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We consider the non-local formulation of the Degasperis-Procesi equation ut+uux+
L( 3

2u
2)x = 0, where L is the non-local Fourier multiplier operator with symbol 

m(ξ) = (1 + ξ2)−1. We show that all L∞, pointwise travelling-wave solutions are 
bounded above by the wave-speed and that if the maximal height is achieved they 
are peaked at those points, otherwise they are smooth. For sufficiently small periods 
we find the highest, peaked, travelling-wave solution as the limiting case at the end 
of the main bifurcation curve of P -periodic solutions. The results imply that there 
are no L∞ travelling cuspon solutions to the Degasperis-Procesi equation.

© 2019 The Author. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider the equation

ut + uux + (L(3
2u

2))x = 0, x ∈ R, t ∈ R, (1.1)

where u is a scalar function and L is the nonlocal operator L = (1 − ∂2
x)−1. That is,

Lf = K ∗ f, K = F−1 m,

where m(ξ) = (1 + ξ2)−1 and F denotes the Fourier transform. Equation (1.1) is the nonlocal formulation 
of the Degasperis–Procesi equation [5]

ut − uxxt + 4uux − 3uxuxx − uuxxx = 0, (1.2)

which can easily be seen by applying the inverse operator of L, 1 − ∂2
x, to (1.1). The Degasperis–Procesi 

equation was discovered as one of three equations within a certain class of third order PDEs satisfying an 
asymptotic integrability condition up to third order, the other two being the KdV and the Camassa–Holm 

E-mail address: mathias.arnesen@ntnu.no.
https://doi.org/10.1016/j.jmaa.2019.06.014
0022-247X/© 2019 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmaa.2019.06.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://creativecommons.org/licenses/by/4.0/
mailto:mathias.arnesen@ntnu.no
https://doi.org/10.1016/j.jmaa.2019.06.014
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2019.06.014&domain=pdf


26 M.N. Arnesen / J. Math. Anal. Appl. 479 (2019) 25–44
equations [5]. Like these two equations, the Degasperis–Procesi equation has a Lax pair, a bi-Hamiltonian 
structure, and an infinite number of conservation laws [4]. While it was discovered solely for its mathematical 
properties, it has later been rigorously derived as a model for the propagation of shallow water waves, 
having the same asymptotic accuracy as the Camassa–Holm equation [3]. The Degasperis–Procesi and 
Camassa–Holm equations feature stronger nonlinear effects than the KdV equation (or rather, the dispersion 
is much weaker), making them better suited to modelling nonlinear phenomena like wave breaking and 
solutions with singularities, while maintaining the rich mathematical structure mentioned above that other 
weakly-dispersive models like the Whitham equation [11] lack.

Shortly after its discovery, the well-posedness of (1.1) was extensively studied, establishing that it is 
locally well-posed in Hs both on R and S for s > 3/2, and admitting both global classical and weak 
solutions and classical solutions that blow up in finite time [13], [12], [14]. Moreover, the blow-up only 
occurs as wave-breaking. That is, the solution remains bounded, but it’s slope goes to −∞; for a detailed 
study of the blow-up for (1.1), see [8] and references therein.

The weak dispersion allows not only for wave-breaking, but also for waves with singularities in the 
form of sharp crests at the wave-peaks. Indeed, explicit peaked soliton solutions to (1.2), as well as mul-
tipeakon solutions which are not travelling waves, are known [4]. These are of the same form as the ones 
for Camassa-Holm equation [2], and indeed every equation in the so-called ‘b-family’ of equations that the 
Degasperis-Procesi and Camassa-Holm equations belong to has such solutions [4].

In this paper we will focus on travelling-wave solutions to (1.1). Assuming u(x, t) = ϕ(x − μt) is a 
travelling wave, where μ ∈ R is the wave-speed, (1.1) takes the form

−μϕ + 1
2ϕ

2 + 3
2L(ϕ2) = a, (1.3)

where a ∈ R is a constant of integration. By a Galilean change of variables this is equivalent to −μϕ +
1
2ϕ

2 + 3
2L(ϕ2 + kϕ) = 0, where k depends on μ and a; in particular, k �= 0 for a �= 0. Hence there is no 

Galilean change of variables that removes a while preserving the form of the equation. We will work with 
the equation in the form (1.3).

From the structure of the equation it is readily deducible that all non-constant solutions to (1.3) are 
smooth except potentially at points where the wave-height equals the wave-speed (cf. Theorem 3.3 or [10]) 
and singularities can only occur in the form of sharp crests with height equal to the wave-speed. We therefore 
call such solutions for waves of maximal height. In this paper we will study the regularity and existence of 
travelling waves of maximal height to (1.3) from a nonlocal perspective.

The motivation of this paper is two-fold: to provide novel information about waves of maximal height for 
the DP equation specifically and to better understand the formation of highest waves and their singularities 
for nonlinear dispersive equations more generally. We therefore consider the non-local formulation and follow 
the general framework of [7] and [6]. We show firstly that any non-constant L∞ solution of (1.3) is peaked 
wherever the maximal height is achieved. That is, it is Lipschitz continuous at the crest, but not C1. In 
particular this means that there are no cuspon solutions of (1.3) in L∞. This is due to the smoothing 
effect of L, which forces any solution to be at least Lipschitz; see Remark 3.6. The restriction to bounded 
solutions is quite natural. While equation (1.3) makes sense for any ϕ ∈ H−2(R), if we exclude purely 
distributional solutions, any function solving (1.3) a.e. clearly belongs to L∞. Secondly, for sufficiently 
small periods, peaked solutions of (1.3) are found as the limiting case at the end of the main bifurcation 
curve of Cα

even(SP ) solutions for α ∈ (1, 2). While it has been established that there are peaked periodic 
travelling-wave solutions to (1.2) for all non-zero wave speeds in [10], the approach of that paper works only 
for the local formulation and cannot be extended to a genuinely non-local equation. Moreover the method 
in [10] and the one used in this paper are entirely different and give different insight and information.

As travelling L∞ cuspon solutions to (1.2) have been claimed by several authors, our claim that they do 
not exists requires some comment. The cuspons are invariably found studying the local equation and they 
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are strong solutions in all points except the cusps. The exclusion of the cusps makes a crucial difference, 
however. Consider for instance the stationary cusped soliton u(x) =

√
1 − e−2|x| discovered in [15], which 

is a pointwise solution to (1.2) at all points except 0, where the function has a cusp. For any test function 
ϕ ∈ C∞

0 (R), treating the left-hand side of (1.2) as a distribution (note that u is independent of time), one 
can with basic calculus show that

〈4uux − 3uxuxx − uuxxx, ϕ〉 = 〈u2,
1
2ϕxxx − 2ϕx〉 =

∫
R

u2
(

1
2ϕxxx − 2ϕx

)
dx = 2ϕx(0)

and hence it is not a weak solution to (1.2), but rather to

ut − uxxt + 4uux − 3uxuxx − uuxxx = −2δ′,

where δ is the usual delta-distribution. This is the case with all cuspons of the DP equation - there are 
point mass distributions at the cusps. To accept any function that solves the equation pointwise at all but 
a countable number of points as a solution is equivalent to claiming that the sawtooth function u(x) =
x − floor(x), or indeed any piece-wise linear function, is a solution to the equation

u′′(x) = 0, x ∈ R.

Hence we think it more correct to call the cuspons solutions not of (1.2) with 0 right-hand side, but with 
some point mass distributions.

The paper is structured as follows: first some essential properties of the operator L and its kernel K
are recounted in Section 2. In Section 3 we establish some general results about solutions to (1.3) and, 
in particular, using the properties of K, study the behaviour around points of critical height and prove 
Theorem 3.5, stating that any even, nonconstant solution is peaked at points where ϕ = μ. Lastly, in 
Section 4 we use the bifurcation Theory of [1] to construct a global bifurcation curve of even, periodic 
solutions in Cα for α ∈ (1, 2). Using the properties of solutions established in Section 3, we show that 
for sufficiently small periods the solutions along the curve converge to an even, non-constant solution that 
achieves the maximal height and must therefore be a peakon.

2. The operator L and its kernel

As L̂f(ξ) = (1 + ξ2)−1f̂(ξ), Lf can formally be expressed as a convolution

Lf(x) = K ∗ f(x) =
∫
R

K(x− y)f(y) dy,

where K(x) is the inverse Fourier transform of m(ξ). In this case, an explicit expression is well known from 
virtually any textbook on Fourier analysis:

K(x) = F−1((1 + ξ2)−1) = 1
2e−|x|. (2.1)

In particular, we note that K is completely monotone on (0, ∞); it is positive, strictly decreasing and strictly 
convex for x > 0.

The periodic kernel is

KP (x) =
∑

K(x + nP ),

n∈Z
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for P ∈ (0, ∞). For x ∈ (−P/2, P/2), K(x + nP ) = 1
2e−|x+nP | = 1

2e−xe−nP for n ≥ 1, and K(x + nP ) =
1
2exenP for n ≤ −1. Thus

KP (x) =
∑
n∈Z

K(x + nP )

= 1
2e−|x| + 1

2(ex + e−x)
∞∑

n=1
e−nP

= 1
2e−|x| + cosh(x) 1

eP − 1 . (2.2)

For periodic functions, the operator L is given by Lf(x) =
∫ P/2
−P/2 KP (x − y)f(y) dy.

We conclude this section with a rather obvious, but crucial lemma:

Lemma 2.1. L is strictly monotone: Lf > Lg if f and g are bounded and continuous functions with f � g.

Proof. Let f and g be as in the statement of the lemma. As K is strictly positive, we get that for all x ∈ R, 
K(x − ·)(f − g) � 0 and by continuity strictly positive on a set of non-zero measure. Hence

Lf(x) − Lg(x) =
∫
R

K(x− y)(f(y) − g(y)) dy > 0.

Clearly, the same argument holds for Kp. �
3. Periodic travelling waves

Note that if ϕ(x) is a travelling wave solution to (1.1) with wave-speed μ, then −ϕ(−x) is also a travelling 
solution to (1.1) with wave-speed −μ. We will therefore only consider μ > 0.

First we investigate how the parameter a in (1.3) influences the behaviour/existence of solutions.

Theorem 3.1. Fix μ > 0 and P < ∞. For all values of a ∈ R, non-constant P -periodic solutions to (1.3) (if 
they exist) satisfy

minϕ <
μ +

√
μ2 + 8a
4 < maxϕ.

Moreover,

(i) For a ≤ 0, all solutions are non-negative. When a < −μ2

8 there are no real solutions and for a = −μ2

8
there is only the constant solution ϕ = μ

4 ,
(ii) there are only constant solutions when a ≥ μ2.

Proof. At any point x where ϕ(x)2 = L(ϕ2)(x) =: R2, (1.3) reduces to

R(2R− μ) = a,

which has the positive solution R = μ+
√

μ2+8a
4 . As L(c) = c for constants and L is strictly monotone 

(Lemma 2.1), there has to exist points where ϕ2 < L(ϕ2) and points where ϕ2 > L(ϕ2) for non-constant 
P -periodic solutions ϕ. Thus the first inequality has to hold if maxϕ > | minϕ|.
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Consider first the case a ≤ 0. Then ϕ cannot be negative in any point as then the left-hand side of (1.3)
would be strictly positive in that point (Lf is non-negative if f is non-negative). Let m = minϕ ≥ 0. Then 
L(ϕ2) ≥ m2 with equality if and only if ϕ ≡ m. Hence, if ϕ is a solution to (1.3), we get

m(2m− μ) ≤ a.

For a < −μ2

8 this has no real solutions, and for a = −μ2

8 this has only the constant solution ϕ = μ
4 . This 

proves (i).
Now let a > 0. Assume that ϕ < 0 on some intervals. By Theorem 3.3, ϕ is smooth on these intervals. 

Clearly, ϕ is bounded below, so there is a point x0 such that ϕ(x0) = minϕ. Then L(ϕϕ′)(x0) = 0
and L(ϕ2) attains it minimum at x0. This implies that ϕ also has to be positive at some point, and 

M := maxϕ > | minϕ|. Thus the first inequality holds and M >
μ+

√
μ2+8a
4 . In particular, this means that 

maxϕ ≥ μ
2 for all a ≥ 0 and M >

√
a if a < μ2. We have that

(ϕ− μ)2 = μ2 + 2a− 3L(ϕ2). (3.1)

Assume a ≥ μ2. Note that if ϕ = μ at any point, then 3L(ϕ2) = μ2 + 2a ≥ 3μ2 at those points. If 
a = μ2, then the constant solution ϕ ≡ μ is a valid solution, otherwise Lemma 2.1 implies that ϕ must 
also take values above μ. Assume ϕ � μ is a non-constant solution. Then the left-hand side of (3.1) attains 
its minimum where ϕ is attains its minimum, while the right-hand side attains its minimum where L(ϕ2)
attains its maximum. This is a contradiction. As both K and KP are even and completely monotone on 
(0, ∞) and (0, P/2), respectively, L(ϕ2) cannot be maximal where ϕ2 is minimal.

Assume now that ϕ takes values both above and below μ. Then L(ϕ2)(x) is maximal whenever ϕ(x) = μ

and 3L(ϕ2)(x) = μ2 + 2a these points. Moreover, 3L(ϕ2) < μ2 + 2a when ϕ > μ. This implies that there 
are infinitely many disjoint intervals, each of finite length, where ϕ > μ, and that L(ϕ2) has its minimum 
on each interval at the points where ϕ is maximal. This is again not possible. �

Henceforth we will assume that a is such that non-constant solutions exists, i.e. that −μ2/8 < a < μ2.

Theorem 3.2. Let P (0, ∞]. Any P -periodic, non-constant and even solution ϕ ∈ BC1(R) (the space of 
bounded functions with bounded and continuous first derivative) that is non-decreasing on (−P/2, 0) satisfies

ϕ′ > 0, ϕ < μ on (−P/2, 0).

If ϕ ∈ BC2(R), then

ϕ′′(0) < 0, and ϕ(0) < μ,

and if P < ∞, then

ϕ′′(±P/2) > 0.

Proof. Let ϕ be a non-constant and even solution that is non-decreasing on (−P/2, 0). We can rewrite (1.3)
as (μ − ϕ)2 = μ2 + 2a − 3L(ϕ2), and if ϕ ∈ BC1(R) we can differentiate on each side to get

(μ− ϕ(x))ϕ′(x) = 3
2L(ϕ2)′(x). (3.2)

As ϕ is even, ϕ′ will be odd and using the evenness of KP we get
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L(ϕ2)′(x) = 2
0∫

−P/2

(KP (x− y) −KP (x + y))ϕ′(y)ϕ(y) dy. (3.3)

We claim that KP (x −y) > KP (x +y) for any x, y ∈ (−P/2, 0). Fix x ∈ (−P/2, 0). As KP strictly decreases 
from the origin in (−P/2, P/2) and is P -periodic, the claim follows if, for all y ∈ (−P/2, 0),

|x− y| < min{|x + y|, x + y + P}.

As x and y are same-signed, we have

|x + y| = |x| + |y| > |x− y|.

Moreover, we have −x < P + x and −y < P + y, so |x − y| = max{x − y, y − x} < P + x + y. This proves 
the claim.

Now we claim that ϕ′ϕ � 0 on (−P/2, 0). By assumption ϕ′ � 0 on this interval. If a ≤ 0, it is plain to 
see that ϕ > 0 as the right hand side of (1.3) is strictly positive whenever ϕ ≤ 0. For a BC1(R) solution the 
same is true when 0 < a < μ2 too; this follows from equation (4.14) in [10]. Hence the integrand in (3.3)
is non-negative and strictly positive on a set of positive measure in (−P/2, 0), and it follows that the right 
hand side of (3.2) is strictly positive for x ∈ (−P/2, 0). This implies the first part of the statement.

Assume now that ϕ ∈ BC2(R). Then we can differentiate each side of (3.2) to get

(μ− ϕ(x))ϕ′′(x) − (ϕ′(x))2 = 3
2L(ϕ2)′′(x) = 3L(ϕ′′ϕ + (ϕ′)2)(x). (3.4)

Evaluating this at x = 0 and using the evenness of ϕ′′, ϕ, (ϕ′)2 and KP , we get

(μ− ϕ(0))ϕ′′(0) = 6
0∫

−P/2

KP (y)
(
ϕ′′(y)ϕ(y) + ϕ′(y)2

)
dy

= 6 [KP (y)ϕ′(y)ϕ(y)]y=0
y=−P/2 − 6

0∫
−P/2

K ′
P (y)ϕ′(y)ϕ(y) dy.

The first term on the second line vanishes as ϕ′(0) = ϕ′(−P/2) = 0. If P = ∞, then limy→−∞ K(y) = 0
and we get the same conclusion. As KP is strictly increasing on (−P/2, 0), we get that the final integral is 
strictly positive. That is,

(μ− ϕ(0))ϕ′′(0) = −6
0∫

−P/2

K ′
P (y)ϕ′(y)ϕ(y) dy < 0

As we already proved that ϕ < μ on (−P/2, 0), it is not possible that ϕ(0) > μ, and thus we conclude that 
ϕ(0) < μ and ϕ′′(0) < 0.

Now we assume that P < ∞. Note that KP (−P/2 −y) = KP (P/2 −y) = KP (−P/2 +y) = KP (P/2 +y). 
Evaluating (3.4) at x = −P/2, we get

(μ− ϕ(−P/2))ϕ′′(−P/2) = 6
0∫

KP (P/2 + y)
(
ϕ′′(y)ϕ(y) + ϕ′(y)2

)
dy
−P/2
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= [KP (P/2 + y)ϕ′(y)ϕ(y)]y=0
y=−P/2 − 6

0∫
−P/2

K ′
P (P/2 + y)ϕ′(y)ϕ(y) dy.

As above, the first term in the second line vanishes. As KP is strictly decreasing on (0, P/2), we get that 
K ′

P (P/2 + y) < 0 for y ∈ (−P/2, 0), and it follows that the last integral is negative. That is,

(μ− ϕ(−P/2))ϕ′′(−P/2) = −6
0∫

−P/2

K ′
P (P/2 + y)ϕ′(y)ϕ(y) dy > 0,

and we conclude that ϕ′′(−P/2) > 0. �
3.1. Singularity at ϕ = μ

Now we investigate what happens as a solution approaches μ from below. First we show that a solution 
is smooth below μ:

Theorem 3.3. Let ϕ ≤ μ be a solution of (1.3). Then:

(i) If ϕ < μ uniformly on R, then ϕ ∈ C∞(R) and all of its derivatives are uniformly bounded on R.
(ii) If ϕ < μ uniformly on R and ϕ ∈ L2(R), then ϕ ∈ H∞(R).
(iii) ϕ is smooth on any open set where ϕ < μ.

Proof. Assume first that ϕ < μ uniformly on R. Note that as ϕ → −∞, the left-hand side of (1.3) goes to ∞, 
hence ϕ must be bounded below as well. Clearly, |m(n)(ξ)| � (1 +|ξ|)−2−n (that is, m is a S−2-multiplier) and 
L is therefore continuous from the Besov space Bs

p,q(R) to Bs+2
p,q (R) for all s ∈ R and 1 ≤ p, q ≤ ∞. Denoting 

by Cs(R), s ∈ R the Zygmund space Bs
∞,∞(R), we have in particular that L maps L∞(R) ⊂ B0

∞,∞(R) into 
C2(R), and therefore ϕ �→ L(ϕ2) maps L∞(R) into C2(R). Recall that if s ∈ R+ \N, then Cs(R) = Cs(R), 
the ordinary Hölder space, and if s ∈ N then W s,∞(R) � Cs(R).

As ϕ solves (1.3) we have

(ϕ− μ)2 = μ2 + 2a− 3L(ϕ2).

The assumption ϕ < μ therefore implies that 3L(ϕ2) < μ2 + 2a, and the operator L(ϕ2) �→ μ −√
μ2 + 2a− 3L(ϕ2) therefore maps Bs

p,q(R) ∩ L∞(R) into itself for s > 0. Since ϕ < μ, we also get that 
μ −

√
μ2 + 2a− 3L(ϕ2) = ϕ. Combining this map with ϕ �→ L(ϕ2) and iterating, we get (i). When p = q = 2, 

Bs
p,q(R) can be identified with Hs(R). Assume now that ϕ ∈ L2(R) in addition. As ϕ is also bounded, we 

get that ϕ2 ∈ L2(R) ∩L∞(R), and in general ϕ2 ∈ Hs(R) ∩L∞(R) if ϕ ∈ Hs(R) ∩L∞, and thus ϕ �→ L(ϕ2)
maps Hs(R) ∩ L∞(R) to Hs+2(R) ∩ L∞(R), and we can apply the above iteration argument again. This 
proves (ii).

Lastly, to prove (iii), we note that if ϕ ∈ L∞(R) and Cs
loc on an open set U in the sense that ψϕ ∈ Cs(R)

for any ψ ∈ C∞
0 (U), we still get that L(ϕ) is Cs+2

loc in U (the proof of this is the same as in Theorem 5.1 
[7]). Thus we can apply the same iteration argument as above again. �

The next lemma will be essential for showing that the global bifurcation curves do not converge to a 
trivial case.
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Lemma 3.4. Let P < ∞, and let ϕ be an even, non-constant solution of (1.3) that is non-decreasing on 
(−P/2, 0) with ϕ ≤ μ. Then there exists a universal constant CK,P,μ > 0, depending only on the kernel K
and the period P and μ > 0, such that

μ− ϕ(P2 ) ≥ CK,P,μ.

Proof. If ϕ(−P/2) = ϕ(P/2) < 0, the statement is true with CK,P,μ = μ. Assume therefore that ϕ is 
non-negative. From the evenness and periodicity of KP and ϕ, we get the formula

L(ϕ2)(x + h) − L(ϕ2)(x− h)

=
0∫

−P/2

(KP (x− y) −KP (x + y))(ϕ(y + h)2 − ϕ(y − h)2) dy. (3.5)

As ϕ ≥ 0 is non-decreasing, both factors in the integrand are non-negative for x ∈ (−P/2, 0) and h ∈
(0, P/2). We also have the equality

(2μ− ϕ(x) − ϕ(y))(ϕ(x) − ϕ(y)) = 3
(
L(ϕ2)(x) − L(ϕ2)(y)

)
, (3.6)

which shows that L(ϕ2)(x) = L(ϕ2)(y) whenever ϕ(x) = ϕ(y). As ϕ is assumed to be non-constant and 
non-negative, this identity together with (3.5) implies that ϕ is strictly increasing on (−P/2, 0), and it 
therefore follows from Theorem 3.3 that ϕ is smooth away from x = kP , k ∈ Z. Let x ∈

[
−3P

8 ,−P
8
]
. Then 

for a solution ϕ as in the assumptions,

(μ− ϕ(P2 ))ϕ′(x) ≥ (μ− ϕ(x))ϕ′(x) = 3
2 lim

h→0

L(ϕ2)(x + h) − L(ϕ2)(x− h)
4h .

As the integrand in (3.5) is non-negative for h ∈ (0, P/2) and non-positive for h ∈ (−P/2, 0), we can apply 
Fatou’s lemma to the limit above and we get

(μ− ϕ(P2 ))ϕ′(x) ≥ 3
P/2∫

−P/2

KP (x− y)ϕ(y)ϕ′(y) dy

= 3
0∫

−P/2

(KP (x− y) −KP (x + y))ϕ(y)ϕ′(y) dy.

Assume for a contradiction that the statement is not true. Then for all k < μ there must exist a solution 
ϕ satisfying the assumptions and such that k ≤ ϕ ≤ μ. Then μ − ϕ(P/2) < μ − k. On the other hand, as 
KP (x − y) > KP (x + y) for x, y ∈ (−P/2, 0), we get that

(μ− ϕ(P2 ))ϕ′(x) ≥ 3
0∫

−P/2

(KP (x− y) −KP (x + y))ϕ(y)ϕ′(y) dy

≥ 3k
−P/8∫

−3P/8

(KP (x− y) −KP (x + y))ϕ′(y) dy.
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There is a universal constant λ̃K,P > 0 depending only on KP and P < ∞ such that

min{KP (x− y) −KP (x + y) : x, y ∈
[
−3P

8 ,−P

8

]
} ≥ λ̃K,P .

Integrating both sides above over x ∈
(
−3P

8 ,−P
8
)
, we get that

(μ− ϕ(P2 ))(ϕ(−P/8) − ϕ(−3P/8)) ≥ 3kP8 λ̃K,P (ϕ(−P/8) − ϕ(−3P/8)).

As shown above ϕ is strictly increasing on (−P/2, 0), so ϕ(−P/8) > ϕ(−3P/8) and we may divide out 
(ϕ(−P/8) − ϕ(−3P/8)) on both sides to get

(μ− ϕ(P2 )) ≥ 3kP8 λ̃K,P .

This implies that μ − k ≥ 3kP
8 λ̃K,P for all k < μ. Taking the limit k ↗ μ, we get a contradiction. �

Now we come to the main result of this section, concerning the regularity at the point where ϕ = μ.

Theorem 3.5. Let ϕ ≤ μ be a solution of (1.3) which is even, non-constant, and non-decreasing on (−P/2, 0)
with ϕ(0) = μ. Then:

(i) ϕ is smooth on (−P, 0).
(ii) ϕ ∈ C0,1(R), i.e. ϕ is Lipschitz.
(iii) ϕ is exactly Lipschitz at x = 0; that is, there exists constants 0 < c1 < c2 such that

c1|x| ≤ |μ− ϕ(x)| ≤ c2|x|

for |x| � 1.

Proof. Part (i) will follow directly from Theorem 3.3 if we can show that ϕ < μ on (−P/2, 0). Assume that 
x0 ∈ (−P/2, 0] is the smallest number such that ϕ(x0) = μ; as ϕ is assumed to be non-constant, it must be 
the case that x0 > −P/2. Then ϕ(x) = μ and L(ϕ2)′(x) = 0 for x ∈ [x0, 0]. That is,

0∫
−P/2

(K ′
P (x− y) + K ′

P (x + y)) (ϕ(y))2 dy = 0, x ∈ [x0, 0].

Clearly, 
∫ 0
−P/2 (K ′

P (x− y) + K ′
P (x + y)) dy = 0, and as

K ′
P (x− y) + K ′

P (x + y) < 0, −P/2 < y < x < 0,

K ′
P (x− y) + K ′

P (x + y) > 0, −P/2 < x < y < 0,

we get that 
∫ x

−P/2 (K ′
P (x− y) + K ′

P (x + y)) dy = − 
∫ 0
x

(K ′
P (x− y) + K ′

P (x + y)) dy. Hence, by the mean 
value theorem for integrals,

L(ϕ2)′(x0) =
0∫

(K ′
P (x0 − y) + K ′

P (x0 + y)) (ϕ(y))2 dy

−P/2
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= ϕ(c)2
x0∫

−P/2

(K ′
P (x0 − y) + K ′

P (x0 + y)) dy

+ μ2
0∫

x0

(K ′
P (x0 − y) + K ′

P (x0 + y)) dy

=
0∫

x0

(K ′
P (x0 − y) + K ′

P (x0 + y)) dy(μ2 − ϕ(c)2),

for some c ∈ (−P/2, x0). As −μ < ϕ < μ on (−P/2, 0), we get (μ2 − ϕ(c)2) > 0, which is contradiction 
unless 

∫ 0
x0

(K ′
P (x0 − y) + K ′

P (x0 + y)) dy = 0. That can only happen if x0 = 0. This proves part (i).
At any point x0 where ϕ(x0) = μ, (3.6) reduces to

(ϕ(x0) − ϕ(x))2 = 3
(
(L(ϕ2)(x0) − L(ϕ2)(x)

)
. (3.7)

From (3.7), we get in the real line case that

(ϕ(0) − ϕ(x))2 = 3
2

∫
R

(2K(y) −K(x + y) −K(x− y))(ϕ(y))2 dy

≤ 3
2

∫
|y|<|x|

(2K(y) −K(x + y) −K(x− y))(ϕ(y))2 dy

≤ 3
2‖ϕ‖

2
L∞(R)

∫
|y|<|x|

|2K(y) −K(x + y) −K(x− y)|dy, (3.8)

where we used that the first integral on the right-hand side is clearly non-negative, while 2K(y) −K(x +
y) −K(x − y) < 0 when |y| ≥ |x|. Indeed, for |y| > |x| we can expand K(y+ x) and K(y− x) around y and 
use the Lagrange remainder to get

2K(y) −K(x + y) −K(x− y) = −x2

2 (K ′′(ξ1) + K ′′(ξ2)) < 0,

where ξ1 ∈ (y, y + x), ξ2 ∈ (y − x, y) and the last inequality follows from the strict convexity of K.
Similarly, expanding to one less order, we get

2K(y) −K(x + y) −K(x− y) = x(K ′(ξ1) −K ′(ξ2)).

As K ′ is uniformly bounded, there is a constant C that can be chosen independently of x such that

|2K(y) −K(x + y) −K(x− y)| ≤ C|x|, (3.9)

for all y ∈ R. Taking the square root on each side of (3.8) we then get that

|ϕ(0) − ϕ(x)| ≤ C ′‖ϕ‖L∞(R)|x| = C ′μ|x|.

This proves that ϕ is Lipschitz at 0. For the periodic kernel, we have that 2KP (y) −KP (x +y) −KP (x −y) < 0
when |x| ≤ |y| ≤ P/2 − |x| (we are only interested in x close to 0, so we can assume |x| < P/2 − |x|). In the 
intervals |y| < |x| and P/2 − |x| < |y| ≤ P/2, (3.9) holds for KP and we therefore get the same result.
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It remains to show the opposite inequality, i.e. that |μ −ϕ(x)| � |x| near x = 0; in particular this implies 
that ϕ /∈ C1. As ϕ is smooth on (−P/2, 0) and (at least) Lipschitz in 0, we can use integration by parts for 
x ∈ (−P/2, 0) to get

(μ− ϕ(x))ϕ′(x) = 3
2L(ϕ2)′(x)

= 3
2

0∫
−P/2

(K ′
P (x− y) + K ′

P (x + y)) (ϕ(y))2 dy

= 3
0∫

−P/2

(KP (x− y) −KP (x + y))ϕ(y)ϕ′(y) dy.

As μ − ϕ(x) ≤ C ′μ|x| for x ∈ (−P/2, 0) as shown above, we divide out μ − ϕ(x):

ϕ′(x) ≥ C

0∫
−P/2

KP (x− y) −KP (x + y)
|x| ϕ′(y)ϕ(y) dy,

for some constant C > 0 independent of x. Let x ∈ (−P/2, 0). By the mean value theorem,

|μ− ϕ(x)|
|x| = ϕ′(ξ) ≥ C

0∫
−P/2

KP (ξ − y) −KP (ξ + y)
|ξ| ϕ′(y)ϕ(y) dy (3.10)

for some ξ ∈ (x, 0). It suffices to show that this is bounded below by a positive constant as x ↗ 0, but while 
ϕ′ is defined for all x ∈ (−P/2, 0), the limit may not exist. We therefore consider the limit infimum. On the 
other hand, the limit of the integral on the right hand side exists. Indeed, we have that

lim
ξ↗0

KP (ξ − y) −KP (ξ + y)
|ξ| = 2K ′

P (y)

This function is non-negative and strictly monotonically increasing on (−P/2, 0), and as ϕ is non-decreasing 
on this interval, we get by Lebesgue’s dominated convergence theorem that for any sequence {ξn}n ⊂
(−P/2, 0) such that ξn → 0,

lim
n→∞

C

0∫
−P/2

KP (ξn − y) −KP (ξn + y)
|ξn|

ϕ′(y)ϕ(y) dy

= C

0∫
−P/2

lim
n→∞

KP (ξn − y) −KP (ξn + y)
|ξn|

ϕ′(y)ϕ(y) dy

≥ C ′′
0∫

−P/2

ϕ′(y)ϕ(y) dy

= C ′′

2 (μ2 − (ϕ(−P/2))2) > 0.
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In particular the limit exists and therefore equals the limit infimum and from (3.10) it follows that for any 
sequence {xn}n ⊂ (−P/2, 0), and by symmetry indeed any sequence in (−P/2, P/2), such that xn → 0,

lim inf
n→∞

|μ− ϕ(xn)|
|xn|

� 1.

As the sequence was arbitrary this proves (iii).
Since ϕ ∈ L∞(R) is symmetric and ϕ′ ≥ 0, and therefore also L(ϕ2)′ ≥ 0, on (−P/2, 0), we have that for 

x < 0

(
L(ϕ2)

)′ (x) =
∫
R

K ′(x− y)(ϕ(y))2 dy

=
0∫

−∞

(K ′(x− y) + K ′(x + y))(ϕ(y))2 dy

≤
0∫

x

(K ′(x− y) + K ′(x + y))(ϕ(y))2 dy

≤ C|x|,

for some constant C > 0, where we used that K is completely monotone on (0, ∞) and that the integrand is 
L∞. The results above imply that (μ −ϕ(x)) ≥ C ′|x| for some constant C ′ independent of x when ϕ(x) > μ

4
and from the equation

(μ− ϕ(x))ϕ′(x) = 3
(
L(ϕ2)

)′ (x) ≤ min(L(ϕ2)(0), C|x|),

which holds for x ≤ 0, we then see that ϕ′ is uniformly bounded on the closed interval [−P/2, 0] and 
therefore Lipschitz. This proves (ii). �
Remark 3.6 (On cuspons). The equality (3.7) holds when ϕ(x0) = μ for any solution of (1.3), regardless 
of the integration constant a. The proof above used that ϕ is even, but this is not needed to show that a 
solution is at least Lipschitz, as (3.7) holds in any case. If ϕ ∈ L∞(R), then L(ϕ2) ∈ C2(R), and (3.7) then 
implies that ϕ ∈ C1/2(R), and hence L(ϕ2) ∈ C5/2(R). Differentiating both sides of (3.7), we then get

|(ϕ(x0) − ϕ(x))ϕ′(x)| � |x|,

which proves that ϕ is at least Lipschitz at any point x0 where ϕ(x0) = μ, and we have therefore shown that 
there are no cusped travelling L∞ solutions for the Degasperis-Procesi equation. We have not yet proved 
that a solution that touches the line μ exists, but any that do will be Lipschitz.

4. Global bifurcation

In this section we will show that there are non-constant periodic solutions which achieve the maximal 
height; i.e. periodic peakons. These will be obtained by constructing a curve of even, periodic smooth 
solutions using “standard” bifurcation theory and showing that in the limit of the curve we get a peakon.

We therefore fix α ∈ (1, 2) and consider Cα
even(SP ), the space of even, real-valued functions on the circle SP

of finite circumference P > 0 that are �α�-times differentiable with the �α� derivative being α−�α�-Hölder 
continuous. The main point is to work with regularity strictly higher than Lipschitz, i.e. α > 1, and avoid 
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integer values of α in order to avoid the Zygmund spaces which do not coincide with Cα when α ∈ Z (see 
the proof of Theorem 3.3).

From [10] we know that there are no periodic peakons when a = 0 in (1.3), only a one-parameter family of 
smooth periodic solutions and a peaked solitary wave, and for a ∈ (−μ2

8 , 0) there are only smooth solutions. 
As our final goal is to find a bifurcation curve of periodic solutions that converges to a peaked solution, the 
case a ≤ 0 is not relevant and henceforth we will only consider a > 0.

Remark 4.1. As one can easily check (following the procedure below), for a = 0 one can do local bifurcation 
from the curve (ϕ, μ) = (μ/2, μ) of constant solutions only when the period is 

√
2π, but this curve cannot 

be extended to a global one. When a ∈ (−μ2

8 , 0) all the results regarding bifurcation below holds for periods 
0 < P <

√
2π and we get global bifurcation curves. However, in this case 

√
−8a < μ < ∞ and the equivalent 

of Lemma 4.8 does not hold. That is, we cannot preclude that alternative (ii) in Theorem 4.5 occurs by 
μ(s) approaching 

√
−8a.

Fix a > 0 and let F : Cα
even(SP ) ×R → Cα

even(SP ) be the operator defined by

F (ϕ, μ) = μϕ− 3
2L(ϕ2) − 1

2ϕ
2 + a. (4.1)

Then ϕ is a solution to (1.3) with wave-speed μ if and only if F (ϕ, μ) = 0. There are two curves of constant 
solutions F (ϕ(s), μ(s)) = 0, namely (ϕ(s), μ(s)) = ( s4 ±

√
s2+8a

4 , s) for all s ∈ R. The negative one, however, 
is not interesting as (1.3) has no non-positive solutions and therefore no curve of non-trivial solutions 
intersects it. We therefore take the curve (ϕ(s), μ(s)) = ( s4 +

√
s2+8a

4 , s) as our starting point. Set

λ(μ) := μ

4 +
√

μ2 + 8a
4

and define

F̃ (φ, μ) = F (λ(μ) − φ, μ) = (λ− μ)φ + 3λL(φ) − 3
2L(φ2) − 1

2φ
2. (4.2)

Then F̃ (0, μ) = 0 for all μ ∈ R, and letting

ϕ := λ(μ) − φ, (4.3)

we have that

F̃ (φ, μ) = 0 ⇔ F (ϕ, μ) = 0.

Hence a curve (φ(s), μ(s)) along which F̃ = 0 gives rise to a curve of solutions (ϕ(s), μ(s)) to (1.3). In the 
sequel, ϕ will always be defined through (4.3).

Note that

DφF̃ [0, μ] = (λ(μ) − μ) id +3λ(μ)L.

When μ2 > a we have that 4λ > μ while μ > λ, and as L(cos(p·)(x) = cos(px)
1+p2 we get that

ker DφF̃ [0, μ] = {C cos
(√

4λ− μ

μ− λ
x

)
: C ∈ R}.
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Restricting to P -periodic functions, the kernel is one-dimensional if and only if 
√

4λ−μ
μ−λ = 2kπ

P for some 

k ∈ N. Clearly, 
√

4λ(μ)−μ
μ−λ(μ) is continuous in μ for μ ∈ (

√
a, ∞), strictly monotone on this interval, bounded 

below by 
√

2, the bound being achieved in the limit as μ → ∞, and unbounded above as μ2 ↘ a. This 
means that for every P > 0 and each k ∈ N such that 2kπ

P >
√

2, there exists a unique μ >
√
a such that 

cos
(√

4λ−μ
μ−λ x

)
∈ Cα

even(SP ). When P ≥
√

2π, we get that k > 1.

Theorem 4.2 (Local bifurcation). Fix a > 0 and P > 0, and let F and F̃ be defined as in (4.1) and (4.2), 
respectively. Then for each k ∈ N such that 2kπ

P >
√

2, there exists a unique μk ∈ (
√
a, ∞) such that (0, μk)

is a bifurcation point for F̃ , and hence (λ(μk), μk) is a bifurcation point for F . That is, there exists ε > 0
and an analytic curve

s �→ (ϕ(s), μ(s)) ⊂ Cα
even(SP ) × (

√
a,∞), |s| < ε,

of nontrivial P/k-periodic solutions, where μ(0) = μk and

Dsφ(0) = −Dsϕ(0) = cos
(√

4λ(μk) − μk

μk − λ(μk)
x

)
.

Proof. It is sufficient to consider k = 1 and P <
√

2π. As shown above, there exists a unique μ ∈ (
√
a, ∞)

such that kerDφF̃ [0, μ] is one-dimensional. The space Cα
even(SP ) has basis {cos( 2π

P k·) : k ∈ N} and by 
straightforward calculation one finds that DφF̃ [0, μ] maps the basis element k = 1 to zero while all others 
are preserved modulo a constant. Thus codim rangeDφF̃ [0, μ] = 1 and DφF̃ [0, μ] is Friedholm of index zero. 
The result now follows from Theorem 8.3.1 in [1]. Note that Dsφ(0) = −Dsϕ(0) because Dsμ(0) = μ̇(0) = 0
(see (4.8) below). �

We want to extend these bifurcation curves globally. Let

U := {(ϕ, μ) ∈ Cα
even(SP ) × (

√
a,∞) : ϕ < μ},

and

S := {(ϕ, μ) ∈ U : F (ϕ, μ) = 0}.

In order to establish Theorem 4.5 below; that is, to extend the curves globally, it suffices to establish that 
μ̈(0) �= 0 and the following Lemma:

Lemma 4.3. Whenever (ϕ, μ) ∈ S the function ϕ is smooth, and bounded and closed subsets of S are compact 
in Cα

even(SP ) × (
√
a, ∞).

Proof. The smoothness part was proved in Theorem 3.3. Recall from the proof of that theorem that (ϕ, μ) ∈
S implies 3L(ϕ2) < μ2 + 2a and hence

ϕ = μ−
√

μ2 + 2a− 3L(ϕ2) ∈ Cα+2
even(SP ),

as L : Cα → Cα+2 and 
√
x is real analytic for x > 0. Let E ⊂ S be bounded and closed in the Cα

even(SP ) ×R

topology. Then, as shown above, {ϕ : (ϕ, μ) ∈ E} ⊂ Cα+2
even(SP ) is a bounded subset. Bounded subsets of 

Cα+2
even(SP ) are pre-compact in Cα

even(SP ), hence any sequence {(ϕn, μn)}n ⊂ E has a subsequence that 
converges in the Cα

even(SP ) × R topology. As E is closed, the limit must itself lie in E, proving that E is 
compact. �
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In order to establish the bifurcation formulas we will apply the Lyapunov-Schmidt reduction [9]. For 
simplicity we consider the case P <

√
2π and k = 1. Let μ∗ := μ1 and

φ∗(x) := cos
(

2π
P

x

)
, (4.4)

and let furthermore

M := {
∑
k 	=1

ak cos
(

2πkx
P

)
∈ Cα

even(SP )},

and

N := ker DφF̃ [0, μ∗] = span(φ∗).

Then Cα
even(SP ) = M⊕N and we can use the canonical embedding Cα(SP ) ↪→ L2(SP ) to define a continuous 

projection

Πφ = 〈φ, φ∗〉L2(SP )φ
∗, (4.5)

where 〈u, v〉L2(SP ) = 2
P

∫ P/2
−P/2 uv dx.

Theorem 4.4 (Lyapunov-Schmidt reduction [9]). There exists a neighbourhood O× Y ⊂ U around (0, μ∗) in 
which the problem

F̃ (φ, μ) = 0 (4.6)

is equivalent to

Φ(εφ∗, μ) := ΠF̃ (εφ∗ + ψ(εφ∗, μ), μ) = 0 (4.7)

for functions ψ ∈ C∞(ON × Y, M), Φ ∈ C∞(ON × Y, N), and ON ⊂ N an open neighbourhood of the zero 
function in N . One has Φ(0, μ∗) = 0, ψ(0, μ∗) = 0, Dφψ(0, μ∗) = 0, and solving the finite dimensional 
problem (4.7) provides a solution φ = εφ∗ + ψ(εφ∗, μ) to the infinite dimensional problem (4.6).

We want to show that μ(ε) is not constant around 0. We calculate

D2
φφF̃ [0, μ∗](φ∗, φ∗) = −(φ∗)2 − 3L((φ∗)2),

D2
μφF̃ [0, μ∗]φ∗ = (λ′(μ∗) − 1)φ∗ + 3λ′(μ∗)L(φ∗).

As L(cos(p·))(x) = 1
1+p2 cos(px) for p �= 0, we get that

D2
μφF̃ [0, μ∗]φ∗ =

(
λ′(μ∗)(1 + 3

1 + (2π/P )2 ) − 1
)
φ∗.

By choice, 
√

4λ(μ∗)−μ∗

μ∗−λ(μ∗) = 2π
P , so that the coefficient of φ∗ above is zero if and only if

λ′(μ∗) = λ(μ∗)
∗ .
μ
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This is impossible, as the left-hand side lies in (1
3 , 

1
2 ) when μ∗ ∈ (

√
a, ∞), while the right-hand side lies in 

(1
2 , 1).

Using bifurcation formulas (see e.g. section I.6 in [9]), we readily calculate μ̇(0):

μ̇(0) = −1
2
〈D2

φφF̃ [0, μ∗](φ∗, φ∗), φ∗〉L2(SP )

〈D2
μφF̃ [0, μ∗]φ∗, φ∗〉L2(SP )

= 0, (4.8)

as 
∫ P/2
−P/2 cos3(2π

P x) dx = 0. When μ̇(0) = 0, one has that ([9])

μ̈(0) = −1
3
〈D3

φφφΦ[0, μ∗](φ∗, φ∗, φ∗), φ∗〉L2(SP )

〈D2
μφF̃ [0, μ∗]φ∗, φ∗〉L2(SP )

.

The denominator equals 
(
λ′(μ∗)(1 + 1

1+(2π/P )2 ) − 1
)
�= 0. Using that F̃ is quadratic in φ, one can calculate 

that

D3
φφφΦ[φ, μ](φ∗, φ∗, φ∗)

= 3 Π D2
φφF̃ [φ + ψ(φ, μ), μ](φ∗ + Dφψ[φ, μ]φ∗,D2

φφψ[φ, μ](φ∗, φ∗))

+ Π DφF̃ [φ + ψ(φ, μ), μ]D3
φφφψ[φ, μ](φ∗, φ∗, φ∗).

As N = ker DφF̃ [0, μ∗], we get that the projection Π DφF̃ [0, μ∗] = 0. Using that ψ(0, μ∗) = Dφψ[0, μ∗] = 0
and the expression for D2

φφF̃ [0, μ∗] above, we find that

D3
φφφΦ[0, μ∗](φ∗, φ∗, φ∗)

= −Π
(
φ∗D2

φφψ[0, μ∗](φ∗, φ∗) + 3L(φ∗D2
φφψ[0, μ∗](φ∗, φ∗))

)
. (4.9)

We can rewrite D2
φφψ[0, μ∗](φ∗, φ∗) as

D2
φφψ[0, μ∗](φ∗, φ∗) = −

(
DφF̃ [0, μ∗]

)−1 (id−Π)D2
φφF̃ [0, μ∗](φ∗, φ∗)

=
(
DφF̃ [0, μ∗]

)−1 ((φ∗)2 + 3L((φ∗)2)
)

=
(
DφF̃ [0, μ∗]

)−1
(

2 + (1
2 + 3P 2

16π2 + P 2 ) cos
(

4π
P

x

))
= 2

λ(μ∗) − μ∗

+ 16π2 + 7P 2

2((4λ(μ∗) − μ∗)P 2 + 16π2(λ(μ∗) − μ∗) cos
(

4π
P

x

)
,

where we used that L(cos(p·))(x) = 1
1+p2 cos(px) for p �= 0. Multiplying with φ∗(x) = cos

( 2π
P x

)
and using 

double and triple angle formulas, we get

2 cos(2πx/P )
λ(μ∗) − μ∗ + 1

2
16π2 + 7P 2

2((4λ(μ∗) − μ∗)P 2 + 16π2(λ(μ∗) − μ∗) cos
(

2π
P

x

)
+ 1

2
16π2 + 7P 2

2((4λ(μ∗) − μ∗)P 2 + 16π2(λ(μ∗) − μ∗) cos
(

6π
P

x

)
.

Denoting by C be the coefficient of cos
( 2πx

)
= φ∗(x) in the above expression, we see from (4.9) that
P
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D3
φφφΦ[0, μ∗](φ∗, φ∗, φ∗) = −C

(
1 + 3P 2

P 2 + 4π2

)
φ∗.

Hence μ̈(0) �= 0 and μ̇ �≡ 0 on (−ε, ε). Lemma 4.3 and the calculations above show that the conditions of 
Theorem 9.1.1 in [1] are fulfilled and we have the following result:

Theorem 4.5 (Global bifurcation). The local bifurcation curves s �→ (ϕ(s), μ(s)) of solutions to the 
Degasperis-Procesi equation from Theorem 4.2 extend to global continuous curves R of solutions R≥0 → S. 
One of the following alternatives hold:

(i) ‖(ϕ(s), μ(s))‖Cα(SP )×R → ∞ as s → ∞.
(ii) (ϕ(s), μ(s)) approaches the boundary of U as s → ∞.
(iii) The function s �→ (ϕ(s), μ(s)) is (finitely) periodic.

Theorem 4.6. Alternative (iii) in Theorem 4.5 cannot occur.

Proof. Let

K := {ϕ ∈ Cα
even(SP ) : ϕ is non-decreasing on (−P/2, 0)},

which is a closed cone in Cα(SP ), and let R1 and S1 denote the ϕ parts of R and S respectively. The 
result follows from Theorem 9.2.2 in [1] if we can show that if ϕ ∈ R1 ∩ K is non-constant, then ϕ is an 
interior point of S1 ∩ K. To see this, let ϕ be a non-constant solution that is non-decreasing on (−P/2, 0). 
By Theorem 3.3, ϕ is smooth and we can apply Theorem 3.2 to conclude that ϕ′′(0) < 0, ϕ′′(−P/2) > 0
and ϕ′ > 0 on (−P/2, 0). Let ψ be a solution within δ � 1 distance of ϕ in Cα, with δ small enough that 
ψ < μ. Iterating as in the proof of Theorem 3.3, we get that ‖ϕ −ψ‖C2 < δ̃, where δ̃ can be made arbitrarily 
small by taking δ smaller. This implies that ψ also is non-decreasing on (−P/2, 0). Hence ψ ∈ S1 ∩ K. �
Lemma 4.7. Any sequence {(ϕn, μn)}n ⊂ S of solutions to (1.3) with {μn}n bounded has a subsequence that 
converges uniformly to a solution ϕ.

Proof. From (1.3) we have that

1
2ϕ

2 = a + μϕ− 3
2L(ϕ2) < a + μϕ,

which implies that

‖ϕ‖2
L∞ ≤ 2a + 2μ‖ϕ‖L∞ .

Hence {ϕn}n is bounded whenever {μn}n is. We have that

|L(ϕ2
n)(x + h) − L(ϕ2

n)(x)| =

∣∣∣∣∣∣
∫
R

(K(x + h− y) −K(x− y))ϕn(y)2 dy

∣∣∣∣∣∣
≤ ‖ϕn‖2

L∞

∫
R

|K(x + h− y) −K(x− y)|dy.

As K is continuous and integrable, the final integral can be made arbitrarily small by taking h sufficiently 
small. This shows that {L(ϕ2

n)}n is equicontinuous. Arzela-Ascoli’s theorem then implies the existence of a 
uniformly convergent subsequence. �
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Lemma 4.8. For fixed a > 0 and P > 0, μ(s) does not approach 
√
a as s → ∞.

Proof. Assume for a contradiction that there is a sequence {μn}n such that μn → √
a as n → ∞, while 

at the same time ϕn = ϕμn
is a sequence along the global bifurcation curve in Theorem 4.5. According 

to Lemma 4.7 a subsequence {ϕnk
}k converges to a solution ϕ0 of (1.3). From Theorem 3.1 we have that 

maxϕnk
>

μnk
+
√
μ2
nk

+8a
4 >

√
a, while maxϕnk

< μnk
→ √

a. It follows that maxϕ0 =
√
a and hence 

maxL(ϕ2
0) = a. However, maxL(ϕ2) ≤ maxϕ2 with equality if and only if ϕ is constant. Hence ϕ0 ≡ √

a. 
This leads to a contradiction with Lemma 3.4, noting that the constant CK,P,μ is positive for all positive 
μ, as we get that

0 = lim
k→∞

μnk
− ϕnk

(P/2) ≥ lim
k→∞

CK,P,μnk
> 0. �

Lemma 4.9. Let a > 0 and P > 0. If sups≥0 μ(s) < ∞, then alternatives (i) and (ii) in Theorem 4.5 both 
occur.

Proof. We already know from Theorem 4.6 that alternative (iii) cannot occur, thus either (i), (ii), or both 
has to occur. Theorem 3.5 implies that alternative (i) happens if lims→∞ μ(s) − ϕ(s)(0) = 0. From

(μ− ϕ)ϕ′ = 3
2
(
L(ϕ2)

)′ ≤ 3
2L(ϕ2),

we see that ϕ′ is bounded in μ. Similarly, it is easy to see that if ϕ(0) < μ, then ‖ϕ‖C2(SP ) is bounded in μ. 
Hence, if sups≥0 μ(s) < ∞, alternative (i) happens if and only if lims→∞ μ(s) − ϕ(s)(0) = 0, which implies 
that (ii) occurs as well.

From Lemma 4.8 we know that infs≥0 μ(s) >
√
a and the assumption sups≥0 μ(s) < ∞ then implies that 

μ(s) does not approach the boundary of (
√
a, ∞). Thus alternative (ii) can only happen if lims→∞ μ(s) −

ϕ(s)(0) = 0, which in turn implies (i). �
Proposition 4.10. For fixed a > 0, there is a number C > 0 such that if P < C, there is an upper bound on 
μ above which there are no smooth solutions to (1.3) except constant solutions.

Proof. Assume ϕ is a smooth solution to (1.3) which is even and non-decreasing on (−P/2, 0) (recall that 
ϕ is smooth if ϕ(0) < μ, and a peakon if ϕ(0) = μ; no other possibilities exists). We know that ϕ′ has a 
maximum on (−P/2, 0), say ϕ′(x0) = maxϕ′. Then ϕ′′(x0) = 0. As

(μ− ϕ(x))ϕ′′(x) = (ϕ′(x))2 + 3
0∫

−P/2

(K ′
P (x− y) −K ′

P (x + y))ϕ(y)ϕ′(y) dy,

and K ′
P (x − y) −K ′

P (x + y) > 0 for x < y < 0, we then get that

(ϕ′(x0))2 = −3
0∫

−P/2

(K ′
P (x0 − y) −K ′

P (x0 + y))ϕ(y)ϕ′(y) dy

≤ −3
x0∫

(K ′
P (x0 − y) −K ′

P (x0 + y))ϕ(y)ϕ′(y) dy

−P/2
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= ϕ(c0)ϕ′(c0)3

∣∣∣∣∣∣∣
x0∫

−P/2

(K ′
P (x0 − y) −K ′

P (x0 + y)) dy

∣∣∣∣∣∣∣ ,
where −P/2 < c0 < x0. As ϕ′(c0) < ϕ′(x0) and ϕ(c0) < μ, it follows that maxϕ′ < CPμ, where the constant 
CP depends on P through the final integral above. As KP (x) = 1

2e−|x| + cosh(x)
eP−1 , the derivative is bounded 

by 1/2 and the final integral above, hence also CP , therefore goes to 0 as P → 0. From Theorem 3.1, we 
know that a solution ϕ satisfies

minϕ <
μ +

√
μ2 + 8a
4 < maxϕ.

If μ ≫ a, then μ+
√

μ2+8a
4 = μ

2 + O(μ−1). Hence there exists a point x1 ∈ (−P/2, 0) such that ϕ(x1) =
μ
2 + O(μ−1). Trivially, for every x ∈ (−P/2, 0) we have the bounds

ϕ(x1) − (P/2) maxϕ′ < ϕ(x) < ϕ(x1) + (P/2) maxϕ′.

Combining this with the bound on the derivative above, we get

maxϕ <
μ

2 + P

2 CPμ + O(μ−1).

For any c ∈ (1
2 , 1) we can take P > 0 sufficiently small independently of μ such that

maxϕ ≤ cμ + O(μ−1). (4.10)

By the mean value theorem,

(μ− ϕ(x))ϕ′(x) = 3
2
(
L(ϕ2)

)′ (x)

= 3
0∫

−P/2

(KP (x− y) −KP (x + y))ϕ′(y)ϕ(y) dy

= 3ϕ′(cx)ϕ(cx)
0∫

−P/2

(KP (x− y) −KP (x + y)) dy,

for some constant cx that depends on x. From (4.10) we get that there is a constant C independent of μ
and decreasing in P such that ϕ(cx)/(μ −ϕ(x)) ≤ C +O(μ−2) for all x ∈ (−P/2, 0). We therefore get that

ϕ′(x) ≤ ϕ′(cx)C
0∫

−P/2

(Kp(x− y) −KP (x− y)) dy + O(μ−1), (4.11)

where C is independent of μ and decreases with P . The integral on the right hand side goes to 0 for all 
x ∈ (−P/2, 0) as P → 0. For P sufficiently small, (4.11) implies that ϕ′ ≡ 0 for all sufficiently large μ. �
Theorem 4.11. Let a > 0 be fixed. For all P > 0 sufficiently small, alternatives (i) and (ii) in Theorem 4.5
both occur. Given any unbounded sequence of positive numbers sn, a subsequence of {ϕ(sn)}n converges 
uniformly to a limiting wave ϕ that solves (1.3) and satisfies
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ϕ(0) = μ, ϕ ∈ C0,1(R).

The limiting wave is even, strictly increasing on (−P/2, 0) and is exactly Lipschitz at x ∈ PZ.

Proof. From Theorem 4.6, we know that alternative (iii) cannot occur. The proof of Theorem 4.6 also 
implies that the curve (ϕ(s), μ(s)) cannot reconnect to the curve of constant solutions we bifurcated from 
for any finite s. Hence Proposition 4.10 implies that for all P > 0 sufficiently small, sups≥0 μ(s) < ∞, and by 
Lemma 4.9 we get that alternatives (i) and (ii) both occur. Moreover, as {μ(sn)}n is bounded, Lemma 4.7
gives that a subsequence of {ϕ(sn)}n converges uniformly to a solution ϕ. As alternatives (i) and (ii) both 
occur, this solution must necessarily have the stated properties. �
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