiple correlation coefficient of determination (R2), their

significance (p-value) and standard error of the study catchments.

Parameter Description of the

parameter

R2 Significance (p-

value)

Standared

Error

pro Liquid water in snow 0.4 0.01 0.03

cx Degree hour factor for

snow melt

0.42 0.0001 0.35

cea Degree hour factor for

evapotranspiration

0.51 0.0001 0.28

rv Celerity for river flow 0.14 0.06 0.3

Gshape Shape parameter of λ 0.2 0.03 0.32

Gscale Scale parameter of λ 0.43 0 0.5

GshInt Shape parameter of Λ 0.97 0 0

GscInt Scale parameter of Λ 0.98 0 0

CFR Degree hour factor for

refreezing

The regression model is statistically

insignificant

Table 5

Summary of the smallest total rank and the donor catchments for the 7 test catchments.

Test catchments ID Area(km2) Donor catchments ID Area(km2) Smallest total rank

Gravå 19.79 6.3 Hangtjern 12.212 11.2 94

Knabåni 25.32 49.1 Jogla 26.26 31.1 123

Kjemåvatn 163.7 36.6 Viertjern 16.127 46.6 116

M.Mardalsvan 104.22 13.5 Nysetvatn 74.24 28.8 124

Fjellhaugen 42.16 7.3 Fjellanger 63.12 12.8 100

Tjellingtjernbekken 18.11 2.1 Gramstaddalen 29.7 1 98

Strandå 165.6 23.3 Laksåbru 168.3 26.8 108
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slightly better than the pooling group method. We selected 5, 7 and 10

members for further analysis. A group of 7 members performs as well as

a group of 10 members. The group of 5 members performs slightly

lower than the groups of 7 and 10 members. Finally, the group of 7

members is considered an optimal size of the pooling-based physical

similarity in this study.

The performance of the pooling-group method in this study adds to

the confirmation that the method can be applied for regionalization in

different regions with different rainfall-runoff hydrological models.

Regionalization results from 119 catchments across England, Wales and

Scotland (46 with hourly data,73 with daily data and size ranging from

1 km2 to 1200 km2), showed that pooling-group method performed best

with the conceptual hydrological model Probability Distributed Model

(PDM), (Kay et al., 2006). Bao et al. (2012) regionalized Variable In-

filtration Capacity (VIC) model parameters using multiple-regression

and multiple-donor (5 donors) physical-similarity methods at 55

catchments of China and found that the multiple donor performed

better than multiple regression.

5.3.2. Combined method

Generally, the combined method (which uses recession parameters

estimated from multiple regression and calibrated parameters from the

pooling-group method of physical similarity) performs slightly better

than multiple-regression and physical-similarity methods (Table 9). The

better performance of the combined method shows that multiple-re-

gression is slightly better than pooling-group method in estimating the

recession parameters while the pooling method is slightly better than

the regression method in estimating the calibrated model parameters.

The hydrographs are also used for evaluation of the performance of

the regionalization methods in addition to the KGE and BIAS. The hy-

drographs in Fig. 9 show that the combined method predicted the

magnitude and the shape of the observed hydrographs better than the

multiple- regression and pooling-group methods of regionalization. The

floods are underestimated in both the presented hydrographs. When we

look at the hydrograph of the catchment with ID of 25.32, the combined

method predicted the timing and magnitude of the 2014 summer flood

better than the pooling-group method, but the pooling-group method of

Table 6

KGE values of different numbers of members of the pooling-group based physical similarity.

ID Multiple regression Number of members of the pooling-group based physical similarity

3 4 5 6 7 8 9 10 12 15 17 20 Max KGE

18.11 0.44 0.36 0.35 0.35 0.39 0.41 0.41 0.41 0.42 0.42 0.42 0.41 0.41 0.42

19.79 0.67 0.44 0.41 0.61 0.64 0.63 0.64 0.65 0.64 0.65 0.69 0.67 0.69 0.69

25.32 0.74 0.7 0.71 0.71 0.72 0.72 0.7 0.69 0.69 0.68 0.68 0.68 0.68 0.72

42.16 0.75 0.71 0.72 0.72 0.72 0.72 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.73

104.2 0.65 0.56 0.58 0.61 0.61 0.62 0.59 0.56 0.55 0.53 0.53 0.61 0.51 0.62

163.7 0.75 0.71 0.73 0.7 0.65 0.66 0.67 0.68 0.67 0.67 0.68 0.68 0.67 0.73

165.6 0.57 0.6 0.6 0.61 0.6 0.6 0.62 0.61 0.61 0.62 0.62 0.62 0.62 0.62

Mean 0.65 0.58 0.59 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.62 0.63 0.61 0.65

Table 7

Pooling-group based method of physical similarity for the celerity of river flow at test catchment with catchment identification number (Cat.ID) 19.79.

ID of Pooling

group members

Euclidean distance

(dista,b)

Celerity of river

flow(rv)

Linearly decreasing

weights(Sam)

Weights of the pooling

group members(ham)

ham * rv

29.7 2.26 1.44 0.589 0.411 0.594

12.212 2.26 0.70 0.590 0.410 0.286

123.29 2.47 1.08 0.645 0.355 0.384

6.1 2.65 0.71 0.690 0.310 0.219

16.66 3.05 0.99 0.795 0.205 0.203

174.3 3.47 1.15 0.903 0.097 0.111

8.6 3.49 0.59 0.909 0.091 0.053

The weighted average of the estimated celerity of river flow will be the ratio between the two as stated in Eq. (11).

Therefore, the regionalized value of rv using the pooling-group based physical similarity method is

1.851/1.88=0.99m/s

h rm am v1
41
=

1.851

hm am1
41
=

1.880

Table 8

Summary of model parameters estimated from three methods of regionalization for a test catchment ID 25.32. For combined method, values in italic are transferred

with regression while the remainder is transferred using physical similarity.

Model Parameters Calibration and runoff Recession analysis Regression Physical similarity Combined (pooling and regression)

Calibration Recession Single donor Pooling group

pro 0.1 … 0.1 0.1 0.09 0.09

cx 0.1 … 0.137 0.183 0.14 0.14

CFR 0.01 … 0.007 0.01 0.01 0.01

cea 0.02 … 0.014 0.03 0.02 0.02

rv 0.5 … 1.11 1.013 1.15 1.15

Gshape … 1.139 1.187 0.735 0.9 1.187

Gscale … 0.055 0.034 0.06 0.04 0.034

GshInt … 1.521 1.771 0.899 1.2 1.771

GscInt … 0.024 0.015 0.029 0.02 0.015
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regionalization has a KGE value of 0.72 while the combined method has

a KGE value of 0.71.

The combined method combines the advantages from the two

methods of regionalizations used in this study (physical similarity and

multiple regression). Kokkonen et al. (2003) states that exploiting

merely relationships between calibrated model parameters and CDs can

result in a decrease in regionalization performance. Physical similarity

has an advantage of transferring the entire calibrated model parameters

from one or few gauged to ungauged catchments (Arsenault and

Brissette, 2014; McIntyre et al., 2005; Oudin et al., 2010; Parajka et al.,

2005). The recession parameters describe the integrated information of

how different factors influence the runoff process (Fiorotto and Caroni,

2013). Recession parameters are used in the DDD model to estimate the

subsurface storage capacity (Skaugen and Mengistu, 2016), and they

can also be used to model streamflow recession for regionalization and

prediction (Stoelzle et al., 2013). Vogel and Kroll (1996) state that re-

gression procedures for estimating hydrograph recession parameters

generally work well, which is supported by our findings in that the

Table 9

Summary of comparisons of the regionalization methods using KGE and BIAS. The green shows the best KGE values (close to 1) while the

blue shows the best BIAS value (close to 1).

Fig. 9. Observed and predicted hydrographs using multiple regression, pooling group and combined methods of regionalization at two test catchments.
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recession parameters estimated using multiple regression are slightly

better than those estimated by physical similarity. It must be noted,

however, that the recession parameters derived from the regression

method are estimated from hydrographs of 41 study catchments while

that of the pooling-group method are derived from hydrographs of only

7 study catchments.

The regionalized recession parameters of DDD model (estimated by

pooling-group, multiple regression and combined method) are, in some

cases, better than the recession parameters estimated locally from a

short period of hydro-meteorological data. This is the case for four of

the test catchments and makes the performance of the regionalization

methods better than the calibration result for the four catchments

(Table 10). The main reason that the single-donor type of physical si-

milarity performs the poorest is that the recession parameters in the

single donor type are estimated from hydrographs of a single catchment

while that of a pooling group and multiple regression are estimated

from hydrographs of 7 and 41 catchments respectively. The other

reason is probably the long distance between donor and test catch-

ments.

The main limitation of this study is related to the precipitation data,

mainly how heavy precipitation events are represented. As discussed

previously, there are studies which show that the gridded data set has

uncertainties and smooths out peaks (Lussana et al., 2018). To reduce

the uncertainty in the precipitation, we have introduced a precipitation

correction factor as mentioned in the methodology section, and we

estimate the precipitation correction factor for ungauged catchments

using a daily specific runoff map of Norway produced by NVE (https://

atlas.nve.no). Another limitation is related to the use of the daily spatial

variations of precipitation data for the gamma distributed snow para-

meters. Skaugen et al. (2015) used observed, daily precipitation data

from rain gauges to estimate the snow distribution parameters of DDD.

In this study, we assume that the daily spatial variation of precipitation

is similar to that of hourly variation, and we used the parameters from

the 84 calibrated catchments in Skaugen et al. (2015) due to the lack of

sufficient rain gauges with hourly temporal resolution. One source of

uncertainty in this study that is not yet quantified is the lack of long-

term discharge data with hourly resolutions for estimating the runoff

recession parameters, as they are sensitive to the length of the time

series.

6. Conclusions

The results of our study show that the DDD model performs sa-

tisfactorily both during the calibration and validation periods for small

rural catchments in Norway (area < 50 km2) with hourly temporal

resolution. The model underestimates floods generated by heavy pre-

cipitation events, and a method to improve the simulation of peak

floods should be further investigated.

The calibrated parameters in the DDD model are identifiable and

show small uncertainty in our analysis. The uncertainty bound of DDD

simulations due to the calibrated parameters is narrow, which shows

that the uncertainty due to calibrated parameters for predicting flow

using hourly temporal resolution is small, and this also indicates that

the model is suitable for regionalization.

Both the multiple-regression and pooling-group methods performed

satisfactorily (except for one test catchment, both methods gave a KGE

performance between 0.5 and 0.75). The combined method (which uses

recession parameters estimated from multiple-regression and calibrated

parameters from the pooling-group method of physical similarity)

performed slightly better than the pooling-group and multiple-regres-

sion methods. Therefore, the combined method of regionalization is

recommended as a method for estimation of flow at small rural un-

gauged catchments with hourly resolution in Norway. The recession

parameters estimated by the three regionalization methods are, for

some catchments, better than those estimated from a short period of

hydro-meteorological data.

The parameter parsimonious rainfall-runoff hydrological model

(DDD) has a capability of generating continuous flow data at ungauged

small rural catchments with hourly temporal resolution using re-

gionalized model parameters. The satisfactory performance of the

combined method shows that regionalization of DDD model parameters

is possible by combining multiple- regression and physical-similarity

methods.

Table 10

Comparison of the KGE performance of calibration with the satisfactorily performing regionalization methods (the green shows KGE values of methods are

better than calibration or the KGE values of calibration are better than methods).
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ABSTRACT

Floods are one of the major climate-related hazards and cause causalities and substantial damage.

Accurate and timely flood forecasting and design flood estimation are important to protect lives and

property. The Distance Distribution Dynamic (DDD) is a parsimonious rainfall-runoff model which is

being used for flood forecasting at the Norwegian flood forecasting service. The model, like many

other models, underestimates floods in many cases. To improve the flood peak prediction, we

propose a dynamic river network method into the model. The method is applied for 15 catchments in

Norway and tested on 91 flood peaks. The performance of DDD in terms of KGE and BIAS is identical

with and without dynamic river network, but the relative error (RE) and mean absolute relative error

(MARE) of the simulated flood peaks are improved significantly with the method. The 0.75 and 0.25

quantiles of the RE are reduced from 41% to 23% and from 22% to 1%, respectively. The MARE is

reduced from 32.9% to 15.7%. The study results also show that the critical support area is smaller in

steep and bare mountain catchments than flat and forested catchments.
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INTRODUCTION

Floods are one of the major climate-related hazards and

cause causalities and substantial damage on a global

scale every year (Hirabayashi et al. ; Blaikie et al. ;

Winsemius et al. ). Floods usually cause damage to agri-

cultural land, infrastructure and buildings (Razi et al. ).

Flood peak is one of the most important variables to be

estimated as its magnitude and duration are responsible

for the damage (Formetta et al. ; Gao et al. ).

An accurate estimate of flood peak is a critical requirement

for proposing appropriate flood damage mitigation

measures in order to reduce social and economic costs

(Plate ).

The common hydrological tools for flood risk manage-

ment are flood forecasting models and models used to

estimate design floods (Plate ). The design flood, where

the magnitude of the flood is associated with a return

period and hence a level of risk, is important in the planning,

design and operation of hydraulic structures and for protec-

tion of human life and property (Rahman et al. ; Reis

& Stedinger ; Smithers ). Methods to estimate

design floods are generally classified into three: (a) statistical

flood frequency analysis; (b) event-based simulation; and

(c) derived flood frequency simulation (Filipova et al. ).

Derived flood frequency analysis, using continuous

rainfall-runoff models, is increasing in use for design flood
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estimation (Cameron et al. ; Calver & Lamb ;

Boughton & Droop ; Eschenbach et al. ). A

rainfall-runoff model can be used to simulate several flow

values under different conditions for extending and enhan-

cing the observed flow record (Filipova et al. ). A

stochastic weather generator is used to simulate long syn-

thetic series of rainfall and temperature input data for the

continuous simulation method. The long series of flow

data derived from the simulation is then used to estimate

the required return periods, usually using plotting positions

(Camici et al. ; Haberlandt & Radtke ). There is a

growing interest in continuous simulation method of flood

estimation as an alternative to event-based method, and

internationally the trend is to adopt the continuous

method (Lamb & Kay ; Chetty & Smithers ;

Pathiraja et al. ). The main advantages of the

continuous simulation models are their ability to represent

the antecedent moisture condition in the catchment and

their capability to model future land use and climate

changes impacts on the flood peaks (Brocca et al. ;

Smithers et al. ). The other reason for using the continu-

ous simulation approach is that precipitation records are

more widely available and tend to have longer periods of

records than stream flow data (Blazkova & Beven ).

Continuous simulation can avoid the base flow estimation

problem in the event-based method and avoid any need to

associate return period of the flood with specific design

precipitation because the frequency analysis of floods can

be done directly.

Rainfall-runoff models are simplified representations of

a complex physical system and therefore carry a certain

amount of uncertainty in their applications (Bourdin et al.

). The performance of rainfall-runoff models depend

on several factors which include the quality of precipitation

input data and an appropriate model structure capable of

simulating floods (Collier ). Therefore, the structure

and performance of the rainfall-runoff models should be

evaluated and improved for their capability in simulating

flood peaks before using them in design flood estimation

and flood forecasting.

There are several ways to classify rainfall-runoff models

(Singh ). Rainfall-runoff models can be classified into

lumped and distributed models. Lumped models consider

the whole catchment as a single unit with state variables

that represent the average of the catchment (Beven b).

Distributed models make prediction at distributed locations,

i.e., by discretizing the catchment into a number of elements

with state variables representing local averages (Singh &

Frevert ). When a rainfall-runoff model is used for

design flood estimation, the model could underestimate

the design flood. Thomas () evaluated floods estimated

by continuous simulation methods on 50 small streams in

Oklahoma, and the result showed that the flood peaks

were consistently underestimated. Pathiraja et al. ()

used 45 catchments in the Murray–Darling basin in

Australia to estimate design floods using the Australian

water balance model. They found that the model underesti-

mates the floods from 5% to 30% depending on how

reasonably the antecedent moisture condition is simulated.

The forecast of floods requires an accurate understanding

of catchment characteristics and a precise determination

of catchment’s initial conditions before flooding (Rusjan

et al. ).

There is a link between catchment morphology and a

hydrologic response of a catchment (Rodríguez-Iturbe &

Valdés ; D’Odorico & Rigon ; Rigon et al. ).

Gupta et al. () pointed out that the Geomorphic

Instantaneous Unit Hydrograph (GIUH) is equivalent to

the probability density function of travel times, f(t), from

any point in the catchment to the outlet. This permits the

formulation of hydrologic response through the geomorpho-

logic width function, W(x). The GIUH and W(x) concepts

represent the dependency of peak flows on the geomorpho-

logical properties of a catchment and provide a quantitative

prediction of peak flows for engineering application

(Rinaldo et al. ; Rinaldo et al. ; D’Odorico &

Rigon ; Rigon et al. ). The form and extent of the

stream network reflect the characteristics of the hillslope

(Willgoose et al. ). The stream reflects the ground

water dynamics and is often termed as perennial, intermit-

tent and ephemeral streams (Dingman ; Bencala et al.

). Dynamic expansions and contractions of stream

networks play an important role for hydrologic processes

since they connect different parts of the catchment to

the outlet (Nhim ). Stream networks in a catchment

expand and contract as the catchment wets and dries,

both seasonally and in response to individual precipitation

events, and this dynamic of stream networks gives an

2 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | in press | 2019
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important information to the pattern and process of runoff

generation (Godsey & Kirchner ; Ward et al. ).

The mean of the distribution of distances from a point in

the catchment to the nearest river reach (Dm) and the drai-

nage density (Dd) are among the indexes used to describe

a stream network. Horton () defined the traditional Dd

as the sum of lengths (L) of all streams in a catchment

divided by the catchment area (A). The Dm reflects the

spatial characteristics that affect the formation of streams

and the response time of a catchment for a particular

stream network (Wharton ; Tucker et al. ; Di

Lazzaro et al. ; Skaugen & Onof ). The mean

distance one has to walk from a random location in a

hillslope before encountering a stream, Dm is related to

the traditional definition of Dd (Horton ; Tucker et al.

; Di Lazzaro et al. ).

Dm ≈
1

2Dd
(1)

Chorley & Morgan () showed that the maximum

flow is related to Dm. Day () studied two catchments of

New England (NSW, Australia) and found that theDm is cor-

related with discharge. In these two catchments, the Dm was

found to decrease for an increase in discharge, indicating that

the stream network expands during the flooding events.

During the expansion and contraction of streams, the critical

supporting area (Ac), which is the area needed to initiate and

maintain streams, shows variations within a catchment and is

an important variable for assessing geomorphometric charac-

teristics (e.g. Dm) (Papageorgaki & Nalbantis ). The

relationship between Dd and Ac follows an inverse power

law (Moglen et al. ) as shown in Equation (2).

Dd ¼ kA�nc (2)

where k and n are positive numbers. If we insert the value of

Dd from Equation (2) into Equation (1), we will get a power

relationship between Dm and Ac as shown in Equation (3).

Dm ¼ aAb
c (3)

where a ¼ 1=2k and b ¼ n.

The Distance Distributions Dynamics (DDD) model is a

parsimonious continuous rainfall-runoff model with a small

number of calibration parameters recently developed by

Skaugen & Onof (). Many of the model parameters

can be estimated from catchment topography using GIS

and recession characteristics. DDD is a semi-distributed

model, i.e., lumped in model parameters and distributed

input data (precipitation and temperature). The calibration

and validation results for 41 small rural unregulated catch-

ments in Norway (area <50 km2) with hourly data showed

that the DDD model, in most cases, underestimated flood

peaks (Tsegaw et al. ). In the runoff dynamics of the

DDD model, there is a single static river network forming

the basis for the dynamics of water routing through the

hillslopes and in the river network (Skaugen & Onof

). However, studies show that the river network has a

dynamical nature, being more dense during high flows

than at low or medium flows (Godsey & Kirchner ).

The primary objective of this study is to investigate whether

including a dynamic river network model into the DDD

model will improve flood prediction in small rural catch-

ments (area <50 km2). The secondary objective is to

improve the understanding of the stream development for

different vegetation covers, catchment slopes and climate.

The secondary objective helps us to assess whether there is

a potential to relate a calibration parameter of the dynamic

river network routine with the environmental factors so

that there is a possibility for regionalizing the parameter.

METHODOLOGY

Study catchments and data

Fifteen gauged small rural catchments, which show signifi-

cant underestimation of peak floods during the calibration

and validation of 41 small catchments located in Norway

(Tsegaw et al. ), are used in this study for testing the

dynamic river network method. The catchments are selected

from the Norwegian Water Resources and Energy Directo-

rate (NVE) HYDRA II database. Figure 1 shows locations

of the study catchments, and Table 1 shows the catchment

characteristics. The definition of small catchment follows

that of Fleig & Wilson () with an upper area limit of

3 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | in press | 2019
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50 km2. We selected where the DDD model had a known

history of underestimating floods so that the dynamic river

network model could be tested and evaluated.

Precipitation, temperature and discharge are the

main input data for running and calibrating the DDD

model. We used hourly data of precipitation, temperature

and discharge. Precipitation and temperature are based on

a 1 × 1 km gridded product of the Norwegian Meteorologi-

cal Institute (http://thredds.met.no/thredds/catalog.html)

(Lussana et al. ). We used a total of 5 years of data for

calibration and validation. The DDD model uses distributed

precipitation and temperature data as input for the

model’s 10 elevation zones extracted from the hypsographic

curve of a catchment. The elevation of the center of each

Figure 1 | Locations of study catchments.
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temperature and precipitation grid cell has been extracted

from the 10 × 10 m digital elevation model (DEM) of

Norway. Discharge data have been obtained from the

Norwegian Water Resources and Energy Directorates

(NVE) HYDRA II database. The Norwegian Mapping

Authority (www.statkart.no) is the source of the topography,

observed river network and land use data.

The DDD rainfall-runoff model

The DDD model currently runs operationally with daily and

three-hourly time steps at the Norwegian flood forecasting

service. It has two main modules: the subsurface and the

dynamics of runoff. In DDD, the distribution of distances

between points in the catchment and their nearest river

reach (distance distributions of a hillslope) is the basis for

describing the flow dynamics of the hillslope. The distri-

bution of distances between points in the river network

and the outlet forms the basis for describing the flow

dynamics of the river network. The hillslope and river

flow dynamics of DDD is hence described by unit hydro-

graphs (UHs) derived from distance distributions from a

GIS and celerity derived from recession analysis (Skaugen

& Onof ; Skaugen & Mengistu ). When the distance

distributions are associated with flow celerity of the hillslope

and rivers, we obtain the distributions of travel times which

constitute the time area concentration curve (Maidment

). The derivative of the time area concentration curve

gives the instantaneous UH (Bras ), which is basically

a set of weights distributing the input (precipitation and

snowmelt) in time to the outlet.

Subsurface

The volume capacity of the subsurface water reservoir,

M (mm), is shared between a saturated zone with volume

S (mm) and an unsaturated zone with volume D (mm). If

the volume of the saturated zone is high, the unsaturated

volume has to be correspondingly small (Skaugen & Onof

; Skaugen & Mengistu ). The actual water volume

present in the unsaturated zone is described as Z (mm).

The subsurface state variables are updated after evaluating

whether the current soil moisture, Z(t), together with the

input of rain and snowmelt, G(t), represent an excess of

water over the field capacity, R, which is fixed at 30%

(R¼ 0.3) of D(t) (Skaugen & Onof ). If G(t)þZ(t)>

R*D(t), then the excess water X(t) is added to S(t).

Excesswater (mm=h)

X(t) ¼Max
G(t)þ Z(t)

D(t)
� R, 0

� �
D(t)

(4)

Groundwater (mm=h)
dS
dt
¼ X(t) �Q(t) (5)

Soilwater content (mm=h)
d Z
dt
¼ G(t) �X(t)� Ea(t) (6)

Soilwater zone (mm=h)
dD
dt
¼ �dS

dt
(7)

Potential evapotranspiration (mm=h) Ep ¼ Cea �T (8)

Actual evapotranspiration (mm=h) Ea ¼ Ep� Sþ Z
M

(9)

Q(t) is runoff, and Ea(t) is the actual evapotranspiration

which is estimated as a function of potential evapotranspira-

tion and the level of storage. Cea is a degree hour factor

which is positive for positive temperature (T) and zero

for negative temperature. Ea is drawn from Z. The degree

hour approach is a simplification but experiences from

Skaugen & Onof () show that the evapotranspiration

routine in DDD calculates similar values to the approach

used in the well-known rainfall-runoff model HBV (Bergström

). A recession analysis of observed runoff from the catch-

ment is used to estimate the catchment-scale fluctuations of

storage and the capacity of the subsurface water reservoir

(M) (see Skaugen & Mengistu ).

Runoff dynamics

The dynamics of runoff in DDD has been derived from the

catchment features using a GIS combined with runoff

recession analysis. The method for describing the runoff

dynamics of a catchment is built on the distance distribution

derived from the catchment topography. The distances from

the points in the catchment to the nearest river reach are cal-

culated as Euclidean distance for the marsh and soil parts of

a hillslope. Previous studies in more than 120 catchments in
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Norway showed that the exponential distribution describes

the hillslope distance (Euclidean distance from the nearest

river reach) distribution well, and the normal distribution

describes well the distances between points in the river

network and outlet of a catchment (Skaugen & Onof

). Figure 2 shows the structure of the DDD model. The

model is written in the R programming language. All

GIS work is done with ArcGIS 10.3 (ESRI ), and

the recession analysis is done using an R script (R Core

Team ).

Water is conveyed through the soils to the river network

by waves with celerity determined by the actual storage, S(t),

in the catchment (Skaugen & Onof ; Skaugen &

Mengistu ). The celerity associated with the different

levels of subsurface storage is estimated by assuming

exponential recessions with parameter Λ in the equation

Q(t) ¼ Q0Λe�Λ(t�t0), where Q0 is the peak discharge immedi-

ately before the recession starts. Λ is the slope per Δt of the

recession in the log–log space.

Λ(t) ¼ log (Q(t))� log(Q(tþ Δt)) (10)

The distribution of Λ is modeled using a two-parameter

gamma distribution.

The celerity, v, is calculated as a function of Λ using

Equation (11).

v ¼ Λ Dm

Δt
(11)

where, Dm is the mean of the distances from points in the

catchment (hillslope) to the nearest river. The capacity of

the subsurface reservoir M (mm) is divided into five storage

levels, i, corresponding to the quantiles of the distribution

of Λ under the assumption that the higher the storage, the

higher the value of Λ. Each storage level is further assigned

a celerity νi ¼ λi Dm

Δt
(see Equation (11)), where λi is the par-

ameter of the UH for the individual storage level i, and

estimated such that the runoff from several storage levels

will give a UH equal to the exponential UH with a parameter

Λi. With the assumption that the recession and its distribution

carries information on the distribution of catchment-scale

storage, we can consider that the temporal distribution of

catchment-scale storage, S(t), is a scaled version to that of

Λ. S(t) is calculated using Equation (12), and its distribution

is modeled using a two-parameter gamma distribution.

S(t) ¼ Q(t)
1� e�Λ(t)

(12)

Figure 2 | Structure of distance distribution dynamics (DDD) rainfall-runoff model.
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The DDD model has five storage levels (i¼ 1,…, 5).

Four storage levels are subsurface level, whereas the fifth

one is an overland flow level with unlimited capacity

(Skaugen & Onof ; Skaugen & Mengistu ). The

five levels have five-UHs (four for subsurface flow and one

for overland flow) and each of them has different temporal

scales as they have been assigned different celerities. The

UH is modeled as follows:

UHi(t) ¼ λie�λi(t�to) (13)

where to is the time of input, and λi is the parameter of the

exponential distribution estimated from recession analysis

for each level, i.

Model parameters and calibration

The model parameters are divided into three main groups.

The first group are those estimated from observed hydro-

meteorological data (Table 2), the second group are those

estimated by model calibration against observed discharge

(Table 3), and the third group are those estimated from digi-

tized maps using a GIS (Table 4). The snow routine in DDD

has two parameters estimated from the spatial distribution

of observed precipitation data (Skaugen & Weltzien ).

The shape parameter (a0) and the decorrelation length (d)

of the gamma distribution of snow and snow water equival-

ent (SWE) are estimated from a previous calibration for 84

catchments in Norway (Skaugen et al. ). The calibration

of the model is performed using the probability particle

swarm optimization (PPSO) algorithm (Lu & Han ).

The Kling–Gupta efficiency criteria (KGE) have been used

as objective function for the calibration (Gupta et al.

), and we used KGE, the BIAS (ratio of the mean of

simulated to observed discharge) and visual inspection of

hydrographs to evaluate the performance of the model.

Dynamic river network routine

We introduce a dynamic river network concept into the

DDD model so that the scale of the overland unit hydro-

graph (OUH) will be dynamic while keeping the four

Table 2 | List of DDD rainfall-runoff model parameters estimated from observed hydro-meteorological data

Parameters Description of the parameter Method of estimation Unit

d Parameter for spatial distribution of SWE, decorrelation length From spatial distribution of observed
precipitation

Positive real number

a0 Parameter for spatial distribution of SWE, shape parameter From spatial distribution of observed
precipitation

Positive real number

MAD Long-term mean annual discharge From long-term observed mean annual
flow data

m3/s

Gshape Shape parameter of λ Recession analysis of observed runoff Positive real number

Gscale Scale parameter of λ Recession analysis of observed runoff Positive real number

GshInt Shape parameter of Λ Recession analysis of observed runoff Positive real number

GscInt Scale parameter of Λ Recession analysis of observed runoff Positive real number

Table 3 | List of DDD rainfall-runoff model parameters needing calibration

Parameters Description of the parameter Method of estimation Unit Intervals of calibration

pro Liquid water in snow Calibration fraction 0.03–0.1

cx Degree hour factor for snow melt Calibration mm �C�1 h�1 0.05–1.0

CFR Degree hour factor for refreezing Calibration mm �C�1 h�1 0.001–0.01

Cea Degree hour factor for evapotranspiration Calibration mm �C�1 h�1 0.01–0.1

rv Celerity for river flow Calibration m/s 0.5–1.5
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subsurface UHs constant during the simulation period. The

methodology, we used in estimating the dynamic OUHs of

a hillslope, is similar to that of GIUH and of the width

function, i.e., the travel time probability density function

of a unit amount of water draining from a catchment.

However, the approaches used in estimating the parameters

of the distribution are different, i.e., the approach in calculat-

ing the celerity and distances of a flow from the points in the

hillslope to the nearest river reach. Further, we assumed that

the scale of the travel time distribution in a hillslope is

dynamic for generating dynamic OUHs while the shape is

held constant. In DDD, the dynamic OUHs are turned on

and off according to saturation of the subsurface thus

giving a dynamic travel time distribution.

The river network indicates where the subsurface water

flow becomes surface water flow. The network system gov-

erns the dynamics of runoff for conditions where we have

no overland flow from the hillslope in that there is a signifi-

cant (orders of magnitude) difference in water celerity

for flow through the soils and flow in the river network

(Robinson et al. ). In case of overland flow, however,

we can imagine a dynamic river network (and hence dynamic

distance distributions) as a function of overland flow (OF).

We made three assumptions to derive such algorithm.

1. The mean celerity of the overland flow (νOF) is constant,

i.e., independent of the subsurface saturation and river

network.

2. The overland flow unit hydrograph (OUH) is exponential

determined from Dm and νOF.

3. The Dm of a river network is a function of volume of

water per area per unit time, i.e., OF. If we assume a criti-

cal flux, Fc of 10 m3/h is necessary to create a stream,

then OF of 10 mm for an hour over Ac ¼ 1000 m2, will

provide such a flux, whereas the same flux is obtained

for OF of 100 mm over 100 m2. The two cases have differ-

ent critical supporting area (Ac), and these cases will

provide us with two different river networks where the

latter has smaller Dm than the former.

The physical mechanisms underpinning the above three

assumptions are:

1. The variable contributions of saturation excess overland

flow of a hillslope develops along the existing river

network following the concept of Dunne’s overland

flow (Dunne ).

2. The critical supporting area (Ac defines the minimum

catchment area from which the generated runoff is

sufficient to initiate and maintain river development

Table 4 | List of DDD rainfall-runoff model parameters estimated from geographical data using GIS

Symbol of parameters Description of the parameter

Area Catchment area

maxLbog Maximum distance of marsh land portion of hillslope

midLbog Mean distance of marsh land portion of hillslope

bogfrac Areal fraction of marsh land from the total land uses

zsoil Areal fraction of DD for soils (what area with distance zero to the river)

zbog Areal fraction of distance distribution for marsh land (what area with distance zero to the river)

midFl Mean distance (from distance distribution) for river network

stdFL Standard deviation of distance (from distance distribution) for river network

maxFL Maximum distance (from distance distribution) for river network

maxDl Maximum distance (from distance distribution) of non-marsh land (soils) of hill slope

midDL Mean distance (from distance distribution) of non-marsh land (soils) of hill slope

midGl Mean distance (from distance distribution) for glaciers

stdGl Standard deviation of distance (from distance distribution) for glaciers

maxGl Maximum distance (from distance distribution) for glaciers

Hypsographic curve 11 values describing the quantiles 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
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(Schaefer et al. )). The expansion and contraction of

the stream network is governed by the amount of

saturation excess overland flow.

3. The hillslope travel time probability density function of

overland flow is estimated from the distance distributions

at any point from the hillslope to the river network and

the celerity of flow in the hillslope (D’Odorico & Rigon

; Rigon et al. ).

In order to compute the OUH, we need the mean (Dm)

and the maximum (Dmax) of the hillslope distance

distribution and the mean overland flow celerity, νOF.

Using assumption (3), we can derive a dynamic Ac after

introducing a critical flux (Fc ) as shown in Equation (14),

which needs to be determined.

Fc (m3=h) ¼ Ac(m2) �OF (m=h) (14)

where OF is saturation excess overland flow and is esti-

mated from the DDD model output at each simulation

time step. When the subsurface is saturated and there

is overland flow (OF> 0), the dynamic river network sub-

routine is activated and the corresponding Ac will be

calculated in the model using Equation (14).

We need to compute the coefficients a and b of the

general power relation between Dm and Ac of each of the

study catchments (see Equation (3)) for computing a

dynamic Dm during simulation. For computing a and b,

we have used the following procedure:

1. The 10 × 10 m DEM of a catchment has been recondi-

tioned to the observed river network using the DEM

reconditioning tool from Arc Hydro and a raster flow

accumulation map has been prepared using GIS.

2. We wrote a python script that can loop through several

thresholds of flow accumulation (Ac ) to define stream

and create several stream networks. From the distance

distributions derived from each stream networks, the

Dm is calculated.

3. A regression curve is fitted to the synthetically derived

Ac and Dm of a catchment to estimate a and b

(Figure 3 shows the fitted curves for six sample catch-

ments). The values of a and b are unique for each

catchment and are listed in Table 5 for all study

catchments.

After we have obtained the coefficients of the relation-

ship between Ac and Dm, the Ac estimated from Equation

(14) will be used to estimate Dm using Equation (3). We

estimated Dmx from the exponential distribution with par-

ameter Dm, as a distance where 99% of the catchment area

is accounted for. From the recession analysis for estimating

celerities, we already have an estimate of νOF in the DDD

model (Skaugen & Onof ). We estimate a dynamic

OUH for every time step when overland flow is estimated.

When the Dm calculated using Equation (3) is greater

than the Dm of the observed river network, the dynamic

river network degenerates to the observed river network.

The observed river network is the basis network for all

cases where the subsurface capacity is unsaturated, satu-

rated but no overland flow and when there is overland

flow but not sufficient to expand the observed (existing)

stream network. When the subsurface capacity is saturated

and there is sufficient OF, the observed stream network

starts to expand. The extent of expansion is determined by

the magnitude of the estimated OF and Fc.

We have tested the performance of the DDD model

with and without the dynamic river network routine. We

calibrated and validated the DDD model as described

in the model parameter and calibration section, and we

implemented the dynamic river routine into the model and

calibrated Fc. We have calibrated Fc manually after calibrat-

ing automatically DDD parameters without dynamic river

network. The procedures we have followed in calibrating

are as follows:

1. The Fc parameter is adjusted by trial and error to fit the

observed flood peaks, which had been underestimated by

DDD without dynamic river network.

2. We have visually compared the observed flood hydro-

graphs and flood hydrographs simulated with and

without dynamic river network.

3. While calibrating DDD with Fc (with dynamic river net-

work module), the KGE and BIAS values obtained

should not be less than the KGE and BIAS values of

DDD without dynamic river network method (earlier

calibration result).

4. Using the visual inspection of observed hydrographs,

KGE and BIAS, the Fc which fits the observed flood

peaks well is taken as a calibrated value.
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As for the previous case, we used KGE, BIAS and hydro-

graphs to evaluate the performance of the model with

dynamic river network routine. We have also analyzed the

mean absolute relative error (MARE, Equation (15)) of 91

flood peaks with and without river dynamics.

MARE(%) ¼ 1
N

XN

i¼1
(Oi � Si)

Oi
�100

����
���� (15)

where Oi is the observed flood peak and Si is the predicted

flood peak with and without dynamic river network. N is

the number of flood peaks (91 in this study). We have also

analyzed the quantiles of the distribution of relative errors

(RE, Equation (16)) of the flood peaks prediction.

RE(%) ¼ (Oi � Si)
Oi

�100 (16)

where Oi is the observed flood peak and Si is the predicted

flood peak with and without dynamic river network.

Correlation between Ac andFc with environmental

factors

We have done a correlation analysis between the par-

ameters Ac and Fc and environmental factors to improve

the understanding on how the dynamic river network

develops and to assess the potential for relating Fc to

environmental factors. The environmental factors included

in the correlation analysis are mean annual precipitation,

mean hillslope slope, bare mountain and forest land

covers of the study catchments. We have used the Pearson

correlation coefficient for the analysis. The Ac derived

from observed river network has a spatial variation within

a catchment; therefore, we have estimated the mean Ac for

Figure 3 | Curves fitted to the relation between mean distance distribution of hillslope, i.e., Dm and critical supporting area, i.e., Ac for six sample study catchments with a relation,
Dm ¼ aAb

c .
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each of the study catchments before the correlation analysis

using the following two steps. First, the Dm of the observed

stream network is estimated using GIS. Second, the mean

Ac of the observed river network is calculated using

Equation (3). To assess the potential for relating Fc with

the environmental factors, correlation analysis between

the calibrated Fc and the environmental factors has also

been performed. We have also done a stepwise method of

multiple linear regression between Fc and the four environ-

mental factors mentioned above to see if there is a possibility

for regionalizing Fc.

RESULTS

Performance of DDD with and without dynamic river

network

The calibration and validation results of the DDD model

without a dynamic river network show that the model

performs satisfactorily with KGE values between 0.55

and 0.9 and BIAS between 0.75 and 1.25. As stated by

Thiemig et al. (), 0.75�KGE< 0.9 is considered good,

0.5�KGE< 0.75 is intermediate and 0.0�KGE< 0.5 is

poor. Seven catchments show good and eight catchments

show intermediate performance both during the calibration

and validation periods. Even if the KGE performance is

satisfactory, the visual inspection of the hydrographs

shows that several observed flood peaks are underestimated.

We added the dynamic river network routine into the

DDD model and calibrated the critical flux (Fc ) parameter

of the routine manually for the whole simulation period.

The KGE and BIAS performance of the model are similar

as before, i.e., without dynamic river network for all study

catchments except one, where the KGE is slightly lower.

However, the inspection of the hydrographs clearly shows

that the predication of several underestimated flood peaks

has been improved after the addition of the dynamic river

network routine. The dynamic OUHs that resulted from

the dynamic river network have higher peaks and narrower

width during the flooding events, and these OUHs, added

with the subsurface UHs, helped in improving the pre-

viously underestimated floods. Figure 4 shows the hillslope

distance distributions for variable Ac for catchment 73.27.

Figure 5 shows the empirical cumulative distance distri-

butions functions as an example for the dynamic distance

distribution presented in Figure 4, and Figure 6 shows the

four dynamic OUHs which resulted from the corresponding

distance distributions functions. Table 6 shows OF, Ac and

Dm for a catchment 12.193 during a flooding event.

Figure 7 shows the hydrographs during the flooding

periods with and without the dynamic river network routine

for six sample study catchments. Table 7 shows the observed

floods, simulated floods, KGE and BIAS performance of

DDD model with and without dynamic river network

routine for five sample study catchments selected randomly.

The results of the statistical analysis (mean absolute rela-

tive errors and quantiles of relative errors), for the 91

observed peak floods from the 15 study catchments, show

that the dynamic river network method improved the

prediction of peak floods significantly. The 0.75 quantile of

the relative errors of the simulated peaks reduced from

41% to 23%, and the 0.25 quantile of the relative errors

reduced from 22% to 1%. Figure 8 shows box plots of

the relative errors with and without river dynamics. The

MARE of the magnitude of the underestimated peak

floods is reduced from 32.9% to 15.7%.

Table 5 | The coefficient of determination (R-squared) and the coefficients of the power
relation between Dm and Ac , i.e., Dm ¼ aAb

c for all the study catchments

Cat_ID a b R2

6.1 2.17 0.37 0.99

12.193 1.16 0.42 1

19.107 1.04 0.43 1

26.64 1.23 0.42 1

36.32 1.18 0.42 1

41.8 0.61 0.51 0.99

42.2 0.92 0.45 1

55.4 1.1 0.44 1

63.12 1.05 0.45 1

68.2 0.86 0.49 1

73.21 0.82 0.48 1

73.27 1.19 0.44 0.99

91.2 0.68 0.51 0.99

101.1 1.1 0.45 0.98

172.8 1.08 0.44 1
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Correlation between Ac andFc with environmental

factors

The critical supporting area, Ac, of an observed stream

network of a catchment shows spatial variation within

the catchment (Figure 9 shows the distributions for five

sample catchments); therefore, the mean value of a

catchment is used for the correlation analysis. The mean

Ac for the observed river networks is correlated with

environmental factors, i.e., vegetation cover, topography

and climate. The correlation with vegetation cover is

stronger than that of topography and climate. The mean

Figure 4 | Map of sample dynamic distance distributions of hillslope generated from dynamic critical supporting area, i.e., Ac during flooding events for catchment 73.27.
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Ac has a positive correlation with the forest cover in a

catchment, but it has a negative correlation with mean

annual precipitation, bare mountain cover and mean hill-

slope slope of a catchment. Table 8 shows the correlation

between the mean Ac and Fc and the environmental factors.

The calibrated critical flux, Fc , of the dynamic river

network routine is correlated with the environmental

factors. The correlation between Fc and the vegetation

cover is stronger than the correlation between Fc and topo-

graphy and mean annual precipitation. Fc shows positive

correlation with forest and negative correlation with bare

mountain, mean annual precipitation and mean hillslope

slope of a catchment. Table 9 shows the environmental

factors used in the correlation analysis, the Dm and mean

Ac of observed river network and the calibrated Fc of the

dynamic river network routine of the study catchments.

The result of stepwise multiple linear regression shows

that there is a potential to estimate Fc from the environ-

mental factors as shown in Equation (17). Bare mountain

is the only environmental factor contributing significantly

to the regression with a significant level of 0.1. The multiple

Figure 5 | Cumulative distance distributions functions of the dynamic hillslope distance distributions of Figure 4 for catchment 73.27.

Figure 6 | Dynamic overland unit hydrographs of the cumulative distance distributions
functions under Figure 5 during a flooding event for catchment 73.27.
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coefficient of determination (R2) of the multiple regression

is 0.3 and the significant level (P) is 0.06.

Fc (m3=h) ¼ 160:7� 1:4 � bare mountain (%) (17)

DISCUSSION

Dynamic river networks

Dynamic river networks and hence dynamic OUHs are

introduced and implemented in the DDD rainfall-runoff

model to improve the simulation of floods. The dynamic

river network method expands the observed river networks

during OF events. The expansion means that the Ac required

to initiate and maintain a stream decrease. Smaller Ac

results in smaller Dm (see Table 5). The smaller Dm value

indicates shorter travel times from points in the catchment

to the nearest river reach. The shorter travel time distri-

bution generates OUHs with a higher peak and shorter

scale for the hillslopes (Figure 6). The dynamic OUHs are

superpositioned with the other four subsurface UHs of

DDD to give a single dynamic UH of a catchment during

flooding events. The results of the method are supported

by the previous study of D’Odorico & Rigon () who

found that shorter hillslope distances result in shorter

travel times and hence higher flood peaks. The smaller Dm

results, obtained during the flooding events using the

dynamic river network method, are also supported by the

study of Humbert () who found that a good correlation

exists between the runoff coefficient of flooding events and

Dd, and hence the Dm, for 45 French catchments. Lazzaro

et al. () also found that the variability of runoff due to

higher Dd (lower Dm) creates a faster concentration of

flow that implies shorter travel times and higher peak

floods. The results in this study are also supported by the

results of Lee et al. () who found that a UH of a

catchment is dynamic during different precipitation intensi-

ties, i.e., the higher the precipitation intensity, the higher the

peak and shorter the temporal scale of the UHs. The results

of this study also show that a dynamic river network method

could be a solution for rainfall-runoff models which face

challenges in predicting flood peaks through continuous

simulation. Improving the prediction of peak floods in a

continuous simulation is very important because the hydro-

graph consisting of this peak flow is mainly responsible for

the damage caused by floods. Therefore, a dynamic river net-

work is a method to be conceptualized and included as one

routine in continuous rainfall-runoff models which underes-

timate predictions of floods.

We analyzed statistically 91 underestimated flood

peaks to evaluate the performance of the dynamic river

network. The MARE and quantiles of RE of the prediction

with and without dynamic river network show that the

overall performance of the method has improved the

prediction of the peaks satisfactorily. The dynamic river

network overestimated 17 of the 91 flood peaks and still

underestimates the remaining 74 floods but with a signifi-

cant improvement in the prediction of flood peaks

compared to the results obtained without a dynamic river

network.

Table 6 | Dynamic mean distance of the hillslope distance distributions estimated and
used for generating dynamic overland unit hydrograph during flooding event

at catchment 12.193 with a calibrated critical flux of 90 m3/h

OF (mm/h) Ac (m2)
Dm (m) estimated
using Equation (3)

Dm (m) used in
deriving OUH

0.144 1,319,444.4 429.08 301.1

2.19 86,758 137.58 137.58

2.22 85,585.6 136.79 136.79

0.94 202,127.7 196.26 196.26

10.9 17,431.2 70.12 70.12

1.4 135,714.3 166.02 166.02

2.7 70,370.4 126 126

1.19 159,663.9 177.75 177.75

0.19 1,027,027 388.44 301.1

1.27 149,606.3 172.96 172.96

0.2 950,000 375.93 301.1

1.33 142,857.1 169.64 169.64

1.28 148,902.8 172.61 172.61

0.17 1,117,647.1 402.48 301.1

0.14 1,319,444.4 431.54 301.1

0.64 296,875 230.64 230.64

0.34 558,823.5 302 301.1

0.31 612,903.2 312.72 301.1

0.83 228,915.7 206.79 206.79

Italic numbers are rounded to two significant figures.
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A single calibrated critical flux, Fc, improves the predic-

tion of several underestimated floods significantly, but it also

overestimates a few flood peaks (Figure 7). Reasons for

overestimation could be that a single calibrated Fc could

not represent the different precipitation patterns, overland

flow patterns and initial conditions prior to flooding

Figure 7 | Hydrographs of continuous simulations results of DDD rainfall-runoff models with flood peaks, i.e. observed, simulated with and without dynamic river network.

Table 7 | Observed and simulated floods using DDD with and without dynamic river network and the corresponding performance of the model for five sample catchments

Cat_ID Observed flood(s) in m3/s Simulation period

Simulated value(s)
of flood without
river dynamics
in m3/s

Performance of
DDD model
without
river dynamics
in calibration

Simulated value(s)
of flood with
river dynamics
in m3/s

Performance of
DDD model with
river dynamics

KGE BIAS KGE BIAS

12.193 29.42 2 years 12.97 0.64 1.2 28.78 0.65 1.2

19.107 11.65 and 16.2 3 years 7.64 and 10.3 0.8 0.93 9.42 and 16.1 0.81 0.94

41.8 43.96 and 36.13 2 years 28.02 and 26.74 0.77 0.84 36.3 and 40.3 0.77 0.84

73.27 18.85 3 years 13.3 0.71 0.76 18.3 0.71 0.76

91.2 12.06 2 years 8.34 0.71 0.8 12.04 0.71 0.8

Italic numbers are rounded to two significant figures.
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events. Another reason for such overestimation could be

that the dynamic Dm estimated using Equation (3) is not

always an accurate representation of the reality during a

flood event. The limitations of manual calibration include

subjectivity and time consuming. Manual calibration

methods are subjective in the evaluation of model fit and

the final choice of optimal parameters. Ndiritu ()

Figure 8 | Distributions of relative errors (%) of prediction of 91 flood peaks with and without dynamic river network.

Figure 9 | Distributions of critical supporting area, i.e., Ac of observed stream networks for five of sample study catchments.

Table 8 | Correlation between calibrated critical flux, Fc of the dynamic river network with
environmental variables, and correlation between mean critical area, Ac of the

observed river network with some environmental variables

Forest
(%)

Bare
mountain (%)

Mean hillslope
slope (%)

Mean annual
precipitation (mm)

Mean Ac (m
2) 0.63 �0.63 �0.56 �0.49

Fc (m
3/h) 0.46 �0.5 �0.29 �0.18
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pointed out that manual calibration may be more prone to

obtaining suboptimal parameter sets than automatic cali-

bration. Studies also show that manual calibration is more

subjective than automatic calibration because it largely

depends on visual hydrograph inspection and the personal

judgment of the hydrologist. Substantial amount of time is

also required to adjust Fc so that the observed and simulated

flood peaks agreed well. A separate automatic calibration of

Fc (which is not included in this study) after defining and

writing appropriate objective function could improve the

limitations of the manual calibration. However, since we

have only one manually calibrated parameter and we have

enough experience of using DDD model, the manual cali-

bration result of Fc could be very good. In addition, the

results of our study show that the manually calibrated Fc

resulted in a significant improvement in predicting flood

peaks using dynamic river network method.

The hydrograph in Figure 7 shows that the two floods of

the catchment 41.8 could not be estimated well using a

single calibrated Fc of magnitude 15 m3/h even if the overall

prediction of the flood peaks is improved. When we look at

the flood hydrographs, the 27 November flood of 43.96 m3/s

(at 8 A.M), had been preceded by a 1-day precipitation of

68.9 mm (from 26 November 2011 09:00 to 27 November

2011 08:00). The precipitation was again preceded by a

3-day precipitation of magnitude 86.1 mm, i.e., the 4-day

precipitation preceded the flooding event was 154.9 mm.

When Fc is fitted to this single flooding event, 5 m3/h is

required. After 1 month, another heavy precipitation event

happened (56.9 mm/day) and the event was preceded by

82.2 mm of 3-day precipitation, i.e., the 4-day precipitation

preceded the flooding event was 139.7 mm. The magnitude

of the flood was 36.13 m3/s. When Fc is fitted to this

single flooding event, 25 m3/h is required. The variation in

the fitted values of Fc for different flooding events in a

catchment shows that we could have an overestimation of

flooding events when we use a single calibrated Fc for the

whole simulation period as a representative for a catchment.

Accordingly, a single Fc of 15 m3/h for the catchment

41.8 has overestimated the December 2011 flood, i.e.,

36.13 m3/s, but it has improved the overall prediction of

the flood peaks in the catchment.

The spatial variability of Ac during flooding events,

which is not considered in this study, could also be another

Table 9 | The environmental factors used in the correlation analysis, the mean distance distribution, and mean critical area, Ac of observed river network, and the calibrated critical flux, Fc
of the dynamic river network routine

Cat_ID

Environmental factors
Observed river
network

Dynamic river network
Forest (%) Bare mountain (%) Mean annual precipitation (mm) Mean hillslope slope (%) Dm (m) Mean Ac (m2) Fc (m3/h)

6.1 94.3 0 886 18.3 149.2 92,406 15

12.193 88.4 0 840 15.3 301.1 560,042 190

19.107 86.4 0 1,158 14.7 336.9 689,123 370

26.64 38.8 46.2 1,688 28.3 181.6 146,146 5

36.32 13.5 81.4 2,377 34.1 168.6 135,213 120

41.8 8.8 82.2 2,955 37.5 157.2 53,418 15

42.2 40.7 52.1 2,361 40.4 175.9 117,477 30

55.4 51.8 30.7 2,593 41.9 155.1 76,715 15

63.12 5.8 86.1 2,579 34.4 181.2 93,596 80

68.2 20.2 50.3 2,736 43.6 211.3 75,573 150

73.21 2.2 88 946 21.5 298.4 216,464 15

73.27 0.1 89.4 679 14.8 189.4 100,964 60

91.2 3.7 66.5 2,072 29.9 283.8 137,481 90

101.1 61.3 11.3 1,704 23.9 334.0 328,354 150

172.8 1.4 82.5 1,465 17 168.1 95,972 10
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factor for the overestimation of floods using a single cali-

bration value of Fc for a catchment. We have derived the

coefficients of Equation (3) (a and b) with the assumption

of constant Ac using the DEM, which considers only the

topography of a catchment. However, the Ac of observed

stream networks clearly shows that there is a spatial variabil-

ity of Ac within a catchment. Geological and land use

factors play significant roles in initiating and maintaining a

stream, and these factors control the spatial variability of

Ac in a catchment (Montgomery & Dietrich ; Ogden

et al. ; Sjöberg ; Ward et al. ) in addition to

the topography. The correlation results between Ac and

vegetation cover, which is done in this study and explained

in the next section, also confirm that the land use affects the

spatial variability of Ac. Figure 7 shows box plots of the

spatial distributions of Ac of observed stream network for

five sample catchments. For flooding events preceded by

short duration and higher values of OF, Equation (3) gives

very low values of Dm. The very low Dm gives OUHs

of sharp peak and short scales which overestimated the

floods. However, if we had calculated the actual Dm using

the spatial variability of Ac, we could have found higher

values of Dm than the value calculated using Equation (3)

and the overestimation could have been avoided.

For estimating the parameters of travel time distri-

butions of overland flow of a hillslope, we followed the

original approach used in DDD (e.g. the distance from any

point in the catchment to the nearest river network is

calculated using the Euclidean distance and the celerity is

determined from recession analysis). The GIUH and of

width function estimates the distribution of travel times at

the outlet of a catchment combining the hillslope and river

network travel times using the steepest descent path from

any point in the catchment to the outlet and the shape

and scale parameters of the travel time distribution could

change with the extent of hillslope saturation. Therefore,

further investigation, i.e., comparison assessment is required

before concluding as one method is better than the other.

Correlation of Ac and Fc with environmental factors

Environmental factors such as vegetation cover, topography

and climate, affect Ac and hence Dm. Land use (e.g.

vegetation cover) affects the hydrology and can affect

subsurface as well as overland flow which in turn can

cause changes in the stream network, i.e., Ac ( Jonathan &

Dennis ). The correlation results show that the denser

the vegetation cover in a catchment the higher the Ac is

required for initiating and maintaining a stream and vice

versa, i.e., positive correlation with forest and negative

correlation with bare mountain. The correlation result con-

firms the findings that a decrease in vegetation causes a

decrease in surface resistance and critical shear stress,

which result in an increase of drainage density (a reduction

in Dm), i.e., streams form easier in less vegetated catchments

(Willgoose et al. ; Prosser & Dietrich ; Magnuson

et al. ; Tucker & Slingerland ). Field observations

also show that higher Dm and hence higher Ac is generally

observed in denser vegetation cover (Morisawa ).

The steepness of a catchment is one of the topographical

factors controlling Ac and hence Dm. In this study, we

used the mean hillslope slope of a catchment and found

that a catchment hillslope slope has negative correlation

with Ac, i.e., the higher the steepness, the lower the Ac

required to initiate and maintain stream. This finding is

supported by Montgomery & Dietrich () who found

that stream initiation on steep slopes shows a negative

relationship between valley gradient at the stream head

and Ac, i.e., the higher the stream head slope the lower

the Ac (lower Dm).

The positive correlation between Fc and vegetation

cover in a catchment shows that the denser the vegetation

covers, the higher the Fc. Fc shows negative correlation

with bare mountain, mean hillslope slope and mean

annual precipitation of a catchment. The Ac and hence Fc

depend on several factors, which include geology, precipi-

tation, vegetation, morphology, soils and land uses, and

one factor may be more important than another (see

Table 8). Therefore, a more detailed investigation supported

by field work (e.g. mapping of the slope, geology, vegetation

cover and soil of a catchment at the head of first-order

streams of observed river networks and mapping of the

pattern of expansion of first-order streams during flooding

events) should be carried out to assess how the combination

of these factors control Ac and hence Fc.

We have done a simple multiple linear regression analy-

sis using the four environmental factors as predictors, i.e.,

forest, bare mountain, slope and mean annual precipitation,
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to estimate the response variable Fc. The result shows that

only bare mountain is contributing significantly in estimat-

ing Fc with a significance level of 0.1, and the coefficient

of determination of the regression (R2) is 0.3. The objective

of the regression analysis, done in this study, is to assess a

preliminary method for regionalization that can predict Fc

for ungauged catchments from environmental factors and

to lay a foundation for further studies.

A dynamic river network method could be implemented

in rainfall-runoff models as shown for DDD for prediction of

floods for catchments with a wide range of topography

and land uses (Table 1). In this study, the effect of steep

hills is reflected in the dynamic river networks as the

steepness of a catchment is one of the factors that govern

the initiation of streams. As shown in Table 8, the mean

hillslope slope has a negative correlation with Ac, i.e., we

need a smaller Ac to initiate and maintain streams in steep

topography than in a flat topography. Table 9 also shows

that the mean Ac of an observed stream network decreases

as the mean hillslope slope of a catchment increases. The

fundamental theory behind the method is the expansion of

river networks during flooding events, i.e., whether the

critical flux, Fc, which is required to initiate and maintain

a stream, is satisfied or not. The magnitude of Fc depends

on the magnitude of saturation excess overland flow, OF,

and the critical support area, Ac. The study results also

show that the critical support area, required to initiate and

maintain a stream, is smaller in steep and bare mountain

catchments than flat and forested catchments. Therefore,

the method could be applicable at different catchments

with different characteristics.

CONCLUSIONS

The dynamic river network method, introduced in Distance

Distribution Dynamics (DDD) rainfall-runoff model, can

improve the prediction of flood peaks in continuous simu-

lation satisfactorily. The performance of the DDD model

is the same with and without dynamic river network in

terms of KGE and BIAS. The statistical analysis on 91

flood peaks, underestimated by DDD without dynamic

river network method, shows that the MARE of the predic-

tion reduced from 32.9% to 15.7% using the dynamic river

network method. With a dynamic river network method,

the 0.75 quantile of the relative errors reduced from 41%

to 23%, and the 0.25 quantile of the relative errors reduced

from 22% to 1%. The visual inspection of the hydrographs

also shows an improvement in the prediction of flood

peaks for several flooding events. Therefore, we recommend

the use of a dynamic river network method in the prediction

of floods. The next step in the development of the method is

to investigate the applicability of the method from gauged

to ungauged catchments and find a way to address the

limitations identified in this study.

The critical flux, Fc, the calibration parameter intro-

duced in the method, has been formulated as the product

of critical supporting area (Ac) and the saturated excess

overland flow (OF). Fc shows stronger correlation with

vegetation cover than topographical and climate factors.

The parameter shows positive correlation with forest

cover of catchments, and negative correlation with bare

mountain, mean hillslope slope and mean annual precipi-

tation. The simple multiple linear regression, using the

four environmental factors as predictors and Fc as a

response variable, shows that there is a potential to estimate

Fc from environmental factors and regionalize it for

using the method without calibration. The value of the cali-

brated Fc could be different for the same catchment of

different flood magnitudes, and it could be different for the

same type of vegetation cover for different catchments.

This difference shows that Fc could depend on several

environmental factors and further investigations should be

carried out.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Cristian Lussana of

the Norwegian Meteorological Institute for providing

information on how to access and process the 1 × 1 km

spatial and 1-h temporal resolution gridded precipitation

and temperature data for Norway. Finally, the authors

gratefully acknowledge the financial support by the

Research Council of Norway and several partners through

the Centre for Research-based Innovation ‘Klima 2050’

(see www.klima2050.no).

20 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | in press | 2019

Corrected Proof



REFERENCES

Bencala, K. E., Gooseff, M. N. & Kimball, B. A.  Rethinking
hyporheic flow and transient storage to advance
understanding of stream-catchment connections. Water
Resources Research 47, 3. doi:10.1029/2010WR010066.

Bergström, S.  Development and Application of a Conceptual
Runoff Model for Scandinavian Catchments. Department of
Water Resources Engineering, Lund Institute of Technology,
University of Lund, Lund.

Beven, K. b Rainfall-Runoff Modelling: The Primer. John
Wiley and Sons, Chichester, UK, pp. 1–360.

Blaikie, P., Cannon, T., Davis, I. & Wisner, B.  At Risk:
Natural Hazards, People’s Vulnerability and Disasters.
Routledge, London.

Blazkova, S. & Beven, K.  Flood frequency estimation by
continuous simulation for a catchment treated as ungauged
(with uncertainty). Water Resources Research 38 (8),
14-11–14-14. doi:10.1029/2001WR000500.

Boughton, W. & Droop, O.  Continuous simulation for design
flood estimation – a review. Environmental Modelling &
Software 18, 309–318. https://doi.org/10.1016/S1364-
8152(03)00004-5.

Bourdin, D. R., Fleming, S. W. & Stull, R. B.  Streamflow
modelling: a primer on applications, approaches and
challenges. Atmosphere-Ocean 50 (4), 507–536. doi:10.1080/
07055900.2012.734276.

Bras, R. L. Hydrology: An Introduction to Hydrologic Science.
Addison-Wesley, Reading, MA.

Brocca, L., Melone, F. & Moramarco, T.  Distributed rainfall-
runoff modelling for flood frequency estimation and flood
forecasting. Hydrological Processes 25 (18), 2801–2813.
doi:10.1002/hyp.8042.

Calver, A. & Lamb, R.  Flood frequency estimation using
continuous rainfall-runoff modelling. Physics and Chemistry
of the Earth 20 (5), 479–483. doi:10.1016/S0079-1946(96)
00010-9.

Cameron, D., Beven, K., Ja, T. & Naden, P.  Flood frequency
estimation by continuous simulation (with likelihood based
uncertainty estimation. Hydology and Earth System Sciences
4, 23–34.

Camici, S., Tarpanelli, A., Brocca, L., Melone, F. & Moramarco, T.
 Design soil moisture estimation by comparing
continuous and storm-based rainfall-runoff modeling. Water
Resources Research 47, 5. doi:10.1029/2010WR009298.

Chetty, K. & Smithers, J.  Continuous simulation modelling
for design flood estimation in South Africa: preliminary
investigations in the Thukela Catchment. Quarterly Journal
of the Royal Meteorological Society 30, 3–23.

Chorley, R. J. & Morgan, M. A.  Comparison of morphometric
features, Unaka Mountains, Tennessee and North Carolina,
and Dartmoor, England. GSA Bulletin 73 (1), 17–34. doi:10.
1130/0016-7606(1962)73[17:COMFUM]2.0.CO;2.

Collier, C. G.  Flash flood forecasting: what are the limits of
predictability? Quarterly Journal of the Royal Meteorological
Society 133 (622), 3–23. https://doi.org/10.1002/(SICI)1099-
1085(19970630)11:8<825::AID-HYP509>3.0.CO;2-G.

Day, D. G.  Drainage density variability and drainage basin
outputs. Journal of Hydrology (New Zealand) 22 (1), 3–17.

Di Lazzaro, M., Zarlenga, A. & Volpi, E.  A new approach to
account for the spatial variability of drainage density in
rainfall-runoff modelling. Boletin Geologico y Minero 125 (3),
301–313.

Dingman, S. L.  Drainage density and streamflow: a closer
look. Water Resources Research 14 (6), 1183–1187. doi:10.
1029/WR014i006p01183.

D’Odorico, P. & Rigon, R.  Hillslope and channel
contributions to the hydrologic response. Water Resources
Research 39, 5. doi:10.1029/2002WR001708.

Dunne, T.  Field studies of hillslope flow processes. In:
Hillslope Hydrology, Vol. 9 (M. J. Kirkby ed.), Geographical
Research Letters 9, 227–293.

Eschenbach, D., Haberlandt, U., Buchwald, L. & Belli, A. 
Derived flood frequency analysis using rainfall runoff
modelling and synthetic precipitation data. Wasserwirtchaft
98 (11), 19–23.

ESRI  ArcGISDesktop Help 10.3 Geostatistical Analyst.
https://www.esri.com/en-us/home.

Filipova, V., Lawrence, D. & Skaugen, T.  A stochastic event-
based approach for flood estimation in catchments with
mixed rainfall/snowmelt flood regimes. Natural Hazards and
Earth System Sciences Discussion 2018, 1–30. doi:10.5194/
nhess-2018-174.

Fleig, A. K. & Wilson, D.  Flood Estimation in Small
Catchments: Literature StudyNaturfareprosjektet,Rapport
(Norges Vassdrags-og Energidirektorat: Online) (Vol. no.
60-2013). Norwegian Water Resources and Energy
Directorate, Oslo.

Formetta, G., Prosdocimi, I., Stewart, E. & Bell, V.  Estimating
the index flood with continuous hydrological models: an
application in Great Britain. Hydrology Research 49, 23–33.

Gao, H., Cai, H. & Duan, Z.  Understanding the impacts of
catchment characteristics on the shape of the storage
capacity curve and its influence on flood flows. Hydrology
Research 49 (1), 90–106. doi:10.2166/nh.2017.245.

Godsey, S. E. & Kirchner, J. W.  Dynamic, discontinuous
stream networks: hydrologically driven variations in active
drainage density, flowing channels and stream order.
Hydrological Processes 28 (23), 5791–5803. doi:10.1002/hyp.
10310.

Gupta, V. K., Waymire, E. & Wang, C. T.  A representation of
an instantaneous unit hydrograph from geomorphology.
Water Resources Research 16 (5), 855–862. doi:10.1029/
WR016i005p00855.

Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. 
Decomposition of the mean squared error and NSE
performance criteria: implications for improving

21 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | in press | 2019

Corrected Proof



hydrological modelling. Journal of Hydrology 377 (1), 80–91.
doi:10.1016/j.jhydrol.2009.08.003.

Haberlandt, U. & Radtke, I.  Hydrological model calibration
for derived flood frequency analysis using stochastic rainfall
and probability distributions of peak flows. Hydrology and
Earth System Sciences 18 (1), 353–365. doi:10.5194/hess-18-
353-2014.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L.,
Yamazaki, D., Watanabe, S. & Kanae, S.  Global flood
risk under climate change. Nature Climate Change 3, 816.
doi:10.1038/nclimate1911. https://www.nature.com/
articles/nclimate1911#supplementary-information

Horton, R. E.  Drainage-basin characteristics. Eos,
Transactions American Geophysical Union 13 (1), 350–361.
doi:10.1029/TR013i001p00350.

Horton, R. E.  Erosional development of streams and their
drainage basins: hydrophysical approach to quantitative
morphology. Bulletin of the Geological Society of America
56, 275-370. Progress in Physical Geography: Earth and
Environment 19 (4), 533–554. doi:10.1177/
030913339501900406.

Humbert, J.  Interet de la densite de drainage pour
regionaliser les donnees hydrologiques en zone
montagneuse. In: Hydrology in Mountainous Regions I,
Hydrological Measurements, the Water Cycle. IAHS
Publisher, Strasbourg, pp. 373–380.

Jonathan, L. L. M. & Dennis, P. L.  Effects of forest roads on
flood flows in the Deschutes river. Earth Surface Processes
and Landforms 26, 115–134, Vol. 26. Washington.

Lamb, R. & Kay, A. L.  Confidence intervals for a spatially
generalized, continuous simulation flood frequency model
for Great Britain. Water Resources Research 40 (7). doi:10.
1029/2003WR002428.

Lazzaro, D. M., Zarlenga, A. & Volpi, E.  Hydrological effects
of within-catchment heterogeneity of drainage density.
Advances in Water Resources 76, 157–167. doi:10.1016/j.
advwatres.2014.12.011.

Lee, K. T., Chen, N.-C. & Chung, Y.-R.  Derivation of variable
IUH corresponding to time-varying rainfall intensity during
storms/Dérivation d’un HUI variable correspondant à
l’évolution temporelle de l’intensité pluviométrique durant
les averses. Hydrological Sciences Journal 53 (2), 323–337.
doi:10.1623/hysj.53.2.323.

Lu, Q. & Han, Q.-L.  A probability particle swarm optimizer
with information-sharing mechanism for odor source
localization. IFAC Proceedings Volumes 44 (1), 9440–9445.
doi:10.3182/20110828-6-IT-1002.00507.

Lussana, C., Ole Einar, T. & Francesco, U.  Senorge v2.0: an
observational gridded dataset of temperature for Norway.
METreport 108, 75–86.

Magnuson, J., Webster, K., Assel, R., Bowser, C., Dillon, P., Eaton,
J. & Mortsch, L.  Potential effects of climate changes on
aquatic systems: Laurentian Great Lakes and Precambrian
Shield region. Hydrological Processes 11. doi:10.1002/(SICI)
10991085(19970630)11:8<825::AID-HYP509>3.3.CO;2-7.

Maidment, D. R.  Developing A Spatially Distributed Unit
Hydrograph by Using GIS. IAHS Publication, Austin, TX, 211,
pp. 181–192.

Moglen, G. E., Eltahir, E. A. B. & Bras, R. L.  On the sensitivity
of drainage density to climate change. Water Resources
Research 34 (4), 855–862. doi:10.1029/97WR02709.

Montgomery, D. R. & Dietrich, W. E.  Source areas, drainage
density, and channel initiation. Water Resources Research
25 (8), 1907–1918. doi:10.1029/WR025i008p01907.

Morisawa, M.  Rivers. Form and Process. Longman Inc,
New York.

Ndiritu, J.  A comparison of automatic and manual
calibration using the Pitman Model. Engineering 34, 62–63.

Nhim, T.  Variability of Intermittent Headwater Streams in
Boreal Landscape: Influence of Different Discharge
Conditions. 248 Student Thesis. Available from: http://urn.kb.
se/resolve?urn=urn:nbn:se:uu:diva-183137; DiVA database.

Ogden, F. L., Raj Pradhan, N., Downer, C. W. & Zahner, J. A. 
Relative importance of impervious area, drainage density,
width function, and subsurface storm drainage on flood
runoff from an urbanized catchment. Water Resources
Research 47 (12). doi:10.1029/2011WR010550.

Papageorgaki, I. & Nalbantis, I.  Definition of critical support
area revisited. European Water 57, 273–278.

Pathiraja, S., Westra, S. & Sharma, A.  Why continuous
simulation? The role of antecedent moisture in design flood
estimation. Water Resources Research 48, 6. doi:10.1029/
2011WR010997.

Plate, E. J.  Classification of hydrological models for flood
management. Hydrology and Earth System Sciences 13 (10),
12. doi:10.5194/hess-13-1939-2009.

Prosser, I. P. & Dietrich, W. E.  Field experiments on erosion
by overland flow and their implication for a digital terrain
model of channel initiation. Water Resources Research
31 (11), 2867–2876. doi:10.1029/95WR02218.

Rahman, A., Hoang, T. M. T., Weinmann, P. E. & Laurenson,
E. M.  Joint Probability Approaches to Design Flood
Estimation: A Review Report 98/8. CRC for Catchment
Hydrology, Clayton, VIC.

Razi, M., Ariffin, J., Tahir, W. & Arish, N. A. M.  Flood
estimation studies using hydrologic modeling system (HEC-
HMS) for Johor river. Journal of Applied Sciences 10,
930–939. doi:10.3923/jas.2010.930.939.

R Core Team  R: A Language and Environment for Statistical
Computing. Available from: http://www.R-project.org/

Reis, D. S. & Stedinger, J. R.  Bayesian MCMC flood
frequency analysis with historical information.
Journal of Hydrology 313 (1), 97–116. doi:10.1016/j.jhydrol.
2005.02.028.

Rigon, R., D’Odorico, P. & Bertoldi, G.  The geomorphic
structure of the runoff peak. Hydrology and Earth
System Sciences 15 (6), 1853–1863. doi:10.5194/hess-15-
1853-2011.

Rinaldo, A., Marani, A. & Rigon, R.  Geomorphological
dispersion. Water Resources Research 27 (4), 513–525.

22 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | in press | 2019

Corrected Proof



Rinaldo, A., Vogel, G. K., Rigon, R. & Rodriguez-Iturbe, I. 
Can one gauge the shape of a basin? Water Resources
Research 31 (4), 1119–1127. doi:10.1029/94WR03290.

Robinson, J. S., Sivapalan, M. & Snell, J. D.  On the relative
roles of hillslope processes, channel routing, and network
geomorphology in the hydrologic response of natural
catchments. Water Resources Research 31 (12), 3089–3101.
doi:10.1029/95WR01948.

Rodríguez-Iturbe, I. & Valdés, J. B.  The geomorphologic
structure of hydrologic response. Water Resources Research
15 (6), 1409–1420. doi:10.1029/WR015i006p01409.

Rusjan, S., Kobold, M. & Mikoš, M.  Characteristics
of the extreme rainfall event and consequent flash
floods in W Slovenia in September 2007. Natural Hazards
and Earth System Sciences 9, 3. doi:10.5194/nhess-9-947-
2009.

Schaefer, M., Elifrits, D. & Barr, D.  Sculpturing Reclaimed
Land to Decrease Erosion, Paper Presented at the Symposium
on Surface Mining Hydrology, Sedimentology and
Reclamation. University of Lexington, Kentucky.

Singh, V. P.  Computer Models of Watershed Hydrology. Water
Resources Publications, Littleton, CO.

Singh, V. P. & Frevert, D. K.  Watershed models.
Experimental Agriculture 42 (3), 370. doi:10.1017/
S0014479706293797.

Sjöberg, O.  The Origin of Streams: Stream Cartography in
Swiss Pre Alpine Headwater. 16003 Student Thesis. Available
from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-
277377 DiVA database.

Skaugen, T. & Mengistu, Z.  Estimating catchment-scale
groundwater dynamics from recession analysis – enhanced
constraining of hydrological models. Hydrology and Earth
System Sciences 20 (12), 4963–4981. doi:10.5194/hess-20-
4963-2016.

Skaugen, T. & Onof, C.  A rainfall-runoff model
parameterized from GIS and runoff data. Hydrological
Processes 28 (15), 4529–4542. doi:10.1002/hyp.9968.

Skaugen, T. & Weltzien, I. H.  A model for the spatial
distribution of snow water equivalent parameterized from the
spatial variability of precipitation. The Cryosphere 10 (5),
1947. doi:10.5194/tc-10-1947-2016.

Skaugen, T., Peerebom, I. O. & Nilsson, A.  Use of a
parsimonious rainfall–run-off model for predicting

hydrological response in ungauged basins. Hydrological
Processes 29 (8), 1999–2013. doi:10.1002/hyp.10315.

Smithers, J.  Methods for design flood estimation in South
Africa. Water SA 38, 633–646.

Smithers, J., Chetty, K., Frezghi, M., Knoesen, D. & Tewolde, M.
 Development and assessment of a daily time-step
continuous simulation modelling approach for design flood
estimation at ungauged locations: ACRU model and Thukela
Catchment case study. Water SA 39, 00–00.

Thiemig, V., Rojas, R., Zambrano-Bigiarini, M. & De Roo, A. 
Hydrological evaluation of satellite-based rainfall estimates
over the Volta and Baro-Akobo Basin. Journal of Hydrology
499, 324–338. doi:10.1016/j.jhydrol.2013.07.012.

Thomas, W. O.  An evaluation of flood frequency estimates
based on rainfall/runoff modeling1. JAWRA Journal of the
American Water Resources Association 18 (2), 221–229.
doi:10.1111/j.1752-1688.1982.tb03964.x.

Tsegaw, A. T., Alfredsen, K., Skaugen, T. & Muthanna, T. M. 
Predicting hourly flows at ungauged small rural catchments
using a parsimonious hydrological model. Journal of
Hydrology. doi:10.1016/j.jhydrol.2019.03.090.

Tucker, G. E. & Slingerland, R.  Drainage basin responses to
climate change.Water Resources Research 33 (8), 2031–2047.
doi:10.1029/97WR00409.

Tucker, G. E., Catani, F., Rinaldo, A. & Bras, R. L.  Statistical
analysis of drainage density from digital terrain data.
Geomorphology 36 (3), 187–202. doi:10.1016/S0169-
555X(00)00056-8.

Ward, A. S., Schmadel, N. M. & Wondzell, S. M.  Simulation
of dynamic expansion, contraction, and connectivity in a
mountain stream network. Advances in Water Resources
114, 64–82. doi:10.1016/j.advwatres.2018.01.018.

Wharton, G.  Progress in the use of drainage network indices
for rainfall-runoff modelling and runoff prediction. Progress
in Physical Geography: Earth and Environment 18 (4),
539–557. doi:10.1177/030913339401800404.

Willgoose, G., Bras, R. L. & Rodriguez-Iturbe, I.  A coupled
channel network growth and hillslope evolution model: 1.
Theory. Water Resources Research 27 (7), 1671–1684. doi:10.
1029/91WR00935.

Winsemius, H., Aerts, J., van Beek, L. P. H., Bierkens, M. F. P.,
Bouwman, A., Jongman, B. & Ward, P.  Global drivers of
future river flood risk. Nature Climate Change 6, 381–385.

First received 19 December 2018; accepted in revised form 5 July 2019. Available online 26 August 2019

23 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | in press | 2019

Corrected Proof





 

 

 

 

 

 

 

Paper III: 

Hydrological impacts of climate change on small ungauged catchments-

results from a GCM-RCM-hydrologic model chain  

Tsegaw, A.T., Kristvik, Erle, Pontoppidan, M., Alfredsen, K., Muthanna, T. M. 

Manuscript  

 



This article is awaiting publication and is not included in NTNU Open 



 

 

 

 

 

 

 

 

 

 

 

Appendix B: Statements from co-authors 









   

 

NTNU 
 

Encl. to  app-
lication for 
assessment of 
PhD thesis 

 
 

STATEMENT FROM CO-AUTHOR 
(cf. section 10.1 in the PhD regulations) 

 
 
Aynalem Tassachew Tsegaw applies to have the following thesis assessed: 
 
 
 

Predicting flows in ungauged small rural catchments using hydrological modelling 

 
 
*) The declaration should describe the work process and division of labor, specifically identifying the 
candidate’s contribution, as well as give consent to the article being included in the thesis. 
  
*) Statement from co-author Marie Pontoppidan 
 
I hereby declare that I am aware that the work entitled as follows, of which I am co-author, will form 
part of the PhD Thesis by the PhD candidate who made a significant contribution to the work in the 
planning phase, research phase and writing phase: 
 

 
• Hydrological impacts of climate change on small ungauged catchments-results from a 

GCM-RCM-hydrologic model chain 
 

 
 
Bergen d. 23. aug 2019     …..…………………………… 
Place, date      Signature co-author 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- 

………………………………………........................................……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Signature co-authhhhhhhhhhhhhhhhorororoorooorooroorororororoooororrroooooorrrorooorrroororrorrrooorrrrroorrroooorrrooororrrororrooorrooroooooooooo  




	107836_PhDCover_Aynalem
	107836_NY_PhDthesis_AynalemTsegaw_83%
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




