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There exist extensive ongoing research efforts on emerging atomic-scale technologies that have the potential
to become an alternative to today’s complementary metal–oxide–semiconductor (CMOS) technologies. A
common feature among the investigated technologies is that of multi-level devices, in particular, the possibility
of implementing quaternary logic gates and memory cells. However, for such multi-level devices to be
used reliably, an increase in energy dissipation and operation time is required. Building on the principle of
approximate computing, we present a set of combinational logic circuits and memory based on multi-level
logic gates where we can trade reliability against energy efficiency. Keeping the energy and timing constraints
constant, important data are encoded in a more robust binary format while error-tolerant data are encoded in
a quaternary format. We analyze the behavior of the logic circuits when exposed to transient errors caused
as a side-effect of this encoding. We also evaluate the potential benefit of the logic circuits and memory
by embedding them in a conventional computer system on which we execute jpeg, sobel, and blackscholes
approximately. We demonstrate that blackscholes is not suitable for such a system and explain why. However,
we also achieve dynamic energy reductions of 10% and 13% for jpeg and sobel, respectively, and improve
execution time by 38% for sobel, while maintaining an adequate output quality.
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1 INTRODUCTION
In approximate computing, power, performance, and reliability are traded one for another by
relaxing the precision constraints of computing, storing, and communicating data [33]. A wealth
of applications have, by their nature, approximate inputs or outputs, or include the notion of
approximation in their core algorithms. This limits the need for exact computation, storage, and
communication, insofar as a system’s architecture can exploit such knowledge. Such applications
can be commonly found in big data analytics, image processing, sensor applications, and even
scientific workloads such as simulations.
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In addition to working with approximate inputs and algorithms, several proposed approaches
rely on automatic software transformations that trade accuracy against computational effort, e.g.,
by skipping tasks, loop perforation, sampling reduction of inputs, or even selecting a different
algorithm [3, 52]. Similarly, application specific integrated circuits (ASICs) are often designed
considering the required precision for acceptable quality of service (QoS). In signal processing,
for example, the bit-width of various stages (ADC, filters, etc.) are adjusted to minimize the
computational effort while meeting signal to noise ratio requirements. General-purpose processors,
on the other hand, are commonly designed with absolute accuracy for the maximum precision of
the system, e.g., 32 or 64 bits for all integer operations. This makes it impossible to take advantage
of the relaxed precision requirements in the applications in order to improve energy efficiency and
performance. Several works have proposed circuits that trade performance and energy against
accuracy, for example, by designing circuits that are simplified and, thus, generate the wrong result
for specific inputs [1] or through automatic pruning or substitution of the circuit [26, 49]. Such
solutions create circuits that are purely approximate and require additional precise circuits in the
system. For example, address calculations cannot be performed on an approximate adder, so an
additional precise adder is required.
Based on our earlier work on multi-level logic circuits [44] and caches [45], we propose a set

of logic circuits and memory that can modulate their precision while keeping the area overhead
low. The multi-level behavior shown in Fig. 1 naturally appears in emerging devices such as single
electron (SET) and single atom transistors (SAT). The inherent multi-level characteristic of these
devices enables the design of complex multi-level operations such as a half adder consisting of only
two devices [35]. Our proposed logic circuits and memory are based on such emerging multi-level
technologies, specifically quaternary (four-level) devices. For this work, we assume the existens of
basic quaternary logic gates (e.g., And, Xor, Fa, etc.) and memory cells based on such quaternary
devices. We observe that the computational accuracy can be traded against power and performance
simply by encoding data either in a binary or quaternary format (Sec. 3). Treating the data as
binary requires more gates, wires, and memory cells, as each digit contains less information, but
the error resilience of the devices is increased because storing a single bit results in more distinct
and noise tolerant signal levels. On the other hand, treating the data as quaternary reduces the
required number of gates, wires, and memory cells, but also reduces the error resilience. We use
quaternary instead of any other multi-level encoding because it offers a balance between error
resiliency, circuit complexity, and energy efficiency. Using an encoding that is not a power of two
would complicate parts of the combinational logic circuits, and the next larger power of two (eight)
is impractically large. In this work:

(1) We propose proof-of-concept quaternary designs for the most common combinational logic
circuits, namely a multiplier (Sec. 4.1.2), and a shifter (Sec. 4.1.3). These are supplemented by
a parallel adder (Sec. 4.1.1) that is part of our previous work.

(2) We evaluate the potential output errors (Sec. 5.1, 5.3) and energy gains (Sec. 5.4) of these
designs, while trying to be as technology agnostic as possible.

(3) We evaluate the error tolerance (Sec. 6.2) and potential energy usage and performance
(Sec. 6.3) of three benchmark applications, jpeg, sobel, and blackscholes.

Our goal for the evaluation is to be as technology agnostic as possible. Multi-level transistor
technologies are still in their infancy and it is impossible to predict which, if any, the industry will
adopt. To this extent, we do not use specific size, energy, and delay characteristics in our evaluation
but instead focus on the higher level comparison between binary and quaternary designs. To the
best of our knowledge, this is the first work that not only describes the logic-level designs but also
evaluates, in detail, their potential adoption on conventional computer systems.
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2 RELATEDWORK
There is a significant amount of work on approximate circuit design using CMOS technologies.
Voltage overscaling can be used to reduce energy usage when absolute precision is not required [12,
14, 16]. Similarly to our approach, this can lead to random transient errors appearing during
operation. Alternatively, the designs of the circuits themselves can be altered to incorporate
approximations that reduce the critical path length [20, 21, 23, 26, 43], which leads to circuits that
always produce errors for specific inputs. Both approaches look into taking advantage of known
CMOS properties, while our work focuses on emerging non-CMOS technologies with intrinsic
multi-level support. Extensive work also exists in using approximate computing to reduce the costs
associated with the memory system, both for single [13, 24, 32] and multi-level [41] memories.
Jain et al. [19] propose using smart floating point width reduction when storing data in the cache
as a compression method, while still utilizing full width precision when performing calculations.
This is an intriguing idea that could be used in parallel with our work. Miguel et al. propose
combining load-value prediction and approximate computing in their Load Value Approximation
work [29], mitigating the costs of the memory system in the core instead of the memory itself.
Finally, approximate CPUs have been proposed [12, 48], but once again, they are based on CMOS
technology and neither of them propose any changes that affect the cache storage capacity.
Previous work [6, 8, 17, 22, 34, 37, 41, 42, 42, 51] has shown that it is possible to develop multi-

level devices capable of replacing CMOS, but the potential on a full system has not been evaluated.
This inspired our initial work on multi-level technologies [44, 45], which, in turn, is the basis for
this work. In our previous work, we introduced some initial designs for parallel adders and caches
and evaluated them using the EnerJ [40] framework. In this work, we modify the adder to a simpler
design that utilizes fewer gates, introduce a multiplier and a shifter, and evaluate all of them in
more detail using SystemC [? ]. We also use a more detailed architectural simulator, Gem5 [7]
instead of EnerJ, which makes it possible to more accurately estimate the energy and performance
characteristics of the circuits when used in a general-purpose CPU executing some commonly found
applications. Overall, in addition to the new logic circuits, the evaluation methodology has been
redesigned from the ground up, both to enhance accuracy and to apply it to more realistic scenarios.
On the software side, various frameworks for evaluating the effects of approximate computing

exist [9, 30, 39, 40, 47, 50]. While there are similarities to the framework we have developed,
none of them fully fulfilled the requirements for our evaluation. For example, iACT [30] utilizes
Pin [28], much like us, but it does not model the same approximations and errors as we do.
ACCEPT [39] focuses only on software based approximations, but we still use the benchmarks and
the compiler it provides. EnerJ is implemented for Java applications and cannot simulate the runtime
performance in as much detail as our framework. None of the tools for evaluating circuit-level
approximations available to us provide sufficient support for ourmulti-level designs. Finally, we have
not investigated software frameworks for monitoring and correcting errors during approximate
computation [5, 15], but we expect that such tools can improve the range of applications our
approach can support. For example, we explain in Sec. 6.2 that the blackscholes application cannot
be used as it is with our approximate circuits, but a software solution that detects unacceptably
high errors and corrects them should solve the issue. Further investigation of the potential of error
correction and detection is left as future work.

3 MODULATING ERROR RESILIENCE IN EMERGING MULTI-LEVEL DEVICES
CMOS technology scaling, the current driver of Moore’s law, is facing practical and fundamental
limits. The search for low-power alternatives to CMOS is intensifying with a large number of
emerging technologies being investigated, such as quantum point contact devices [42], single
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Fig. 1. Illustration of a quaternary device that can operate on binary data. Gray regions represent the input

and output ranges when working with quaternary data. Striped regions represent input and output ranges

when working with binary data. The figure is explained in more detail in Sec. 3.

electron [17], and carbon nanotube [34] transistors. Many such technologies present new features
that provide opportunities to develop new computer systems. Multi-level devices are one such
common feature [22, 37, 42] that is already employed by several commercial memory technologies,
e.g., in multi-level flash [8] and phase change memory (PCM) [6, 41, 51].

In this work, we consider any device where the output can be described as a continuous transfer
function of its inputs. For multi-level logic, this transfer function contains plateaus that presents a
relatively stable output even if the input value varies slightly [42]. These plateaus appear as discrete
ranges that can be used to represent logic states. Such devices have higher probability that the
output of a device shifts, due to interference, to a nearby level than to a level further away from
the expected level. Here we use the term interference for any physical property that affects the
output such that it deviates from the ideal transfer function, e.g., input noise or manufacturing
variances. To compensate for this issue and be able to take advantage of the multi-level capabilities
of such devices, higher energy usage and longer operation times are required [17, 34, 36]. We take
advantage of approximate computing to remove this requirement by creating two different logic
representations for approximate and precise data.

Fig. 1 illustrates a transfer function of a fictitious quaternary device in some unit U (e.g., voltage
or current). The figure shows in light gray the four different quaternary states (Q0, Q1, Q2, and Q3)
and how they are represented as ranges on the input and output of the device. When representing
approximate data, we use all logic states of the device. This maximizes the amount of data that can
be represented per device, but it also increases the probability that a state shifts to a nearby state
(e.g., Q2 gets interpreted as Q1 or Q3). Precise data is represented in binary form by only using the
maximum (Q3) and minimum (Q0) states as input to the device. When the output is read nearby
states are also considered as part of the maximum (Q2 and Q3) and minimum (Q0 and Q1) states
(see striped regions). This increases the reliability of the device as the probability is low that Q0
would shift to Q2 or that Q3 would shift to Q1. However, it also requires a larger number of devices
compared to representing the data approximately. For example, twice as many memory cells are
required for storing the same amount of data precisely, and a parallel adder with twice the width
(in digits) is required for adding two binary numbers together. In the next section, we describe how
such multi-level devices can be used to implement complex logic circuits that can operate on either
precise (binary) or approximate (quaternary) data based on the application requirements, focusing
on the design choices required due to quaternary logic gates and memory cells that also need to
handle binary data.
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Or 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

(a) Bitwise Or

And 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

(b) Bitwise And

Xor 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

(c) Bitwise Xor

Inv
0 3
1 2
2 1
3 0

(d) Bitwise Inversion

Min 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

(e) Minimum

Max 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

(f) Maximum

Ha 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(g) Half Adder

Fa 0 1 2 3
0 1 2 3 0
1 2 3 0 1
2 3 0 1 2
3 0 1 2 3

(h) Full Adder (Carry In=1)

Fig. 2. Quaternary truth tables for some of the most commonly used gates. The shaded cells contain the

results for binary data. The bold numbers in the adders indicate an output carry of “1”. Note how the adders

produce the wrong result for binary values.

4 QUATERNARY SYSTEMS
In order to investigate the potential of quaternary circuits, we propose designs for basic arithmetic
units that can efficiently work with both binary and quaternary data. These designs are based on
basic quaternary logic gates that can also produce binary results (Fig. 2), as discussed by Själander et
al. [44]. We also propose memories able of storing both binary and quaternary data, although not in
as much detail, since memories with multi-level cells are already common in storage solutions such
as SSDs. We focus on circuits that can work with both binary and quaternary data because having
two separate circuits for every operation would lead to a significant increase of area and routing
overhead. We should note here that we keep our designs on a relatively high level, not delving into
the actual gate implementations, because our goal is to evaluate the potential of quaternary logic
for circuits in general and not for some specific transistor technology. Therefore, while the exact
gates used for the circuit will vary from technology to technology, the high-level design should
remain the same.

4.1 Combinational Logic Circuits
Modern systems can perform a large number of operations, but a lot of them can be expressed as a
combination of simpler operations. For example, integer division can be expressed as a combination
of integer subtraction and shifting. Similarly, floating point operations can be expressed as a
combination of integer operations and other simpler floating point operations. For this reason,
we focus on operations that either cannot be expressed as a combination of simpler operations
(e.g., integer addition), or, if they can, their implementations would be significantly inefficient (e.g.,
integer multiplication). Specifically, we propose logic-level designs for three circuits: An integer
adder, an integer multiplier, and a shifter. We also briefly discuss logical operations, but we do not
go into details because they are are not as complicated to design.

4.1.1 Parallel Adder. Fig. 3a depicts a Brent-Kung carry-lookahead adder that has been adapted
to support both binary and quaternary operations efficiently. Gates in white operate with both
quaternary and binary data, while gates in gray only operate with binary. A similar design for a
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the quaternary adder.

Fig. 3. The Brent-Kung adder that can operate on both binary and quaternary data. The white gates are

quaternary gates, while the gray gates are binary only.

Kogge-Stone adder is described in our previous work [44], so here we will only provide an overview.
When the adder is operated in quaternary mode, only the right half (separated by the gray dotted
line in the figure) is fed with data. Because the quaternaryHa and Fa gates do not return the correct
results for binary operations (Fig. 2g and 2h), the initial generate and propagate signal generation
needs to be adapted, as shown in Fig. 3b. Similarly, the calculation of the final result needs to take
into consideration if we are performing a binary or a quaternary addition and use the correct adder
gates. However, the carry-lookahead tree does not need any modification and it can in fact operate
using only binary gates, since adding together two one-digit numbers results in a carry value that
cannot be more than “1”. This has the dual advantage of both keeping the circuit design simple
and reducing the probability of errors during operation. Furthermore, it is possible to perform
subtraction, both in binary and in quaternary mode, by using the conventional two’s complement
representation of negative numbers.

Regarding the performance characteristics of the adder, we assume that the delay introduced by
the additional Ha and Fa used to generate the initial signals is similar to the delay of the Xor gates.
After all, addition is a common operation used for a lot of operations and no technology would be
viable without efficient addition gates. At the same time, the final multiplexer that selects between
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(a) Baugh-Wooley signedmultiplication overview. The dashed lines sepa-

rate the steps in the longmultiplication algorithm. The shaded/encircled

partial products (PPs) and carries (Cs) are the edge PPs that need to be

modified for Baugh-Wooley. R1–4 indicate four different regions of PPs

and Cs.
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(b) Example multiplexer circuit

for calculating one partial prod-

uct and its carry in R1. For the

other regions the values multi-

plexed need to be modified ac-

cording to Equation 1.

Fig. 4. Eight bit, Baugh-Wooley quaternary multiplication. Unlike binary multiplication, each partial product

(PPi j ) also produces one carry digit (Ci j ), which needs to be added to the next column. Bit negation also

differs from the binary circuit.

the binary and the quaternary result introduces negligible delay, because the control signal (binary
or quaternary) is applied well before the results of the addition reach it.

4.1.2 Multiplier. While it is possible to perform multiplication by successive additions and shifts,
the delay introduced by such a multiplier is significant. For this reason, we design a quaternary
multiplier using the Baugh-Wooley signed multiplication algorithm (Fig. 4a) and a Dadda-like
reduction tree [10]. In order to calculate all the partial products, we use a multiplier gate consisting
of multiplexers (Fig. 4b), similar to the design by Moaiyeri et. al [34]. The final reduction of the
partial products is performed using the quaternary adder described in Sec. 4.1.1.

Each partial product is no longer produced by multiplying individual bits, making it incorrect to
implement Baugh-Wooley by simply inverting the partial products at the edges of the multiplier.
On top of that, multiplying two quaternary digits produces not only a partial product digit but also
a carry that needs to be added to the next partial product. However, we have determined that it is
still possible to design a Baugh-Wooley multiplier for quaternary data.

We use the notation (DN−1DN−2...D0)B to represent an N -digit number in base B. For example,
(Qn)4 = (b1b0)2 indicates that the quaternary digit Qn consists of the two binary digits (bits) b1
and b0, with b0 being the least significant bit. With this notation, for A · B = P and for each partial
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product Ai · Bj , we have:

(Ai )4 · (Bj )4 = (Ci jPPi j )4 = (ai1ai0)2 · (bi1bi0)2

= (ai0 ∧ bj0)

+ ((ai1 ∧ bj0) ⊕ r (j)) · 2
+ ((ai0 ∧ bj1) ⊕ r (i)) · 2
+ ((ai1 ∧ bj1) ⊕ r (j) ⊕ r (i)) · 4 (1)

(PMSB )4 = (pMSB,1pMSB,0)2 (2)

with

r (n) =

{
0, for n , width − 1
1, for n = width − 1

Equation 1 depicts how the quaternary digit multiplication needs to be adapted to support signed
Baugh-Wooley multiplication. Expanding it for each region R in Fig. 4a, produces:

Ai · Bj =



(ai0 ∧ bj0) + ((ai1 ∧ bj0) + (ai0 ∧ bj1)) · 2 + (ai1 ∧ bj1) · 4, f or R1

(ai0 ∧ bj0) + ((ai1 ∧ bj0) + (ai0 ∧ bj1)) · 2 + (ai1 ∧ bj1) · 4, f or R2

(ai0 ∧ bj0) + ((ai1 ∧ bj0) + (ai0 ∧ bj1)) · 2 + (ai1 ∧ bj1) · 4, f or R3

(ai0 ∧ bj0) + ((ai1 ∧ bj0) + (ai0 ∧ bj1)) · 2 + (ai1 ∧ bj1) · 4, f or R4

After the partial products have been reduced, the result needs to be corrected by inverting its
most significant bit, as seen in Equation 2. This is achieved at the circuit level by introducing an
additional partial product with a constant value of “2”, as adding that into a quaternary digit causes
its most significant bit to invert. Since we cannot know if there is some more efficient way of
implementing the partial product modules in the underlying quaternary technology, we assume
the worst case scenario and model them as a combination of multiplexer gates, with an example
for region R1 depicted in Fig. 4b.
Similar to addition, quaternary multiplication does not produce the correct results for binary

data. However, unlike addition, we would have to further adapt and add additional gates in all
levels of the multiplier, not just at the beginning and end. Since this would most likely require
multiplexers to choose between the binary and the quaternary results, the total area overhead
would exceed that of a second multiplier. For this reason, we decided to split the binary and the
quaternary circuits into two separate circuits that share only the final adder.
Another major difference between the adder and the multiplier is that signed multiplication

requires a different circuit than unsigned. In order to support both, the left-most and the bottom
row partial product gates need to be modified in order to invert all or some of their output bits,
much like in a conventional binary Baugh-Wooley multiplier.

Finally, we also considered using a Booth multiplier instead of Baugh-Wooley. When implement-
ing Radix-4 Booth multiplication with recoding, it is necessary to shift the partial products by one
bit, which cannot be achieved trivially when working with quaternary values. The reason why is
further discussed in Sec. 4.1.3.

4.1.3 Shifter. We propose a quaternary barrel shifter design that works with both binary and
quaternary values (Fig. 5a). Binary barrel shifters are implemented as levels of multiplexers con-
trolled directly by the shift-by input’s bits, each shifting the input by a power of two [18]. In order to
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Fig. 5. A quaternary bidirectional shifter capable of operating with both quaternary and binary data. The

gates shaded gray are binary gates, while the rest are quaternary.

support both left and right shifts efficiently, two data reversal levels are added before and after the
shift multiplexers, and are responsible for reversing the direction of the input bits. Since reversing
the bits in a quaternary digit is not as trivial as multiplexing between two signals, we have designed
a custom quaternary reversal multiplexer (QR MUX), depicted in Fig. 5b. In order to make sure that
during quaternary operations the data will not be reversed into the left (inactive) part of the circuit,
the reversal multiplexers have three inputs instead of two, creating two different pivot points for
reversing binary or quaternary data. With this design, it is possible to shift by an arbitrary amount
with only logBASE INPUT_WIDTH levels of multiplexers.

When using this design with quaternary gates, shifting by one digit results into a shift by two bits.
For example, L1 in Fig. 5 shifts its input by one bit when used with binary data and by two bits (one
quaternary digit) when used with quaternary data. Therefore, it is possible to use the same design
as for the binary shifter, as long as we have a special level of quaternary “Shift-By-One” (QSB1)
modules for shifting quaternary digits by one bit, indicated in the figure as L0. Fig. 5c shows how
this can be achieved using Ha gates, but depending on the underlying technology, a more efficient
implementation might be possible. The most significant bit of the quaternary digit is extracted and
forwarded to the next module. While this looks similar to how the carry chain of an adder works,
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Fig. 6. A direct mapped cache that can store both binary and quaternary data. The shaded cells represent

the word that the address points to. While the figure depicts a direct mapped cache, additional ways can be

added without any design modifications.

it only introduces one additional level of delay, because the “carry” digit (Nn) can be calculated
using only the input from the corresponding reversal module and does not require any data from
the previous QSB1 module. By implementing the original shifter design with quaternary gates,
and adding this special quaternary shift-by-one level, it is possible to operate on both binary and
quaternary data simply by multiplexing the shift-by input bits to the correct level. When operating
with quaternary data, the bits of the shift-by input are fed into levels L0 to L2, while binary data are
processed by levels L1 to L3 instead. In order to reduce the complexity of the circuit, the shift-by
amount is always given in binary, even if the data are originally stored in quaternary format. This
can be easily done using only one level of gates, so it does not introduce any significant overheads.

4.1.4 Logical. Logical operations can operate either bitwise (e.g., Xor) or on the whole data (e.g.,
integer comparison). It is clear from Fig. 2a, 2b, 2c, and 2d that the quaternary gates are capable of
correctly working with binary data as well. At the same time, comparison circuits are fairly simple
and depend only on simple bit comparison operations, so no special consideration is required for
these as well. Given that logical circuits are trivial to implement, we do not present a design for
them, nor do we discuss them in detail.

4.1.5 Converting between binary and quaternary. In order to perform the operations described,
the data needs to be in the correct representation. Better detailed in Sec. 3, this means that binary
data should use the two most extreme levels in the device, with the levels used for the binary “0”
and “1” corresponding to quaternary “0” and “3” respectively. Additionally, when converting from
binary to quaternary, the binary bits need to be packed to quaternary digits in pairs, while during
the reverse operation quaternary digits needs to be unpacked into two binary bits. All of these
operations can be achieved using simplified DAC and ADC circuits, for which solutions already
exist in production thanks to the widespread usage of Multi-level Cell (MLC) flash memories. It is
also possible that multi-level circuits will have specialized solutions based on the characteristics of
the underlying technology.

4.2 Memory
Multi-level technologies are already used in memory systems [36], but the data are always stored
without any errors, at the cost of increased energy and time requirements.
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In our previous work [44, 45], we have proposed a cache design that can store both binary and
quaternary data (Fig. 6), without the need to have a statically defined split between binary and
quaternary cache lines. For this, we assume that data are classified as either precise (binary) or
approximate (quaternary) when they are inserted into the cache and remain so until they are
evicted. We will briefly discuss this design here, and also discuss the challenges and possibilities
when applying similar techniques in the main memory and the register file.

The main idea behind the proposed design is that we can treat memory cells as either binary or
quaternary dynamically, affecting their capacity and error resiliency. A cache line consisting of 512
multi-level cells is able to store 128 bytes of data in quaternary mode, but only 64 bytes in binary
mode. Essentially, the cache capacity changes based on the type of data stored in the cache.

There are multiple ways of taking advantage of this, such as treating storing data in quaternary
format as cache compression [2, 4, 11], or treating quaternary cache lines as two separate cache
lines, increasing the associativity of the set containing them. However, both of these ways greatly
increase the cache complexity, introducing unnecessary overhead that needs to be paid even when
using only precise (binary) data. For this reason, we propose an alternative, simpler, solution: The
cache is designed as a normal cache, but quaternary cache lines are simply treated as being twice as
large as binary cache lines. In addition to increasing the available cache capacity for quaternary data,
the energy required for accessing binary data in the cache can be reduced with memory banking
techniques. To account for the fact that a binary cache line holds data spanning a smaller address
range, the address is shifted by one to the left when calculating the line, index, and tag values. A
single “approximate/precise” bit flag per cache line is then enough to be able to reconstruct the
address when accessing the line.

This approach works for the cache because different addresses mapping to the same cache line
do not affect the correctness of the cached data. On the other hand, for main memory, we need a
one-to-one mapping between addresses and physical cells, so this design is not applicable. For this
evaluation, we are assuming that the main memory is statically split into a binary and quaternary
region, each with its own part of the address space. Assuming a quaternary memory bus as well,
each request is able to carry twice as much data, meaning that the memory system does not incur
any additional overhead due to the larger cache lines. Previous work by Qureshi et al. [36] has
demonstrated a more advanced system for dynamically partitioning the memory.
Finally, it is also possible to use quaternary registers. One approach would be to have a set of

binary registers, each of which can also be addressed as two quaternary ones. Another approach
would be to simply allow storing either binary or quaternary data in all the registers, but only half
of the register is used in the quaternary case. While the latter may cause parts of the register file to
be wasted, it is simpler to support in hardware and in a compiler.

4.3 Instruction Set Architecture
In the designs proposed in Sec. 4.1, we only describe how the circuits can be implemented, and not
how these can be integrated into a modern CPU. We consider a detailed evaluation of different
instruction set architectures (ISA) to be orthogonal to our designs and outside the scope of this
paper. Different ISA options are, therefore, only briefly discussed. This issue can be approached
at different granularities, from a per instruction or per memory address classification to larger
region based classifications. For the rest of this discussion, we assume that a very fine granularity
is required, both because it offers the highest amount of control on what is approximate, and
because it is possible to emulate coarse granularity region-based classification schemes using a
finer granularity scheme.

We start by separating the different schemes into two large categories: Data and instruction based
schemes. In the former, data is classified as either approximate or precise; instructions are then
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executed approximately or precisely depending on the data they are executed with. This scheme
has the advantage that, depending on the granularity, it can be implemented with a small overhead.
For example, one could split the virtual memory address space into large regions, with each region
storing exclusively approximate or precise data. The physical memory is then dynamically adjusted
based on the type of the data stored. Exactly how this can be achieved efficiently at runtime is
beyond the scope of this work, but similar approaches have been investigated before [27, 36]. By
doing so it is possible to differentiate between approximate and precise data based only on their
physical address. When that address is not readily available, such as when the data are moved into
a cache or a register file, an additional flag bit can be used to classify the data with a small storage
overhead. Then, instructions operating on the data only need to check that flag to determine if they
should be executed approximately. With this approach it is possible to use approximate memories
in the whole memory hierarchy with low overhead, as data always remain either approximate or
precise. Reclassifying the data at runtime is possible, but it requires moving the data into a different
region, which can be costly if done often or for large amounts of data.

A different approach would be to instead differentiate between approximate and precise instruc-
tions. With this classification it is possible to have data that are treated both as precise and as
approximate, depending on the instruction using them. This can be useful as previous research [31]
has shown that applications often have phases that are more tolerant to approximation than the
rest of the execution, and with this scheme the cost of reclassifying data (due to the data being
converted and rewritten into the memory) can be avoided.

For this classification method, the simplest approach would be to introduce different instructions
for each approximate operation. This of course would lead to a large increase in the instruction
set supported by the CPU, which in turn would lead to significant bloat, both on the compiler and
the CPU side. Instead, we could use one of the existing methods employed in modern hardware
for controlling the runtime behavior of instructions, such as special registers that can be set
programmatically, instruction prefixes or suffixes, and mode setting instructions. It is also possible
to design a system where the instruction stream is not altered, but instead the addresses (PC) of
the approximate instructions are fed separately to the CPU as metadata. This has the advantage
that it does not increase the size of the instruction stream, which could have lead to severe
performance degradation. While this requires separate data to be fetched and cached, this data are
not as performance critical as the instruction stream, since in the case of missing information the
instructions can safely default to precise execution. During our investigation, we did not encounter
any executables containing more than a few hundred approximate instructions, which indicates
that a small metadata cache (<1KiB) can be enough.

For our evaluation, we chose a combination of both approaches, explicitly classifying both data
and instructions as approximate, as this approach offers a lot of flexibility when evaluating different
approximations. Data are classified by their physical address, while instructions use the metadata
approach.

5 EVALUATION OF LOGIC CIRCUIT OUTPUT ERRORS AND ENERGY USAGE
We model the three circuits described in Sec. 4.1 on a gate-level granularity using SystemC [? ]. We
chose SystemC because it enables us to model the logic gates in enough detail to get meaningful,
relative error and energy numbers without forcing us to assume a specific underlying technology.
Each gate is modeled as a SystemC module, with input and output ports. At each cycle, the
quaternary gates have a chance of producing a transient erroneous result, based on a user-defined
Gate Error Probability. Since we are not simulating a specific technology with well defined
error probabilities, we use an arbitrary range that offers the highest amount of variability during
execution. Specifically, when we later evaluate the behavior of benchmarks running on the proposed
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(a) Brent-Kung Addition
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(b) Baugh-Wooley Multiplication
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(c) Bidirectional Barrel-Shifter

Fig. 7. Bit Error Probabilities (per bit, once an error has occurred) for integer addition, multiplication, and

shifting. The operations are performed in quaternary mode, with each quaternary digit being depicted as two

bits.

circuits, we can induce between hundreds of thousands to only a couple of errors in the applications’
execution by varying the probability between 10−5 and 10−10. As we cannot know how a gate’s
complexitywill vary under each quaternary technology, wemodel all the different logic gates to have
the same gate error probability. With this setup, we perform billions of simulations with random
inputs and collect the distribution of the individual output bit errors (Bit Error Probability, Fig. 7),
the total probability of an error appearing in the output of a circuit (Output Error Probability,
Fig. 8), as well as the average energy used (Fig. 9). The Output Error Probability gives us the chance
of getting an error, while the Bit Error Probability gives us the behavior of the circuits when an
error occurs. Based on these numbers, we estimate the energy and error characteristics of more
complex circuits, namely integer division and floating point operations.
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5.1 Bit Error Probabilities
Fig. 7 presents the bit error characteristics for the circuits that we have modeled in detail using
SystemC. We use a Gate Error Probability of 10−7 because it is low enough that the specific charac-
teristics of each circuit are not drowned by excessive amounts of errors. For higher probabilities, the
number of errors per calculation is so high that the results start approaching uniform distributions.
On the other hand, for lower probabilities, the shape of the distribution remains the same. We
present the individual bit errors instead of a metric such as the Mean Square Error (MSE) because
the MSE does not provide any insights in the actual behavior of the circuits. In the aforementioned
bit error figures, the individual bit error probabilities are calculated by dividing the number of times
each bit is wrong by the total number of times that the output has been wrong. In other words, we
measure, given that the circuit output is wrong, what is the probability of each individual output
bit being wrong.

Fig. 7a contains the bit error probabilities for the adder circuit. We observe that, with the exception
of the first two quaternary digits (four least significant bits, as each quaternary digit contains two
bits), the error probability per quaternary digit is uniform. More interesting, however, is the fact
that the probability of an error appearing in the first bit of a quaternary digit (e.g. bit 3 in Fig. 7a) is
significantly higher than that of an error appearing in the second bit (in this example, bit 4). This
can be explained by the fact that when a wrong carry value is produced, it has a higher chance of
affecting the first bit of the next quaternary digit rather than the second. The carry can be either “0”
or “1”, and adding 1 to a binary number always inverts the least significant bit.
We observe a similar pattern in the multiplier circuit (Fig. 7b). The difference between the

multiplier and the adder is that the error probability steadily increases as we move from the less
to the more significant bits, which can be explained by the fact that the reduction tree for the
multiplier gradually increases in height.
Finally, regarding the barrel shifter, the bit error probabilities are uniformly distributed across

the bits. This is not surprising, as each bit is independent from the other bits.

5.2 Estimating Error Probabilities for More Complex Logic Circuits
More complex logic circuits, such as integer division and floating point operations [46], can be built
using the basic circuits we have described. For example, integer division can be implemented using
the long division algorithm, which works by iteratively shifting the remainder and subtracting
the divisor from it. Similarly, floating point addition can be implemented using shifts to normalize
both numbers to the same base and then performing integer addition on the mantissas. The same
principle applies to other, even more complicated operations, such as floating point multiplication
and division.

Coming up with circuit designs for all these operations is beyond the scope of this work, as the
most interesting parts have already been discussed in the previous sections. However, our goal is
to evaluate the effects of quaternary approximate circuits on benchmarks executing on a general-
purpose CPU, so we still need some error probabilities to use during the evaluation. For this reason,
we decided to estimate these probabilities based on the probabilities of the basic circuits comprising
the more complex ones. In order to keep the problem tractable, and since we are only interested
in roughly estimating the various probabilities, we do not consider the conditional probabilities
between the output bits, as well as the conditional probabilities between the operations performed
in the algorithms implemented by the circuits. For example, for integer division, we estimate
the probability of output errors based on the probability of an error appearing in consecutive
shift and integer addition operations. As the probabilities calculated are an estimation, we do not
discuss them here in detail, but note that since we assume worst case execution, the estimated
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Fig. 9. Energy usage of the quaternary operations, normalized over their binary counterparts.

error probabilities are higher than they should be in practice, thus providing an upper bound for
the evaluation.

Finally, in addition to the more complex operations, we also do not discuss in detail very simple
circuits that are trivial to implement, such as logical and comparison circuits.

5.3 Overall Error Probabilities
Parallel to the individual bit error probabilities, we have also investigated the overall error proba-
bilities of the circuits described in the previous sections.
Fig. 8 depicts these for gate error probabilities ranging from one out of ten to one out of ten

billion. Note that both axes are in the same logarithmic scale. We observe that for low enough gate
error probabilities, the output error probabilities scale linearly. We also observe that this linear
scaling begins earlier for the less complex circuits. This is expected, since the fewer gates a circuit
consists of the lower the probability of getting more than one gate error per cycle is.
We can conclude, from all the different circuits, that the error probabilities vary significantly,

both generally and when examining individual bit errors. For example, division circuits have output
error probabilities that are several orders of magnitude higher than that of addition circuits. This
will have to be taken into consideration when designing a system with specific error margins, for
example by using gates that are less error prone for the division circuits.
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5.4 Energy Usage
The multi-level behavior shown in Fig. 1 naturally appears in emerging devices such as single
electron (SET) and single atom transistors (SAT). The inherent multi-level characteristic of these
devices enables the design of a multi-level half adder consisting of only two devices, one for calcu-
lating the sum and one for calculating the carry [35]. Given that complex multi-level operations can
be performed on a single device we assume equal area for binary and quaternary implementations
of the same operation. We also assume that the supply range of binary devices is such that reliable
operations can be performed and that quaternary devices operate with the same maximum supply
range, thus, achieving the same reliability when operating in the binary mode. For simplicity, we
assume that a gate dissipates equal amount of energy both in binary and quaternary mode even
though the input/output-swing for the quaternary mode is reduced. Thus, we use gate equivalents
to estimate the area and energy of the proposed circuits.

Fig. 9 contains the energy usage of the quaternary operations, normalized over the energy usage
of performing the same operation in binary. We calculate the energy usage based on the average
number of gate activations happening during each operation.
For this evaluation, we did not assume that it is possible to efficiently gate the inactive part of

the circuit, so it is possible to have some operations that affect that part as well. For example, if
a quaternary addition overflows, the additional carry activates some of the gates in the half of
the adder that is not normally used during quaternary operations. In practice, this means that our
results are pessimistic and, depending on the capabilities of the underlying technology, it is possible
to achieve even lower energy usage.

With this in mind, we observe that the relative energy usage for the quaternary adder is at 56%,
which is higher than the number we would ideally expect based on the number of gates that are
needed for the operations (ca. 50%). Similarly, the barrel shifter also uses significantly more than
half the energy (74%), due to the fact that during quaternary operation the multiplexers in the
inactive part of the circuit are still activated. Furthermore, the energy usage of the integer multiplier
(58%) also exceeds the ideal number, but in this case the major culprit is the fact that the partial
product modules are more complex in the quaternary part of the circuit. Since, as we mention in
the description of the circuit (Sec. 4.1.2), we cannot know if the underlying technology allows for a
quaternary partial product gate implementation that is as energy efficient as its binary counterpart,
we have to assume that each quaternary partial product requires more energy to be calculated.

For bitwise and comparison operations, as well as the more complicated circuits, we again
estimate the potential energy usage based on that of the basic circuits. The bitwise and comparison
operations require half the energy of their binary counterparts, since the circuits remain the same
but are now half in width. For the more complex circuits, the results are bound by the energy usage
of the basic operations that comprise them.
Overall, we observe that the quaternary operations, can achieve a mean energy usage of 60%,

when compared to the equivalent binary operations. Depending on the capabilities of the underlying
quaternary technology, such as being able to efficiently gate parts of the circuit, it is possible to
achieve even further energy usage reductions.

6 EVALUATION OF POTENTIAL APPLICATIONS
To determine the viability of the approximate designs discussed in the previous sections, we
evaluate them using two image processing applications, namely jpeg and sobel from the ACCEPT
benchmarks [39], as well as the blackscholes financial modeling application. We chose the first
two applications because together they cover a large range of approximate operations, with jpeg
using integer addition, multiplication, and shifting (Table 1), and sobel using various floating
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Table 1. The runtime instruction mix for jpeg, sobel, and blackscholes.

jpeg sobel blackscholes
Approximate Precise Approximate Precise Approximate Precise

Int. Addition 1638528 (47%) 1851560 (53%) 1300500 (29%) 3127407 (71%) 0 24431290
Int. Division 0 2 0 1 0 1
Int. Multiplication 1572864 (100%) 129 (0%) 0 0 0 1
Shift 721024 (80%) 184470 (20%) 0 5 0 11981248
Logical 0 699817 1560601 (43%) 2086594 (57%) 3932160 (10%) 36951849 (90%)
Flt. Addition 0 0 2080800 (53%) 1820701 (47%) 11013611 (18%) 50052293 (82%)
Flt. Conversion 0 0 1820700 (54%) 1560601 (46%) 17039360 (74%) 5894656 (26%)
Flt. Division 0 0 260100 0 2621440 (100%) 3011 (0%)
Flt. Multiplication 0 0 260100 0 20971520 (35%) 39393594 (65%)
Other 0 5104094 0 7562301 0 217335333
Total 3932416 (33%) 7840072 (67%) 7282801 (31%) 16157610 (69%) 55578091 (13%) 386043276 (87%)

point operations. Blackscholes was chosen because, unlike the two other applications, each
individual value of its output needs to be reasonably correct for the output to be usable. Since
between these three applications we have millions of approximate instructions of different types,
they are enough to fully exercise all the approximate circuits we have proposed. For jpeg and
sobel, roughly one third of the total number of instructions executed at runtime are executed
approximately, while for blackscholes less than one out of six instructions are approximate.
Finally, all three applications produce outputs that can be easily presented and understood, which
was another reason for selecting these benchmarks. We use the familiar “Lenna” input (512× 512px,
in grayscale) for jpeg and sobel, and the “64K“ input for blackscholes. We were able to simulate
the majority of the benchmarks available in ACCEPT, both the PARSEC and the PERFECT ones,
but since the focus of this work is on the circuits and not which specific applications are amenable
to approximation, we decided to not include them in the results.
We decided to perform the evaluation by simulating a conventional general purpose CPU

because we are interested in evaluating the potential of quaternary technologies for replacing
the conventional binary CMOS systems used nowadays. CPUs require complex control logic
that takes up a significant part of their total energy usage, limiting the potential benefits of
performing computations approximately. Therefore, general-purpose CPUs are a harder target
for approximation, than e.g., accelerators, where most of the energy is used for moving data and
performing computations.

Previous work [38, 47] has developed frameworks for tracking which variables and errors affect
the application, but not on the level of tracking individual random bit errors and correlating them
with the final output. The computational resources required for such a task would be significantly
greater, making the approach impractical when a large number of program executions is required. At
the same time, the resulting relations of such an analysis can be too complicated to give meaningful
insights. For these reasons, we instead discuss the output of the applications based on the algorithm
implemented and the instruction mixes found in Table 1.

6.1 Methodology
Fig. 10 outlines the process we use for evaluating the applications. The whole process is part of the
framework we have developed using existing tools and adapting them for our purposes.

The first part of the process involves identifying which instructions and data in the application
can be treated as approximate. This is the responsibility of the programmer, as expert knowledge in
the algorithm and the output error tolerance is required, but tools to help that process exist [38, 47].
For our evaluation, we use benchmarks from the ACCEPT suite, which come annotated with
which data can be approximate and which not. These annotations are fed into the clang-based
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Table 2. The simulation parameters used for the evaluation.

Parameter Value
Processor type In-order x86-64 CPU
Issue width 2
Cache block size 64/128 bytes
L1 cache 16KiB, 2-way, 2 cycles access time
L2 cache 64KiB, 8-way, 20 cycles access time

Programmer Clang / LLVM Pin gem5

Annotating approximate 
variables in the source code

+

Allocating approximate 
data with our custom 

memory allocator

Identifying approximate 

instructions

+
propagating identified 

information to the binary 

as debug info

Introducing approximation 

errors to check the 

application's tolerance to 
various approximation 

levels and techniques

Performance and energy 

measurements with 
approximate hardware

Fig. 10. The process used for evaluating the proposed quaternary hardware with benchmark applications.

enerclang [39] compiler, which propagates them to all the expressions using the approximate data,
while also making sure that the programmer has not accidentally mixed in precise computations.

Up to this point, we have used only what the ACCEPT framework provides, with just some minor
modifications. However, the ACCEPT framework evaluates approximate computing on a higher
level than we do, using compiler optimizations to introduce approximations. For our evaluation,
we need to be able to execute binaries on modified (simulated) hardware, so we have to transfer the
metadata from the compiler to the binary. To do this, we decided to take advantage of the support
for debug information available. We developed a custom LLVM pass that, based on the metadata
available to the compiler, adds custom debug information to all of the approximate instructions.
After the final binary for the application has been created, we can extract the embedded debug
information for it and easily identify which instructions are approximate and which not. In addition,
we modified the applications to use a custom memory allocator for allocating approximate data,
which can be parameterized to use separate address ranges for approximate and for precise data.
One advantage of this approach is that the binaries generated can also be executed natively, as we
have not modified anything other than the debug information.

With the approximate instructions and data identified, we can then run the binaries in Pin [28], a
dynamic binary instrumentation tool developed by Intel. It works by modifying the binaries on the
fly using a JIT engine, and then executing them natively, which is why it is important for us that the
binary can be executed natively. How a binary is instrumented and what the instrumentation does
is controlled by dynamic libraries called “pintools”. For the purposes of this work, we developed
our own custom pintool that uses the debug information available in the binary to identify which
instructions are approximate and then introduces errors to their results. Specifically, every time an
approximate instruction is executed, the pintool identifies the output register or memory location of
the instructions and then lets the instruction execute unhindered. After the instruction has finished
executing, the pintool consults the tables containing the output error probability for the operation
(Sec. 5) and determines if an error should be introduced or not. If it determines that it should, then it
consults the bit error probabilities for the operation to determine which bits should the error affect.
Finally, the output value of the operation is modified to incorporate the error. A similar approach is
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Fig. 11. Error magnitude (boxplots – left axis) and error ratio (lines – right axis) for the benchmark applications.

used to introduce errors in the memory system, but by instrumenting all instructions that perform
memory loads instead. With Pin, we then execute the benchmarks hundreds of times, collecting the
amount of errors and the outputs they produce. Pin has the advantage that it introduces relatively
low overhead to the execution of the application, especially when compared with the next tool,
Gem5. For example, for jpeg, the execution time in Gem5 is 140× slower than in Pin1, which is
why we use Pin for evaluating the tolerance of the applications to errors.

However, Pin cannot give us full system performance or energy numbers. For these we instead
use the Gem5 detailed, full system simulator [7]. Gem5 enables us to simulate a conventional CPU
and memory system, while maintaining detailed statistics about every single aspect of the execution.
Like Pin, it can run unmodified binaries, so we use the same binary for both Pin and Gem5. As we
have already mentioned, Gem5 is significantly slower than Pin, which makes running thousands of
benchmarks prohibitively expensive in computational resources. For this reason, we use Pin for
the initial output error evaluation and then we use Gem5 for the more detailed performance and
energy numbers. In order to do this, we had to modify Gem5 to be able to differentiate between
approximate and precise instructions and data, and to add support for our proposed cache design.
In addition, we also employ the McPat 1.3 power modeling framework [25], which utilizes Gem5
data to calculate the energy usage of different parts of the system. Since we cannot determine
the static power consumption of the underlying quaternary technology, we disregard it from this
evaluation and focus on the dynamic energy only. Similarly, we do not evaluate the energy usage
of the main memory, since it is not possible to determine how it affects the total system energy.
Table 2 contains some of the simulation parameters. We simulate an in-order CPU instead of

a more advanced out-of-order CPU because, in the latter, the energy cost of the computation is
overshadowed by the overall energy cost of the out-of-order execution engine. In-order CPUs are
still widely used in energy constrained scenarios, providing a viable target for our optimizations.
We assume that a quaternary memory bus is available, but we do not simulate data errors during
transmission because they would only slightly increase the bit error probabilities without affecting
the shape of the bit error distribution.

6.2 Applications’ Tolerance to Errors
Fig. 11 depicts the characteristics of the errors in the output of the three benchmark applications.
Each plot contains two separate metrics, the magnitude of each individual error in the output
1Simulation times vary, but generally, for jpeg, we observe around 20 to 30 seconds with Pin and 40 to 50 minutes with
Gem5.
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(boxplot) and the amount of errors relative to the total output (line plot). The magnitude is produced
by iterating over all the elements in the output (i.e., pixels for jpeg and sobel and options for
blackscholes) and calculating the absolute difference between the approximate and the correct
output. Similarly, the amount of errors is the ratio of output elements that are exactly equal between
the approximate and the precise outputs. We avoid using error metrics such as the MSE because
they abstract away a lot of the details that provide insights in the nature of the errors. In addition to
the plots, we provide sample outputs from jpeg and sobel, seen in Fig. 12 and Fig. 13, respectively.
The jpeg benchmark implements the well known JPEG image compression algorithm. The

algorithm works on blocks of 8x8 pixels and each block is differentially encoded based on the
previous block. Therefore, if one of the blocks is corrupted, the rest might also contain invalid
data. In Figures 12d and 12e we can see that parts of the image are shifted, in both cases starting
after an error has occurred in the previous block. While this differential encoding is beneficial for
the compression ratio of the algorithm, it makes the algorithm less resilient to errors. Overall, we
observe that both the average error magnitude and the number of errors are reduced when the
gate error probability is also reduced (Fig. 11a). However, due to the fact that bit errors can appear
at any position of the output, the maximum error remains high regardless of the probability.
The next benchmark, sobel, implements the Sobel operator for edge detection. Unlike jpeg,

sobel calculates the value of each pixel based solely on the values of its neighboring pixels, meaning
that errors do not cascade and are instead isolated to the point that they occurred. For example,
comparing Fig. 12c and Fig. 13c, we observe that while sobel faces more errors during its execution,
the result is significantly better than that of jpeg. Similarly, if we compare Fig. 11a and Fig. 11b,
the error ratio drops much quicker in sobel than in jpeg. Another interesting observation is that
the median output error remains centered in the plot regardless of the error probability. Sobel
uses floating point operations, which tend to have large errors, but the results are then clamped
to eight bit integers. This leads to a lot of the errors manifesting as pixels with extreme values
(salt-and-pepper noise), particularly black. Since the majority of the output is gray, the difference
between the correct pixel value and the erroneous one often lays in the middle of the output range.
Finally, the blackscholes benchmarks implements the Black-Scholes mathematical model for

calculating the pricing of options in the financial market. This benchmark has two main differences
when compared to the previous two. First, the results are floating point numbers and not integer
pixel values. This means that the error magnitude can be significantly larger than before. Second,
each element (option) in the output is important and needs to be reasonably precise for the output
to be acceptable. This is an important difference, because in the previous applications isolated, large
magnitude errors can still produce acceptable results. In Fig. 11c we observe that the magnitude of
the errors can easily reach values greater than 1035. Given that these numbers represent monetary
value, such errors are unacceptable by any quality standard. For the output of blackscholes to be
usable the application will have to be modified to handle such errors, for example by detecting them
and repeating the necessary calculations. Such modifications are outside the scope of this work,
so we will discard blackscholes for the remainder of the evaluation. However, blackscholes
represents a good counter-example of an application that can benefit from approximate computing
but does not work (unmodified) with our proposed designs, which is why we decided to include it
as part of the applications’ error tolerance evaluation.

6.3 Energy and Performance Gains
So far, we have used SystemC and Pin to establish that it is possible to treat a number of instructions
and data as approximate while also maintaining a reasonable output quality. In order to determine if
that number is significant enough to yield tangible energy and performance gains on a conventional
hardware system, we utilize the Gem5 detailed full system simulator. From our experiments, we have

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.



EvaluatingQuaternary Logic for Approximate Computing 0:21

(a) Gate Error Probability = 10−5
Errors: 66810

(b) Gate Error Probability = 10−6
Errors: 6534

(c) Gate Error Probability = 10−7
Errors: 668

(d) Gate Error Probability = 10−8
Errors: 61

(e) Gate Error Probability = 10−9
Errors: 6

(f) Gate Error Probability = 10−10
Errors: 1

Fig. 12. Example outputs from jpeg with different gate error probabilities. By “Errors” we refer to the number

of instructions that produced an erroneous result during execution.

observed that regardless of the error probability (within limits), the performance and energy usage
of the application remain the same. Therefore, we disregard the error probability as a parameter
when evaluating the applications with Gem5.

The results can be seen in Fig. 14. While our primary goal is to reduce the dynamic energy of
the system, we first discuss how the approximations affect performance, since the overall energy
usage of the system is tied to its runtime performance.

Fig. 14a contains different performance relatedmetrics for the three applicationswe are evaluating.
The numbers are normalized over the precise execution, so a value of 1.0 indicates no change when
approximation is applied. Since approximate and precise instructions require the same number of
cycles, only the caches affect the performance of the application. In the case of jpeg, both the L1D
and the L2 caches have a similar miss ratio between the approximate and the precise executions.
This is because the application has a very small miss ratio overall, so it does not benefit from a
higher cache capacity. As a matter of fact, it is possible to develop a mechanism that detect the
low miss ratio and disable the use of approximation in the cache, improving the output quality
without affecting the performance, but it is left as future work. On the other hand, sobel benefits
significantly from the increased cache capacity for approximate data, with the L1D miss ratio
dropping from 34% to 1% (97% reduction). In turn, this leads to the approximate sobel execution

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.



0:22 Christos Sakalis, Alexandra Jimborean, Stefanos Kaxiras, and Magnus Själander

(a) Gate Error Probability = 10−5
Errors: 166744

(b) Gate Error Probability = 10−6
Errors: 15325

(c) Gate Error Probability = 10−7
Errors: 1525

(d) Gate Error Probability = 10−8
Errors: 178

(e) Gate Error Probability = 10−9
Errors: 11

(f) Gate Error Probability = 10−10
Errors: 1

Fig. 13. Example outputs from sobelwith different gate error probabilities. By "Errors" we refer to the number

of instructions that produced an erroneous result during execution.

being faster than the precise one, with a relative IPC of 1.4. The L2 miss ratio is also decreased, but
the number of accesses to the L2 are too few for it to be relevant.
Fig. 14b contains the precise (left) and approximate (right) energy usage for different parts of

the CPU, normalized over the total energy usage of the CPU during precise execution. Parts of
the CPU that are not affected by the approximations applied are not presented in the figure, but
are still taken into consideration when calculating the total energy usage, hence why the
precise bars (left) do not reach the full value of 1.0.

As seen in Table 1, jpeg is mostly comprised of integer and logical operations, all of which are
executed by the arithmetic and logic unit (ALU). Therefore, most of the energy is used by the ALU
and the integer tegister file (RF). Overall, we observe a 30% reduction in the energy used by the
ALU, and a 38% reduction in the energy used by the register file. In addition, we observe a 19%
reduction in the energy used by the L1D cache, for a total CPU energy usage reduction of 10%.

Sobel benefits even more from the approximations, with energy reductions of 17% and 28% for
the floating point unit (FPU) and the floating point register file respectively, as well as 54% and 98%
for the L1D and L2 caches. This leads to an overall energy usage reduction of 13% for the whole
CPU. Since the execution time is decreased, the static energy would have decreased with it, but we
cannot evaluate this due to the characteristics of the underlying technology being unknown.
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Fig. 14. System Performance and Energy

Overall, both applications exhibit improved energy usage when approximations are employed,
and in the case of (sobel) we even observe a significant performance boost. This indicates that ap-
proximate designs using quaternary technologies are indeed a viable solution, even on conventional
computer systems.

These results where achieved on a general-purpose CPU where the overhead of the control logic,
which needs to always be precise, is significant, both in energy and in performance. If the same
designs where used on a specialized accelerator, such as an FPGA or an ASIC, the energy and
performance gains would have been relatively bigger. However, as we explain in the beginning of
the evaluation, our goal is to evaluate multi-level technologies as a replacement for CMOS and not
just for specialized circuits.

7 CONCLUSION
In this work, we have evaluated the potential of applying approximate computing to a general-
purpose CPU in the form of quaternary logic circuits. It is not possible to approximate all parts of
the CPU, nor it is possible to approximate all parts of the application being executed. However, we
have shown that it is possible to achieve energy (up to 13%) and performance (up to 1.4×) gains
while keeping the output of the application at an acceptable quality level.

Exactly when an output can be considered to be of “an acceptable quality level” depends on the
application, as well as the use case. For example, in jpeg we could claim that we can tolerate a
few blocks being corrupted if the results are meant for computer consumption (e.g., for a neural
network) but we cannot claim the same when the results are aimed for human consumption (e.g.,
when sharing photographs). In our experiments, we evaluated gate error probabilities that are
orders of magnitude higher than those of conventional CMOS circuits used today. Therefore, even
if future quaternary technologies are not able to achieve levels of reliability comparable to today’s
CMOS, they can still be a viable solution for applications amenable to approximation.
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