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Abstract— Networked systems comprised of multiple nodes
with sensing, processing, and communication capabilities are
able to provide more accurate estimates of some state of
a dynamic process through communication between the net-
work nodes. This paper considers the distributed estimation
or tracking problem and focuses on a class of consensus
normalized algorithms. A distributed algorithm consisting of
two well-studied parts, namely, Simultaneous Perturbation
Stochastic Approximation (SPSA) and the consensus approach
is proposed for networked systems with uncertainties. Such
combination allows us to relax the assumption regarding the
strong convexity of the minimized mean-risk functional, which
may not be fulfilled in the distributed optimization problems.
For the proposed algorithm we get a mean squared upper
bound of residual between estimates and unknown states. The
theoretically established properties of proposed algorithm are
illustrated by simulation results.

I. INTRODUCTION

Current research directions related to parameter estima-
tion problems are motivated by the ubiquity of networked
systems. The need to control the behavior of such systems
for real-world applications leads to the active development
of various distributed algorithms [1]. The distributed problem
domain, networked system constraints and uncertainties pose
new challenges stimulating researchers to come up with the
new theory or improve the existing one.

Stochastic optimization is commonly used to solve the
problems involving different kinds of uncertainties, e.g.,
noisy measurements, external disturbances. Methods of this
class include stochastic approximation [2], finite-difference
stochastic approximation [3], simultaneous perturbation
stochastic approximation (SPSA) [4] or randomized stochas-
tic approximation [5]. In gradient-free conventional stochas-
tic approximation algorithms, two measurements are used to
approximate each component of the vector-gradient of the
cost function (implying 2d measurements for d-dimension
state space). SPSA can be used to solve optimization prob-
lems in the case when it is difficult or impossible to obtain a
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gradient of the loss function with respect to the parameters
being optimized. In multidimensional case (d >> 1), SPSA
requires only two measurements of a loss function on each
iteration. In this algorithm, a current estimate is changed
along randomly chosen direction ∆ consisting of Bernoulli
distributed components.

Traditionally, the decreasing to zero step-size is used in
the stochastic approximation algorithms. A sufficiently small
constant step-size is often used in the case of the non-
stationary loss function minimization [6], [7], e.g. for the
tracking of unknown system states or changes in the system
parameters because they may vary over time. Stochastic ap-
proximation algorithms are used for tracking with a constant
step-size in [8]–[11]. In [8], [11] the SPSA-like algorithms
are considered for the case of the non-constrained optimiza-
tion in the context of the minimum tracking problem. In other
case the stochastic approximation method with a constant
step-size is used in [12] to achieve the approximate mean-
squared consensus in multi-agent systems operating under
noisy conditions.

One of the main restrictions of SPSA-like algorithms
is the assumption regarding the strong convexity of the
minimized mean-risk functional. More recently, the research
has moved to the combination of optimization or estimation
methods and a consensus approach which is broadly used
in networked systems [13]–[15]. This approach aims to find
an agreement between all agents of a group to a common
value across a networked system using only local information
and communicating among neighboring agents. In [16], the
authors presented the gossip optimization algorithm that
minimizes a sum of functions when each component function
is only known to a specific node in a networked system and
utilizes the information exchange between nodes. The cyclic
approach or a block scheme are natural extensions. A block
stochastic gradient method that benefits of both stochastic
gradient approximation and block-coordinate updates was
proposed in [17]. Similarly, such approach was used in [18].
Cyclic SPSA algorithm was studied in several works under
different problem settings [11], [19], [20]. In this paper, we
have relaxed the mentioned above strong convexity assump-
tion by combining SPSA with the consensus Local Voting
Protocol from [12], [21]. The idea of the new algorithm
is similar to joining Least Mean Squares with consensus
algorithm in [22].

The rest of this paper is organized as follows. Section II
provides notations used in the paper. The formal problem
setting of a non-constrained time-varying mean-risk opti-
mization is given in Section III. The SPSA-based consensus
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algorithm for tracking is introduced in Section IV. The as-
sumptions and main result concerning stability properties of
the proposed algorithm are given in Section V. In Section VI,
we consider a numerical example and show the simulation
results. Section VII concludes the paper.

II. MATHEMATICAL PRELIMINARIES

In subsequent sections, we use the following notations.
Consider a dynamic network system of n agents, which

collaborate among themselves. Without loss of generality,
agents in the network system are numbered. Let N =
{1, . . . , n} be the set of agents, and i ∈ N be the number of
an agent. ∀i ∈ N let N i

t be a subset of all agents: N i
t ⊂ N ,

which are able to send information to agent i. Here and
after, an upper index of agent i is used as the corresponding
number of an agent (while not as an exponent).

Let the network topology be modeled by a digraph (N , E),
where E denotes the set of edges of topology graph (N , E).
The corresponding adjacency matrix is denoted as A = [ai,j ],
where ai,j > 0 if agent j is connected to agent i (i.e. if there
is an arc from j to i) and ai,j = 0 otherwise. Denote GA the
graph corresponding to adjacency matrix A.

To introduce some properties of the network topology, the
following definitions from the graph theory will be used.
Define the weighted in-degree of node i as the sum of
i-th row of matrix A: deg+

i (A) =
∑n
j=1 a

i,j ; deg+
max(A)

is the maximum node in-degree in graph GA; D(A) =
diagn(col{deg+

1 (A), . . . ,deg+
n (A)}) is the corresponding

diagonal matrix. Here and further, col{x1, . . . ,xn} denotes a
vector obtained by stacking the specified vectors; diagn(b) is
a square diagonal matrix with vector b as the main diagonal.
Let L(A) = D(A) − A denote the Laplacian of graph GA.
·T is a vector or matrix transpose operation; ‖A‖ is the
Frobenius norm: ‖A‖ =

√∑
i

∑
j(a

i,j)2; Re(λ2(A)) is the
real part of the second eigenvalue of matrix A ordered by
the absolute magnitude; λmax(A) is the eigenvalue of matrix
A with maximum absolute magnitude; 1n = (1, . . . , 1)T is
the vector of n-times replication of ones; Id is the identity
matrix d × d. A ⊗ B is the Kronecker product defined for
any m× n and p× q matrices A and B.

III. PROBLEM STATEMENT

Let (Ω,F , P ) be the underlying probability space corre-
sponding to the sample space Ω with σ-algebra of all events
F and the probability measure P , and E be a mathematical
expectation symbol.

Let Ξ be a set, ∀i ∈ N {f iξ(θ)}ξ∈Ξ, be a family of differ-
entiable functions: f iξ(θ) : Rd → R, and let xi1,x

i
2, . . . be a

sequence of measurement points chosen by the experimenter
(observation plan), where the values yi1, y

i
2, . . . of functions

f iξ(·) are accessible to observations at every time instant
t = 1, 2, . . . , with additive external noise vit

yit = f iξt(x
i
t) + vit, (1)

where {ξt} is a non-controllable sequence: ξt ∈ Ξ (e.g.,
Ξ = N and ξt = t, or Ξ ⊂ Rp and {ξt} is a sequence of
some random elements).

Let Ft−1 be the σ-algebra of all probabilistic events which
happened up to time instant t = 1, 2, . . . , EFt−1 is a symbol
of the conditional mathematical expectation with respect to
the σ-algebra Ft−1.

Non-stationary problem formulation. The time-varying
point of minimum θt of the distributively computed mean-
risk function

F̄t(θ) =
∑
i∈N

F it (θ) = EFt−1

∑
i∈N

f iξt(θ)→ min
θ
, (2)

needs to be estimated.
More precisely, based on the observations yi1, y

i
2, . . . , y

i
t

and inputs xi1,x
i
2, . . . ,x

i
t, i ∈ N , we consider the problem

of constructing an estimate θ̂t of an unknown vector θt
minimizing the time-varying mean-risk functional (2) which
is a conditional expectation of the sum of distributed sub-
functions f iξt(θ).

Minimization of the functional Ft(θ) is usually studied
with simpler observation models

yit = F it (xt) + vit or yit = f iξt(xt), i ∈ N .

The generalization used in model (1) allows separation of
any uncertainties and observation disturbances with “good”
(e.g., zero-mean and independent and identically distributed
— i.i.d.) statistical properties {ξt} and arbitrary additive
external noise {vit}. Of course, this separation is not needed
when we can assume that {vit} is a random zero-mean and
independent and identically distributed as well.

Centralized algorithms usually require the distributed
agent network to transmit the whole system information
yi1, y

i
2, . . . , y

i
t, xi1,x

i
2, . . . ,x

i
t, i ∈ N , into a fusion center to

estimate the unknown vector θt, which may lack robustness
at the fusion center and need strong communication capa-
bility over the agent networks. In many practical situations,
agents may only have the capability to exchange information
locally with their neighbors with noise and delays, and
the network topology may switch over time. Moreover, a
lot of practical reasons lead to the problem setting with
cost constraints for the using network topology. In sensor
networks, the set of agents N is a set of n nodes distributed
over the geographic region.

We assume that to form its current estimates θ̂it at time
instant t agent i has its own noisy observation (1) and, if the
set N i

t is not empty, information about its neighbors’ current
estimates θ̂jt , j ∈ N i

t .

IV. SPSA-BASED CONSENSUS ALGORITHM

Let ∆i
k, k = 1, 2, . . . , i ∈ N , be an observed sequence

of independent Bernoulli random vectors from Rd with each
component independently taking values ± 1√

d
with proba-

bilities 1
2 . This sequence is usually called the simultaneous

test perturbation. Let us take fixed nonrandom initial vectors
θ̂i0 ∈ Rd, positive step-size α, gain coefficient γ, and choose
the scale of perturbation β > 0. We consider the algorithm
with two observations of distributed sub-functions f iξt(θ) for
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each agent i ∈ N for constructing sequences of points of
observations {xit} and estimates {θ̂it}:

xi2k = θ̂i2k−2 + β∆i
k, xi2k−1 = θ̂i2k−2 − β∆i

k,

θ̂i2k−1 = θ̂i2k−2,

θ̂i2k = θ̂i2k−1 − α
[
∆i
k

yi2k−y
i
2k−1

2β +

γ
∑
j∈N it

ai,j(θ̂i2k−1 − θ̂
j
2k−1)

]
.

(3)

The first part of the algorithm (3) is similar to SPSA-like
algorithm from [8] and the second one coincides with a local
voting protocol (LVP) from [12], where it was studied for
stochastic networks in the context of load balancing problem.
The SPSA part represents a stochastic gradient descent of
sub-functions f iξt(θ), and LVP part is determined for each
agent i by the weighted sum of differences between the
information about the current estimate θ̂i2k−1 of agent i and
information about the estimates of its neighbors.

Further, we use notation θ̄t = col{θ̂1
t , . . . , θ̂

n
t } for the

common vector of estimates of all agents at time instant t.
Also we introduce the following notations:

ȳt = diagn(col{y1
t , . . . , y

n
t }), ∆̄t÷2 = col{∆1

t÷2, . . . ,∆
n
t÷2}.

Using the notations introduced above, the algorithm (3) can
be rewritten in the following form

θ̄2k = θ̄2k−1 − α
[(

ȳ2k − ȳ2k−1

2β
⊗ Id

)
∆̄k+

γ(L(A)⊗ Id)θ̄2k−1

]
. (4)

V. ASSUMPTIONS AND MAIN RESULT

This section presents assumptions and Theorem 1 for the
algorithm (3).

First, let us formulate assumptions about the functions
F it (x), f iξt(x), ∀i ∈ N , noise, disturbances, and network
topology.
1: Functions F it (·) are convex and there is a common
minimum point θt and

∀x ∈ Rd 〈x− θt,EFt−1∇f iξt(x)〉 ≥ 0.

Here and further 〈·, ·〉 is a scalar product of two vectors.
2: ∀ξ ∈ Ξ the gradient ∇f iξ(x) satisfies the Lipschitz
condition: ∀x′,x′′ ∈ Rd

‖∇f iξt(x
′)−∇f iξt(x

′′)‖ ≤M‖x′ − x′′‖

with the same constant M > 0.
3: The gradient ∇f iξt is uniformly bounded in the mean-
squared sense at the minimum points θt: E‖∇f iξt(θt)‖

2 ≤
g2

2 , E〈∇f iξt(θt),∇f
i
ξt−1

(θt−1)〉 ≤ g2
2 (g2 = 0 if ξt is not a

random parameter, i.e. f iξt(x) = Ft(x)).
4: The drift is bounded: a) ‖θt − θt−1‖ ≤ δθ < ∞, or
E‖θt − θt−1‖2 ≤ δ2

θ and E‖θt − θt−1‖‖θt−1 − θt−2‖ ≤ δ2
θ

if a sequence {ξt} is random;
b) EF2k−2

|f iξ2k(x)−f iξ2k−1
(x)|q ≤ δqθ(g

q
0 +gq1‖x−θ2k−2‖q)

for q = 1, 2 and for any i ∈ N .
5: For n = 1, 2, . . . , the successive differences ṽik = vi2k −
vi2k−1 of observation noise are bounded: |ṽik| ≤ cv <∞, or

E(ṽik)2 ≤ c2v if a sequence {ṽit} is random.
6: For any i, j ∈ N a) vectors ∆i

k are mutually independent;
b) ∆i

k and ξ2k−1, ξ2k (if they are random) do not depend
on the σ-algebra F2k−2; c) if ξ2k−1, ξ2k, v̄

i
n are random,

then random vectors ∆i
k and elements ξ2k−1, ξ2k, v̄

i
n are

independent.
7: Graph GA is strongly connected.

Examples. Assumption 4 about the drift holds for the drift
with model θt = θt−1 + ζt−1, θt ∈ Rd, where {ζt} is a
sequence of random i.i.d. vectors which have symmetrical
distribution on the ball: ‖ζt‖ ≤ δθ, Eζt = 0, E‖ζt‖2 = σ2

ζ ,
E‖ζt‖4 = M4

ζ . If at time instant t for i ∈ N we can
measure the squared distance of projections ‖Proji(x −
θt)‖2 between a chosen point x and θt with additive bounded
non-random noise vit: |vit| < 1, then we have Ξ = N
and F it (x) = ‖Proji(x − θt)‖2. Here {Proji(·)} are a
set of projection operators into the set of subspaces of Rd.
Assumptions 2 and 3 hold with constants M = 2 and g0 = 3,
g1 = 2, g2 = 0.

To analyze the quality of estimates we apply the following
definition for the problem of minimum tracking for mean-
risk functional (2).

Definition. A sequence of estimates {θ̄2k} has an asymp-
totically efficient upper bound L̄ > 0 of residuals of estima-
tion if ∀ε > 0 ∃k̄ such that ∀k > k̄√

E‖θ̄2k − 1n ⊗ θ2k‖2 ≤ L̄+ ε.

Denote λ̄2 = Re(λ2(L(A))), λ̄m =

λ
1
2
max(L(A)TL(A)), δβ = δθ

2β , c1 = δβg1 + 1,
c2 = δ2

βg
2
1/M

2 + 1, cµ = (λ̄2 − αλ̄mMc1)/λ̄2
m,

cd =
√

1− 2α2M2c2λ̄2
m/(λ̄2 − αλ̄mMc1)2.

The following theorem shows the asymptotically effi-
cient upper bound of estimation residuals provided by al-
gorithm (3).

Theorem 1: If Assumptions 1–8 hold, positive constant α
is sufficiently small:

α <
λ̄2

λ̄mM(c1 +
√

2c2)
(5)

and

cµ(1− cd) < αγ < cµ(1 + cd) (6)

then the sequence of estimates provided by algorithm (3) has
an asymptotically efficient upper bound which equals to

L̄ =
1

µ

(
h+

√
h2 + lµ

)
, (7)

where µ = 2γλ̄2 − α(λ̄2
mγ

2 + 2αM(γλ̄mc1 +
Mc2)), h = γ(2

√
nλ̄mδθ + αλ̄mM(δβg0 +

2β)) + M(3.5 + g1/2)δθ + 2M2β, l =
4nδ2θ
α +

Mn(δ2
θ + 4β) + n

(
2.25δ2

θ + g2
2 + 4M2β2

)
+

αn
(

2
c2v+δ2θg

2
0

β2 +M(cv + δθg0) + 4Mβ(δθ(M + 0.5) + g2)
)
.

See the proof of Theorem 1 in Appendix.
Remarks. 1. The observation noise vt in Theorem 1 can be

said to be almost arbitrary since it may either be nonrandom
but bounded or it may also be a realization of some stochastic
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process with arbitrary internal dependencies. In particular, to
prove the results of Theorem 1, there is no need to assume
that vt and Ft−1 are not dependent.

2. The result of the Theorem 1 shows that for
the case without drift (δθ = 0) we have c1 =
c2 = 1 and the asymptotic upper bound is L̄ =

2M2β+

√
4Mβ(M3β+(1+Mβ)nµ)+α(2

c2v
β2

+Mcv)nµ

µ . Under any
noise level cv this bound can be made infinitely small by
choosing sufficiently small α and β. At the same time, in the
case of drift, the bigger drift norm δθ can be compensated
by choosing a bigger step-size α. This leads to a tradeoff
between making α smaller because of noisy observations
and making α bigger due to the drift of optimal points.

VI. SIMULATION

In this section, we show the numerical experiment, which
illustrates the performance of the suggested algorithm (3).

We consider a networked system consisting of n = 10
nodes. Each node tries to estimate the multidimensional
moving point coordinates: θt = θt−1 + ζt−1, θt ∈ Rd. Let
ζt−1 be a random vector uniformly distributed on the ball of
radius equal to 1, and the dimension of vector θt is d = 10.

We assume that the nodes cannot estimate all components
of the vector θt. In practical applications, this situation may
arise due to several reasons. For example, in multi-target
tracking problem, the targets may be out of range for some
sensor nodes estimating their positions and velocities. In our
simulation, the nodes estimate only one component of the
vector θt. The indices of these components are equal to the
indices of the corresponding nodes, e.g., the node i = 1
estimates the first component of θt.

Let at time instant t agent i be able to measure the squared
distance ‖Proji(x − θt)‖2 between projections of chosen
point x and θt into the basis line corresponding to i-th
coordinate (Proji is 1×n row with d−1 zeros components
and 1 at i-th position): F it (x) = ‖Proji(x − θt)‖2. The
measurements are corrupted by additive noise vit.

Simulation: We consider the tracking of the process in-
cluding drift, i.e., δθ = 1. For the described application,
Assumptions 2, 3, and 4 hold if the corresponding constants
are as follows: M = 2, g0 = 3, g1 = 2, g2 = 0, cv = 1.
Let the communication graph GA be full, i.e. all nodes are
connected to each other and there are no self-loops. In this
case, λ̄2 = 10 and λ̄m = 10.

The algorithm (3) working on each node has the following
parameters: α = 0.18, β = 4, γ = 0.285. We consider
three types of noise: uniformly distributed random variable
falling within the interval [−1, 1], periodic oscillation (e.g,
sine or cosine), and an unknown constant. In the simulation
presented in the paper, we use vit = sin(ψit), |vit| < 1. Let
ψi be equal to the index of the node, i.e., ψi = i.

Fig. 1 illustrates how the 10-th component of the vector
θt (blue line) and the estimates of this component calculated
by each node i (red and green lines) evolve over time. The
duration of the experiment is 5000 discrete time steps. The
initial value of θ̂i0 on each node i was chosen randomly from

the interval [350; 550]. The point θt starts its movement at
the position consisting of randomly chosen components from
the interval [100; 200]. Figure shows that there exists the time
instant t starting with which the estimations converge to the
real value and move next to it. Fig. 1 also contains a zoomed
representation of the estimates for a small time window. It
can be seen that most of the components depicted in red
color have more smooth changes. These components are not
directly measurable by the n−1 nodes, i.e., i = 1, . . . , 9, they
are estimated through consensus part of the algorithm (3).
The component depicted in green color is directly estimated
by the 10-th node. The upper bound is L̄ = 57.
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Fig. 1. Ninth component of the vector θt and the estimates of this
component obtained by nodes i = 1, . . . , 10. Blue line: 10-th component
of the vector θt; Green line: the estimate of this component calculated by
node i = 10; Other colors: the estimates of this component calculated by
each node i = 1, . . . , 9

VII. CONCLUSIONS

In this paper, we propose the new state estimation method
for networked systems combining Simultaneous Perturbation
Stochastic Approximation and the consensus algorithm. The
SPSA algorithm itself is well-studied and may be used in
various applications. However, the new approach makes it
possible to relax the assumption regarding the strong convex-
ity of the minimized mean-risk functional. This assumption
may not be fulfilled in the distributed optimization problems.
We have obtained a finite bound of residual between esti-
mates and time-varying unknown parameters. We have also
validated the new algorithm through simulation. The new
algorithm is suitable for traffic optimization in road networks.
For modern road networks corresponding OD-matrices repre-
senting traffic demand between origin-destination pairs have
large dimension and may require utilization of distributed
methods for the weights values estimation and tracking.

APPENDIX

The following Lemma 1 in [23] is instrumental to the proof
of Theorem 1.
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Lemma 1 [23]: If ek > 0, µ, α > 0, 0 < µα < 1, h, l ≥ 0,

e2
k ≤ (1− µα)e2

k−1 + 2αhek−1 + αl, k = 1, 2, . . .

then ∀ε > 0 ∃K such that ∀k > K the following inequality
holds: ek ≤ 1

µ (h+
√
h2 + lµ) + ε.

Proof: [Theorem 1] Denote s̄k = α
βk

((ȳ2k − ȳ2k−1)⊗
Id)∆̄k, dit = θ̂i

2d t−1
2 e
− θt, d̄t = col{d1

t , . . . ,d
n
t }, where d·e

is a ceiling function, v̄t = col{ṽ1
t , . . . , ṽ

n
t }.

Let F̄k−1 = σ{Fk−1, v̄2k−1, v̄2k, ξ2k−1, ξ2k, ∆̄k}
be the σ-algebra of probabilistic events generated
by Fk−1, v̄2k−1, v̄2k, ξ2k−1, ξ2k, ∆̄k, and F̃k−1 =
σ{Fk−1, v̄2k−1, v̄2k, ξ2k−1, ξ2k},

Fk−1 ⊂ F̃k−1 ⊂ F̄k−1 ⊂ Fk.

According to the algorithm (4), we have νk =

‖θ̄2k−2 − 1n ⊗ θ2k − s̄k − αγL̄1n ⊗ θ̄2k−2‖ = ‖ḡk − s̄k‖

where L̄ = L(A), ḡk = (Ind − αγL̄ ⊗ Id)d̄2k−2 + 1n ⊗
(θ2k−2−θ2k) since it is not so hard to prove that L̄⊗Id)1n⊗
θ2k−2 = 0 based on the properties of Laplasian matrix L̄.
Taking the conditional expectation over σ-algebra F̄k−1, we
obtain we obtain

EF̄k−1
ν2
k = ‖ḡk‖2 + ‖s̄k‖2 − 2〈ḡk, s̄k〉. (8)

By virtue of Assumption 6 we have EF̃k−1
ṽk∆i

k =

EF̃k−1
ṽkEF̃k−1

∆i
k = EF̃k−1

ṽk · 0 = 0. Hence, taking the
conditional expectation over σ-algebra F̃k−1 of both sides
of the (8) and using observation model (1), we can assert
the bound for EF̃k−1

ν2
k as follows:

EF̃k−1
ν2
k ≤ EF̃k−1

‖ḡk‖2 −
α

β

∑
i∈N
〈di2k,EF̃k−1

f̃ ik∆i
k〉+

+
α

β

∑
i∈N
〈αγ(L̄di2k−2,EF̃k−1

f̃ ik∆i
k〉+

+
α2

4β2

∑
i∈N

EF̃k−1

(
ṽik + f̃ ik

)2

‖∆i
k‖2 (9)

where f̃ ik = f iξ2k(x2k)− f iξ2k−1
(x2k−1).

Under fulfilment of Assumption 7, we have λ̄2 > 0 (see
[24]). Hence, for the first term in (8) we derive

EF̃k−1
‖ḡk‖2 ≤ dT

2k−2(Ind − αγ(L̄ ⊗ Id))
T×

(Ind − αγ(L̄ ⊗ Id))d2k−2 + EF̃k−1
2αγ×

dT
2k−2(Ind − αγ(L̄ ⊗ Id))

T1n ⊗ (θ2k−2 − θ2k)+

‖1n ⊗ (θ2k−2 − θ2k)‖2 ≤ (1− 2αγλ̄2 + α2γ2λ̄2
m)ν2

k−1+

4αγ
√
nλ̄mδθνk−1 + 4nδ2

θ . (10)

For any x, z ∈ Rd, by virtue of Taylor representation of
f iξt(x) for t± = 2k − 1

2 ±
1
2 , we have

f iξt± (x) = f iξt± (z) + 〈∇f iξt± (z + ρ±ξt±
(x− z)),x− z〉,

(11)

where ρ±ξt± ∈ (0, 1).

For difference f̃ ik, adding and subtracting
〈∇f iξt± (z),xit± − z〉, we derive:

f̃ ik =
∑
t±

±f it±(z)±〈∇f iξt± (z),xit± − z〉 ± M̄ i
t±(z) (12)

where M̄ i
t±(z) = 〈∇f iξt± (z + ρ±ξt±

(xit± − z)) −
∇f iξt± (z),xit± − z〉. Hence, for z = θ̂i2k−2, by
virtue Assumption 6, we have EF̃k−1

f̃ ik∆
i
k =∑

t± ±∇f iξt± (θ̂i2k−2)β ± EF̃k−1
M̄ i
t±(θ̂i2k−2)∆i

k, since
EF̃k−1

f it±(z)∆i
k = 0.

According to the Assumption 2, we have

‖M̄ i
t±(θ̂i2k−2)‖ ≤M‖ρ±ξt± (xit± − θ̂

i
2k−2)‖β‖∆i

k‖ ≤

Mβ2‖∆i
k‖2. (13)

We can evaluate the second term in (9), using formula (13)
and applying Assumptions 2,

. . . ≤ −α
β

∑
i∈N

∑
t±

〈θ̂i2k−2 − θt± ,∇f iξt± (θ̂i2k−2)β〉−

α
∑
i∈N
〈θ2k − θ2k−1,∇f iξ2k−1

(θ̂i2k−2)〉+ 2αMβ.

Here the conditional expectation over σ-algebra Fk−1 for
first terms with minus is not above zero by Assumption 1.
By virtue the definition we have EFk−1

∇f iξ2k−1
(θ2k−1) = 0.

Hence, applying the first part of Assumption 4, we get
. . . ≤ αMEFk−1

∑
i∈N δθ‖di2k−1‖ + 2β ≤

αM (δθ(νk−1 + nδθ) + 4nβ) .
To evaluate the conditional expectation over σ-algebra
F̃k−1 of the third term in (9) we use the following rep-
resentation for the difference f̃ ik

f̃ ik = f iξ2k(x2k)− f iξ2k−1
(x2k) + f iξ2k−1

(x2k)− f iξ2k−1
(x2k−1)

=
∑
t±

±f iξt± (x2k) + 〈∇f iξ2k−1
(θ̂i2k−2 ± ρ±ξt±β∆i

k), β∆i
k〉

which is based on Taylor formula (11). By adding and
subtraction

∑
t±〈∇f iξ2k−1

(θ2k−1), β∆i
k〉, using the first part

of Assumption 9, we derive EF̃k−1
f̃ ik∆

i
k =

EF̃k−1

∑
t±

(±f iξt± (x2k)+〈∇f iξ2k−1
(θ̂i2k−2±ρ±ξt±β∆i

k), β∆i
k〉)

×∆i
k + 〈∇f iξ2k−1

(θ2k−1),1d〉1d.

Taking the conditional expectation over σ-algebra Fk−1, by
virtue the properties EFk−1

∇f iξ2k−1
(θ2k−1) = 0 and the

Assumptions 2,4,7, we get

EFk−1
‖f̃ ik∆i

k‖ ≤ (δθ(g0 + g1‖di2k−2‖)+∑
t±

M(EFk−1
‖di2k−1‖+ β)β) (14)

Hence, for the third therm in (9) we have . . . ≤ α2γ
β ×

λ̄mMc∆νk−1 (δθ(g0 + g1νk−1) + 2β(νk−1 + 2β)) ≤

α2γ

β
λ̄mMc∆

(
(δθg1 + 2β)ν2

k−1 + (δθg0 + 4β2)νk−1

)
.

6054



Summing up the conditional expectations over σ-algebra
Fk−1 of the second and third terms in (9) we derive

. . . ≤ 2α2γλ̄mM (δβg1 + 1) ν2
k−1 + αM (δθ+

2αγλ̄m (δβg0 + 2β)
)
νk−1 + αMn(δ2

θ + 4β). (15)

Consider the squared difference (ṽik + f̃ ik)2. Using for-
mula (12) with z = θ̂2k−2, the sum (ṽik + f̃ ik) can be
represented as sum of five terms

ṽik + f̃ ik = a1 + a2 + a3 + a4

where a1 = ṽik, a2 =
∑
t± ±f it±(θ̂2k−2), a3 =∑

t±〈∇f iξt± (θ̂2k−2),∆i
kβ〉, a4 =

∑
t± ±M̄ i

t±(θ̂2k−2).
The first two terms do not depend on ∆i

k and
EF̃k−1

aq∆
i
k‖∆i

k‖2 = 0, q = 1, 2, by virtue the Assump-
tion 7. Hence, we derive EF̃k−1

(ṽik + f̃ ik)2‖∆i
k‖2 ≤

EF̃k−1
(a1 + a2)2 + 2(a1 + a2 + a3)a4 + a2

3 + a2
4 ≤

EF̃k−1
2(a2

1 + a2
2 + (|a1|+ |a2|+ |a3|)|a4|) + a2

3 + a2
4.

We need to estimate EFk−1
a2
q, q = 1, . . . , 4 and we can use

the formula EFk−1
|aq| ≤

√
EFk−1

a2
q, q = 1, . . . , 4 for the

rest terms. Taking the conditional expectation over σ-algebra
Fk−1, by virtue Assumptions 2–4 and (13), we evaluate

EFk−1
a2

1 ≤ c2v, EFk−1
|a2|q ≤ δqθ(g

q
0+gq1‖di2k−2‖q), q = 1, 2,

EFk−1
aq3 ≤ qEFk−1

(
∑
t±

〈∇f iξt± (θ̂2k−2)−∇f iξt± (θt±),∆i
kβ〉)q

+q

(∑
t±

〈∇f iξt± (θt±),∆i
kβ〉

)q
≤ 2cq∆

((
2Mβ(‖di2k−2‖+ δθ)

+δθβ))
q

+ 2qβqgq2) , q = 1, 2, EFk−1
a2

4 ≤ 4M2β4.

Taking the conditional expectation over σ-algebra Fk−1

for the fourth term in (9) we get using Assumptions 2–5

α2

2β2
EFk−1

∑
i∈N

(ṽik + f̃ ik)2‖∆i
k‖2 ≤

α2

4β2

(
2
(
nc2v+

nδ2
θg

2
0 + δ2

θg
2
1ν

2
k−1 + (ncv + nδθg0 + δθg1νk−1+

2Mβνk−1 + nβ (2Mδθ + δθ + 2g2))×
2Mβ2 +

(
4M2ν2

k−1β + 10Mδθβ
2νk−1+

n(6.25δ2
θβ

2 + 4β2g2
2)
))

+ 4nM2β4
)
. (16)

Summing up the findings bounds (10), (15), (16) and
taking the conditional expectation over σ-algebra Fk−1, we
derive the following from (9)

EFk−1
ν2
k ≤ (1− µα)ν2

k−1 + 2αhνk−1 + αl. (17)

Consider the condition 0 < µα < 1 of Lemma 2. The
right part holds since λ̄2 ≤ λ̄2

m. The left part is satisfied
by virtue condition (5)–(6). Hence, taking the unconditional
expectation of both sides of (17), we see that all conditions
of Lemma 2 hold for ek =

√
Eν2

k .
By virtue condition (5), we have µ < 1. Taking the

unconditional expectation of both sides of (17), we see that
all conditions of Lemma 1 hold for ek =

√
Eν2

k .
This completes the proof of Theorem 1.
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