TLR8 and complement C5 induce cytokine release and thrombin activation in human whole blood challenged with Gram-positive bacteria

Birgitta Ehrnström1,2,3 | June F. Kojen1,2 | Miriam Giambelluca1,2 | Liv Ryan1,2 | Siv H. Moen1,2 | Zhenyi Hu4 | Hang Yin5 | Tom E. Mollnes1,6,7 | Jan K. Damås1,2,3 | Terje Espevik1,2 | Jørgen Stenvik1,2,3

1Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
2Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
3Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
4Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
5School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
6Research Laboratory, Nordland Hospital, and K. G. Jebsen TREC, University of Tromsø, Norway
7Department of Immunology, Oslo University Hospital and K. G. Jebsen IRC, University of Oslo, Oslo, Norway

Correspondence
Dr. Jørgen Stenvik, Kunnskapssenteret, Olav Kyrres gate 10, Trondheim, Norway.
Email: jorgen.stenvik@ntnu.no

Abstract

We recently showed that TLR8 is critical for the detection of Gram-positive bacteria by human monocytes. Here, we hypothesized that TLR8 and complement together regulate antibacterial responses in human blood. Anticoagulated blood was treated with selective inhibitors of TLR8 and/or complement C5, and then challenged with live Streptococcus agalactiae (Group B streptococcus, GBS), Staphylococcus aureus, or Escherichia coli. Cytokine production, plasma membrane permeability, bacterial survival, phagocytosis, and activation of coagulation was examined. GBS and S. aureus, but not E. coli, triggered TLR8-dependent production of IL-12p70, IL-1β, TNF, and IL-6 in fresh human whole blood. In purified polymorphonuclear neutrophils (PMN), GBS and S. aureus induced IL-8 release in part via TLR8, whereas PMN plasma membrane leakage and extracellular DNA levels increased independently of TLR8. TLR8 was more important than C5 for bacteria-induced production of IL-12p70, IL-1β, and TNF in blood, whereas IL-8 release was more C5 dependent. Both TLR8 and C5 induced IL-6 release and activation of prothrombin cleavage, and here their combined effects were additive. Blocking of C5 or C5aR1 attenuated phagocytosis and increased the extracellular growth of GBS in blood, whereas TLR8 inhibition neither reduced phagocytosis nor intracellular killing of GBS and S. aureus. In conclusion, TLR8 is more important than C5 for production of IL-12p70, IL-1β, and TNF upon GBS and S. aureus infection in blood, whereas C5 is central for IL-8 release and phagocytosis. Both TLR8 and C5 mediate IL-6 release and activation of coagulation during challenge with Gram-positive bacteria in blood.

KEYWORDS

innate immunity, bacterial infection, blood, phagocytes, cytokines, phagocytosis, prothrombin

1 INTRODUCTION

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection.1 Despite much effort, no specific therapy has been developed.2,3 When the host loses local containment of an infection, the body is systematically exposed to microbes and products of damaged tissue which is sensed by the innate immune system.4,5 The subsequent rapid inflammatory response is fundamental to clear infections. On the other hand, the systemic activation of innate defense is potentially harmful and plays a major role in the development of multi-organ failure and death.

Abbreviations: aC3, C3 inhibitor; aC5, anti-C5 monoclonal antibody; C5, complement factor 5; C5aR1, C5a receptor 1; C5aRA, C5a receptor 1 antagonist; GBS, Group B streptococcus; NETs, neutrophil extracellular traps; PMN, polymorphonuclear neutrophils; PTF1+2, prothrombin fragment 1+2; pU, polyuridylic acid; TF, tissue factor.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Journal of Leukocyte Biology published by Wiley Periodicals, Inc. on behalf of Society for Leukocyte Biology
role in the early stages of sepsis pathophysiology, and leads both to hyperinflammation and immunosuppressive counter-reactions. It is therefore vital to understand the mechanisms of how pathogens are recognized and how the innate defense system is regulated in order to identify new targets for treatment of sepsis.

The TLR family and the complement system are key sensor and effector systems of innate immunity. The TLRs recognize microbial components and elicit potent proinflammatory responses when activated. TLR8 function as an endosomal sensor of the ssRNA degradation products uridine and short ssRNA oligomers, which bind cooperatively to the preformed TLR8 dimer and activate signaling. Using a selective small-molecule inhibitor of TLR8, we recently showed that TLR8 is a dominant sensor of the Gram-positive bacteria GBS, S. aureus, and S. pneumoniae in monocytes, whereas it appears considerably less important for the detection of Gram-negative species. The complement system is a part of the innate defense system were it facilitates phagocytosis via C3b opsonization, induces inflammation via anaphylatoxins such as C3a and C5a, and lyses sensitive bacteria for experiments, bacterial colonies were inoculated in 5 ml tryptic soy broth (SB). Bacteria were grown on tryptic soy agar or blood agar plates. To prepare bacteria for experiments, bacterial colonies were inoculated in 5 ml tryptic soy broth (SB). Bacteria were grown on tryptic soy agar or blood agar plates.

2.1 Materials

The TLR8 antagonists CU-CPT9a and CU-CPT9b are previously described, and they were generously provided together with a control reagent by The Regents of the University of Colorado, a body corporate for and on behalf of the University of Colorado Boulder. FSL-1, CL075, LPS (O111:B4), and polyuridylic acid (pU) were purchased from InvivoGen (Tolouse, France). Poly-L-arginine, Dulbecco's PBS supplemented with Ca²⁺ and Mg²⁺, and EDTA, and Saponin were from Sigma-Aldrich (Steinheim, Germany). The recombinant hirudin analogue lepirudin (Refudan) was from Pharmion (Windsor, UK). Complement C3 inhibitor Compsatin (CP40, 20 μM final concentration) was kindly provided by professor J.D. Lambris (University of Pennsylvania, USA). The humanized IgG2/4 anti-C5 inhibitory antibody (eculizumab/Soliris®) was from Alexion Pharmaceuticals (Cheshire, CT, USA), and was used at 100 μg/ml. Recombinant anti-CD14 IgG2/4 hybrid (r18D11, 10 μg/ml final concentration) is previously described, as is the IgG2/4 hybrid (NHDL) control Ab. The C5a receptor 1 antagonist (C5aRA) PMX53 (10 μg/ml) was kindly provided by professor Trent Woodruff (University of Queensland, Australia). Bio-Plex multiplex cytokine assays were from Bio-Rad (Hercules, CA, USA). Prothrombin fragment (PTF) 1+2 plasma levels were determined with Enzygnost PTF1+2 (monoclonal) kit from Siemens Healthcare (Marburg, Germany) as per manufacturer’s instructions. Erythrocyte (RBC) lysis was done with the EayLyse® buffer (Dako, Glostrup, Denmark). Sucrose (D+ Saccharose) was from VWR International (Radnor, PA, USA).

2.2 Bacteria

The GBS NEM316 strain and the S. aureus 113 strain were generously provided by professors Philipp Henneke (University of Freiburg, Germany) and Friedrich Götz (University of Tübingen, Tübingen, Germany), respectively. The E. coli Seattle 1946-strain was purchased from the American Type Culture Collection (ATCC 25922). The bacteria were grown on tryptic soy agar or blood agar plates. To prepare bacteria for experiments, bacterial colonies were inoculated in 5 ml tryptic soy broth (E. coli and S. aureus) or Todd-Hewitt broth (GBS) during vigorous shaking at 37°C overnight (12–18 h). Bacteria were quantified by optical density, as previously described.

2.3 Whole blood model and cytokine analysis

The whole blood model was performed as described previously. In short, peripheral blood was drawn by venipuncture from healthy volunteers into 4.5 ml vacuum tubes (Nalge Nunc, Rochester, NY, USA) containing the thrombin inhibitor lepirudin (50 μg/ml). It was not investigated whether the donors previously had been sensibilized to the bacterial antigens used.

The baseline sample (T0) was collected immediately after blood was drawn with addition of EDTA to 10 mM to block further complement activation. Lepirudin blood was quickly aliquoted into 1.8 ml round bottom cryotubes (Nalge Nunc). For the experiments performed with TLR8 inhibitors in combination with anti-C5 and C5aRA (PMX53), blood was preincubated with CU-CPT9b (5 μM) or control compounds/vehicle on a tube roller at 37°C for 90–120 min. Subsequently, a T0 sample after preincubation was collected and ligands or live bacteria were added and incubated further. For the experiments performed with CP40, anti-C5, and anti-CD14, blood was mixed with the inhibitors a few min prior to the addition of ligands or bacteria. The TLR8 ligand pU was premixed with poly-L-arginine to allow complex
formation before addition to blood. After incubation for 120–240 min, aliquots were sampled and EDTA was added. Plasma was isolated by centrifugation of blood at 1700 × g for 15 min, and stored at −20°C until analyses. Cytokine analysis was done using Bio-Plex assays and analysis on a Bio-PlexTM 200 System using a Bio-Plex ProTM Wash Station, as described by the manufacturer (Bio-Rad).

2.4 Leukocyte viability

To examine the viability of monocytes and granulocytes (PMN) in blood after 240 min of infection with GBS or S. aureus, 50 µl of blood was labelled with anti-CD14 (FITC; Dako) for 30 min on ice. RBC were lysed with 1.5 ml lysis reagent for 15 min at RT, and leukocytes (WBC) were centrifuged at 270 × g for 5 min and resuspended in 400 µl PBS. The plasma membrane integrity was then examined by addition of propidium iodide (PI) at 3 µg/ml approximately 5 min prior to the analysis on by flow cytometry using a BD FACSCantoTM II flow cytometer (BD Biosciences, San Jose, CA, USA). Monocytes and granulocytes were gated according to FITC staining and side scatter, and the fraction of PI positive cells (PE gate) was determined.

2.5 Neutrophil isolation and infection

Human polymorphonuclear neutrophils (granulocytes; PMN) were obtained from fresh peripheral blood drawn by venipuncture as described.28 Briefly, venous blood from healthy volunteers was collected in isocitrate anticoagulant solution and centrifuged at 250 × g for 10 min. WBC were obtained from the pellet following RBC sedimentation in 2.0% Dextran T-500 (Sigma–Aldrich). PMN were then separated by centrifugation on a 10 ml cushion of LymphoprepTM (Axis-Shield). Contaminating RBC were removed by 20 seconds of hypotonic lysis in water, before adding concentrated HBSS. Viability was higher than 98%, based on trypan blue dye exclusion and Cell Hostess Counter quantification (Thermo Fisher Scientific, Waltham, MA, USA). The entire procedure was carried out at RT under sterile conditions. PMN were resuspended in RPMI with 10% human serum, and 5 × 10⁴ cells were seeded per well in 24-well culture plates (Costar). The cells were pretreated with CU-CPT9a (5 µM) for 60 min to block TLR8 function, or with DMSO as a vehicle control. Subsequently, 1 × 10⁷ or 1 × 10⁶ live GBS or S. aureus were added to a final volume of 1 ml per well. After 60 min of incubation at 37°C and 5% CO₂, Gentamicin (100 µg/ml) was added and the cultures were incubated for additional 5 h. Cell free supernatants were collected after brief centrifugation and stored at −20°C until analyses. Extracellular DNA was determined using the fluorescent DNA-binding dye CyQUANT® GR (Thermo Fisher Scientific), according to the manufacturer’s procedure. The fluorescence intensity was quantified by excitation/emission at 485/535 nm using the Victor3TM 1420 multilabel counter (PerkinElmer, Waltham, MA, USA).

2.6 Bacterial survival

Anticoagulated blood was incubated with CU-CPT9b or DMSO control for 90–120 min. Subsequently, live bacteria were added and mixed by pipetting. Immediately (T0) and after 240 min of incubation on a tube roller at 37°C, 20 µl blood was lysed by dilution into 180 µl ice cold sterile water with 0.3% saponin. The lysed blood samples were further diluted in a 10-fold series, and 30 µl of each dilution was plated in triplicates on blood agar. After incubation at 37°C over night, the number of CFU were counted and the corresponding CFU concentration blood was calculated. Similar experiments were performed using lepirudin plasma.

The number of intracellular viable bacteria in WBC was determined by a previously described method,29 using some modifications. After bacterial challenge for 240 min, 1 ml blood was diluted in 9 ml of RBC lysis buffer using 15 ml tubes (Nunc) at RT for 10 min. The lysed blood was centrifuged at 300 × g for 10 min at 4°C, and the plasma/lysis phase containing extracellular bacteria was carefully removed. The WBC pellet was dissolved in 1.7 ml ice cold PBS and centrifuged in round-well cryotubes (Nunc) at 130 × g for 5 min at 4°C. The supernatant was removed by careful pipetting and the wash step was repeated 1 time. For stringent elimination of the remaining extracellular bacteria, the WBC pellet was dissolved in 0.5 ml ice cold PBS and underlayed with 1 ml ice cold 30% sucrose in PBS. Cells were pelleted at 200 × g for 10 min at 4°C, and the supernatant was carefully removed. Next, the WBC pellet was dissolved in ice cold PBS to the original blood volume of 1 ml. Finally, 20 µl of dissolved WBC was lysed, serially diluted, and plated for CFU quantification, as described above.

2.7 Phagocytosis quantification

GBS and S. aureus were grown in broth over night and dissolved in 0.2 M NaHCO₃ at 1 × 10^{10} bacteria/ml. The bacteria were labelled with Alexa FluorTM 488 TFP ester (Thermo Fisher Scientific, 100 µg/ml) at RT for 1 h, washed, and dissolved in DPBS supplemented with Ca²⁺ and Mg²⁺ at 5 × 10⁷ bacteria/ml. Lepirudin anticoagulated whole blood was pretreated with inhibitors for 90 min before labeled bacteria were added (5 × 10⁶ bacteria/ml). Blood aliquots were sampled after 60 and 120 min and placed on ice. Phagocytosis was quantified using the PHAGOTES™ reagent kit, according to the protocol of the manufacturer (Glycotope Biotechnology, Heidelberg, Germany). Leukocytes were labeled using anti-CD45-PerCp and anti-CD14-PE (BD Biosciences), and analysis was done on a BD FACSChanto™ II flow cytometer. Populations were gated according to side scatter and PerCp and PE staining, and the mean fluorescence intensity (MFI, FITC channel) of the monocyte and granulocyte populations were determined.

2.8 Statistics

Statistical analyses were done on data sets from independent, consecutive experiments, and the number of consecutive independent experiments performed are indicated in the figure legends (N). Since such data typically can have a log-normal distribution, log-transformation was done prior to the analysis. Data sets were analyzed with GraphPad Prism software, using 1way repeated-measures analysis of variance (RM-ANOVA) and Dunette’s multiple comparison test, or 2-way RM-ANOVA and Bonferroni’s multiple comparison test. Significant differences between the control/vehicle—and the
treatment—conditions are indicated with the symbol **", whereas horizontal bars indicate comparisons of specific treatments. Significance levels correspond to *P < 0.05, **P < 0.01, and ***P < 0.001.

2.9 Safety and ethics

The research was carried out according to the standard institutional safety procedures (biosafety level II) at the Norwegian University of Science and Technology. The use of human whole blood for our experiments was approved by the Regional Committee for Medical and Health Research Ethics in Central Norway (REC Central). The Norwegian Ministry of Education and Research, no. 2009/2245.

3 RESULTS

3.1 Efficacy of the TLR8 inhibitor CU-CPT9b in blood

To determine the minimum concentration of CU-CPT9b required to block TLR8 function, anticoagulated blood was pretreated with the inhibitor or the control compound at different concentrations for 120 min, and subsequently the TLR8 agonists pU or CL075, the TLR4 agonist LPS, or vehicle control (PBS) were added. Cytokine analyses in plasma after 240 min of treatment revealed that the TLR8 inhibitor efficiently blocked the CL075 induced production of TNF, IL-1β, and IL-6 at the lowest dose tested (2.5 µM), whereas the pU induced response was fully blocked at 5–10 µM (Supplemental Fig. 1A). IL-8 showed a similar tendency but was weakly induced. The LPS-induced cytokine release was not affected by CU-CPT9b, whereas the control compound (Supplemental Fig. 1B) did not influence the TLR8-induced responses (Supplemental Fig. 1A). Hence, we considered 5 µM CU-CPT9b to be optimal for inhibition of TLR8 activation in blood, which is similar to our recent findings with the analogue CU-CPT9a in cultures of purified monocytes.13

3.2 TLR8-inhibition attenuates cytokine induction by GBS and S. aureus in whole blood

To determine the impact of TLR8 for the sensing of viable bacteria in blood, we pretreated blood with 5 µM of CU-CPT9b or the control reagent for 120 min, and subsequently added pU, LPS, FSL-1 (TLR2/6 agonist), or live GBS, S. aureus or E. coli at different doses. Blood plasma was separated 240 min after the initiation of the challenge and cytokine levels were examined. As expected, TLR8 blockade almost eliminated the cytokine induction by pU, whereas it had no effect on the cytokine induction by LPS or FSL-1 (Fig. 1). More important, CU-CPT9b clearly reduced the production of cytokines after GBS and S. aureus challenge. The effect was most pronounced for IL-12p70, IL-1β, and TNF, but also significant for IL-6 for the lower bacterial concentrations. There were no major effects of CU-CPT9b treatment on the release of IL-8 or MCP-1 (data not shown). Moreover, cytokine induction by E. coli was mainly TLR8 independent, which is in agreement with our recent findings with this strain in monocyte

FIGURE 1 GBS and S. aureus challenge of whole blood induces cytokine release in part dependent on TLR8, whereas this is not seen with E. coli. Anticoagulated blood was incubated with the TLR8 inhibitor CU-CPT9b or a control reagent. Subsequently, challenge with live GBS or S. aureus (1 × 10⁶−1 × 10⁵−1 × 10⁴ bacteria/ml) or E. coli (1 × 10⁵−1 × 10⁴−1 × 10³ bacteria/ml) was done for 240 min. Agonists for TLR8 (pU, 1 µg/ml), TLR4 (LPS, 100 ng/ml), and TLR2 (FSL-1, 100 ng/ml) were included as controls. The graphs show the mean plasma cytokine levels (log-scale) + SEM. N = 6 consecutive experiments
3.3 | Monocyte and PMN viability and release of DNA and IL-8 by PMN

The integrity of the plasma membrane of monocytes and PMN during GBS and S. aureus challenge of blood for 240 min was examined by PI staining and flow cytometry analysis. The membrane integrity of PMN, but not monocytes, was compromised during challenge with the highest bacterial load, but TLR8 inhibition did not influence this (Fig. 2A). To further examine whether TLR8 has a functional role in PMN during bacterial infection, purified PMN were seeded in cell culture plates and pretreated with CU-CPT9a (5 μM), and challenged with live bacteria for 6 h. The highest concentrations of GBS and S. aureus significantly increased the levels of extracellular DNA in the culture supernatant (Fig. 2B). The extracellular levels of DNA correlate with the loss in PMN plasma membrane integrity in blood, and may represent neutrophil extracellular traps (NETs) or DNA released via other forms of necrotic cell death.30 Anyway, both effects occurred independently of TLR8 signaling. In contrast, IL-8 production by PMN in response to both bacteria was partially reduced by TLR8 inhibition, most strongly during GBS challenge (Fig. 2B). This suggests that TLR8 directly contribute to the sensing of bacteria in PMN.

3.4 | Impact of complement and CD14 for cytokine responses to live bacteria in blood

Inhibition of complement at the level of C3 or C5 combined with CD14-blockade attenuates cytokine release in blood challenged with E. coli and S. aureus.18,22 We compared the efficacy of the C3-inhibitor Comstatin (CP40; aC3), the C5-blocking antibody eculizumab (aC5), and a CD14-blocking antibody during challenge with GBS, S. aureus and E. coli. Plasma cytokine levels were determined after challenge for 120 (Supplemental Fig. 2A) and 240 min (Supplemental Fig. 2B). C3- or C5-inhibition partially attenuated IL-1β, TNF, IL-6, and IL-8 induction by the Gram-positive bacteria during 120 min of challenge (Supplemental Fig. 2A). GBS-induced cytokine production was minimally affected by CD14 blockade, whereas the cytokine induction by S. aureus was more attenuated, in particular the IL-6 release. Anti-CD14 strongly reduced the cytokine induction by E. coli, and when combined with inhibitors of C3 or C5 even further reduction was obtained (Supplemental Fig. 2A). The effects of C3 and C5 inhibitors were less clear after 240 min, although the IL-6 induction by S. aureus was still significantly reduced when combined with anti-CD14, and the E. coli induced cytokine release remained strongly attenuated. Inhibition at the level of C3 and C5 were almost equally efficient (Supplemental Fig. 2B). Since C5 blocking does not interfere with C3b-dependent opsonization, this seems to be a better and more selective target than C3.

3.5 | Effects of combined TLR8 and C5 inhibition in blood upon GBS and S. aureus challenge

In agreement with our hypothesis, the cytokine induction by the Gram-positive bacteria in blood is both TLR8 and complement dependent. Next, we examined if combined inhibition of TLR8 and C5 could further attenuate the cytokine responses. E. coli was excluded from this experiment, since it mainly triggered CD14-dependent and TLR8-independent cytokine production. CU-CPT9b markedly decreased the induction of IL-1β and TNF during 120 min of challenge with GBS and S. aureus, with the strongest effect for GBS (Fig. 3A). C5 inhibition had similar but weaker effects, whereas the combined inhibition of C5 and TLR8 did not significantly reduce the IL-1β and TNF levels more than TLR8 inhibition alone. On the other hand, IL-8 induction by both bacteria during 120 min of challenge was strongly dependent on C5, but not TLR8. Also, combined inhibition did not reduce IL-8 more than C5 inhibition alone (Fig. 3A). Induction of IL-6 during 120 min of challenge with GBS was dependent on both C5 and TLR8, whereas S. aureus triggered early IL-6 release mainly via C5. Combined inhibition did not reduce the IL-6 release significantly more than single inhibition. After 240 min of challenge IL-12p70 was induced, mainly in a TLR8-dependent manner (Fig. 3B). Moreover, the effect of C5 inhibition on the other cytokines was diminished, except for IL-6, whereas the effect of CU-CPT9b had increased and partially attenuated also the IL-8 production for the low bacterial dose. For the high bacterial dose, no significant reduction in IL-8 levels was obtained with the inhibitors (Fig. 3B). IL-6 was most strongly reduced when combining the C5- and TLR8-inhibitors. Taken together, cytokine induction in blood by the Gram-positive bacteria is dependent on both TLR8 and C5, as hypothesized. We observed an increased impact of TLR8 and a reduced effect of C5 at the later time point. Combined blockade of C5 and TLR8 had additive effects, most notably on IL-6 production.

3.6 | Impact of TLR8 and C5 on growth and survival of bacteria in blood

To examine whether inhibiting TLR8 or C5 influenced the bacterial survival in blood, an aliquot of blood samples was lysed, diluted, and plated on blood agar. The viability (CFU/ml) of GBS strongly increased during 240 min of challenge, whereas the S. aureus viability declined (Fig. 4A). Inhibition of C5 alone or in combination with TLR8 further increased the number of viable GBS in blood for the highest bacterial dose, whereas CU-CPT9b alone did not have any effect (Fig. 4A). For S. aureus, neither inhibitor influenced the bacterial numbers. Gram-positive bacteria are generally resistant against direct complement mediated lysis by the membrane attack complex, and the GBS and S. aureus strain used replicated efficiently in lepirudin plasma, with no direct effect of CU-CPT9b on the bacterial growth (Supplemental Fig. 3). To discriminate intracellular and extracellular viable bacteria, leucocytes (WBC) were isolated after 240 min of bacterial challenge, washed, lysed, and plated for CFU quantification. Compared with whole blood, few viable bacteria were present in the WBC fraction, suggesting that phagocytes kill both GBS and S. aureus efficiently.
after phagocytosis, and this was independent of TLR8 (Fig. 4B). To clarify if TLR8 or C5 directly affected phagocytosis, uptake of fluorescently labelled bacteria by monocytes and PMN in blood was quantified by flow cytometry. Anti-C5 or a C5a receptor antagonist (C5aRA) reduced the uptake of GBS by monocytes and PMN during 60 and 120 min of challenge, whereas TLR8 inhibition had no clear effect (Supplemental Fig. 4A). Anti-C5 or C5aRA treatment also reduced the uptake of S. aureus during 60 min of challenge, whereas the effect declined during longer incubation, and TLR8 inhibition had no clear effects (Supplemental Fig. 4B).

Taken together, TLR8 appears dispensable for phagocytosis and intracellular bacterial killing in the whole blood model, whereas C5 limits the extracellular growth of GBS by facilitating phagocytosis via C5aR1 activation. Uptake of S. aureus in the early phase also depends on C5a–C5aR1 signaling, but this becomes redundant during prolonged challenge, and is not critical to control the infection.

3.7 Effect of TLR8 and C5 on coagulation activation by bacteria

Coagulation disturbances are believed to be of major importance in sepsis. Therefore, we examined the effects of inhibiting TLR8 and C5 on activation of coagulation during infection. Because clotting in this model is prevented by the thrombin inhibitor lepirudin, initiation of coagulation was examined at the stage of prothrombin cleavage. Prothrombin fragments (PTF1_{1+2}) in plasma were detected with ELISA after 240 min of bacterial challenge. GBS and S. aureus activated coagulation in a C5-dependent manner at both doses of inoculum (Fig. 5). With CU-CPT9b alone, there was also a tendency towards reduction of PTF_{1+2} levels. Combined C5- and TLR8-inhibition gave an additive effect, and strongly reduced the initiation of coagulation triggered by the bacteria.

Taken together, our data indicate that TLR8 is important for the production of central proinflammatory cytokines in human blood exposed to live GBS and S. aureus, whereas E. coli is sensed mainly in a TLR8-independent manner. TLR8 in PMN contribute to IL-8 release during Gram-positive challenge, although in whole blood IL-8 release is mainly C5 driven. IL-6 production and initiation of coagulation is dependent on both TLR8 and C5, and combined inhibition is an efficient means of attenuating these responses. Phagocytosis and intracellular bacterial killing do not require TLR8 signaling, whereas signaling via C5aR1 enhance phagocytosis and appears especially important for limiting the extracellular growth of GBS.

4 DISCUSSION

We here examined the importance of TLR8 and C5 for the activation of antibacterial responses in a human whole blood model of bacteremia. The recently developed small molecule inhibitor of TLR8 is highly efficient and selective also in human blood. Inhibiting TLR8 reveals its importance for the production of IL-12p70, IL-1β, and TNF during S. aureus and GBS challenge in blood, and is in accordance with our recent findings of a dominating role of TLR8 in the sensing of Gram-positive bacteria in monocytes, mediating strong induction of IFN-γ, IL-12p70, IL-1β, TNF, IL-6, and IL-10. The Gram-positive bacteria induced IL-12p70 production in whole blood almost exclusively via TLR8. This is also seen in...
Cytokine induction by GBS and *S. aureus* in whole blood is variably dependent on TLR8 and C5. Anticoagulated blood was treated with TLR8 inhibitor CU-CPT9b or anti-C5 (eculizumab; aC5), individually or in combination, and a nonspecific antibody in combination with a control reagent served as control. Subsequently, the blood was challenged with live GBS or *S. aureus* (5 × 10⁶ bacteria/ml or 5 × 10⁵ bacteria/ml). Cytokine levels in plasma were examined after (A) 120 min and (B) 240 min of infection. In noninfected blood the mean cytokine level (pg/ml) after 120/240 min of incubation were: IL-1β (2/11), TNF (138/231) IL-6 (7/14), IL-8 (866/2489), IL-12p70 (−/−). The graphs show means + SEM (N = 6)

purified monocytes, where TLR8 agonists induce much more IL-12p70 compared with TLR2- or TLR4-agonists. Induction of IL-12p70 and IFNγ via TLR8 requires IRF5 nuclear translocation, which is not triggered by surface TLR signaling. TLR2 and TLR4 trigger robust production of IL-1β, TNF and IL-6 by monocytes, probably via canonical NF-κB- and MAPK-pathways. IRF5 activation is not essential, but still potentiates the induction of IL-1β, TNF, and IL-6 in TLR8 signaling.

Human PMN express all TLRs except TLR3 and TLR7. Synthetic TLR8 ligands induce high levels of IL-8 release in highly pure PMN cultures, whereas the induction of other cytokines is much lower. We here show that TLR8 contributes to the release of IL-8 by PMN
FIGURE 4 C5 cleavage but not TLR8 signaling attenuates the growth GBS in human blood, whereas both processes are dispensable for controlling the growth of *S. aureus*. (A) Anticoagulated blood was treated with inhibitors of TLR8 or C5, individually or in combination, or with PBS as a vehicle control (no inhibition). Live GBS or *S. aureus* (5 × 10^6 bacteria/ml or 5 × 10^5 bacteria/ml) were added, and blood aliquots were sampled immediately (T0) or after 240 min of incubation, lysed and plated on blood agar to calculate the numbers of CFU. The graph shows means ± SEM (*N* = 6). (B) Effect of TLR8 inhibition on intracellular bacterial survival. Anticoagulated blood was treated with TLR8-inhibitor CU-CPT9b or DMSO as vehicle control. Subsequently, live bacteria were added (5 × 10^6 or 5 × 10^5 bacteria/ml), and blood aliquots were sampled immediately (T0) or after 240 min of incubation. WBC were isolated, washed, and lysed to determine the number of intracellular viable bacteria. The graphs show means ± SEM (*N* = 4).

FIGURE 5 Prothrombin cleavage induced by GBS and *S. aureus* is partially dependent on TLR8 and C5. Anticoagulated blood was treated with TLR8 inhibitor CU-CPT9b or aC5, individually or in combination, or with a control mAb combined with control reagent (Control). Live GBS or *S. aureus* (5 × 10^6 bacteria/ml or 5 × 10^5 bacteria/ml) were incubated for 240 min, and the plasma levels of prothrombin fragment 1+2 (PTF1+2) were determined with ELISA. In non-infected blood the mean level of PTF1+2 after 240 min of incubation was 17.5 nM. The graph shows means ± SEM (*N* = 5).
during Gram-positive infections, but this did not occur in monocyte cultures. In whole blood, bacteria triggered IL-8 release mainly in a C5-dependent manner, although TLR8 contributed nonredundantly in some conditions. Bacterial infection also resulted in increased permeability of the PMN plasma membrane and increased the levels of extracellular DNA. This could be a result of accidental or programmed necrosis, or it might be due to NET formation, which can be of vital or suicidal type. TLR signaling may influence the programmed necrosis, or it might be due to NET formation, which dantly in some conditions. Bacterial infection also resulted in increased cytokine induction in blood, although TLR8 contributed nonredun-
dantly compared with S. aureus. TLR2 also contributes to S. aureus detection in blood, and TLR2 signaling reduces TLR8-mediated IFN-γ activation. These findings are consistent with a more important role of CD14 on S. aureus induced cytokines, as CD14 is a cofactor in TLR2- and TLR4-signaling that enhances cytokine responses. In contrast, the majority of GBS strains produce little TLR2 activating lipoproteins, explaining why anti-CD14 treatment during challenge only gave minor effects. Combined inhibition of complement and CD14 attenuated the cytokine production more efficiently than either reagent alone during infection with E. coli and S. aureus. Similar effects by combining these inhibitors were seen in the current study, also with GBS challenge.

TLR8 can sense purified E. coli RNA and live E. coli. Here, the E. coli induced cytokine responses were highly dependent on CD14, but unaffected by TLR8 inhibition, which is in line with our recent findings with purified monocytes and this particular strain of E. coli. Still, TLR8 contributed significantly to IL-1β and IL-12p70 induction by 2 clinical isolates of E. coli in monocytes, as well as with the Gram-negative bacterium P. aeruginosa. Also, E. coli activated TLR8 more strongly if CD14-dependent TLR4 signaling was blocked, as cell surface TLR signaling antagonizes TLR8-IRF5 activation and triggers redundant cytokine release. In the current study, also the E. coli isolates failed to mediate nonredundant cytokine production via TLR8 in blood, whereas the reasons for this discrepancy between these model systems are unclear.

Blocking C3 or C5 alone reduced IL-8 release by E. coli, but had otherwise minor effects on cytokine induction by this bacterium. C5a was previously identified as central for E. coli mediated IL-8 production. With GBS and S. aureus challenge, C3- or C5-inhibition reduced cytokine production more than with E. coli, and the C5a–C5aR1 interaction is known as important for S. aureus induced responses. As expected, the Gram-positive bacteria induce cytokines in blood via both TLR8- and C5-dependent mechanisms, and combined inhibition gave an additive effect, most clearly seen for IL-6.

The number of viable GBS strongly increased during 240 min of incubation in blood, whereas the S. aureus numbers declined. This is in line with previous studies with these bacteria. Hence, phagocytes in blood more easily resolve infections with S. aureus than GBS. C5 inhibition further increased the growth of GBS, probably because C5aR1 signaling enhances phagocytosis. Similarly, distinct complement inhibitors from scabies increased the growth of S. pyogenes in blood. Phagocytosis of S. aureus was also reduced by C5- or C5aR-inhibition, in agreement with our previous findings. Still, C5a–C5aR1 signaling gradually becomes dispensable for phagocytosis of this bacterium as time progresses, and C5 inhibition did not impair the resolution of infection in blood. Although costimulation with a TLR2 agonist increases the uptake of S. aureus by monocytes but not PMN in blood, anti-CD14 has only modest effects. Sensing of bacteria via TLR8 occurs downstream of phagocytosis and bacterial degradation, and it is delayed relative to TLR2 activation. TLR8 signaling may therefore occur too late to influence the phagocytic process.

TLR8 inhibition neither affects the intracellular killing of the bacterium, even though TLR8 can trigger bactericidal effector mechanisms such as degranulation and respiratory burst in PMN in vitro. This is in line with the finding that IRAK-4 deficiency does not impair intracellular killing of bacteria and fungi by human PMN. TLR8 also recognizes S. pyogenes in human monocytes. In murine macrophages TLR13 has a similar function as human TLR8, and deficiency in endosomal TLR signaling impaired early S. pyogenes recognition in a murine model of subcutaneous infection. Loss of endosomal TLR function led to local bacterial overgrowth and hyperinflammation, impaired bacterial containment, and systemic inflammation. Analogous, human TLR8 may be important for early detection of bacteria in the tissue, induction of inflammation, and leukocyte recruitment to the focus of infection. Furthermore, TLR8 can regulate adaptive immunity via IL-12 production.

Coagulation limits the spreading of invading bacteria, whereas DIC is a serious complication in sepsis. E. coli challenge triggers monocyte TF expression and coagulation in a C5a–C5aR1-dependent manner, and inhibition of C5 cleavage attenuated coagulopathy in a baboon model of E. coli sepsis. Activation of coagulation by S. aureus is C5 dependent, and we here show that both C5 and TLR8 enhance prothrombin cleavage upon GBS and S. aureus infection, with an additive effect when these inhibitors are combined.

Numerous selective and nonselective anti-inflammatory reagents and strategies have been tested as adjuvant sepsis treatments, including TLR4 antagonist (eritoran), corticosteroids, anti-TNF strategies, as well as modulators of coagulation. Although novel therapies have shown benefits in animal sepsis models, they have so far failed to translate to the clinical setting. Anti-inflammatory intervention clearly has 2 sides: although it may reduce the harmful effects of excessive inflammation, it may also compromise the host’s defense system against infections. Therefore, treating infections with immunomodulatory agents is a fine-tuned act of balance where patient stratification, timing and likely a combination of approaches is needed. We here show that TLR8 inhibition during Gram-positive challenge in blood results in strong and sustained reduction in proinflammatory cytokines, as well as reduction in the activation of coagulation, whereas at the same time phagocytosis and intracellular bacterial killing is sustained. Whether TLR8 inhibition can be useful as an adjuvant treatment in sepsis during phases of excessive inflammation remains an open question.
AUTHORSHIP

B.E., J.K.D., T.E., and J.S. contributed to the conception and design of the work. B.E. conducted blood infection experiments, viability studies, and cytokine analyses with assistance by J.F.K., L.R., J.S., and S.H.M. M.G. did the PMN experiments, L.R. analyzed phagocytosis, and J.S. examined bacterial growth and survival. Z.H. and H.Y. developed and provided the TLR8 inhibitors, and T.E.M provided inhibitors for complement and CD14, and instructions for their use. B.E. and J.S. wrote the original draft with critical comments by the coauthors, and J.S. did the final revision.

ACKNOWLEDGMENT

This work was funded by The Liaison Committee for education, research and innovation in Central Norway by Grant 90162400 (to J.S.) and the Research Council of Norway Grant 223255/F50 through its Centers of Excellence funding scheme. In addition, it was funded by the National Natural Science Foundation of China (No. 21825702 and No. 21572114 to H.Y.).

DISCLOSURES

The authors declare no conflicts of interest.

ORCID

Jørgen Stenvik https://orcid.org/0000-0002-1051-9258

REFERENCES

SUPPORTING INFORMATION
Additional information may be found online in the Supporting Information section at the end of the article.