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Summary
This thesis focuses on developing observers that can be applied to simultaneous

localization and mapping (SLAM), with an emphasis on developing observers

that has theoretical proof of convergence. The motivation for this research has

been to develop robust navigation methods, that can apply information from the

surroundings through on-board sensors, mainly cameras. Applying nonlinear

system theory, all the observers have proof of semi global or global asymptotic

stability; while globally exponential stability and exponential stability in the large

is also shown for some of the observers.

Conversely to the main practice in the literature, the observers have been de-

signed on the bearing measurements being represented as unit vector measure-

ments. Two different techniques are applied in the design of the observers or

filters. The first technique was based on having an attitude heading reference sys-

tem available and rearrange the system as a linear time varying system. A standard

Kalman filter could thus be used, and globally exponential stability achieved. A

setup where the Kalman filter was combined with a nonlinear observer was also

tested, and the combination was able to improve both the accuracy and robustness

of the filtering.

The second design method, utilized the kinematics of the unit vector pointing

at landmarks, and filtered directly the bearing measurements. Inspired by the

literature on nonlinear observers, the cross product was used as an innovation

term involving the bearing vectors. This proved to give the observer semi-global

stability. Through the filtering, it was proved that gyro bias and distance to the

landmark could be estimated separately, with the same semi global asymptotic

stability, and exponential stability in the large.

The fact that the observer designed around unit vector measurements also

opened other applications which are highly relevant to visual navigation. A well

known fact when performing navigation only based on camera, is that the depth

of the scene is ambiguous. This means that all the structure from motion that is

estimated from the camera is relative, in fact, the absolute depth in the scene or

scale between the camera and real world is unobservable without external infor-

mation. By normalizing the velocity measured by the camera, similar kinematics

as used for the landmark measurements could be applied, and by assuming that a

self calibrating IMU with gravity estimate was available, the observer could fuse

normalized velocity with the sensor values from the IMU and estimate the metric

velocity of the vehicle. This setup also worked with other observers and filters

from the literature, and a thorough comparative study was made in simulations

and with experimental data, confirming that the velocity estimation was possible.

Finally, an observer was expanded to estimate both distance to the landmark

and gyro bias simultaneously. With the same global asymptotic stability and ex-

ponentially stability in the large. With verifiable conditions for convergence. This
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iv SUMMARY

made it possible to apply a camera to both gyro bias estimation and estimating

distance to the landmark without dealing with problems of initialization or diver-

gence. The setup was verified both in simulations and on a UAV flight experiment,

where the combination of a GNSS, IMU and camera, could perform estimation

both of gyro bias and depth in the camera. Further it was shown how heading

and altitude could be estimated or derived from the measurements, such that with

the sensor setup proposed, both an altimeter and magnetometer were redundant

sensors.

There is some work left to prove that camera navigation based on the presented

observers is feasible in closed loop or in an industrial setting. Never the less, the

thesis has been able to address two important topics in camera aided navigation,

namely having a observer using monocular camera handling gyro-bias, and having

a setup for velocity estimation provided only a monocular camera and a tactical

self calibrating IMU; all with proof of semi-global stability.
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1Introduction
1.1 Context and background

Robust navigation and positioning are a fundamental part for achieving au-

tonomous missions. A possible scenario is the use of autonomous vehicles for

inspection of structures such as bridges, power lines and wind turbines. For such

tasks, the need of high accuracy in position and attitude estimates is essential, as

the vehicles will have to operate near the inspection target. The motivation for

researching SLAM is the necessity for high quality and robust navigation for an

autonomous systems. Usually a global navigation satelite system (GNSS) is used

for navigation in combination with an inertial measurement unit (IMU). However,

the satellite technology has limitations. This is especially experienced close to

large structures that can shadow the signals, or reflect the GNSS signals. In ad-

dition, as safety and security is an important part of the developments and usage

of autonomous systems, there will be a higher demand for redundant navigation

systems, thus there will be need for other navigation systems to work alongside

GNSS. On top of that, GNSS is not applicable for indoor navigation, where there is

usually some infrastructure installation needed for a positioning system. In addi-

tion the ability of the autonomous system to perceive its surrounding is essential

for safe autonomous operations in unpredictable environments. Further, the price

of cameras, LIDAR and other sensors have decreased significantly the latter years.

Parallel to an increase in both the quality of these sensors and computational

power available. Applying these types of sensors for navigation has been of in-

crease interest both in industry and in the scientific community. This challenge,

often refereed to as the SLAM problem, was considered one of the fundamental

problems in robotics from as far back as the 1986 IEEE Robotics and Automation

Conference [28][6]. The readers are refereed to these articles for an introduction

to classical SLAM, but a more modern introduction and overview is [21].

It is important to clarify some terminology, which also can be different depend-

ing on the scientist, and in which scientific community the communication is done.

As noted above SLAM consists of the problem of fusing on-board sensor data on

a vehicle to estimate its position and map its surrounding. It is often divided

into range and bearing SLAM, bearing only SLAM and Range Only SLAM. Range

is then the relative distance between the vehicle and a landmark, while bearing

information is in which direction the landmark is observed. What is performed is

dependent on the sensors available on the vehicle. Range and Bearing SLAM can

for instance be performed with a LIDAR, Radar or stereo camera. Range SLAM can

be performed with either acoustic beacons. Bearing only SLAM is often performed

with a monocular camera. When a camera is used in SLAM, it can also be refer-

eed to as visual SLAM. Lately, there has been a distinction between whats been

referred to as visual SLAM and visual odometry (VO). The difference is illustrated

1



2 CHAPTER 1. INTRODUCTION

in Figure 1.1, where we see that SLAM preforms loop closure, while VO only use

visual information which is currently in the view for dead reckoning. The error

will therefore always drift in time and will eventually be unbounded. In addition,

a VO system may neglect the mapping part of SLAM. Visual inertial odometry

(VIO) is when the visual information is fused with an IMU, both for higher ac-

curacy and to acquire a bounded scale error. Other terms that comes up in the

computer vision literature is structure from motion (SFM) and photogrammetry.

Photogrammetry refers to the extraction of three-dimensional measurements from

two-dimensional images, where SFM refers to the part where the relative poses

of the camera images along with position of features and camera parameters are

estimated.

Figure 1.1: Left: map built from odometry. The map is homotopic to a long corridor that goes from
the starting position A to the final position B. Points that are close in reality (e.g., B and C) may be
arbitrarily far in the odometric map. Right: map build from SLAM. By leveraging loop closures, SLAM
estimates the actual topology of the environment, and âĂĲdiscoversâĂİ shortcuts in the map. [21]

In addition there are two main setups for solving SLAM, graph SLAM and

SLAM filtering. The main difference is that in graph SLAM all the measurements

are included in the estimation for every iteration, while in SLAM filtering only

the last measurements are used at every update in a recursive algorithm. The

difference between these fundamental setups are discussed in [104]. The most

successful visual SLAM methods developed lately, are based on the key-frame

bundle adjustment [89, 30]. The key frames are chosen so that the optimization is

sparse, and hence the optimization is possible to perform in real time. The various

setups are illustrated in Figure 1.2.

The combination of the non linearity of SLAM combined with the fundamental

uncertainty between the unknown position of the vehicle and the map, makes the

problem difficult. In addition, as SLAM requires a map to be estimated, the

complexity of the problem increase, often polynomial with the size of the map.

Thus when dealing with SLAM, challenges with regards to accuracy, consistency,

scalability, robustness, loop closure, computational load, scale ambiguity and drift

have to be considered. This means that the SLAM problem can be highly difficult

depending on the requirements and the sensor setup of the system. Below is a

short overview of the different challenges that one is faced with when building a



1.1. CONTEXT AND BACKGROUND 3

Figure 1.2: (a) Bayesian network for SLAM/SFM. (b) SLAM/SFM as markov random field without
representing the measurements explicitly. (c) and (d) visualise how inference progressed in a filter and
with keyframe-based optimisation. [104]

SLAM system, especially when designing a monocular visual SLAM system.

Accuracy The accuracy of the SLAM estimation means the accuracy of both the

pose estimate of the vehicle, and the accuracy of the estimated map. This can

often be measured by the root mean square error (RMSE). For experiments only

the RMSE of the pose of the vehicle is often given, as the map RMSE is more

difficult to acquire. High accuracy can be viewed as the ultimate goal of the

SLAM estimation, however other features such as robustness and consistency can

be viewed as even more important.

Consistency The consistency of the estimation is a measure of how well the es-

timation procedure is able to estimate the uncertainty of the acquired estimates.

For an extended Kalman filter (EKF) or Kalman Filter (KF), the uncertainty is re-

flected in the covariance matrices returned from the filters. The consistency can

then be measured by comparing the actual estimation error to the covariance es-

timate through calculating the normalized estimation error squared (NEES) and

preforming a Chi squared test [7]. The EKF often provides estimates that are too

optimistic with regards to the uncertainty. The relation between the observability

of the system and the consistency of the EKF filters has been extensively studied

in the literature [22, 109, 56], and has resulted in methods developed to maintain



4 CHAPTER 1. INTRODUCTION

consistency like Multi-State Constraint Kalman Filter (MSCKF) [74] and Invariane

EKF (IEKF) [9, 52]. SLAM systems based on nonlinear optimization, or graph

SLAM, can have global uncertainty as the inverse of the hessian matrix. which

means that the uncertainty of the estimates has to be determined explicitly or em-

pirically. The same applies to most of the deterministic observers including most

nonlinear observers.

Robustness Achieving robust visual SLAM and visual inertial odometry (VIO)

setups is still considered an open problem in many scenarios [21]. A common

problem is not only to have algorithms that converge regardless of model error,

noise and initialization, a question often asked, but more seldom answered, is for

which conditions will the SLAM methods converge. For example, how close to

the true value does the estimates need to be initialized for the system to converge,

and under which maneuvers is the algorithm guaranteed to converge. Some work

has been done in this regard, for instance there is a well known fact that the

relative depth of a scene is unobservable for a monocular camera if the camera

does not move [67]. For some instances, the unknowns can be found by solving a

linear system, where a condition number would determine if the problem is well

posed. However, relating this to an automatic criterion to guarantee convergence

has yet to be demonstrated [91]. In control theory stability analysis are used to

determine the robustness of a system. Having a system which is uniformly globally

asymptotically stable (UGAS), uniformly globally exponentially stable (UGES) or

have similar stability properties means that for all initial states of the system, the

states will converge. As SLAM is a nonlinear problem, a SLAM system is often

based on a EKF, nonlinear optimization or other nonlinear estimation schemes.

Many of these methods can not have their stability analyzed. However, there are

some results in the literature of SLAM and visual odometry methods that are

UGAS and UGES [77, 71, 49, 27, 101, 58], including several methods developed

throughout this thesis. The benefit of the stability results are two fold, it guarantees

that the estimates will converge regardless of how bad they are initialized, but it

also gives an insight into how the sensors need to be excited to be able to guarantee

uniform observability and convergence. In addition, if a system is UGES it is input

to state stable (ISS) [64, Lemma 4.6], which means that if a bounded error is

introduced, the error of the states will also be bounded. This then leads to a strong

robustness property that can be proven analytically. Never the less, UGES is not

a guarantee for having a well preforming observer, especially when high noise

values are present.

Scalability Scalability of a SLAM system, is related to its ability to handle a map

which is growing, which ideally would result in the computational cost would

increase logarithmic to the size of the map. For many SLAM systems this is

far from the case. An EKF implementation of SLAM will have n states, which
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would lead to a covariance matrix that has n2 elements, thus the computational

cost increases O(n3) with the number of map elements [96], however reducing

how often the global map needs to be updated the computational complexity

can be suppressed. For nonlinear optimization, a naive implementation methods

based on direct linear solvers increases memory quadratic with the number of

landmarks [21], however, in recent years there have been a set of examples where

by maintaining the optimization graph sparse, real time performance for large

maps can be accomplished [89], [30], by using solvers that exploit the sparsity of

the optimization [69].

Loop closure Loop closure is the ability of the system to realize that the scene

has been visited before. This information is important in two ways, one it can be

used to reduce the drift due to dead reckoning, thus keeping the error bounded

in time. In addition, a loop closure detection is essential to get a good topology

of the map that is created. This is illustrated in Figure 1.1. This information can

then be utilized to keep the error bounded. Historically, this has been viewed as

part of the data association problem which is solved through gating, a classical

technique in tracking problems [92][7]. However this has not proven to be a robust

approach. In [113] several loop closure strategies were compared: map to map,

image to image and image to map comparisons. The image to image approach has

been shown to be the most popular, because of its robustness and availability. The

loop closure is done by sorting features by their descriptor into categories called

visual words. An image can thus be represented by a relative histogram of the

words presented in the image, which is called the bag of words (BoW) vector of the

image. The images can therefore be sorted, indexed and inverse indexed by the

BOW, and comparing a newly acquired image to the collected image database can

be done in logarithmic time [24, 39, 90]. A benefit of image to image loop closure

is that it also enables relocalization.

The similarity between relocalization and loop closure is that in both the current

images are compared to an image database and it is tested if the scene being viewed

has been visited before. The difference is that in relocalization the track of the

vehicle is lost so that the new position of the vehicle is relocalized. On the other

hand, in a loop closure the track has not been lost, but there has been accumulated

error that can be measured when a place is revisited. This error is then used to

update the map, and thus reduce the accumulated drift to zero where the loop is

closed.

Scale ambiguity and drift For monocular SLAM, a problem is that the scale of

the world is ambiguous. This means that when a depth scene is calculated, only

the relative depths within the image are observable, while the absolute depth is

unobservable. This means that if it is desirable to know how a camera has moved

by comparing images, the images have to be fused with other sensors such as laser
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scanner, altimeter, IMU or sonar. Alternatively if the camera observe features with

known relative distance, such as a checkerboard or a tag [94] a metric relative pose

can be calculated by solving the perspective n-point problem [72]. A scale can

also be found by fusing the camera with an IMU (VIO). In VIO loop closure is

often neglected in order to have a computationally simple system. Several VIO

methods have been developed to be able to run on a small computer, mobile phone

or onboard a UAV [111, 80, 73]. In addition, a velocity observer able to estimate

the velocity with UGES was also presented in [41]. In ORB-SLAM [91], the scale is

initialized through an optimization scheme combining IMU and camera informa-

tion. In addition, the global optimization is done on the sim(3) group introduced

in [103] which has the scale as a degree of freedom (DOF) resulting in the bun-

dle adjustment (BA) having 7 degree of freedom and can account for scale drift

when closing the loops. However there is no guarantee that the scale error will be

bounded with regards to the distance to the initial camera pose.

In this thesis, the focus has been on the challenge of having robust SLAM

methods, where the goal of the research has been to develop SLAM methods

based on nonlinear observer theory, thus providing observers with some kind of

global stability.

1.2 Nonlinear stability theory for SLAM

As mentioned, a challenging problems within SLAM is having robust estimation.

Some recent work has addressed this by developing SLAM methods using nonlin-

ear observer theory, thus acquiring SLAM observers with proof of certain stability

properties. In this section we discuss different nonlinear observers that can be

applied to SLAM or VIO, and how the stability property is acquired. This is both

to give the reader an overview of the state of the art of these types of observers,

and illustrate how this thesis has positioned itself with regards to the rest of the

literature. It will also be noted how the references have been influential with re-

gards to the work in this thesis. The author also wishes to highlight some more

general work that has been influential to the theory part of this thesis.

We are all standing on the shoulders of giants, where a vast amount of theory

and practice has been produced and re-used for other applications. Arguably

the most influential work the last century is the work of Kalman [63, 62], which in

essence made a recipe of how to make an observer for a linear time-varying system.

Moreover, conditions for controllable and observable systems were presented,

which made it possible to determine whether a KF and/or an optimal controller

could be applied to a linear system. In [3], it was proven that a KF or the Riccati

equations can provide UGAS or UGES error dynamics when applied to linear

system.

With regards to nonlinear systems, some nonlinear systems can be transformed
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to linear time-varying systems. This is possible by inserting measured input or

state values into the system matrices. If these measurements are accurate enough,

the nonlinear system can be analyzed as a time-varying system with the following

stability properties. Such schemes are discussed in [10, 11, 13], and have also been

applied to SLAM and position observers such as [12, 47, 77, 50, 58]. This was also

applied in the stability proof of the Riccati observer presented in Chapter 6. On

the other hand, this approach renders the process and measurement noise to be

non-additive and and non-white, compromising the optimality of the KF.

However, in general, proving stability for nonlinear systems is not simple.

Nonlinear systems are all systems that are not linear, which means that they are

a highly diverse group. Never the less, some theory is general enough to be

applicable to many systems. Lypaunov theory falls into that category, and can be

utilized to prove stability for a vast amount of systems. However, the catch with

Lyapunov theory is that there is a requirement of finding a Lyapunov function.

Finding a suitable Lyapunov function for a system is not a trivial task, where

experience and guessing is often how it is found. In addition, for some systems,

especially where parameter estimation is performed, the Lypunov analysis falls

short and more specialized theory needs to be applied. This was the case for the

first article in Chapter 3, where Matrosov’s theorem [86] was used to prove that all

states estimates of the observer converged to their true values.

As mentioned, a Lyapunov function can be difficult to find, however, systems

with a certain structure will tend to have a Lyapunov function candidate that

can be constructed based on the system. Such a family of nonlinear systems is

the skew-symetric systems. This structure often arrive when there are unknown

states or parameters that depend linearly on a state that is measured, and hence

often appears in adaptive control and parameter estimation. The skew symmetric

systems have been investigated extensively in different forms including in [4, 87, 95,

75, 35]. Skew symetric systems have also been found when working with camera

systems, most notably [57][27][40][101][41]. In addition it has been applied in

both Chapter 3 and 4, when finding state estimation laws and Lyapunov candidate

functions for the observers presented.

Other inspirational work was the nonlinear attitude observer [48, 82, 42], where

it is shown how the cross product can be used as an innovation for a nonlinear

observer on the special orthogonal group, which is the innovation used for the

nonlinear observers with bearing measurement in chapters 3 and 4. The cascade

structure from [12] was also influential when designing the attitude estimation in

Chapter 3.

Other important observers which were not visited in this thesis were the sym-

metry preserving observers [83], such as [81] and [107], and invariant observers

such as [8].
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1.3 Scope, objective and contribution

In this thesis the focus has been on developing observers that are applicable to

the SLAM or VIO scenario, and that have their stability analyzed. The goal was

to develop observers that were computationally simple and robust enough to be

applicable on an UAV. The sensor suite that is most sought after in GNSS denied

navigation is having a low-cost MEMS IMU and a monocular camera. Lowcost

IMU, means that the observer should ideally handle slowly varying bias in the

gyro and acceleration measurements. In addition having only a monocular camera

means that only the bearing measurements are available from the camera. Most

of the nonlinear observers with global convergence have assumptions that make

them difficult to apply to an UAV flight. A common assumption is that a velocity

measurement is present. This is a reasonable assumption when performing SLAM

on a wheeled robot or a surface vessel. For an UAV however, it can be a limiting

assumption, which requires an altimeter or altitude laser combined with a camera

to estimate the velocity. Note that airspeed measurements are of limited use due

to significant and unknown winds. There are VIO algorithms that can fuse IMU

and camera to acquire velocity, however they lack the robustness or stability that

is desired. Another assumption is that there is a gyro measurement without bias.

This can be a limiting factor as a MEMS IMU with small gyro bias tends to have a

high cost.

What we have not focused on in this thesis is the front end part of SLAM, this

means feature extraction, data association and loop closure. The only focus with

regards to these has been to develop filters with consistency properties in the case

of the SLAM filters in Chapter 6, and when making simple feature extractors and

matchers as part of the experimental setup.

1.3.1 Main Contributions

• A cascade structure for gyro bias and attitude estimation was presented. The

gyro bias observer presented is able to estimate the bias using landmarks with

unknown position and velocity. In addition it was shown that having the

separation of the gyro bias estimation and attitude estimation could lead to

a higher robustness when the gyro is corrupted with a large bias. A proof of

the USGAS of the observer was also presented.

• The gyro bias observer was expanded to handle bearing only measurements.

With the result that both the gyro bias and range to the landmarks can be

estimated when velocity measurements are available. Included was a proof

of USGAS and UES. A scenario where an UAV equipped with a camera,

GNSS and IMU, the observer could estimate both altitude/proximity and

gyro bias was presented. In addition, how the gyro bias in yaw could be

estimated while hovering was also shown.
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• An observer filtering a calibrated gyro, velocity and normalized vector mea-

surement to estimate the vector magnitude was presented. Included was a

proof of USGAS and UES. A setup was presented, in which an UAV equipped

with a high grade AHRS/IMU could estimate its velocity by fusing these sen-

sor values with a normalized velocity measurement. In addition, a cascade

structure was also proposed so that USGAS bearing only filtering can be

performed with a monocular camera and a high grade IMU, without any

velocity measurement.

• A thorough experimental verification of the velocity estimation setup was

performed, where a comparison of the novel observer to similar observers

for velocity estimation was performed. The robustness of the nonlinear

observers compared to an EKF implementation was shown.

• A bearing only SLAM system based on an AHRS was presented. The avail-

ability of the attitude from the AHRS made it possible to reorganize SLAM

into a linear system. The observability of the system was analyzed, where its

dependence on the excitation of the bearing measurements is proven. The PE

condition for uniformly observability and thus UGES KF is that the bearing

measurements are non stationary in the inertia frame. In addition the design

of the co-variance matrices was performed and the consistent behavior of the

KF was shown.

• The nonlinear observer and Kalman based SLAM method was combined

into a cascade observer. It was shown how this setup was more robust and

accurate than the observers separately.

The contributions in this thesis are listed chronologically, where the content of the

thesis is organized as follows with the articles related:

Chapter 3), Cascade Attitude Observers Using Landmark

Measurements

Part 1: Applying Landmark measurements

• Bjørne, E., Brekke, E. F. and Johansen, T. A., Cascade Attitude Observer for the

SLAM filtering problem, Control Technology and Applications (CCTA), 2017

IEEE Conference on, p.945–952, 2017

Contribution

The main contribution of this research was the design of a new gyro bias estima-

tor which applied measurements from landmarks with unknown position. This
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makes it possible to estimate gyro bias in yaw, without magnetometer measur-

ments, if velocity, range and bearing measurements from landmarks are available.

In addition, The idea of separating gyro bias estimation from attitude estimation

was shown to increase robustness.

Part 2: Applying Bearing Only Landmark measurements

• Bjørne, E., Brekke, E. F., Bryne, T. H. and Johansen, T. A., Semi-globally

Asymptotically Stable Nonlinear Observer for Camera Aided Navigation, IEEE

Transactions on Control Systems Technology, submitted as a brief paper,2019

Contribution

In this research we presented a novel observer, where we combined the ideas from

[16, 19] and designed an observer that estimates distance to a landmark in addition

to the gyro bias. It filters the velocity and bearing measurements from landmarks,

to estimate the range to the landmark as well as gyro-bias. It can also be used for

bearing only SLAM if it is combined with a loop closing front end system. It was

presented with a proof of semi-globally asymptotically stability and exponentially

stability in the large. The observer was also demonstrated in simulations, both in

a generic form as well as for a sensor setup with a camera, GNSS and IMU for a

UAV, where the observer was able to both provide range/altitude estimate as well

as estimating the gyro-bias. The later setup was verified experimentally, and the

gyro bias observer was used in a cascade in an attitude estimator as in [16]. The

attitude observer was compared to a more straight forward velocity aided attitude

observer based on a nonlinear complimentary filter [43].

Chapter 4), Nonlinear observers for estimating vector magnitude

from its direction and derivative

• Bjørne, Delaune, J. and Johansen, T. A., Estimating vector magnitude from its

direction and derivative, with application to bearing-only SLAM filter problem,

IEEE Conference on Decision and Control (CDC), p.1353–1360, 2018

Contribution

In this research we presented a novel observer for estimating the magnitude of a

time varying vector. We proved that if we assume a lower bound on the magnitude

of the vector, and a PE unit vector measurement, the vector magnitude observer

is USGAS and UES and will estimate the magnitude of the vector. We employed

the vector magnitude observer to the bearing-only SLAM problem with AHRS

measurements, and this also demonstrates two instances of the vector magnitude

observer working in cascade; once for velocity and once for range to landmark



1.3. SCOPE, OBJECTIVE AND CONTRIBUTION 11

estimation. In addition it was shown that estimating the distance to a landmark

using bearing measurements and velocity, is equivalent to estimating velocity

using a normalized velocity and acceleration measurements is available.

Chapter 5), , Globally Stable Velocity Estimation Using

Normalized Velocity Measurement

Contribution

• Bjørne, E., Brekke, E. F., Bryne, T. H., Delaune, J. and Johansen, T. A., , Globally

Stable Velocity Estimation Using Normalized Velocity Measurement, International

Journal of Robotics Research, submitted,2019

Contribution

A comparative study of globally stable observers applied to the ego motion es-

timation is presented. The solution can give globally stable velocity estimates

provided that a camera and an IMU with pitch and roll estimates are available.

The comparison was shown both in simulations and using experimental data. The

tuning of the different observers was discussed and performed, both by estimating

the measurement and process noise of selected observers and using Monte Carlo

simulations. In simulations the magnitude observer (MO) performed the best,

followed by the exogenous Kalman filter (XKF) [59], where it was also shown how

the MO observer could filter the unit vector measurements. Also on experimental

data, the MO observer was shown to have the best overall performance of the ve-

locity direction observers, with fast convergence and small RMSE in steady state.

The nonlinear observers were also compared to an EKF, and the observers were

shown to have a more robust performance than the EKF. The results of the chapter

confirmed that ego-motion estimation with global convergence using camera is

possible, provided that an IMU, with pitch/roll estimates, is also available.

Chapter 6), Linear Time varying SLAM filtering using Kalman

Filter

Part 1: Observability analysis and covariance matrix design

• Bjørne, E., Johansen, T. A. and Brekke, E. F., Redesign and analysis of glob-

ally asymptotically stable bearing only SLAM, 20th International Conference on

Information Fusion (Fusion),2017
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Contribution

The main contribution was the redesign of the bearing only SLAM, previously

presented in [58]. The new design requires less sensors as it uses neither gyro nor

bearing derivative. In addition, a novel design of the tuning covariance matrices

using linearisation was proposed and analysed. Simulations were done in 2D,

and Monte Carlo (MC) simulations were used to investigate the performance and

consistency of the KF.

Part 2: eXogenus Kalman Filter

• Bjørne, E., Johansen, T. A. and Brekke, E. F., Cascaded Bearing Only SLAM

with Uniform Semi-Global Asymptotic Stability, 22th International Conference

on Information Fusion (Fusion),2019 submitted

Contribution

In this research we took inspiration from the XKF setup, introduced in [59]. We

used the nonlinear filter [19] as a first-stage filter on the bearing measurements

and feed these to the system matrices in the KF from the previous part of the

chapter. We proved that the setup is USGAS, and simulations demonstrated that

the cascade setup is more robust against large measurement noise, than the filters

are individually. In addition we investigated how the novel nonlinear observer

[19] preformed against the KF [17].



2Notation, theory and kinematics
2.1 Notation

Scalars are in lower case a , x , ω, vectors are lower case bold a , x ,ω, sets are upper

case A,X,Ω, and matrices are bold upper case A,X ,Ω. The 0 denotes the scalar

zero, while 0 is the matrix zero where dimensions are implicitly given by the

context. The accents •̂, •̃, �•, •̄, •, denotes estimate, estimate error, time derivative,

upper and lower bound. The subscript •(m) denotes the measured value. Some

common mathematical expressions which will be used are: The Euclidean norm

for vectors and Frobenius norm for matrices, denoted ‖•‖, absolute value , denoted

| • | and the transpose, denoted •�. The representation of index sets is {1, ..., n} �
{x ∈ Z|x ≤ n}.
A vector can be represented in different coordinate systems. The representation is

denoted with the superscripts •b , •n which represents the body-fixed and earth-

fixed (inertial) coordinate systems, and will be called body-frame and inertial-

frame. Lower case will denote the indices of a landmark, vector or matrix •i and

•i , j .

2.1.1 Rotation representation

Rotation is the attitude change between two coordinate systems, and a rotation

from coordinate system b to n is denoted with subscript •nb . This can be repre-

sented as:

angle-axis

Φnb � θu ∈ {R3 | |θ | ≤ π, ‖u‖ � 1},
Euler angles

θnb � [φ, θ, ψ]� ∈ {R3 | |φ | ≤ π, |θ | ≤ π, |ψ | ≤ π},
quaternions

qnb � [s , r�]� ∈ {R4 |s ∈ R, r ∈ R3 , ‖q‖ � 1}
rotation matrix

Rnb ∈ {R3×3 | RnbR�
nb � I , det(Rnb) � 1} � SO(3) . The rotational vector transforma-

tion is calculated with the rotation matrix xn � Rnb xb .

The dynamics of the rotation matrix is described by

�Rnb � RnbS(ω) (2.1)

where ω � ωb
nb is the angular velocity of the frame b relative to n decomposed in

b. The matrix S(ω), is the skew-symmetric matrix, representing the cross product

in matrix form S(x)y � x × y, where S(•) is a skew-symmetric matrix

S(x) �
⎡⎢⎢⎢⎢⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎥⎥⎥⎥⎦ (2.2)

13
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which gives S(•) � −S(•)� , x�S(•)x � 0, ∀x, S(x)y � −S(y)x and RS(x)R�
�

S(Rx), ∀R ∈ SO(3). Other identities of the S(•) when used with a unit vector ux

are

S2(ux) � ux(ux)� − I

S3(ux) � −S(ux)
S4(ux) � −S2(ux)
S5(ux) � S(ux)
S6(ux) � S2(ux)

Moreover, the cross-product gives the difference in angle-axis between two vectors

S(x)y � ‖x‖‖y‖ sin(θ)u (2.3)

where θ is the angle between the vectors, and u is the unit vector of the axis of the

rotation, defined by the right hand rule, and is orthogonal to the two vectors. For

the S matrix in 2D

S(x) �
[
0 −x
x 0

]
(2.4)

the the cross product is between [0, 0, x] × [y1 , y2 , 0]. Commonly x represents

rotation rate ω for a vehicle in a 2-D scenario.

More detailed information can be found in Sola [100] and Fossen [34]. Let the

rotation matrix denote the rotation from the body-fixed frame to the inertial-frame.

The dynamics of the of the rotation matrix is described by

�Rnb � RnbS(ω) (2.5)

where ω � ωb
nb is the angular velocity of the frame b relative to n decomposed in

b. For discrete propagation, the Rodriguez formula can be applied to aproximate

the rotation [46]

ω̆ �

t+Δt∫
t

ω(t)dt , ω̄ � ‖ω̆‖ , ub
ω �

ω̆
‖ω̆‖ (2.6)

Rnb(t + Δt) � RnbRΔt (2.7)

RΔt � I + sin(ω̄)S(ub
ω) + (1 − cos(ω̄))S(ub

ω)2 (2.8)

Usually the gyro measurement ωm is assumed corrupted by a constant gyro

bias

ωm � ω + bω (2.9)

The estimate of the rotation matrix is denoted R̂nb , and will have the error defined

R̃nb � R̂nbR�
nb as in [48]. This means the error is a rotation matrix in itself. The

gyro-bias error is defined normally b̃ω � bω − b̂ω
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2.2 Projection

It can often be useful to project vector into parallel and orthogonal spaces to certain

vectors. This can be done using the unit vector un
x �

x
‖x‖ and skew symmetric

matrices. We can define the parallel and orthogonal projection operator or matrices

U⊥
x � −S(un

x )2 � (I − un
x (un

x )�) (2.10)

U ‖
x � un

x (un
x )� (2.11)

where the projection is preformed by multiplying these matrices with vector

y � U⊥
x y + U ‖

x y (2.12)

(U⊥
x y)�x � 0 (2.13)

S(U ‖
x y)x � 0 (2.14)

2.2.1 Parameter projection

Projection also comes opp in parameter projection, which is used when it is de-

sirable to bound the parameter parameter estimates. Details about the parameter

projection can be seen in [68, E.1]. It works as a Lipschitz continuous saturation

which enables the parameters or state estimates to be bounded. Let the set of

possible parameters for state y be defined by By :� y ∈ Rn |P(y) ≤ 0, where

P : Rn → R is a smooth and convex function. For the states estimated in this

thesis, the estimates are bounded by the following equations

Pd(d̂i) � (d̂i − d̄)(d̂i − d) < 0

Pb(b̂ω) � b�
ωbω − b̄2 < 0

which has the following gradients

∇Pd � 2d̂i − (d̄ + d)
∇Pb � b�

ω

The projection is then

Projdi(z) � (2.15){
z Pd(d̂i) < δd or ∇Pd z ≤ 0

(1 − min{1, Pd (d̂i )
δd

})z Pd(d̂i) > δd and ∇Pd z > 0
(2.16)
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and

Projb(z) � (2.17){
z Pb(b̂ω) < δb or ∇Pb z ≤ 0

U⊥(b̂ω,∇Pb)z Pb(b̂ω) > δb and ∇Pb z > 0
(2.18)

U⊥(b̂ω,∇Pb) � (I − 1

‖∇Pb ‖2
min{1, Pb(b̂ω)

δb
}∇Pb∇P�

b ) (2.19)

and will keep the estimates bounded so that d ≤ d̂i < d̄ and ‖b̂ω‖ < b̄. Where δd

and δb are tuning parameters to make the smoother and continuous.

2.3 Landmark and vehicle kinematics

We assume that there is a vehicle with position pn and m stationary landmarks

where the ith landmark has position pn
i . The vectors to the landmarks are the

δn
i � pn

i − pn . These vectors can be represented by their range and bearing,

� i � ‖δn
i ‖ , un

δi � δ
n
i /‖δn

i ‖ (2.20)

where the range � i is the geometric distance, while the bearing un
δi is the unit vector

pointing at the landmark. These can also be represented in the body-frame

δb
i � R�

nbδ
n
i , ub

δi � R�
nb un

δi (2.21)

The kinematics of the position of the vehicle is

�pn
� vn

� Rnb vb (2.22)

which results in the time derivative of the distance vector to be

�δn
i � −vn (2.23)

To find the dynamics of the distance vector in body-frame, (2.5) and (2.21)-(2.23)

was used with the product rule

�δb
i � �R�

nbδ
n
i +R�

nb
�δn
i

� (RnbS(ω))�δn
i +R�

nb(−vn)
� −S(ω)δb

i − vb (2.24)

From this, the dynamics of the range and bearing can be found

2 �� i� i � 2(δn
i )� �δn

i (2.25)

�� i � (un
δi)�(−vn) � −(un

δi)�vn
� −(ub

δi)�vb (2.26)
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�un
δi � δ

n
i

�( 1

� i
) +

�δn
i

� i
� δn

i
−1

�2
i

�� i +
−vn

� i

� un
δi

1

� i
(un
δi)�vn − vn

� i

�
1

� i
(un
δi(un

δi)� − I)vn
�

1

� i
S(un

δi)2vn (2.27)

�ub
δi � δ

b
i

�( 1

� i
) +

�δb
i

� i
� δb

i
−1

�2
�� i +

−S(ω)δb
i − vb

� i

� −S(ω)δb
i

� i
+ ub

δi
1

� i
(ub
δi)�vb

+
−vb

� i

�ub
δi � −S(ω)ub

δi +
1

� i
(ub
δi(ub

δi)� − I)vb

� −S(ω)ub
δi +

1

� i
S(ub

δi)2vb (2.28)

where we have used that S(ub
δi)2 � (ub

δi(ub
δi)� − I). For mathematical convenience,

the inverse range di �
1
�i

is introduced. Equation (2.26) leads to the time derivative

�di � − 1

�2
i

�� i � d2
i (un

δi)�vn
� d2

i (ub
δi)�vb (2.29)

(2.30)

which gives the unit vector dynamics

�ub
δi � −S(ω)ub

δi − di(ub
δi(ub

δi)� − I)vb (2.31)

� −S(ω)ub
δi + diS(ub

δi)2vb (2.32)

2.4 Unit vector error and propagation

First, we reorganize the unit vector dynamic (2.32) into

�ub
δi � −S(ω)ub

δi − diS(S(ub
δi)vb)ub

δi (2.33)

� −S(ω + diS(ub
δi)vb)ub

δi (2.34)

We then see that we also can use Rodriguez formula (2.8) to propagate the unit

vector, by integrating

ω̆ �

t+Δt∫
t

(ω + diS(ub
δi)vb) dt (2.35)

ub
δi(t + Δt) � R�

dt ub
δi (2.36)
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It was also seen from the (2.3) that the cross-product contains the angle between

two vectors. In fact the rotation matrix rotating a unit vector ûb
δi to ub

δi can be

found by the closed form formula, derived from the Rodriguez formula

ub
δi � R̃ ûb

δi (2.37)

ũb
δi � S(ub

δi)ûb
δi , ǔb

� (ûb
δi)�ub

δi (2.38)

R̃ � I + S(ũb
δi) +

1

1 + ǔb
S(ũb

δi)2 (2.39)

It should be noted that the rotation matrix rotating ûb
δi to ub

δi is not unique, and has

one degree of freedom. The rotation matrix found with formula (2.39) is, however,

the matrix with minimal rotation. We also see that the first term in the Taylor

expatiation of this rotation is

ub
δi ≈ (I + S(ũb

δi))ûb
δi (2.40)

2.5 Sensor model 2-D special case

In the last part of this thesis, an example of bearing only SLAM will be in the 2-D

case will be used for experiments. Where the assumed measurements are: bearing,

heading, velocity and acceleration. Their sensor models are summarized in Table

2.1. We will assume that a heading reference system is available, for instance [44],

utilizing a magnetometer and accelerometer. This will be able to feed heading

estimate ψm � ψ + wψ from which the rotation matrix estimate can be built

Rm
nb �

[
cos(ψ + wψ) − sin(ψ + wψ)
sin(ψ + wψ) cos(ψ + wψ)

]
(2.41)

Where we see that the rotation matrix is nonlinear with respect to ψ + wψ, and

produces noise that is affected by the nonlinear transformations.This is similar for

the bearing measurement from landmarks, which in 2-D with an angle βi , can be

represented as the vector

ubm
δi �

[
cos(βi + wβi)
sin(βi + wβi)

]
(2.42)
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Table 2.1: Overview of the measurements used in SLAM in 2-D

Measurments

Measurments Noise

Bearing: ubm
δi � [cos(βi + wβ), sin(βi + wβ)]� wβ � N(0, σβ)

Heading: Rm
nb �

⎡⎢⎢⎢⎢⎣
cos(ψ + wψ) − sin(ψ + wψ)
sin(ψ + wψ) cos(ψ + wψ)

⎤⎥⎥⎥⎥⎦ wψ � N(0, σψ)

Acceleration: f bm � f b + w f w f � N(0, σ f I2)
Velocity: vbm + wv wv � N(0, σv I2)
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2.6 Model Linearization

The system which will be investigated is structured so that the system matrices are

time varying; with sensor models having auxiliary measurements as time varying

terms. This leads to a non-trivial noise characteristic for the KF, as discussed.

Never the less we can approximate the covariance matrices Q and R for the plant

noise wx and output noise w y , respectively and use these in the KF. In addition, if

the noises are small perturbations, linearization can give good approximation of

the noise characteristics.

The linearization will be on the sensor models in Table 2.1, with respect to

the measurements noise wψ, wβi , wv and w f . We stack all the sensor and

sensor noise variables in the vectors z(t) � [ψ, β1 , · · · , βm , (vb)� , ( f �)�]�,

w � [wψ, wβ1 , · · · , wβm , w�
v , w�

f b ]�, respectively, where the multivariate ran-

dom variable w has the covariance matrix S. To then approximate the noise that

is introduced by these sensor inputs we linearize the system matrices with respect

to the measurement vector zm(t) � z(t) + w

F̂(t) � ∂A(zm(t), t)x̂(t) + B(zm(t), t)u(t)
∂zm

Ŷ (t) � ∂C(zm(t), t)x̂(t)
∂zm

Then the covariance of the process noise and measurement noise can be approxi-

mated by

Q̂ � F̂SF̂�
+ GQ (2.43)

R̂ � ŶSŶ�
+ HR (2.44)

where GQ and HR are used as tuning/regularization matrices, which also guaran-

tee that the matrices are positive definite. For further details on the linearization

for approximating the nonlinear noise, see [17].

2.7 Kalman Filter

Consider the LTV system

�x(t) � A(t)x(t) + B(t)u(t) + wx (2.45)

y(t) � C(t)x(t) + w y (2.46)

with states x and output y, where (A(t), C(t)) is Uniformly Completely Observable

(UCO). Then a KF can be used as an observer with UGAS error dynamics [99] [62].

The continuous-time KF is,

�̂x � A(t)x̂ + B(t)u(t) + K(y − C(t)x̂) (2.47)

K � PC(t)�R(t)−1 (2.48)

�P � A(t)P + PA(t) + Q(t) − PC�(t)R(t)−1C(t)P (2.49)
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where R is the positive definite covariance matrix of the measurement noise w y ,

and Q is a positive semi-definite matrix of the process noise wx . It should also

be noted that sub-optimal covariance matrices Q and R will not damage the

global stability property of the observer [3]. In fact, it was shown that symmetry,

positive definiteness and boundedness are sufficient conditions on Q and R−1. If

in addition, the covariance matrix Q is such that (A(t),√Q) is controllable, P(0) is

symmetric positive definite, the error dynamic is uniformly globally exponentially

stable (UGES) stable, and P is uniformly bounded [3]. Here we have reviewed

the continuous-time KF, for convenience, and note that its discrete-time version

should be used in implementations.

2.8 Observability theory

As mentioned, a Kalman filter can be used on a LTV systems to get a GES observer.

Consider the LTV system

�x(t) � A(t)x(t) + B(t)u(t) + wx (2.50)

y(t) � C(t)x(t) + w y (2.51)

with the state transition matrixΦ(t , t0) satisfying

d
dt
Φ(t , t0) � A(t)Φ(t , t0) (2.52)

Then the observability can be characterized by the observability Gramian [60]

WO(t , t + T) �
t+T∫
t

(C(τ)Φ(τ, t))�(C(τ)Φ(τ, t))dτ (2.53)

If there is a T > 0 such that the Gramian is positive definite for any t, the system

(A(t), C(t)) is Uniformly Completely Observable (UCO) [99] [62]. The KF is then,

�̂x � A(t)x̂ + B(t)u(t) + K(y − C(t)x̂) (2.54)

K � PC(t)�R(t)−1 (2.55)

�P � A(t)P + PA(t) + Q(t) − PC�(t)R(t)−1C(t)P (2.56)

where R is the positive definite covariance matrix of the measurment noise w y ,

and Q is a possitive semi-definite matrix of the prosess noise wx . If in addition,

the covariance martix Q is such that (A(t),√Q) is controlable, P(0) is symetric

positive definite, and C(t) is bounded, the dynamic x̃ is globally exponetially

stable, and P is uniformally bounded [3]. Here we have reviewed the continuous-

time KF, for convenience, and note that its discrete-time version should be used in

implementations.





3Cascade Attitude Observers

Part 1: Applying Landmark measurements

3.1 Introduction

Robust navigation and positioning of autonomous vehicles are fundamental for

any autonomous mission. A possible scenario is the use of autonomous vehicles

for inspection of structures such as bridges, power lines, windmills etc., raising the

need of high accuracy in position and attitude estimates, as the vehicles will have to

work closely to the inspection target. In this case, the electromagnetic interference

and the existence of ferromagnetic materials may degrade any magnetometer to

the point of becoming unusable.

Attitude estimation is central to the navigation problem. A common approach

for attitude estimation is the use of reference vectors that can among others, come

from a magnetometer and accelerometer measuring the earth’s gravity. The atti-

tude is then determined by finding the rotation matrix that maps the measured

reference vectors in body coordinate system to the known or measured reference

vectors in an earth-fixed coordinate system. A computationally efficient compli-

mentary filter was presented in [48, 83], which was proven to have almost global

stability for constant reference vectors. Grip [42] proved that with a minor modi-

fication, semi-global exponentially stability for time varying reference vectors by

could be achieved. An attitude and gyro bias estimation scheme is presented in

Batista [14], where the dynamics are given as an LTV system and solved with a

Kalman filter. A more computational efficient gyro bias attitude observer is also

presented by Batista [13], where the gyro bias is in cascade with the attitude es-

timation. The mentioned methods use reference vectors from global phenomena.

As these observers often rely on magnetometer as heading reference vector, ap-

plications where a magnetometer is degenerated can cause compromised results,

such as drift in yaw. Several methods use measurements from known landmarks

local surroundings. An example is shown by Vasconcelos [108], and Hua [55].

Since these methods require prior knowledge of the landmarks position they fall

short when the landmarks are unknown. Lastly, in [47] a UGAS range and bear-

ing SLAM was presented, with filtering preformed in body frame, by posing the

SLAM as a linear time varying system.

The structure of the following sections are as follows: Section 3.2 presents

the novel estimator and proof of its stability properties; while Section 3.3 shows

simulation results. Finally Section 3.4 concludes the part of the chapter, and

connects it with the second part of the chapter.

23
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3.2 SLAM Atittude Observer

The attitude and gyro bias estimator in this paper is based on the intuition that the

dynamics of the bearing measurement is closely related to the angle rates ω, and

thus will be useful for estimating the gyro bias. This will also make it possible to

decouple the bias estimation and attitude estimation so that an erroneous attitude

estimate does not interfere with the bias estimation. The gyro bias estimator for a

vehicle with m landmark observations is

�̂ub
i � −S(ωm − b̂ω + σui)ûb

i +
1

� im
S(ûb

i )S(ub
im)vb

m (3.1)

σui � kiS(ub
im)ûb

i (3.2)

�̂bω � −
m∑

i�1

σui (3.3)

We see that (ûb
i )� �̂ub

i � 0, because (ûb
i )�S(ûb

i ) � 0, which ensures that ûb
i is

maintained on the unit ball.

Theorem 1. Consider the dynamics of a vehicle with bearing and range measurements

of landmarks, in addition to velocity measurement, and gyro measurements with a bias

(2.9). If we choose a ki large enough, then the observer (3.14)-(3.16) is semi-globally

asymptotically stable for all trajectories, and constant values of bω

Proof. First comparing the vehicle dynamics to the estimator dynamics,

�ub
i � −S(ω)ub

i +
1

� i
S(ub

i )S(ub
i )vb (3.4)

�̂ub
i � −S(ω + b̃ω + σui)ûb

i +
1

� i
S(ûb

i )S(ub
i )vb (3.5)

the error dynamics of ũb
i � S(ub

i )ûb
i � σui and b̃ω � bω − b̂ω is then

�̃ub
i � S(ub

i ) �̂ub
i − S(ûb

i ) �ub
i

�̃ub
i � (S(ub

i )S(ûb
i ) − S(ûb

i )S(ub
i ))ω − S(ub

i )S(b̃ω + σui)ûb
i

1

� i
(S(ub

i )S(ûb
i ) − S(ûb

i )S(ub
i ))S(ub

i )vb)

�̃ub
i � S(ũb

i )ω +
1

� i
S(ũb

i )S(ub
i )vb − S(ub

i )S(b̃ω + ki ũb
i )ûb

i

�̃bω �

m∑
i�1

ki ũb
i

where we have used that (S(ub
i )S(ûb

i ) − S(ûb
i )S(ub

i )) � S(ũb
i ) and that the bias is

constant �bω � 0. We then see that this system has an equilibrium point when
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ũb
i � 0 and b̃ω � 0. We want to show that for any 0 < ε < π, a solution starting in

θ̃ui ∈ [−π + ε, π − ε]∀i ∈ {1,m} will stay in the set for gain ki large enough. We

choose a Lyapunov function for every bearing measurment, Vi � 1 − (ûb
i )�ub

i �

1−cos(θ̃ui), which is positive definite and increasing for θ̃ui ∈ (−π, π). It will have

the derivative

�Vi � b̃�
ω ũb

i − ki ‖ũb
i ‖2 ≤ −‖ũb

i ‖(ki ‖ũb
i ‖ − b̄ω)

where we recall that there is a bound on the bias b̄ω and that ‖ũb
i ‖ � | sin(θ̃ui)|.

We see that we can choose a ki large enough ki >
b̄ω

|sin(ε)| , so that for |θ̃ui | � π− ε ⇒
‖ũb

i ‖ � | sin(ε)| we will have �Vi < 0, which implies that θ̃ui is strictly decreasing.

Then ‖ũb
i (0)‖ can easily be chosen so that |θ̃ui(0)| < π − ε, and by the continuity

of the solution we can guarantee that the solution will never exceed |θ̃ui | > π − ε,
and will therefore utilize that this holds for the rest of our analysis. We choose the

Lyapunov function candidate

Vb(ub
i , û

b
i , b̃ω) �

m∑
i�1

ki(1 − (ub
i )�ûb

i ) +
1

2
b̃�
ω b̃ω (3.6)

First, we see that Vb can be rewritten as

Vb(ub
i , û

b
i , b̃ω) �

m∑
i�1

ki(1 − cos(θ̃ui)) + 1

2
b̃�
ω b̃ω (3.7)

where θ̃ui � | |Φ̃li | | is the magnitude of the angle-axis between the LOS vector and
its estimate, this makes Vb positive definite for θ̃ui ∈ [−π, π]. We calculate

(( �ub
i )� ûb

i + (ub
i )� �̂ub

i ) � (−S(ω)ub
i +

1

�i
S(ub

i )S(ub
i )vb)� ûb

i

+ (ub
i )�(−S(ω + b̃ω + σui)ûb

i +
1

�i
S(ûb

i )S(ub
i )vb)

� − (ub
i )�S(b̃ω + σui)ûb

i )

where we used that ( 1
�i

S(ub
i )S(ub

i )vb)�ûb
i + (ub

i )� 1
�i

S(ûb
i )S(ub

i )vb � 0. The time

derivative of Vb is then

�Vb(ub
i , û

b
i , b̃ω)) � −

m∑
i�1

ki(( �ub
i )� ûb

i + (ub
i )� �̂ub

i ) + b̃�
ω
�̃bω

�

m∑
i�1

[ki(ub
i )�S(σui)ûb

i + ki(ub
i )�S(b̃ω)ûb

i ] + b̃�
ω

m∑
i�1

ki(S(ub
i )ûb

i )

�

m∑
i�1

k2
i (ub

i )�S(S(ub
i )ûb

i )ûb
i � −

m∑
i�1

k2
i (ûb

i )�S(ub
i )�S(ub

i )ûb
i
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which is equal to

�Vb � −
m∑

i�1

k2
i ‖ũb

i ‖2
� −

m∑
i�1

k2
i sin(θ̃ui)2 < 0, θ̃ui � 0 or ± π

Hence �Vb is negative definite on the open set θ̃ui ∈ (−π, π). We can conclude that

the system is stable, and that the Lyapunov function will converge to �Vb � 0, hence

the trajectories will converge to the set E( �Vb � 0) � {ũb
i | ‖θ̃ui ‖ � 0∀i ∈ {1,m}},

since |θ̃ui | � π . We can also conclude that the Lyapunov function Vb converges to

a constant, thus ‖b̃ω‖ will also converge to a constant.

What is left is to show that the states will be in the set E( �Vb � 0) in finite time,

when ‖b̃ω‖ � 0, which means ‖b̃ω‖ has to converge to zero. For this, Matrosov

theorem will be utilized [86]. We choose the auxiliary function

W �

m∑
i�1

b̃�
ω ũb

i �

m∑
i�1

(ub
i )�S(b̃ω)ûb

i (3.8)

First we see that W is bounded by the states. To find the derivative of �W we
use

( �ub
i )�S(b̃ω)ûb

i � (ub
i )�S(ω)S(b̃ω)ûb

i +
1

�i
(vb)�S(ub

i )S(ub
i )S(b̃ω)ûb

i

(ub
i )�S( �̃bω)ûb

i � (ub
i )�S(

m∑
i�1

ki ũb
i )ûb

i � −(ũb
i )�

m∑
i�1

ki ũb
i

(ub
i )�S(b̃ω) �̂ub

i ) � −(ub
i )�S(b̃ω)S(ω)ûb

i + (ub
i )�S(b̃ω)S(b̃ω)ûb

i · · ·
+ (ub

i )�S(b̃ω)S(σui)ûb
i +

1

�i
(ub

i )�S(b̃ω)S(ûb
i )S(ub

i )vb

Adding these together, along with some algebra gives

�W �

m∑
i�1

[(b̃ω)�S(ω)ũb
i + (vb)�S(ub

i )S(b̃ω)ũb
i · · ·

− (ũb
i )�

m∑
i�1

ki ũb
i + (ub

i )�S(b̃ω)S(b̃ω)ûb
i · · ·

+ (ub
i )�S(b̃ω)S(ki ũb

i )ûb
i ]

Where we see that as ‖ũb
i ‖ → 0, the term left is

lim
‖ũb

i ‖→0

�W �

m∑
i�1

(ub
i )�S(b̃ω)S(b̃ω)ûb

i �

m∑
i�1

(b̃ω)�S(ub
i )S(ûb

i )b̃ω

� −c‖b̃ω ‖

where c is a positive constant. We have used that the eigenvalue of the matrix

S(ûb
i )S(ub

i ) are λ � [0, −(ub
i )�ûb

i , −(ub
i )�ûb

i ] which for ‖ũb
i ‖ → 0 the matrix has
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eigenvalues λ � [0, −1, −1] with the zero vector ub
i . The matrix

m∑
i�1

S(ub
i )S(ûb

i ) is

therefore negative definite because there are at least two ub
i that are not parallel so

that the matrix is full rank, negative definite. Hence �W is definitely not equal to

zero when ‖ũb
i ‖ � 0 and ‖b̃ω‖ > 0 . Since we know that W is bounded by the states,

we know that W converges to a constant. We therefore know that �W → 0 as t → ∞,

which implies that b̃ω → 0 as t → ∞. Hence we can conclude from Matrosov’s

theorem that the system will converge to ‖b̃ω‖ → 0 and ‖ũb
i ‖ → 0, ∀i ∈ {1,m} as

t → ∞, for almost all trajectories, since ε > 0 can be chosen arbitrary small.

�

In practice, the estimate l̂ b
i can be chosen from its direct measurment in the

initialization, so that ki easier to furfill. In simmulations the observer has been

tested with initialization θ̃ui � π without any convergance problem. The bias

estimated can then be used in cascade with the simplified complimentary filter

from [55]

�̂Rnb �R̂nbS(ωm − b̂ω + σR) (3.9)

σR �

n∑
i�1

ciS(r b
i )R̂�

nb rn
i (3.10)

were semi-globally stability can be achieved. First however, an assumption is

needed

Assumption 1. there exists a constant cobs > 0 so as, for each t ≥ 0, the inequality

‖r b
j × r b

k ‖ > cobs holds for at least two of the indices j, k ∈ {1, ..., n}
Theorem 2. Consider the dynamics of a vehicle with bearing and range measurements

of landmarks, in addition to velocity measurement, and gyro measurements with a bias

(2.9). Under the conditions of Theorem 3 and Assumption 1 satisfied, and for ci large

enough, the observer with (3.14)-(3.16) in cascade with (3.101)-(3.102), will be semi-

globally asymptotically stable for time varying reference vectors.

Proof. From Theorem 3, and since the gyro bias estimator is independent of the
attitude estimates, we know that the gyro bias estimate error b̃ω is bounded and
converges ‖b̃ω‖ → 0 as t → ∞. We also know that the Lyapunov function bounds
the gyro bias error from the gyro bias observer Vb(t) > ‖bω(t)‖2∀(t) that goes to
zero monotonicly. What is left to show is that the system (3.101)-(3.102) is kept
bounded for gyro bias error b̃ω, and that for ‖b̃ω‖ → 0, the attitude estimate

R̃nb → I. First we recall that the observer (3.101)-(3.102) with zero gyro bias,
is shown in Mahony [82] and Hua [54] to have almost globally asymptotically
stabilety properties for constant reference vectors and semi-globally exponentially

stabilety propeties for time-varying reference vectors. This gives R̃nb → I for
‖b̃ω‖ � 0 for all trajectories starting with |Φ̃nb(0)| < π − ε. In addition, Grip
showed in the start of the proof of Theorem 1 in appendix B [42]; that if the gyro
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bias error is bounded, then an ci can be chosen for system (3.101)-(3.102) so that the
attitude estimate is bounded away from |Φnb | < π− ε, which means an error from
the gyro bias estimator below the bound will not destabilize the attitude estimate.
The proof is in quaternions, where the attitude error is q̃ � [s̃ , r̃�]�, and we recall

that s̃ � 1 ⇔ R̃nb � I. The Lyapunov function is chosen VR(s̃) � 1 − s̃2, which for
system system (3.101)-(3.102) with a gyro bias error b̃ω has the derivative (from
[42] appendix B)

�VR ≤ −s̃ r̃�Rnb b̃ω − kp c2
obs s̃2(1 − s̃2) ≤ √

Vb − kp c2
obs s̃2(1 − s̃2)

where cp is a lower bound on the ci gains, and cobs comes from the assumption on

the reference vectors. For a given bound Vb(0) on the gyro bias at the initialization,

kp can be chosen kp >� b̄ω/(c2
obsε

2(1−ε2)) so that �VR < 0 for | s̃ | � ε. Which implies

that s̃ is increasing if | s̃ | � ε and because of continuity of �VR and the solutions

s̃(0) ≥ ε then s̃(t) > ε ∀t > 0. Further on, there is a γ so that for ε < | s̃ | < γ
the �VR < 0, which by the ultimate boundedness Theorem 4.18 [64] ensures that

| s̃ | > γ, t ≥ τ+T in finite time. In addition, we see that as Vb → 0 the bound γ → 1

which implies that R̃nb → I as t → ∞. Thus we can conclude that (3.14)-(3.16)

in cascade with (3.101)-(3.102) is semi-globally asymptotically stable, making the

estimates converge to R̃nb → I, b̃ω → 0 as t → ∞ because ε can be arbitrary small.

�

Remark 1. It should be noted that the global reference vectors can also be used in the gyro

bias observer, for ub
i � r b

i and � i → ∞
The total observer is summarized in Table 3.2

Table 3.1: Summary of the SLAM Attitude Observer

SLAM ATTITUDE OBSERVER

Measurements: ωm , � im , vb
m , ub

i , vb
i , (vn

i )
�̂ub

i � −S(ωm − b̂ω + σui)ûb
i +

1
�im

S(ûb
i )S(ub

im)vb
m (3.14)

σui � kiS(ub
im)ûb

i (3.15)

�̂bω � − m∑
i�1
σui (3.16)

�̂Rnb � R̂nbS(ωm − b̂ω + σR) (3.101)

σR �

n∑
i�1

ciS(r b
i )R̂�

nb rn
i (3.102)

3.3 Simulation Results and Performance Evaluation

The observer was tested with simulations, and compared to the complimentary

filter. A vessel travelling in a 3D-space described by the dynamics of (2.5) and
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(2.22), with changing angular velocity

ω(t) � [r1 cos( f1t), r2 sin( f2t), r3 log(1+ f3t)]� and constant speed vb � [v1 , 0, 0].
The trajectory of the vessel, with the landmarks positions can be seen in Figure 5.9.

Three landmarks are placed randomly in a box 50m from the start point of the

vessel. The ωm has a bias bω � [0.8, 0.1, −0.5]�, and is corrupted with a white

noise with standard deviation σω � I0.001. The noise in the bearing and range

measurements are σu � I0.01 and σ� � 0.005. The bearing noise is orthogonal

to the bearing un � S(ub
δi)wu , where the noise wu was a white noise vector

wu � N(0, σu) . The reference-vectors chosen were the normalized magnetometer

and gravity.

rn
1 � [1, 0, 0]� , r b

1 � R�rn
1 (3.11)

rn
2 � [0, 0, −1]� , r b

2 � R�([0, 0,−1]� + an/g) (3.12)

rn
3 � S(rn

1 )rn
2 , r b

3 � S(r b
1)r b

2 (3.13)

The LOS observer was tuned with ki �
1
m �

1
3 . The SLAM attitude observer

in cascade with the LOS observer, was tuned as the complimentary filter: k1 �

0.2, k2 � 0.5, k3 � 0.3. Where the weights ki are weighted according quality of the

measurements and gave the best results for both observers. The bias estimation

gain of the complimentary filter was kI � 0.15, which gave the best trade-off

between the transient performance and variance of the ω output. The starting

attitude was θnb(0) � 0, while the start estimate was θ̂nb(0) � [ 5
6π, 0, 3

4π] The

results can be seen in Figures, 3.2-3.4.

From the figures it is apparent that the SLAM observer has a faster convergence

in both attitude and bias estimation, with no overshoots. This is a result of the

decoupling of the estimation, so the bad attitude estimate does not affect the gyro

bias estimation, as can happen with the complementary filter. It should be noted

that this is the case if the gyro-bias is significant and there is a bad initial guess of

the attitude estimate.

Another simulation was done for double gyro bias bω � [1.6 , 0.2 ,−1], and the

results can be seen in figures 3.5-3.6. From these simulations it is apparent that

the SLAM attitude observer is more robust against high gyro bias and bad attitude

initialization, which again is the result of the decoupled system.

3.3.1 Magnetometer failure

A substantial goal for the SLAM attitude observer, is to make it less dependent

on magnetometer measurements. To test if this is achieved, a scenario where the

magnetometer is turned off is demonstrated. The compass reference vector is set

to the zero after t � 3000, leaving the gravity as the only reference vector left. The

results can be seen in figures 3.7 and 3.8. The bias estimation of the complimentary

filter starts being irregular, resulting in a drift in the attitude estimates with axis

parallel to the gravity vector. The SLAM attitude observer still manages to estimate
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Figure 3.1: The figure shows the trajectory of the vehicle, and the landmarks. The arrows represent

the estimated distance vectors using l̂n
i
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Figure 3.2: The resulting ω estimates transients from the complimentary filter and SLAM attitude
observer
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Figure 3.3: The resulting ω estimates from the complimentary filter and SLAM attitude observer, this
shows the result for the steady state bias estimates
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Figure 3.4: The figure shows the attitude from the complimentary filter and SLAM observer. Both gets
good estimated, but SLAM observer demonstrates less overshoot
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Figure 3.5: The resulting ω estimates transient from the complimentary filter and SLAM attitude
observer for increased gyro bias
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Figure 3.6: The figure shows the attitude from the complimentary filter and SLAM observer for
increased gyro bias. The SLAM observer demonstrates faster and smoother convergence
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the bias, and thus the estimated attitude is hardly affected by the loss of the

magnetometer reference vector, although it has some minor drift in the yaw axis,

which is expected.
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Figure 3.7: The figure shows the yaw angle from the complimentary filter and SLAM attitude observer.
A compass failure is introduced in t � 3000 and the result is a drift in the yaw estimates for the
complimentary filter, while the SLAM attitude observer does not get affected.
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Figure 3.8: The resulting gyro bias estimates from the complimentary filter and SLAM attitude observer
in yaw. A compass failure is introduced in t � 3000 and the result is oscillations for the complimentary
filter

3.4 Conclusion

In this paper, we have discussed the SLAM problem, in addition to attitude and

gyro bias estimation. We presented an observer that has decoupled the gyro

bias and the attitude estimation to avoid that bad initialization interfere with

the bias estimations. It applies bearing and range measurements of unknown

landmarks for the bias estimation, in addition to reference vectors measurements.

The performance of the observer is compared to the complimentary filter, where

the advantageous behaviour of the observer is seen. A scenario in which there is

a failure in the magnetometer has been demonstrated, and thus also the benefits

of redundant measurements are shown.

A natural improvement of the setup, would be to relax the necessity of range

measurements, which would allow the observer to work with a monocular camera.

For a UAV flight this is important, as stereo camera and Liadar has more weight

and power consumption. In part 2 of this chapter, an observer only requiring

bearing measurements from landmarks is developed. The proof of its stability
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is organized somewhat differently, and shows exponential stability in the large.

Some parts, however, are clearly inspired from the proof in this part of the chapter.

It also be noted that using similar steps as in the next chapter, it would be possible

to prove that the observer presented in this part of the chapter has exponential

stability in the large.



Cascade Attitude Observers

Part 2: Bearing only Landmark

measurements
3.5 Introduction

As mentioned previous in the chapter, having a robust heading estimate can be

challenging with of the shelf sensors, especially when navigating in areas where

a magnetometer is degenerated by electromagnetic fields. Also when navigating

close to the poles the small heading component of the magnetic field can make a

robust heading estimate even more challenging to acquire.

However, if a camera is available and it is observing enough features, a velocity

in the body frame can be estimated as shown in [38], and yaw can hence be found

by comparing the GNSS velocity to the camera velocity. However in a hovering

scenario, as there is no velocity, the yaw is no longer observable for this setup.

Camera aided inertial navigation has been extensively studied. Some setups

rely on having landmarks with known position, which is refereed to as the per-

spective n point (PnP) problem [50]. When assuming unknown landmarks many

of the solutions are based either on some form of extended Kalman filter (EKF)

[88, 20, 9]. There has recently been an increasing effort to investigate solutions to

bearing only navigation with global convergence that are mentioned previous in

the thesis, however, these observers are unable to estimate and compensate for any

gyro bias.

In this part of the chapter, the gyro bias observer have been expanded to also

handle bearing only measurements. It filters the velocity and bearing measure-

ments from landmarks, to estimate the range to the landmark as well as gyro-bias.

It will be presented with a proof of semi-global asymptotically stability and expo-

nential stability in the large. The observer is also demonstrated in simulations, both

in a generic form and in a sensor setup with a camera, GNSS and IMU for a UAV,

where the observer is is used in a cascade as in the previous chapter. In addition

the observer is able to provide range/altitude estimate for the presented scenario.

The latter setup is also verified experimentally, where the attitude observer is

compared to a simpler velocity aided attitude observer based on a nonlinear com-

plimentary filter [43]. The observer can also be used for bearing only SLAM if it is

combined with a landmark optimization and loop closing front end system.

The structure of this paper is as follows: Section 3.6 presents the novel estimator

and proof of its stability properties; while Section 3.7 shows simulation results. In

3.8 the results of the experimental verification are shown and finally, Section 3.9

concludes the paper.

35
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3.6 Observer Design

The observer is a high gain observer resembling the dynamics of the unit vector

measurements. It uses the velocity and gyro measurements to propagate and

filter the unit vector estimates while estimating both the inverted range to the

landmarks and the gyro bias. The observer will use the measurements: Body

velocity vb , bearing measurement ub
δi and biased gyro measurement ωm . The

states to be estimated are the bearing ûb
δi , inverted range to landmark d̂i and gyro

bias b̂ω

�̂ub
δi � −S(ωm − b̂ω + kiσ i + d̂iS(ub

δi)vb)ûb
δi (3.14)

�̂di � Projdi(d̂2
i (ub

δi)�vb)
+ kdiProjdi((vb)�S(ub

δi)2S(ûb
δi)σ i)) (3.15)

�̂bω � KbProjb(
m∑

i�1

S(ûb
δi)S(ub

δi)σ i) (3.16)

σ i � S(ub
δi)ûb

δi (3.17)

Where ki > 0, kdi > 0 and Kb > 0 are gains. The Proj• operator is presented in

the Appendix, and ensures that the bias estimate is maintained in a ball which

is predefined, and that the inverse range estimates are kept between d < d̂i < d̄.

We see that (ûb
δi)� �̂ub

δi � 0, because (ûb
δi)�S(ûb

δi) � 0, which ensures that ûb
δi is

maintained on the unit ball.

Firsts the error dynamics of ũb
δi � S(ub

δi)ûb
δi � σ i , d̃i � di − d̂i and b̃ω � bω − b̂ω

are derived:

�̃ub
δi � S(ub

δi) �̂ub
δi − S(ûb

δi) �ub
δi (3.18)

�̃ub
δi � S(ub

δi)(−S(ω + b̃ω + ũb
δi)ûb

δi + d̂iS(ûb
δi)S(ub

δi)vb)
− S(ûb

δi)(−S(ω)ub
δi + diS(ub

δi)S(ub
δi)vb) (3.19)

�̃ub
δi � (S(ub

δi)S(ûb
δi) − S(ûb

δi)S(ub
δi))ω

−S(ub
δi)S(b̃ω + σ i)ûb

δi

+ (d̂iS(ub
δi)S(ûb

δi) − diS(ûb
δi)S(ub

δi))S(ub
δi)vb) (3.20)

�̃ub
δi � S(ũb

δi)ω + kiS(ub
δi)S(ûb

δi)ũb
δi + S(ub

δi)S(ûb
δi)b̃ω

+ (d̂iS(ub
δi)S(ûb

δi) − (d̂i + d̃i)S(ûb
δi)S(ub

δi))S(ub
δi)vb) (3.21)

�̃ub
δi � S(ũb

δi)ω + kiS(ub
δi)S(ûb

δi)ũb
δi + S(ub

δi)S(ûb
δi)b̃ω

− d̃iS(ûb
δi)S(ub

δi)S(ub
δi)vb

+ d̂iS(ũb
δi)S(ub

δi)vb (3.22)

where we have used that (S(ub
δi)S(ûb

δi)−S(ûb
δi)S(ub

δi)) � S(ũb
δi). From d̂iS(ũb

δi)S(ub
δi)vb �
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−d̂iS(S(ub
δi)vb)ũb

δi , we end up with the error dynamics

�̃ub
δi � [−S(d̂iS(ub

δi)vb
+ ω) + kiS(ub

δi)S(ûb
δi)]ũb

δi

S(ub
δi)S(ûb

δi)b̃ω − S(ûb
δi)S(ub

δi)2vb d̃i (3.23)

�̃di � kdiProjdi

(
(vb)�S(ub

δi)2S(ûb
δi)ũb

δi

)
+ d2

i (ub
δi)�vb

+ Projdi

(
−d̂2(ub

δi)�vb
)

(3.24)

�̃bω � −KbProjb(
m∑

i�1

S(ûb
δi)S(ub

δi)ũb
δi) (3.25)

by assuming that the bias is constant �bω � 0. We see that the error dynamics has an

equilibrium for ũb
δi � 0, d̃i � 0 and b̃ω � 0. In addition, we stack the bearing errors

in the vector x � [(ũb
1)� , · · · , (ũb

m)�]�, and the inverted range estimate errors and

gyro bias error in vector y � [d̃1 , · · · , d̃m , (b̃ω)�]�. We see that the structure of the

error dynamics can be represented as the system (3.26)-(3.27)

�x � A(t)x +B(t)y (3.26)

�y � −ΓBp(t , x)� + g(t , y) (3.27)

where the matrices are as follows

A(t) �
diag({−S(d̂iS(ub

δi)vb
+ ω) + kiS(ub

δi)S(ûb
δi)}m

i�1)
B(t) �[

diag({−S(ûb
δi)S(ub

δi)2vb}m
i�1

) {S(ub
δi)S(ûb

δi)}m
i�1

]

Bp(t , x)� �

⎡⎢⎢⎢⎢⎢⎣
{
Projdi

(
(vb)�S(ub

δi)2S(ûb
δi)ũb

δi

)}m

i�1

Projb

(
m∑

i�1
S(ûb

δi)S(ub
δi)ũb

δi

) ⎤⎥⎥⎥⎥⎥⎦
where {•i}m

1 � [(•i |i�1)� , · · · , (•i |i�m)�]� is a column vector or a matrix, where the

entries •i are stacked above each-other. The gains are in

Γ �

[
diag(kd1 , · · · , kdm) 0

0 Kb

]
(3.28)

where we see that Γ is a positive definite matrix with a smallest and largest eigen-

values γ̄, γ, which also gives bounds on the observer gains. Finally g(t , y) :

R × Rm+3 → Rm+3

g(t , y) �
⎡⎢⎢⎢⎢⎣
{
d2

i (ub
δi)�vb + Projdi

(
−d̂2(ub

δi)�vb
)}m

1

0

⎤⎥⎥⎥⎥⎦
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We use this notation to highlight the similarities between Bp(t , x)� and B(t)�x
which in fact are identical Bp(t , x)� � B(t)�x when there are no projections

activated. Nevertheless the set-up helps the reader to see why the adaptation law

of the inverted range and gyro bias were chosen; to relate the system to the family

of skew-symmetric systems. These systems have been investigated extensively in

many forms including in [87, 75, 35, 57] where all the the systems either assume

that the A(t) matrix is constant and negative definite, or that the vector function

g(t , y) � 0 is zero. All these systems have in common that they rely on some

persistence of excitation (PE) like condition related to the skew symmetric part of

the system and/or high gain. In the first lemma we show that the PE condition

of this system related to the skew-symmetric part can be checked with a simpler

matrix inequality. It is later discussed how this condition relates to the bearing

measurements and the vehicle velocity.

Lemma 1. Consider the matrix B(t), representing the part of the dynamic (3.26) that is

linearly dependent on y. Assume velocity of the vehicle is non-zero, ‖vb ‖ > 0, not parallel

to the bearing measurements, and there are at least three bearing measurements that are

linearly independent so that the following inequalities hold

− (vb)�S(ub
δi
)2S(ûb

δi
)2S(ub

δi
)2vb > a , ∀i (3.29)

−
m∑

i�1

1

ξi
�ξi

S(ûb
δi)S(ub

δi)S(ξi)S(ξi)S(ub
δi)S(ûb

δi) > b (3.30)

ξi � −S(ûb
δi)S(ub

δi)2vb (3.31)

where a > 0 and b > 0 are positive lower bounds. Then the matrix

B(t)�B(t) > μI (3.32)

is positive definite, where μ > 0 is a positive lower bound

Proof. If we calculate (3.32) we get the matrix

B(t)�B(t) �
[
diag({ai}m

i�1
) {b i}m

i�1

({b i}m
i�1

)� C

]
(3.33)

where we note that {b i}m
i�1

is the matrix with rows b i , and

ai � −(vb)�S(ub
δi
)2S(ûb

δi
)2S(ub

δi
)2vb (3.34)

b i � −(vb)�S(ub
δi)2S(ûb

δi)S(ub
δi)S(ûb

δi) (3.35)

C �

m∑
i�1

S(ûb
δi)S(ub

δi)2S(ûb
δi) (3.36)
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We then want to examine when this matrix is positive definite by examining its

Schur complement. Since we know that for a block symmetric matrix to be positive

definite [
A B

B� C

]
> 0 (3.37)

the inequalities

A > 0 (3.38)

C − B�A−1B > 0 (3.39)

need to hold. For (3.33), the first inequality would be

ai > 0, ∀i (3.40)

This is ensured since the bearings are not parallel to the velocity, and that the

velocity is non zero. The second inequality is that the Schur compliment of the

matrix is positive definite, which can be formulated as

m∑
i�1

S(ûb
δi)S(ub

δi)2S(ûb
δi)

−
m∑

i�1

S(ûb
δi)S(ub

δi)ξi(ξi
�ξi)−1ξi

�S(ub
δi)S(ûb

δi) (3.41)

�

m∑
i�1

S(ûb
δi)S(ub

δi)[I − ξi(ξi
�ξi)−1ξi

�]S(ub
δi)S(ûb

δi) (3.42)

� −
m∑

i�1

1

ξi
�ξi

S(ûb
δi)S(ub

δi)S(ξi)S(ξi)S(ub
δi)S(ûb

δi)

where ξi � −S(ûb
δi)S(ub

δi)2vb , and we have used that I−ξi(ξi
�ξi)−1ξi

�
� − 1

ξi
�ξi

S(ξi)S(ξi).
Since this matrix is positive definite the Schur complement of matrix B�B is posi-

tive definite and hence will be positive definite and inequality (3.32) will hold. �

The first inequality requirement (3.29) intuitively makes sense, since the range

to the landmark is unobservable if the bearing is parallel to the velocity, hence

constant. This is similar to what is found in [77, 49, 17, 19], where the derivative of

the bearing vector being nonzero is a necessary condition for PE and observability.

What distinguishes the presented observer to these, is that gyro bias estimation is

also performed. In addition, the landmark positions are estimated, which is not

done in [49, 71].

The condition of having (3.29) satisfied for every bearing is to guarantee that

all distance estimates converge. In simulations, violating this condition for some
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time or initializing the bearing estimate parallel to the velocity did not cause any

problem for the observer. In addition, as we will see in experiments, this condition

will not be necessary to make the gyro-bias estimation converge.

To understand the second inequality (3.30), which is related to the gyro-bias

estimate, we will look at the special case when ub
δi � ûb

δi , which gives the matrix

−
m∑

i�1

1

ξi
�ξi

S(ub
δi)2S(ξi)S(ξi)S(ub

δi)2 (3.43)

where ξi � −S(ub
δi)3vb � S(ub

δi)vb . This matrix has two eigenvectors with eigen-

value zero and one eigenvector with negative eigenvalue. We see that the first zero

valued eigenvector is v1 � ub
δi . The second eigenvector v2 is found by solving the

following equation

S(ξi)S(ub
δi)2v2 � 0 (3.44)

�
S(ub

δi)2v2 − λS(ub
δi)vb

� 0 (3.45)

S(ub
δi)(S(ub

δi)v2 − λvb) � 0 (3.46)

where we see that if v2 is parallel to the cross product S(ub
δi)vb then this equa-

tion holds. The third eigenvector thus has to be orthogonal to the two previous

eigenvectors, which makes it parallel to the vector v3 � −S(ub
δi)S(ub

δi)vb � U⊥
δi v

b ,

which is the orthogonal projection of the velocity onto the space orthogonal to the

bearing vector. We then see that for the matrix to be positive definite, we need

that at least three bearing vectors exist, in which the projection of the velocity onto

their orthogonal space spans R3

∃i , j, k ∈ {1,m}|span([U⊥
δi v

b , U⊥
δ j v

b , U⊥
δk vb]) � R3 (3.47)

This gives us the intuition that the value μ will be related to how different the

bearing vectors are, and how aligned they are to the velocity. The next theorem

shows that a high gain can be chosen so that the system is uniformly semi-globally

asymptotically stable, and exponentially stable in the large.

Theorem 3. Consider the kinematic of a vehicle where bearing of landmarks ub
δi , velocity

vb , and gyro with a bias (2.9) ωm are available, and assume that all input and system

functions are Lipschitz and bounded. Further we assume that the landmarks are a minimum

distance away from the vehicle so that the inverted ranges are also bounded. If we choose

gains ki large enough, then there exist gains kdi and Kb such that the observer (3.14)-(3.16)

has an error dynamic that converges in finite time from initial estimates ûn
δi satisfying

(ûb
δi)�ub

δi > cos(π − ε), and is exponentially stable for (ûb
δi)�ub

δi > cos(ε) as long as the

assumptions of Lemma 1 are fulfilled, and ε > 0 is an arbitrary small constant.
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Outline of the proof

A) First prove that the the system (3.14)-(3.16) is Uniformly Bounded (UB), and

the error states converges to an open set.

B) Define a Lyapunov function candidate for the error dynamics (3.23)-(3.25)

and find its time derivative. And derive bounds on the terms of the time

derivative

C) Handle the projection related to the perturbation terms, and derive a bound

on the perturbation.

D) Using bounds B) ans C), to show that there exist gains that yields exponential

stability in the large.

E) Combine A), D) to conclude that the observer is semi-globally asymptotically

stable.

Proof. A) Uniform Boundedness of the system To show that the error of the

observer is bounded we first employ the traits of the projection to conclude that

the error of the inverted range estimates d̂i and gyro bias estimate b̂ω are uniformly

bounded. To show that the unit vector estimation error is semi-globally bounded,

we show that for any bearing angle error θ̃ui : {θ̃ui ∈ R|(un
δi)�ûn

δi � cos(θ̃i)}
starting an angle ε > 0 close to the unstable equilibrium point |θ̃ | � π, so that the

angle error is |θ̃ui | < π − ε, then a kε exists, where ki > kε for all i ∈ {1,m}; so

that that the error is kept away from the unstable equilibrium point. We will use

a Lyapunov-like function for each bearing measurement and its estimate

Vi(ũb
δi) � 1 − (ûb

δi)�ub
δi � 1 − cos(θ̃ui) (3.48)

which is clearly positive definite and ‖Vi ‖ increases as |θ̃ui | increase for |θ̃ui | < π.

It has the time derivative in the trajectory of the error dynamics given by
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�Vi � −(ûb
δi)� �ub

δi − (ub
δi)� �̂ub

δi (3.49)

� −(ûb
δi)�(−S(ω)ub

δi + diS(ub
δi)S(ub

δi)vb)
− (ub

δi)�(−S(ω + b̃ω + σ i)ûb
δi + d̂iS(ûb

δi)S(ub
δi)vb) (3.50)

� −(ûb
δi)�S(ub

δi)S(ub
δi)vb di + (ub

δi)�S(b̃ω)ûb
δi

+ (ub
δi)�S(kiS(ub

δi)ûb
δi)ûb

δi − (ub
δi)�S(ûb

δi)S(ub
δi)vb d̂i (3.51)

� (ub
δi)�S(ûb

δi)S(ub
δi)vb di − (ub

δi)�S(ûb
δi)S(ub

δi)vb d̂i

− (b̃ω)�S(ub
δi)ûb

δi − ki(ûb
δi)�S(ub

δi)�S(ub
δi)ûb

δi (3.52)

� −(ũb
δi)�S(ub

δi)vb d̃i − (b̃ω)�ũb
δi − ki ‖ũb

δi ‖2 (3.53)

≤ −ki ‖ũb
δi ‖2

+ ‖ũb
δi ‖‖vb ‖ d̃i + ‖b̃ω‖‖ũb

δi ‖ (3.54)

≤ −‖ũb
δi ‖(ki ‖ũb

δi ‖ − ‖vb ‖‖ d̃i ‖ − ‖b̃ω‖) (3.55)

≤ −‖ũb
δi ‖(ki ‖ũb

δi ‖ − v̄ d̄ − b̄ω) (3.56)

were we have used the boundedness of the inverted range, velocity and gyro,

|d̃i | < d̄, ‖S(ub
δi)vb ‖ ≤ ‖vb ‖ < v̄ and ‖b̃ω‖ < b̄ω. We see that |θ̃ui | < π − ε implies

that ‖ũb
δi ‖ > sin(ε) as long as |θ̃ui | > ε . So clearly a kε exists

kε >
v̄ d̄ + b̄ω
sin(ε) (3.57)

so that a ki > kε will ensure that �Vi < 0; hence we can conclude that the bearing

error is bounded away from the set |θ̃ui | > π− ε and that the bearing will converge

to the set |θ̃ui | ≤ ε in finite time [64, Theorem 3.18]. The boundedness is semi-

global since ε can be chosen arbitrary small and the projection deals with the other

states. This means that for the rest of this proof we can assume that the bound on

the bearing estimate will hold.

A) Lyapunov function and its derivative

As a Lyapunov candidate for the entire system

V2(t , x , y) � 1

2
x�x +

1

2
y�Γ−1 y − δx�B(t)y , (3.58)

where x � [(ũb
1)� , · · · , (ũb

m)�]� and y � [d̃1 , · · · , d̃m , (b̃ω)�]�. Utilizing that

‖x�B(t)y‖ ≤ (v̄ + m)‖x‖‖y‖ and γ̄ � ‖Γ‖, we see that the parameter δ > 0 has to

abide the following inequality

1

γ̄(v̄ + m)2 > δ
2 (3.59)

in order to make the Lyapunov function is positive definite, where we also re-

call that 1
‖γ̄‖ ≤ ‖Γ−1‖. The time derivative of the Lyapunov function along the

trajectories of the error dynamics is
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�V2(t , x , y) � x� �x + y�Γ−1 �y
− δ �x�B(t)y − δx� �B(t)y − δx�B(t) �y (3.60)

in which we insert the error dynamics from (3.23)-(3.25) and get

�V2(t , x , y) � x�(A(t)x +B(t)y)
− y�Γ−1(ΓBp(t , x)� − g(t , y))
− δ(A(t)x +B(t)y)�B(t)y
− δx� �B(t)y − δx�B(t)(ΓBp(t , x)� − g(t , y)) (3.61)

which we can restructure into

�V2(t , x , y) � x�A(t)x + x�B(t)y
− y�Bp(t , x)� + y�Γ−1 g(t , y)
− δx�A(t)�B(t)y − δy�B(t)�B(t)y
− δx� �B(t)y − δx�B(t)(ΓBp(t , x)� − g(t , y)) (3.62)

To deal with the projection we will both use the inequalities related to them which

are

−y�Γ−1Projy(τ) ≤ −y�Γ−1(τ)
‖Projy(τ)‖ ≤ ‖τ‖ (3.63)

from [68, E.1]. We make the set P containing all the indices of all the inverse range

estimates where the projection is activated, and Pc is the complementary set with

all the projections not activated. The terms related to g(t , y) can then be written

g i(t , y) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d̃i(di + d̂i)(ub
δi)�vb i ∈ Pc

d2
i (ub

δi)�vb i ∈ P
0 i > m

(3.64)

resulting also in

y�Γ−1 g(t , y) �
∑
i∈Pc

1

γi
d̃i

2(di + d̂i)(ub
δi)�vb

+

∑
i∈P

− 1

γi
|d̃i d2

i (ub
δi)�vb | (3.65)

where γi can be derived from the entries of Γ. The other terms with projection

however can be handled quite straigth forward by (3.63), resulting in

−y�Bp(t , x)� ≤ −y�B(t)�x (3.66)

‖δx�B(t)‖‖ΓBp(t , x)�‖ ≤ ‖δx�B(t)‖‖ΓB(t)�x‖ (3.67)
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The inequality from the derivative of the Lyapunov function is then

�V2(t , x , y) ≤ x�A(t)x + ‖δx�B(t)‖‖ΓB(t)�x‖
− δy�B(t)�B(t)y + y�Γ−1 g(t , y)|
− δx�(A(t)�B(t) + �B(t))y − δx�B(t)g(t , y) (3.68)

To show that this expression is in fact negative definite, we will expand the matrix

expressions, term by term, and derive a bound for each term. We start with the

term x�A(t)x where we recall that the matrix A(t) is block diagonal matrix with a

skew-symmetric term. The skew-symmetric term becomes zero when multiplied

with x from both sides, which means

x�A(t)x �

m∑
i�1

ki ũb
δiS(ub

δi)S(ûb
δi)ũb

δi

�

m∑
i�1

−ki(ub
δi)�ûb

δi ‖ũb
δi ‖2

≤ −kε cos(ε)
m∑

i�1

‖ũb
δi ‖2

� −kεcε‖x‖2 (3.69)

where we have used S(ub
δi)S(ûb

δi)ũb
δi � −((ub

δi)�ûb
δi)ũb

δi , which can be verified using

the triple product, and cε � cos(ε). The term ‖x�B(t)‖‖ΓB(t)x‖ can be expanded

to

‖δx�B(t)‖‖ΓB(t)�x‖ ≤ δγ̄‖x�B(t)‖‖B(t)�x‖
� δγ̄‖B(t)�x‖2

�

δγ̄
m∑

i�1

−(ũb
δi)�S(ûb

δi)S(ub
δi)2vb(vb)�S(ub

δi)2S(ûb
δi)ũb

δi

+ δγ̄(
m∑

i�1

S(ûb
δi)S(ub

δi)ũb
δi)�(

m∑
i�1

S(ûb
δi)S(ub

δi)ũb
δi)

≤ δγ̄‖vb ‖2
m∑

i�1

‖ũb
δi ‖2

+ δγ̄m
m∑

i�1

‖ũb
δi ‖2 ≤ δγ̄(v̄2

+ m)‖x‖2 (3.70)

where we used the Cauchy-Schwarz inequalety. We can also use these results to
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find a bound for

− δx�(A(t)�B(t) + �B(t))y
≤ δ‖x‖((d̄ v̄ + ω̄)(v̄ + m) + ρb)‖y‖ (3.71)

− δx�diag({kiS(ub
δi)S(ûb

δi)}m
i )B(t)y (3.72)

≤ δ‖x‖((d̄ v̄ + ω̄)(v̄ + m) + ρb)‖y‖ (3.73)

− δkx�[diag({kiS(ub
δi)S(ûb

δi)}m
i ) (3.74)

+ (1 − 1)1
2

min(kεcε , δγμ)I]B(t)y (3.75)

≤ δ‖x‖((d̄ v̄ + ω̄)(v̄ + m) + ρb + k(v̄ + m))‖y‖ (3.76)

+ δ
1

2
x� min(kεcε , δγμ)B(t)y (3.77)

where k > ki > kε, ρb > ‖ �B(t)‖, and from Lemma 1 we have

−δy�B(t)�B(t)y ≤ −δμ‖y‖2 (3.78)

C) Handle the projected perturbation Finally, we have to deal with the g(t , y),
where we see that

y�Γ−1 g(t , y) − δx�B(t)g(t , y)
�

∑
i∈P

− 1

γi
|d̃i d2

i (ub
δi)�vb | +

∑
i∈Pc

1

γi
d̃2

i (di + d̂i)(ub
δi)�vb

+ δ
∑
i∈P

(ũb
δi)�S(ûb

δi)S(ub
δi)2vb d2

i (ub
δi)�vb

+ δ
∑
i∈Pc

(ũb
δi)�S(ûb

δi)S(ub
δi)2vb d̃i(di + d̂i)(ub

δi)�vb

≤ +
1

γ
2d̄ v̄

∑
i∈Pc

d̃2
i + δv̄22d̄

∑
i∈Pc

‖ũb
δi ‖|d̃i |

+

∑
i∈P

− 1

γ̄
|d̃i d2

i (ub
δi)�vb | + δv̄ sin(ε)d2

i (ub
δi)�vb

≤ 1

γ
2d̄ v̄‖y‖2

+ δ2v̄2 d̄‖x‖‖y‖ (3.79)

as long as we can guarantee that

1

γ̄
|d̃i | |d2

i (ub
δi)�vb | > δv̄ sin(ε)|d2

i (ub
δi)�vb |, ∀i ∈ P

�
1

γ̄
|d̃i | > δv̄ sin(ε), ∀i ∈ P (3.80)
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where γ is the smallest singular value of Γ, and we recall from (3.57) that sin(ε) >
v̄+b̄ω

kε
. Hence, we can substitute the inequality into (3.80) and get

kε > γ̄δ
v̄(v̄ d̄ + b̄)

ď
(3.81)

where ď is the minimum value that d̃i can have when the projection is activated.

D) Gains exisit that yield explonential stabillity in the large From these bounds

we see that the derivative of the Lyapunov function satisfies

�V2(t , x , y) ≤ −kεcε‖x‖2
+ δγ̄(v̄2

+ m)‖x‖2

− δμ‖y‖2
+

1

γ
2d̄ v̄‖y‖2

+ δ‖x‖‖y‖(k(v̄ + m) + ((d̄ v̄ + ω̄)(v̄2
+ m) + ρb))

+ δ2v̄2 d̄‖x‖‖y‖ + 1

2
δmin(kεcε , δγμ)x�B(t)y , (3.82)

which we then can restructure to

�V2(t , x , y) ≤ −1

4
kεcε‖x‖2 − δμ

4
‖y‖2

+
1

2
δmin(kεcε , δγμ)x�B(t)y (3.83)

− ‖x‖2( kεcε
2

− δγ̄(v̄2
+ m)) − ‖y‖2( δμ

2
− 1

γ
2d̄ v̄)

− 1

2

[
‖x‖
‖y‖

]� [
kεcε

2 −δ(kρ̄2 + ρ̄d)
−δ(k ρ̄2 + ρ̄d) δμ

2

] [
‖x‖
‖y‖

]
where ρ̄2 � v̄ + m and ρ̄d � ((d̄ v̄ + ω̄)(v̄2 + m) + ρb) + v̄2 d̄. We see that if the

inequaleties

kεcε
2

> δγ̄(v̄2
+ m) (3.84)

δμ

2
>

1

γ
2d̄ v̄ (3.85)

kεcεδμ
4

> δ2(kρ̄2 + ρ̄d)2 (3.86)

hold, the Lyapunov derivative is negative definite. We combine these with all the

previous inequalities, (3.57),(3.59) and (3.81) to see that gains can be chosen to

comply with all the inequalities. First we combine (3.59) and (3.85) and get

δ <
μ

4d̄ v̄(v̄ + m)2 (3.87)

4d̄ v̄
μδ

< γ <
1

(v + m)2δ2
(3.88)
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and also introducing the inequalities (3.81), (3.84) and (3.86) we get

δ < min( kεcεμ
4(kρ̄2 + ρ̄d)2 ,

μ

4d̄ v̄(v̄ + m)2 ) (3.89)

4d̄ v̄
μδ

< γ < min( 1

(v + m)2δ2
,

kεcε
2δ(v̄2 + m) ,

kε ď
δv̄(v̄ d̄ + b̄) ). (3.90)

What is left to find is a lower bound on kε which ensures that solution a to the

system of inequalities exist. Then also introducing (3.57), and bounds on kε,
ensuring that the upper bounds of the γ are larger than the lower bound in (3.90),

gives the total system of inequalities

k > kε > max( v̄ d̄ + b̄
sin(ε) ,

8v̄ d̄(v̄2 + m)
μcε

,
4d̄ v̄(v̄ d̄ + b̄)

ďμδ
) (3.91)

δ < min( kεcεμ
4(k ρ̄2 + ρ̄d)2 ,

μ

4d̄ v̄(v̄ + m)2 ) (3.92)

4d̄ v̄
μδ

< γ < min( 1

(v + m)2δ2
,

kεcε
2δ(v̄2 + m) ,

kε ď
δv̄(v̄ d̄ + b̄) ). (3.93)

Thus we see that if the gain kε < ki < k is chosen large enough, the kdi and Kb

can be chosen according to the bounds in (3.93).

We recall the bounds v̄ , d̄ , b̄ω, ω̄ are the bounds on the velocity, inverse range,

gyro-bias gyro rate consecutively. Other bounds are ρ̄d � ((d̄ v̄ + ω̄)(v̄2 +m)+ ρb)+
v̄2 d̄ and ρ̄2 � v̄ + m, where ρb >

�‖B‖. In addition, the fact that the inequalities

hold result in that the following inequality also holds

�V2(t , x , y) ≤ −1

2
min(kεcε , δγμ)V2(t , x , y)

from which we can conclude that the error will converge exponentially fast to zero

at this rate, when all the unit vector estimate errors are within the set (ûb
δi)�ub

δi >
cos(ε). textbfE) Conclusion, USGAS and UES We have already proven that the

estimates will converge and be bounded within this set in finite time. In addition,

since they will converge from arbitrarily close to the unstable equilibrium if a high

enough gains are chosen, we can conclude that the error dynamics of the observer

are semi-globally asymptotically stable, and exponentially stable in the large.

�

3.6.1 Decoupling of gyro bias estimation

Remark 2. It should be noted that inertial/body reference vectors, such as magnetometer

and gravity, can also be used in the gyro bias observer, where the vectors can be included

by using ub
δi � r b

i and by setting di � d̂i � 0, and thus annihilate its effect.
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As will be seen later in the article, the rate of convergence of the gyro bias

estimation error can be quite different in different axes. This affects how big gain

one might desire to have for the gyro bias estimation in different directions. An

example of this is when a reference vector r b is available. Since this reference

vector makes the gyro bias with axis orthogonal to this vector more available, it

can be desirable to divide the gyro bias estimation into the space orthogonal r b⊥

and parallel r b ‖ to this vector. We recall the projection transformations

U⊥
r � −S(r b)2 , U ‖

r � r b(r b)� (3.94)

This can then be used to provide one gain for the gyro bias estimation parallel to,

and another one for the bias estimation orthogonal to, the reference vector

�̂ub
δi � −S(ωm − b̂ω + kiσ i)ûb

δi + d̂iS(ûb
δi)S(ub

δi)vb (3.95)

�̂r b
� −S(ωm − b̂ω + kiσr)r̂ b (3.96)

�̂di � Projdi(d̂2
i (ub

δi)�vb)
+ kdiProjdi((vb)�S(ub

δi)2S(ûb
δi)σ i) (3.97)

�̂bω � (k1bU ‖
r + k2bU⊥

r )Projb(
m∑

i�1

−(S(ûb
δi)S(ub

δi)σ i)

− S(r̂ b)S(r bσr) (3.98)

σ i � S(ub
δi)ûb

δi (3.99)

σr � S(r b)r̂ b (3.100)

The crucial part is that the gyro bias estimation can be tuned to balance the

difference in the convergence rate. We believe that the reason for this difference in

convergence rate along the different axis can be related to the distinct eigenvalues

of the matrix (3.30) which will be shown for different scenarios later in the article.

3.6.2 Attitude estimate

As was shown in [16], as the gyro-bias is estimated by the bearing nonlinear

observer, it can be fed to an attitude observer in cascade. The benefits of this setup

is that the gyro bias estimate is independent of the attitude estimates. We can then

use the bias estimated in cascade with the attitude observer from [48] (see also

[43])

�̂Rnb �R̂nbS(ωm − b̂ω + σR) (3.101)

σR �

n∑
i�1

ciS(r b
i )R̂�

nb rn
i (3.102)
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where semi-globally stability can be achieved. However we need an assumption

about the set of reference vectors.

Theorem 4. Assume there are n unit vectors r j that are known or measurable in both

body- and inertial-frame, rn
j � Rnb r b

j , j ∈ 1, .., n. In addition, there exists a constant

cobs > 0 so as, for each t ≥ 0, the inequality ‖S(r b
j )r b

k ‖ > cobs holds for at least two of the

indices j, k ∈ {1, ..., n}
Consider the kinematics of a vehicle with bearing measurements from landmarks, in

addition to velocity measurement, and gyro measurements with a bias (2.9). Under the

conditions of Theorem 3, a large enough gain ci exist so that the observer (3.14)-(3.16) in

cascade with (3.101)-(3.102), will be semi-globally asymptotically stable for time varying

reference vectors.

Proof. The proof is shown in [16] �

The total observer is summarized in Table 3.2.

Table 3.2: Summary of the cascade range and attitude observer

CASCADE RANGE AND ATTITUDE OBSERVER

Measurements: ωm , vb , ub
δi , r b

i , rn
i

�̂ub
δi � −S(ωm − b̂ω + kiσ i + d̂iS(ub

δi)vb)ûb
δi (3.14)

σ i � S(ub
δi)ûb

δi (3.15)

�̂di � Projdi(d̂2
i (ub

δi)�vb) + kdiProjdi((vb)�S(ub
δi)2S(ûb

δi)σ i)) (3.16)

�̂bω � Projb(−
m∑

i�1
kbiS(ûb

δi)S(ub
δi)σ i) (3.17)

�̂Rnb � R̂nbS(ωm − b̂ω + σR) (3.101)

σR �

n∑
i�1

ciS(r b
i )R̂�

nb rn
i (3.102)

3.7 Simulation Results and Performance Evaluation

One interesting thing to investigate is how the landmark distribution will affect

the convergence of the observer. By examining Lemma 1, we see that the conver-

gence of the inverted distance estimate to the landmark is dependent on that the

velocity is not parallel to the landmark bearing, which is intuitive as the distance

to the landmark is unobservable if the bearing measurement is stationary. This is
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Figure 3.9: Simulation setup for evaluating the matrix (3.104)

consistent with the observability results and PE conditions found in [19, 17, 77, 49].

For the convergence of the bias estimate, we see that it is related to the inequality

−
m∑

i�1

1

ξ�ξ
S(ûb

δi)S(ub
δi)S(ξ)S(ξ)S(ub

δi)S(ûb
δi) > 0 (3.103)

where we recall that ξ � −S(ûb
δi)S(ub

δi)2vb . To better understand this inequality,

and how its positive definiteness depend on landmark positions, the related matrix

m∑
i�1

1

ξ̂� ξ̂
S(ub

δi)2S(ξ̂)S(ξ̂)S(ub
δi)2 (3.104)

ξ̂ � −S(ub
δi)3vb (3.105)

was calculated and the eigenvalues were compared in the different setups. We

note that the matrix is independent of the range estimates, the gyro, as well as the

attitude and the magnitude of the velocity as long as it is non-zero. A scenario can

be seen in Figure 3.9.

The matrix eqreftestMatrix and its eigenvalues were calculated for several con-

secutive scenarios where the virtual camera setup was varied to have different
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Figure 3.10: The eigenvalues of matrix (3.104) plotted against the FOV in the downward looking camera,
with 50 bearing measurements

number of bearing measurements, different angle between the velocity and the

camera axis, and different FOV of the camera. Each parameter setup had its

matrix calculated 10 times with the bearing vectors chosen randomly within the

constraints of the parameters. The eigenvalues of these matrices can be seen in

Figures 3.10-3.13.

From these plots, one can see how the camera position relative to the velocity

would affect the gyro bias convergence. This example however does not take into

account the difference in noise that the bearing measurements experience because

of changing FOV. Not surprisingly, having too narrow FOV will make gyro bias

estimation difficult. From figure 3.10 one can see that after having an FOV of 150o ,

an increase of FOV will not make the eigenvalues more negative. For the case

when the camera is looking in the same direction as the velocity, as typical for

an automotive application, the matrix has an optimal FOV close to 90o . We see

from Figure 3.12 that for a camera with 90o FOV, the optimal angle between the

camera and the velocity is 0o , 60o , 120o and 180o . These results somewhat agrees

with what was found in [114], where the Perspective-n-Point (PnP) problem was

solved, estimating the pose from observing n points with known position, through

an optimization with different FOV. In the mentioned article, the noise as a result
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Figure 3.11: The eigenvalues of matrix (3.104) plotted against the FOV in the forward looking camera,
with 50 bearing measurements

of different FOV was also included, and the results showed that in a confined

space, the rotation error of the pose estimate decrease with increasing FOV until

120o − 150o where it is the lowest. For the scenario where the camera has infinite

range, the increased noise because of higher FOV then makes the rotation error

increase with the larger FOV. As described in [114]; it can be interpreted as the

result of two competing effects. On the one hand a larger FOV provides a better

conditioning for the PnP problem, and increases the pose estimation accuracy. On

the other hand, as the FOV grows, the angular resolution decreases leading to

increased bearing measurement noise.

Next a simulation of the observer was run, with randomly placed landmarks,

and white noise on the bearing, velocity and gyro measurements with a bias

ωm . The standard deviation of the white noise was σω � 0.001 · I,σv � 0.01 · I
and σu � 0.00314 · I. An example simulation is seen in Figures 3.14-3.17. The

gyro bias estimate converges, and the ranges are estimated with variable accuracy

depending on the magnitude of the range. By plotting this error divided by

the range of different order, it became clear that the error grows approximately

quadratic to the range, as can be seen if Figure 3.18. The estimates does not seen to

be too much biased. This is confirmed in Figure 3.19 where the averaged estimation
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Figure 3.12: The eigenvalues of matrix (3.104) from ploted against the angle between the camera and
the velocity with FOV 90o with 50 bearing measurements

error at every time step of 200 Monte Carlo (MC) simulation was plotted, for the

distance vector δb
i �

ub
δi

d̂i
.

3.7.1 Downward looking camera

For the next simulation we have investigated a common setup for UAV camera

navigation, where a UAV has a downward looking camera. From the plot in Figure

3.10, we see that for the camera we are simulating, a 90o FOV can be troublesome,

as the movement of the UAV is often perpendicular to the camera direction. Never

the less, we will show that the sensor setup presented in (3.95)-(3.100), will still give

satisfactory results. The camera will work both as a gyro bias estimator, especially

in yaw, as well as a depth or range to landmarks which are seen. The setup was

tested in simulations. A vehicle is moving in a circle with radius of 10 m, looking

downward at a plane from a height of 13 m. The simulation setup can be seen in

Figure 3.20

For this setup, one can see that the landmarks dies and are born. When the

system had converged and all innovations were kept under a threshold, a timer

was introduced for new states so that they could converge before they affected
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Figure 3.13: The eigenvalues of matrix (3.104) plottet against the number n of bearing measurements.
The camera was pointed at 45o forwards with regards to the velocity, and with a FOV of 90o

the gyro bias estimate. This let the inverse range estimates converge before they

affected the gyro bias estimate. An expansion of this could be to estimate whether

a bearing measurement was PE, and let this influence the gains of the observer.

However, for the scenarios encountered both in simulations and experiments, such

a setup was not deemed necessary to achieve good results.

The simulator was discretized with the Euler method with step length Δt �

0.067, and white measurement and process noise were also added. In addition a

gyro measurement ωm had a bias that was initialized as bω � [0.05, 0.4, −0.25]�
and driven by a white noise with standard deviation σbw � 0.001 according to

bω(t + Δt) � bω(t) +N(0, σbw) (3.106)

In addition, the gyro measurement was corrupted with a white noise with standard

deviation σω � 0.001·I. The noise of the bearing measurements were σu � 0.00314·
I. The bearing noise was orthogonal to the bearing measurement ub

δi � S(ub
δi)wu ,

where the noise wu was a white noise vector wu � N(0, σu), as the bearing also is

normalized the noise becomes nonlinear.



3.7. SIMULATION RESULTS AND PERFORMANCE EVALUATION 55

Figure 3.14: The trajectory for the Monte Carlo simulations, were the landmarks were chosen randomly
within a box of 50 m3

The gravity was utilized as a reference vector in the gyro bias range observer

rn
1 � [0, 0, −1]� (3.107)

r b
1 � R�

nb(an − gn
+ w f )/‖an − gn

+ w f ‖ (3.108)

� f imu/‖ f imu ‖ (3.109)

where w f � N(0, Iσ f ) and σ f � 0.002 . For the attitude estimate the GNSS and

camera velocity were also used as a reference vector.

rn
2 � (vn

+ wv)/‖vn
+ wv ‖ (3.110)

r b
2 � (vb

cam + wvc)/‖vb
cam + wvc ‖ (3.111)

with σv � 0.05 and σvc � 0.05, as a reference attitude observer we used the

complimentary filter [43], with the same reference vectors.

The velocity was set to zero four times at t � 33.3, 80.0, 126.7 and 173.3 for 13.2
seconds. From Figure 3.21, it can be seen that the observers are able to estimate

the gyro bias quite accurately. In addition, it can be seen how the novel observer

is able handle the hovering compared to the velocity based observer. Another

benefit is also seen for the loosely coupled system, since the bias estimation is
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Figure 3.15: The bias estimate of one of the generic simulation runs equalt to Figure 3.14

independent of the attitude estimate, and the error in the attitude does not affect

the gyro bias estimation and vice versa. It can also be seen how this affects the

yaw estimates in Figure 3.23. In Figure 3.22, the height estimate acquired from the

observer inverse range estimates are shown. For this setup, the height estimate is

found by averaging the projected length estimates onto the gravity vector

ĥ �
1

n(C)
∑
i∈C

1

d̂
(r b)� l̂b

i (3.112)

where the setC contains the indices of the estimates that are regarded as converged,

meaning that the bearing error σui has become sufficiently small. This is also a

reason why there are no height estimate at the beginning, as it takes some time

for the bearing estimates to converge. The n(C) is the cardinality of the set C. The

estimate can hence be used to have a more accurate height estimate, without having

to use pressure or laser altimeter together with the GNSS. From the simulations

we see that the camera can both replace a pressure sensor and a magnetometer,

assuming a sufficient number of landmarks are detected.
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Figure 3.16: The range estimates acquired from the inverse range estimates vs. the true ranges.
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Figure 3.17: The range estimate error plotted against the true ranges for 200 MC simulations
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Figure 3.18: The range estimate error divided by the range to the 1st 2nd and 3rd order plotted against
the true ranges for 200 MC simulations
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Figure 3.19: The averaged estimate error δ̃b
i � δb

i − ûb
δi

d̂i
of the 5 distance-vectors, for 200 MC simulta-

neous
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Figure 3.20: The trajectory of the UAV with a downward looking camera. The red points are the
landmarks that are observed by the camera, and the green arrows are the bearing measurements scaled
according to the inverse range estimates.
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Figure 3.21: The gyro bias estimation, where the true bias is propagated acording to (3.106). The blue
estimate is from the novel observer, while the green estimate is from the complimentary filter [43]
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Figure 3.22: The height estimate derived from the inverse range estimates compared to the truth.
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Figure 3.23: The attitude estimates with the estimates from the complimentary filter from the simula-
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3.8 Experimental Verification

The experimental verification was carried out by using an octocopter flying in a

circle with an autopilot for 150 seconds. The data set was recorded from a payload

consisting of SenTiStack, which is built up of a SenTiBoard, a uBlox GNSS receiver

and a STIM300 tactical grade IMU [2]. The SenTiBoard was also connected to

the flash signal of a uEye UI-3140CP camera, time stamping the flash signal from

the camera so that accurate timing of the images were available. The sensor data

and images were stored using an Odroid UX4. Before the flight, a IMU, camera

and temporal calibration was performed using the Kalibr toolbox [37, 36], finding

IMU biases, as well as the time delay and coordinate transformation between the

camera and the IMU. In the data set used in this article, the image capture time

delay estimated was less than 3 ms, and as the timing of the image was related

to the flash signal it was independent of the kernel load and thus assumed to

be constant. As the IMU was tactical grade, the accelerometer and gyro biases

were assumed constant for the duration of the experiment and respectively ba �

[0.03, 0.005, 0.085]� [m/s2] and bω � [0.007, −0.0002, 0.0017]� [rad/s]. As the

object of the experiment was to verify that the observer could estimate a gyro

bias, we added a synthetic gyro-bias following (3.106) and initialized with values

b̌ω � [0.1, 0.4, −0.25]�. Thus we could verify that the gyro bias estimated by the

observer was equal to the synthetic one.

As the experiments were performed while flying over flat fields, homogra-

phy transformation between two images were used to acquire the camera velocity

needed. For more detail on how this is done see [41]. For feature extraction

we used Harris Min Eigen features [98] which then were tracked with Kanade-

Lucas-Tomasi feature tracker [106]. The homography matrix was found with a

4-point direct linear transformation (DLT) [1] and outlier rejection was done us-

ing RANSAC. The velocity was extracted from the homography using techniques

based on [84], this provided the camera velocity vc
hom �

vc

h , which is divided by

the height over the plane. The GNSS velocity was then used to scale the velocity

so that the body velocity used in the observer was

v̂b
� Rbc

vc
hom

‖vc
hom ‖ ‖vn

gnss ‖ (3.113)

where the lever arm effects were neglected. The trajectory of the filter can be seen

in Figure 3.24. From the plots, it is evident that the observer is also able to converge

with experimental data. The gyro bias estimate seems to work with acceptable

accuracy, and the height estimate is also able to give a reasonable estimate for

the octo-copter over the ground. As in the simulations there seems to be some

bias in the estimates. Never the less, this shows that applying the novel observer

presented together with a camera can give robust gyro bias estimation as well as a

height estimate.
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Figure 3.24: The trajectory of the UAV with a downward looking camera. The yellow arrows are the
bearing measurements scaled according to the inverse range estimates.
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Figure 3.25: The gyro bias estimation preformed by the novel observer and complimentary filter on
experimental data
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Figure 3.26: The height estimate derived from the inverted range estimates compared with the post
process kinematic (PPK) height estimate
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Figure 3.27: The attitude estimate of the complimentary filter vs the cascade attitude setup.
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3.9 Conclusion

The article introduces a nonlinear observer that combines velocity, gyro and bear-

ing measurements from landmarks to estimate the distance to the landmarks as

well as the gyro-bias and attitude. It was proven to be semi-globally asymptotically

stable and exponentially stable in the large if a persistence of excitation condition

holds. The observer was demonstrated in simulations and on experimental data,

where it was shown how a camera could replace a magnetometer and altimeter.

It should also be noted that if GNSS is unavailable, the body velocity could also

be acquired with an altimeter or laser scanner as this could be used for scaling

the camera velocity, and thus the observer could be used for more accurate and

drift free position estimates, similar to what was shown in [19]. If in addition it

is combined with optimization as in [79] and a loop closing system as in [90] the

bearing only SLAM with semi global asymptotic stability is possible.



4Vector Magnitude Observer
4.1 Introduction

In some estimation problems, the measurements available can be of a vector with

unknown magnitude, which we then want to estimate. This is especially relevant

for bearing-only localization or tracking, in which the scale from a monocular

camera is ambigous without any further knowledge or sensors [51]. In other

words, the direction of the velocity can be measured [93], but not the magnitude.

In the simultaneous localization and mapping (SLAM) literature, there are many

solutions to fusing bearing mesurments with different sensors and assumptions

to find the scale, howerver, there is a lack of theoretical stability proof on many

of the most popular solutions, which either use a version of extended Kalman

filter (EKF)[112, 88], probability graphs [45] or particle filters [15]. These are opti-

mization based solutions often resulting in accurate estimates, however, they are

computationally demanding, and guaranteed stability can often be difficult if not

impossible to acquire. This has given some motivation to attack the SLAM filter

problem with nonlinear observers (NLO), as they usually have complimentary

characteristics to the mentioned methods: defined stability traits with defined re-

gion of attraction, low computational cost, although lacking optimality when they

handle noisy measurements[17, 79]. Other NLO approaches for the SLAM prob-

lem are presented in [41, 57, 71], where [57] and [71] assume velocity measurement

or biased velocity measurement, while in [41] the authors present a NLO for fusing

measurements from the homography with IMU data.

In this article we present a novel observer for estimating the magnitude of a

time varying vector. We prove that if we assume a lower bound on the magnitude

of the vector, and a persistently exciting vector measurement, the vector magnitude

observer is uniformly semi-globally asymptotically stable (USGAS) and uniformly

locally exponentially stable (ULES) and will hence estimate the magnitude of the

vector. We employ the vector magnitude observer to the bearing-only SLAM

problem with AHRS measurements, and this also demonstrates two instances of

the vector magnitude observer working in cascade; once for velocity and once for

range to landmark estimation.

The rest of the chapter is structured as follows: Section 4.2 presents the stability

analysis of the observer. Section 4.3 presents how the the novel observer can be

applied to the bearing-only SLAM filter problem. In Section 4.4 simulations of the

presented setup is shown, and Section 4.4 concludes the work.

4.2 Vector Magnitude Observer

The main goal of the observer is to estimate the magnitude of a vector, given that its

unit vector (direction) is measured together with the time derivative of the vector.

71
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The observer using measurements in the inertial frame is

�̂un
δi � −S(kσ)ûn

δi − d̂S(ûn
δi)S(un

δi)wn
x (4.1)

�̂d � Projd(−γ(wn
x )�S(un

δi)2S(ûn
δi)σ)

+ Projd(d̂2(un
δi)�wn

x ))
σ � S(un

δi)ûn
δi (4.2)

where un
δi is the unit vector measurement with corresponding estimate ûn

δi ; the

input wn
x is the vector derivative; the estimate d̂ is the estimate of the unknown

inverted magnitude d; k and γ are positive tuning parameters. Projd(•) is the

projection operator from [68, Lemma E.1] working as a continuous saturation

ensuring
¯
d < d̂ < d̄. All the functions and inputs are continuous in all parameters

and locally Lipschitz so that a unique solution is guaranteed. We note that the

estimate ûn
δi will be maintained on the unit sphere if it starts on the unit sphere,

since (ûn
δi)� �̂un

δi � 0. We continue by investigating the error dynamics of the

observer, defined by the error variables ũn
δi � S(un

δi)ûn
δi , d̃ � d − d̂

�̃un
δi � S(un

δi) �̂un
δi − S(ûn

δi) �un
δi (4.3)

�S(un
δi)(−S(kσ)ûn

δi − d̂S(ûn
δi)S(un

δi)wn
x )

+ dS(ûn
δi)S(un

δi)2wn
x

(4.4)

�kS(un
δi)S(ûn

δi)ũn
δi − d̂S(un

δi)S(ûn
δi)S(un

δi)wn
x

+ (d̃ + d̂)S(ûn
δi)S(un

δi)S(un
δi)wn

x
(4.5)

�kS(un
δi)S(ûn

δi)ũn
δi + d̃S(ûn

δi)S(un
δi)S(un

δi)wn
x (4.6)

+ d̂S(S(un
δi)wn

x )ũn
δi

where we note that S(un
δi)S(ûn

δi)−S(ûn
δi)S(un

δi) � S(ũn
δi) is utilized. We then get the

following expression for the error dynamics

�̃un
δi � kS(un

δi)S(ûn
δi)ũn

δi + d̂S(S(un
δi)wn

x )ũn
δi

+ S(ûn
δi)S(un

δi)S(un
δi)wn

x d̃
(4.7)

�̃d � d2(un
δi)�wn

x

− Projd(−γ(wn
x )�S(un

δi)S(un
δi)S(ûn

δi)ũn
δi)

− Projd(d̂2(un
δi)�wn

x )
(4.8)

We will also use the the angle error θ̃ between un
δi and ûn

δi , with ‖ũn
δi ‖ � sin(θ̃)

and (un
δi)�ûn

δi � cos(θ̃).
For the guaranteed stability of the observers error dynamic, we need the unit

vector derivative and the vector magnitude to be non zero, this will ensure that

the system is persistently excited
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Lemma 1. Consider the function

Bu(t) � B(t , un
δi , û

n
δi ,w

n
x ) � S(ûn

δi)S(un
δi)S(un

δi)wn
x (4.9)

representing the skew-symmetric part of the error dynamics (4.7)-(4.8). If there exist a

constant
¯
u such that ‖ �un

δi ‖ ≥
¯
u > 0 and the magnitude of the vector satisfies z >

¯
z > 0

and there is a small positive number ε > 0 so that (ûn
δi)�un

δi > cos(ε), then there exists a

μ > 0 so that

Bu(t)�Bu(t) > μ (4.10)

Proof. If we substitute (2.27) into (4.9), we get

Bu(t) � zS(ûn
δi) �un

δi (4.11)

We know that �un
δi is orthogonal to un

δi and will therefore not be parallel to ûn
δi .

Using (2.3) we see that the norm ‖Bu(t)‖ will be bounded from below as long as

‖ �un
δi ‖ and z are bounded from below

Bu(t)�Bu(t) ≥ cos ε2

¯
z2

¯
u2 > μ (4.12)

�

More specific assumptions on the system are

A1 The vector measurement is so that the constants from Lemma 1 ‖ �un
δi ‖ ≥

¯
u,

z >
¯
z(d < d̄) exists. The input derivative is also bounded from above

‖wn
x ‖ < w̄.

A2 There exist an arbitrary small angle 0 < ε < π, and the tuning parameters γ
and k are chosen to satisfy

k > max( d̄w̄
sin(ε) ,

4w̄3 d̄
cos(ε) ,

w̄2 d̄
μ

− ρ̄δ
w̄
,
2w̄3 d̄2

ďμ
) (4.13)

w̄3 d̄
(kw̄ + ρ̄δ)2 < δ < min( μ

4w̄3 d̄
,

k cos(ε)μ
4(kw̄ + ρ̄δ)2 ) (4.14)

2d̄w̄
μδ

< γ <min( 1

w̄2δ2
,
2(kw̄ + ρ̄δ)2

w̄2μ
) (4.15)

where the details of the constants δ, ε, ď and ρ̄δ are seen in the proof of

Theorem 1.

Theorem 5. Consider the vector xn with the unknown time varying magnitude z �
1
d .

Assume its unit vector un
δi �

xn

‖xn ‖ is measured together with its derivative vector �xn � wn
x ,

and the assumptions A1-A2 holds. Then the error dynamics of the observer (4.1)-(4.2) will

be UAS for every initial condition satisfying (ûn
δi)�un

δi > − cos(ε), d̂ ≤ d̄ and UES for

d ≤ d̂ ≤ d̄ and (ûn
δi)�un

δi > cos(ε), so that the errors (ûn
δi)�un

δi → 1, ũn
δi � S(un

δi)ûn
δi →

0 and d̃ � d − d̂ → 0 as t → ∞
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The proof will be structured in the following way:

Outline of the proof

A) First prove that the the errors of the observer (4.1)-(4.2) is bounded so the

angular error θ̃ between un
δi and ûn

δi is bounded away from |θ̃ | < π − ε and

converges in finite time to the set |θ̃ | ≤ ε.

B) Define a Lyapunov function candidate and its derivative

C) Utilise the conditions and bounds from the assumptions, and prove that the

Lyapunov function candidate derivative is negative definite in the set |θ̃ | ≤ ε
found in A)

D) Verify that it is maintained negative definite when projection is activated.

Proof. A) We know that the estimate d̂ is bounded by the projection, and we have

assumed that d < d̄ since z >
¯
z, which means the d̃ is also bounded. To obtain the

boundedness of the error θ̃ we use the Lyapunov-like function

V1 � 1 − (un
δi)�ûn

δi � 1 − cos(θ̃) (4.16)

which is positive definite for 0 < |θ̃ | < π. Its derivative is

�V1 � −( �un
δi)�ûn

δi − (un
δi)� �̂un

δi (4.17)

� −(dS(un
δi)2wn

x )�ûn
δi · · ·

− (un
δi)�(−S(kσ)ûn

δi + d̂S(ûn
δi)S(un

δi)wn
x ) (4.18)

� (un
δi)�S(kσ)ûn

δi + d̃(un
δi)�(S(ûn

δi)S(un
δi)wn

x ) (4.19)

� −k‖ũn
δi ‖2

+ d̃(ũn
δi)�S(un

δi)wn
x (4.20)

≤ −‖ũn
δi ‖(k‖ũn

δi ‖ − d̄w̄) (4.21)

We know that θ̃ � π− ε corresponds to an error ‖ũn
δi ‖ � sin(ε). So for any arbitary

small ε > 0 there exists
¯
k > d̄w̄

sin(ε) so that any k ≥
¯
k will ensure that �V1 < 0; hence we

can conclude that the error is bounded away from θ̃ � ±π and that the unit vector

estimate will converge to the set |θ̃ | ≤ ε in finite time [64, Theorem 3.18]. From

here we will use that this bound holds, which implies that ‖ũn
δi ‖ < 1 ⇔ |θ̃ | < π

2 ,

and ‖ũn
δi ‖ � 0 ⇔ |θ̃ | � 0. We will then show that the system is UES when |θ̃ | ≤ ε.

B) We choose the Lyapunov function candidate

V2(t , ũn
δi , d̃) �

1

2
(ũn
δi)�(ũn

δi) +
1

2γ
d̃2 − δ(ũn

δi)�Bu(t)d̃ (4.22)

with δ > 0. To ensure that the Lyapunov function candidate is positive definite, we

impose the constraint δ2 < 1
γw̄2 since we know that w̄ ≥ ‖Bu(t)‖ by Assumption
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A1. If we then take the time-derivative along the trajectory of the error dynamics

(4.7)-(4.8) we get

�V2 � (ũn
δi)�(kS(un

δi)S(ûn
δi)ũn

δi + d̂S(S(un
δi)wn

x )ũn
δi)

+ (ũn
δi)�Bu(t)d̃ +

1

γ
d̃d2(un

δi)�wn
x

− 1

γ
d̃Projd(d̂2(un

δi)�wn
x ) − 1

γ
d̃Projd(γBu(t)�ũn

δi))
− δũn

δi
�Bu(t)d̃ − δd̃Bu(t)�Bu(t)d̃

+ δd̂(ũn
δi)�S(S(un

δi)wn
x )Bu(t)d̃

+ δk((un
δi)�ûn

δi)(ũn
δi)�Bu(t)d̃

− δ(ũn
δi)�Bu(t)d2(un

δi)�wn
x

+δ(ũn
δi)�Bu(t)(Projd(d̂2(un

δi)�wn
x ) + Projd(γBu(t)�ũn

δi))

(4.23)

where we use the vector product to get S(un
δi)S(ûn

δi)ũn
δi � −((un

δi)�ûn
δi)ũn

δi , C)

First we assume that projection is not being activated. We use the bounds in

the assumption A1, where there exists positive constants ρ̄2 � w̄, ρ̄4 � 2d̄w̄ and

ρ̄5 � d̄w̄. From the Lipschitz property a constant b̄d > ‖ �Bu(t)‖ exist, and from

the boundedness from paragraph A) there is a maximum angle ε between un
δi

and ûn
δi so that kε � k cos(ε) < k(ûn

δi)�un
δi . In addition, the ε combined with the

assumptions in A1 guarantee that Lemma 1 will hold, hence we can use (4.10).

With these bounds we can rearrange �V2 to the inequality

�V2 ≤ −kε‖ũn
δi ‖2

+ δγρ̄2
2‖ũn

δi ‖2 − δμd̃2
+

1

γ
d̃2ρ̄4

+ δb̄d ‖ũn
δi ‖ d̃ + δ‖ũn

δi ‖ d̃ρ̄2(ρ̄4 + ρ̄5)
(−k(un

δi)�ûn
δi + (1

2
− 1

2
)(min(kε , δμγ))δ(ũn

δi)�Bu(t)d̃

where the last zero term is added to easier see the exponential result, and by

using k > k(un
δi)�ûn

δi − 1
2 min(kε , δμγ), the inequality can be reorganized to

�V2 < − ‖ũn
δi ‖2 kε

4
− d̃2 δμ

4
(4.24)

+
1

2
min(kε , δμγ)δ(ũn

δi)�Bu(t)d̃

− ‖ũn
δi ‖2( kε

2
− δγρ̄2

2) − d̃2( δμ
2

− ρ̄4

γ
)

−1

2

⎡⎢⎢⎢⎢⎣
‖ũn

δi ‖
d̃

⎤⎥⎥⎥⎥⎦
� ⎡⎢⎢⎢⎢⎣

kε
2 −δ(k ρ̄2 + ρ̄δ)

−δ(kρ̄2 + ρ̄δ) δμ
2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
‖ũn

δi ‖
d̃

⎤⎥⎥⎥⎥⎦ (4.25)
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where ρ̄δ � b̄d + ρ̄2(ρ̄4 + ρ̄5). We see that we need the variables and tuning

parameters to satisfy the following inequalities,

k > max( d̄w̄
sin(ε) ,

2δγρ̄2
2

cos(ε) ) (4.26)

δ2 <
1

γρ̄2
2

,
2ρ̄4

γμ
< δ <

k cos(ε)μ
4(kρ̄2 + ρ̄δ)2 (4.27)

to ensure that �V2 ≤ − 1
2 min(kε , δμγ)V2. We can reorganize the inequaleties

k > max( d̄w̄
sin(ε) ,

2ρ̄2
2ρ̄4

μ cos(ε) ,
ρ̄2ρ̄4

μ
− ρ̄δ
ρ̄2

) (4.28)

2ρ̄2
2ρ̄4

4(kρ̄2 + ρ̄δ)2 < δ < min( k cos(ε)μ
4(k ρ̄2 + ρ̄δ)2 ,

μ

2ρ̄2
2ρ̄4

) (4.29)

2ρ̄4

μδ
< γ < min( 1

δ2ρ̄2
2

,
2(kρ̄2 + ρ̄δ)2

μρ̄2
2

) (4.30)

by substituting the ρ̄• with their corresponding bounds, we see that this will

hold by assumption A2. Hence, we can conclude that δ and γ can be choosen if

k is high enough so that the system is uniformly exponentially stable when the

projection is not activated, and it will have converges rate of 1
2 min(kε , δμγ). D)

There are four projections in (4.23). By using

−y�Γ−1Projy(τ) ≤ −y�Γ−1(τ)
‖Projy(τ)‖ < ‖τ‖

from [68, E.1], three of the terms can be handled trivially.

− 1

γ
d̃Projd(d̂2(un

δi)�wn
x ) < − 1

γ
d̃ d̂2(un

δi)�wn
x (4.31)

− 1

γ
d̃Projd(γBu(t)�ũn

δi)) < − 1

γ
d̃γBu(t)�ũn

δi (4.32)

‖δ(ũn
δi)�Bu(t)Projd(γBu(t)�ũn

δi)‖ < (4.33)

‖δ(ũn
δi)�Bu(t)γBu(t)�ũn

δi ‖ (4.34)

Which gives the same inequality terms as in (4.25). The fourth projection term is

δ(ũn
δi)�Bu(t)Projd(d̂2(un

δi)�wn
x ) (4.35)

which cancels out term

−δ(ũn
δi)�Bu(t)d2(un

δi)�wn
x (4.36)



4.2. VECTOR MAGNITUDE OBSERVER 77

when the projection is not activated; utilizing (d2− d̂2) < 2d̃ d̄. When the projection

(4.35) is activated, the projection term becomes zero, meaning that another term is

needed to handle (4.36). However, since the projection (4.35) is activated, it implies

that d̃ d̂2(un
δi)�wn

x < 0 ⇔ 1
γ d̃d2(un

δi)�wn
x < 0, which is available as the projection

counter part (4.31) is zero, since it is also activated. This term can therefore be

used against (4.36), meaning that if the inequality

‖ 1

γ
d̃ d̂2(un

δi)�wn
x ‖ > ‖δ(ũn

δi)�Bu(t)d2(un
δi)�wn

x ‖ (4.37)

holds, inequality (4.25) will also hold when the projection is activated. By utilizing

that the d̃ is non zero as the projection is activated, and the bound ũn
δi < sin(ε) we

see that this inequality is equivalent to

sin(ε) < |d̃ |
γδρ̄2

⇒ k >
2w̄3 d̄2

ďμ
(4.38)

where ď is the minimum error |d̃ | can be while the projection is activated. Thus we

see that the derivative of the Lyapunov function candidate is maintained negative

definite while the projection is activated. Proving that the observer converges

to zero exponentially fast when |θ̃ | ≤ ε. In addition, we proved in A) that the

error will converge to this set |θ̃ | ≤ ε in finite time, so combining these results

the observer is UAS for the error dynamics for all initial conditions according to

Theorem 1, and and UES when |θ̃ | ≤ ε. �

From the proof we see that the region of attraction for the observer is deter-

mined by a parameter ε, which can be arbitrary small while increasing k, so the

stability is in practice semi-global on the sphere. From the proof we also see that

the exponential convergence rate is 1
2 min(kε , δμγ), although as can be seen in

the proof it is a conservative estimate. We also note that the larger the k is, the

smaller δ will be, so k should be set large enough, however, if the k is too large,

this can limit the convergence of the d̃. The observer is also be presented in body

coordinates, where the difference is the added rotation of the vehicle

�̂ub
δi � −S(ω + kσ)ûb

δi − d̂S(ûb
δi)S(ub

δi)wb
x (4.39)

�̂d � Projd(−γ(wb
x)�S(ub

δi)2S(ûb
δi)σ)

+ Projd(d̂2(ub
δi)�wb

x)
σ � S(ub

δi)ûb
δi (4.40)

Theorem 6. Consider the vector xb with the unknown time varying magnitude z �
1
d .

If the assumptions A1-A2 holds in addition to the angular rate being bounded ‖ω‖ < ω̄.

Then given the unit vector ub
δi and the derivative wb

x � Rnb wn
x � Rnb �xn , the error

dynamics of the observer (4.39)-(4.40) will be UAS for every initial condition satisfying

(ûb
δi)�ub

δi > − cos(ε), d̂ ≤ d̄ and UES for d < d̂ < d̄ and (ûb
δi)�ub

δi > cos(ε) , so that

the errors (ûb
δi)�ub

δi → 1, ũb
δi � S(ub

δi)ûb
δi → 0 and d̃ � d − d̂ → 0 as t → ∞
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Proof. Bounded error dynamics follows from

�Vb
1 �≤ ‖ũb

δi ‖(k‖ũb
δi ‖ − d̄w + ω̄) (4.41)

The error dynamics are now

�̃ub
δi � kS(ub

δi)S(ûb
δi)ũb

δi − d̂S(S(ub
δi)wb

x)ũb
δi

− S(ûb
δi)S(ub

δi)S(ub
δi)wb

x d̃ + S(ω)ũb
δi

(4.42)

�̃d � d2(ub
δi)�wb

x (4.43)

− Projd(−γ(wb
x)�S(ub

δi)S(ub
δi)S(ûb

δi)ũb
δi) (4.44)

− Projd(d̂2(ub
δi)�wb

x)
where we see that the difference in error dynamic is the additional skew-symmetric

term S(ω)ũb
δi . We also note that the skew-symmetric part between ũb

δi and d̃ is

equal to the one from Lemma 1, only that it is in body coordinates, and we know

that the norm is preserved by coordinate change, implying that Lemma 1 also

applies for the magnitude observer in body coordinates. The only difference of

the derivative of Vb
2 along this trajectory will be the constant ρ̄5 > w d̄ + ω̄. So

similar stability as in Theorem 1 can be concluded for the system (4.39)-(4.40), with

straight forward change to the proof. �

Cascade

The next result shows that two instances of the observer can be used in cascade,

this means that the output of one observer can be the input of the next observer.

One motivation for this can be seen in bearing only SLAM. The first observer is

then used to estimate the velocity vector; this vector can then be considered the

input of a second observer used for estimating the distance to a landmark.

Theorem 7. Consider two vectors x1 and x2, with corresponding derivatives wx1 and

wx2. Assume directional vectors ux1, ux2 and the derivative wx1 are measured, and the

first directional vector ux1 �
wx2

‖wx2‖ . Let two observers either according to Theorem 1 or

Theorem 2 be in cascade, where the second observer has the input ŵx2 �
ûx1

d̂1
. We assume

assumptions A1-A2 to be true for both observer, in addition, the gain k in the second

observer is chosen large enough, and d̂1 >
¯
d1 is bounded from below by the projection in

the first observer. Then the error dynamics of the whole system will be UAS for every initial

condition satisfying (ûxi)�uxi > − cos(ε) and d̂i < d̄i for both observers i ∈ {1, 2}.
Proof. From cascade theory [76, 23] we know that two sub-systems in cascade being

USGAS combined with whole system being bounded implies the whole system

being USGAS. What is crucial is to show that regardless of the error from the first

observer in cascade, the error in the second observer has the states bounded in the
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region of attraction, and will not be destabilized. From Theorem 1 or 2 we know

that the first observer in the cascade will output an estimate with bounded errors

w̃x2 � wx2 − ŵx2 (4.45)

with the bound |w̃x2 | ≤ w̄ ≤ 1

¯
d1

. We continue by investigating if the second

observer in the cascade is still bounded when exposed to this error. For this proof

we investigate the boundedness of the observer in Theorem 1, although similar

procedure can be done for an observer in Theorem 2, with similar results. We

already know that the inverse magnitude estimate d̂2 < d̄2 and its error d̃2 < d̄2

is bounded by the projection operator. We re-examine the Lyapunov-like function

V1 � 1 − (un
δi)�ûn

δi which will have the derivative

�V1 � −( �un
δi)�ûn

δi − (un
δi)� �̂un

δi

� − (dS(un
δi)2wn

x )�ûn
δi · · ·

− (un
δi)�(−S(kσ)ûn

δi + d̂S(ûn
δi)S(un

δi)ŵn
x )

�(un
δi)�S(kσ)ûn

δi + (un
δi)�S(ûn

δi)S(un
δi)(dwn

x − d̂ŵn
x )

� − k‖ũn
δi ‖2

+ (ũn
δi)�S(un

δi)(w̃n
x d̃ + w̃n

x d̂ + ŵn
x d̂)

≤ − ‖ũn
δi ‖(k‖ũn

δi ‖ − 3d̄w̄)
and with the same argument as from Theorem 1 we can choose a k so that

the unit vector estimates are bounded away from |θ̃ | < π − ε, and the ε can be

chosen arbitrary small by increasing k. The estimates are maintained in the region

of attraction of the observer, resulting in the observer error ũn
2 → 0 and d̃2 → 0 as

the error w̃x2 → 0 converges to zero. �

Usually in cascade stabillity, a growth condition [76, 23] is introduced to show

that the error from a previous system in a cascade will not push the following

system out of its region of attraction. For our system this growth condition is not

satisfied for the d̃, but due to the projection on this parameter, the observer will

not be destabalized. As for the previous results, since ε can be chosen arbitrary

small we call this USGAS. However, the peaking phenomenon should be in mind

[105] [76] when tuning the observer in cascade, meaning the second part should

be tuned modestly to avoid unnecessary transient error for the second observer.

4.3 Example: bearing-only SLAM

To illustrate how the vector magnitude observer may be used, we apply it to

the bearing-only SLAM problem. For an overview of the SLAM problem, the

readers are refered to [28, 6] and references therein. For our SLAM problem, we
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want to estimate the ranges � i � ‖δi ‖ from the vehicle to different landmarks,

where δi are the relative position vectors from the vehicle pose to the different

landmarks. We assume that we have line of sight (LOS) measurements ub
iδ �

δb
i

‖δb
i ‖

from these landmarks, in addition, we assume that measurements from an IMU

and an attitude heading reference system (AHRS)[43] is available. The AHRS can

potentially also estimate the gyro bias, and be viewed as a cascade into the vector

magnitude observer, although the setup we present for velocity estimation will be

sensitive to attitude error, hence the attitude error should be small. We see that if

the LOS measurements are rotated in the earth-fixed frame

un
iδ � Rnb ub

iδ (4.46)

the derivative of the corresponding relative position vectors is the velocity in the

inertial-frame

�δn
� −vn (4.47)

which raises the need of a velocity estimate to use the vector magnitude observer

to estimate the different ranges.

We assume that we can measure the normalized velocity ub
v �

vb

‖vb ‖ ; this being

for instance available from a camera using methods from optical flow or using

homography [41], essential matrix [93] or visual odometry [33]. To estimate the

magnitude ‖vn ‖, we noticing that we can rotate the vector into the inertial-frame

un
v � Rnb ub

v . In addition, the derivative of the velocity in the inertial-frame is

available through the IMU and AHRS

�vn
� Rnb f b

IMU − gn (4.48)

where f b
IMU is the specific force measurements from the IMU, and gn is the known

gravity vector in inertia frame. Meaning the observer can estimate the velocity.

The observer is summarized in the following equations

un
v � Rnb

vb

‖vb ‖ , wn
v � Rnb f b

IMU − gn , dv �
1

vn

�̂un
v � −S(kvσv)ûn

v + d̂vS(ûn
v )S(un

v )wn
v

�̂dv � γ(wn
v )�S(un

v )2S(ûn
v )σv + d̂2

v(un
v )�wn

v

σv � S(un
v )ûn

v , v̂n
�

ûn
v

d̂v

(4.49)
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where we for each landmark with index i have

un
δi � Rnb ub

iδ , ŵn
δ � − ûn

v

d̂v
, dδi �

1

� i

�̂un
δi � −S(kδiσδi)ûn

δi + d̂δiS(ûn
δi)S(un

δi)ŵn
δ

�̂dδi � γ(ŵn
δ )�S(un

δi)2S(ûn
δi)σδi + d̂2

δi(un
δi)�ŵn

δ

σδi � S(un
δi)ûn

δi ,
�̂δn

i �
ûn
δi

d̂δi

(4.50)

The cascade structure of this bearing only SLAM with 4 landmarks can be seen in

Figure 4.1. By the theorems in the previous chapters the error dynamics of this

system is USGAS under certain assumptions. One of these assumptions is that the

velocity vector is bounded from below, meaning that the USGAS of the velocity

magnitude observer is lost when the velocity goes to zero.

Remark 3. For this setup we have assumed available AHRS measurements. Although, an

equivilant setup is possible in the body-frame with observers from Theorem 2, if a gravity

vector estimate is available in body-frame as in [41].

4.3.1 Position estimate

As we have no knowledge of absolute position, we will only care about relative

position change. The position estimate is derived from the estimated relative

position vectors

p̂n(t) �
m∑

i�1

wi(t)(δ̂n
i (0) − δ̂n

i (t)) (4.51)

where wi are gains that sum up to one
m∑

i�1
wi � 1. The estimate of the pose will

converge as the relative position vector estimates converge, although there will be

a constant offset due to the initial position estimate error
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Figure 4.1: Block diagram of the cascade structure of the speed observer (4.49) and range observer
(4.50), for Bearing Only SLAM with 4 landmarks

4.4 Results

The observer was tested in simulations. The scenario presented in this section is a

vehicle travelling in a circle in 3D-space at constant velocity vb � [0.5, 0, 0][m/s].
The trajectory of the vessel, with the landmarks positions, can be seen in Figure

5.9. The simulator is implemented using Euler integration, having step length

h � 0.025[s] and lasts for 40[s]. Four landmarks were placed in the corners of a

1

2

1.5

[m
]

1 2

1

[m]

0

[m]

0
-1

-1

-2 -2

Figure 4.2: The figure shows the trajectory of the vehicle, and the landmarks. The green arrow
represent the normalized velocity measurement; the blue arrows represent the LOS measurements; the

red dashed arrows represent the estimated distance vectors using 1
d̂xi

ûn
xi at the end of the simulation.



4.4. RESULTS 83

box with sides of 4[m]. The IMU measurements were corrupted by white noise

with standard deviation σω � I0.02[rad/s] and σ f � I0.02[m/s2], which is meant

to resemble a low cost MEMS IMU. The noise in the bearing measurements was

σu � I0.00314[rad], resembeling a pixel error for a camera with 90o field of view

and 500 pixels image height/width; the AHRS noise was σR � I0.0116[rad] giving

a 3σ value of 2o ; the velocity direction had a white noise of σv � I0.1060[rad],
which is what you can expect from a Homography with the above image [41].

The bearing noise is orthogonal to the bearing un � S(un
δi)wu , in which the noise

wu is a white noise vector wu � N(0, σu), the same is applied to the noise of the

normalized velocity.

The speed observer was tuned with kv � 2
√
α and γv � α/‖Bu(t)‖, with

α � 0.5. The range observers were tuned with kδi � 2
√

2 and γδi � 2. The tuning is

based on [101]. The observers were also implemented using the Euler method with

h � 0.025[s]; the unit vector estimates should be normalized for every iteration to

compensate for numerical errors. In Figure 4.3, we note that since the acceleration

input is found by subtracting the gravity from the rotated specific force, most of the

noise comes from the noisy attitude measurements. In Figure 5.11 we see how the

velocity direction estimates are smooth compared to the measurents. Further, in

Figure 5.10 we see how the velocity magnitude estimate converges, and in Figures

4.6 and 4.7 we see how the range and position estimates converge; this confirms

that the observers can be used in cascade.

0 5 10 15 20 25 30 35 40

[s]
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-0.6
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0

0.2

0.4

0.6

0.8

[m
/s

2
]

Acceleration Input

Figure 4.3: The figure shows the acceleration input to the velocity magnitude observer. The red is the
true acceleration, and the blue is the input for the velocity observer.
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Figure 4.4: The figure show the normalized velocity, in combination with the velocity direction estimate.
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Figure 4.5: The upper plot shows the velocity magnitude estimate combined with the true norm of the
velocity, while the bottom plot shows the velocity error
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Figure 4.6: The figure shows the range estimates and true ranges for the 4 landmarks.

The authors still want to emphasise that there are assumptions for this scenario

which are often broken when bearing only SLAM is used. The landmarks are

assumed to be observed for the entire period; the attitude is only corrupted by

white noise, so gravity is removed from the specific force. However, the setup is

able to estimate the position of the vessel, and the distance to the landmarks by only

having IMU, AHRS, bearing and optical flow measurements, and without dead

reckoning. This also shows the duality between the range estimation problem,

and speed estimation problem; implying that other globally stable observers can

be used for velocity estimation fusing camera with IMU and AHRS data [17, 71, 79],

making velocity measurements redundant.
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Figure 4.7: The figure shows the position estimates for x, y and z direction, and the lowermost plot
shows the norm of the position error. To make comparison between the position estimate and the true
position easier, the position estimate is shifted so that there is zero position error at time t � 20[s]

Figure 4.8: The figure shows the position estimate. The dot dasshed blue based on the estimated
distance vector estimates. The estimates are plotet so that there are no error at 1 � 20[s], to see how its
bounded when it has converged. The three upper plots are position in x- y- and z-direction, and the
bottom shows the norm of the position error.
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4.5 Conclusion

We presented a novel vector magnitude observer, which uses unit vector mea-

surement and derivative. The observer was proven to be uniformly semi-globally

stable (USGAS) and UES in a defined region, moreover, the stability was of multi-

ple instances, and in cascade. The vector magnitude framework was then applied

to a bearing-only SLAM filter problem with AHRS, which demonstrated the fil-

tering properties and convergence of the observer. This also demonstrated how

a velocity estimation could be performed with camera, IMU and AHRS, making

velocity measurement possibly redundant when these sensors are available





5Ego Motion Estimation
5.1 Introduction

Vision-based navigation is an important topic in robotics. With the reduced size,

weight, power and financial cost of modern digital cameras, they are a key navi-

gation component in many robotics systems. In the literature, the techniques are

often referred to as real-time structure from motion (SFM), visual odometry (VO)

or visual/bearing only simultaneous localization and mapping (SLAM). Several

methods have been developed over the years, where the methods are often divided

into graph SLAM and SLAM filters. The graph SLAM methods are based on non-

linear optimization ([33, 89, 66]) also called bundle adjustment (BA). The most

efficient approaches store key-frames, making the optimization problem sparse,

and hence they are solvable in real time. The SLAM filters are often based on EKF

[26], where the estimates are stored in the states and the co-variance, making the

computational load grow quadratic with regards to the number of features. A

further discussion of the pros and cons between the methods can be seen in [104].

An inherit problem when using a monocular camera is that the metric scale

of the world is not observable. The scale is either given during the initialization

through stereo vision, laser scanner, IMU information or by having known features

or tags at the initialization, or it is just neglected. For some applications, especially

long duration navigation, scale drift can be a limiting factor. There are also several

Visual-Inertial Odometry (VIO) methods able to estimate the scale with the IMU

information([88, 20]). Methods for estimating scale from a camera world to the real

world have also been presented in [112] and [80], where an EKF setup estimates

the scale by comparing the pose measurements from a camera system to IMU

data. These methods then need the scale estimate to be close to the real scale at

the initialization to guarantee convergence.

Initialization procedures have also been presented, with different kind of as-

sumptions, such as in [111, 31, 91] and [61]. In [111] a throw and go procedure

is demonstrated, however as the scale is estimated through an EKF scheme there

is no guarantee of convergence, and the scale is therefore initialized close to the

true scale. In [31] a similar procedure is demonstrated for SVO+MSF, where the

scale is acquired from an altimeter. In [91] and [61], closed form and optimization

schemes are developed, that can initialize the scale and gravity from IMU and

bearing measurements. This however relies on features being detected for several

time steps, or in the case of [91] that the monocular SLAM is initialized. They also

lack conditions that could guarantee good initialization.

In [41] an ego-motion estimation using a continuous homography scheme is

presented, where estimation of metric velocity is performed with a calibrated

IMU and pitch and roll estimates. This work differentiates itself from the most

common implementations of visual navigation in two ways. First, as it relies on

89
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the homography transform, it only requires matching of features between pairs

of images. Thus the requirement of observing features for consecutive images

is no longer necessary. The other benefit of the system ([41]) is inherited from

its application of nonlinear observer techniques presented in [101] and [102]. In

addition to acquire global convergence under a defined persistent of excitation (PE)

condition, the system can be tuned close to a second order differential equation

under certain conditions so that convergence rate and frequency response can

be defined for the observer. The main drawback for the setup presented in [41]

is the necessity of observing a flat surface in order to utilize the homography

transformation, which is an assumption that is violated for many applications.

This has given the motivation for developing an observer which only relies on

normalized velocity. Thus, it would no longer be necessary to observe a flat surface.

In fact, this enables the ego motion estimation to be applicable to any VO, Visual

SLAM or SFM method able to provide a normalized camera velocity. Methods

include two view methods such as, essential matrix ([93]), two point ([66]), three

point ([110]) or homography ([41]), or a combination of these as shown in [89],

where homography and the 5 point algorithm are used in parallel. It also includes

VO methods such as SVO ([33]) and SLAM ([89]). Such a method could either be

used to initialize the scale of these methods, work in parallel as scale estimator to

ensure drift free scale or it could work as a velocity measurement in itself.

5.1.1 Contribution

An observer able to estimate velocity with a similar sensor setup as in [41], is

presented in [19]. The main difference is that a normalized velocity is assumed

to come from the camera instead of a homography transform. Thus, globally

stable velocity estimation with a defined PE condition, and without the need of

observing features for several images is possible without the need of observing

a flat surface. The chapter builds on the idea presented in the previous chapter

4, where we compare the observer presented to other similar observers, and how

they perform when used for the ego-motion estimation.

There are several observers able to perform this estimation, since the ego-

motion estimation with normalized velocity measurement is mathematically iden-

tical to the problem of estimating the distance to a landmark assuming velocity

and bearing measurements are available. This implies that the ego motion esti-

mation assuming normalized velocity measurements can be performed by several

observers, that originally were designed for the latter problem ([77, 19, 71, 49]). In

addition, the observers will have the same stability results. In fact all the nonlinear

observers have the same PE condition; that the velocity and acceleration of the

vehicle is not co-linear. Thus, the design of globally stable velocity observers with

defined PE conditions guaranteeing convergence is possible without any initial-

ized VO method, observable plane or the need of observing features for several
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images.

The different observers are compared qualitatively, in simulations and with

experimental data. It is also shown how the novel observer presented in [19], can

tune its convergence rate. They are also compared to an EKF and the homography

based observer [41]. The observers are able to estimate the velocity accurately,

where the observer presented in [19] has the best performance in simulations and

on experiments. It is also shown how the nonlinear observers have more robust

behavior than the EKF.

The rest of the chapter is structured as follows: Section 5.3 the kinematics of

bearing and normalized velocity are presented, and their similarities are investi-

gated. In section 5.4 the observer that will be compared on the ego-motion esti-

mation are presented. In Section 5.5 simulations of the presented setup is shown,

and experiments are shown in 5.6. Finally section 5.7 concludes the chapter.

5.2 Equivalence Between bearing only position estimation and

Velocity estimation using normalized velocity

We first represent the ego-motion estimation similar to what is presented in [41],

where the goal is to estimate the velocity of a vehicle provided that a camera and

a tactical grade IMU with roll and pitch estimates were available. We will show

that this mathematical system is identical to the problem of filtering velocity and

bearing measurements to estimate the distance to a landmark, and thus we can

conclude that observers designed for one of the problems are applicable to the

other.

To build an observer based on normalized velocity measurements, we need to

examine the unit vector kinematics of the normalized velocity. A vehicle has a

position pn in the inertial frame, and moves with a velocity

�pn
� vn (5.1)

and it has an acceleration

�pn
� �vn

� an .

We assume that the IMU measurements are transformed to the camera frame, thus

the acceleration can be measured by an IMU in camera frame, provided that it has

an internal gravity estimate g c from filtering

ac
� R�

nc an
� f c − g c .

Here f c is the specific force experienced by the camera, which can be measured

by an IMU. In addition, we assume that the camera provides normalized velocity

measurements in the camera coordinates

uc
v � R�

nc un
v � R�

nc
vn

‖vn ‖ � R�
nc vn dv
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where the inverted velocity magnitude dv �
1

‖vn ‖ has the time derivative

�dv � −d2
v(un

v )�an
� −d2

v(uc
v)�ac .

The time derivative of uc
v is then

�uc
v � �R�

nb vn dv +R�
nc

�vn dv +R�
nc vn �dv

� −S(ωc)R�
nb vn dv +R�

nc an dv −R�
nc vn d2

v(uc
v)�ac

� −S(ωc)uc
v + ac dv − vc d2

v(uc
v)�ac

� −S(ωc)uc
v + dv(I − uc

v(uc
v)�)ac

� −S(ωc)uc
v − dvS(uc

v)2ac ,

which means that we end up with the system

�uc
v � −S(ωc)uc

v − dvS(uc
v)2ac (5.2)

�dv � −d2
v(uc

v)�ac , (5.3)

where we assume that we can measure uc
v , ac , and ωc , and we want to estimate

the velocity magnitude ‖vc ‖ � 1
dv

.

We then want to compare this system to the bearing and velocity measurement

system, and verify their equivalence. The relative distance vector δn
� pn

i − pn ,

is the vector from the vehicle to the landmark. Its direction can be measured by a

camera, which provides bearing measurements

uc
δ � R�

nc
δn

i

‖δn
i ‖

� R�
nc

pn
i − pn

‖pn
i − pn ‖ .

Since the landmark is stationary �pn
i � 0,

�δn
� �pn

i − �pn
� −vn ,

where we have used (5.1). The time derivatives of uc
δ and dδ �

1
‖δn

i ‖ can then be

found following the same steps as was done for the normalized velocities, which

gives

�uc
δ � −S(ωc)uc

δ + dδS(uc
δ)2vc (5.4)

�dδ � d2
δ(uc

δ)�vc , (5.5)

where we have the measurements uc
δ, ω

c and vc , and we want to estimate the

distance to the landmark ‖δn
i ‖ �

1
dδ

. We see that the systems (5.2)-(5.3) and

(5.4)-(5.5) are mathematically identical except a sign difference, since �vn � an and
�δn

� −vn .

If we then want to design an observer for the ego motion estimation (5.2)-(5.3)

we can use observers that were originally designed for system (5.4)-(5.5), where

range to a landmark is estimated. This is an extensively studied system in the

literature, and several observers have been designed. In the next section we will

review the observers that have global stability proven, and apply them on ego

motion estimation.
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5.3 Velocity estimation

There exist several observers that estimate the distance to a landmark provided

bearing, angular and linear velocity measurements. In this section, however, we

apply the same formulas to the camera velocity estimation, where the velocity can

be estimated provided normalized velocity, acceleration and angular rate mea-

surement.

What the reviewed nonlinear observers have in common is that they use similar

measurements and have proof of global or semi-global stability. Even though the

observers are structured differently, with PE condition differently defined, they all

have in common that they rely on the unit vector measurement to be non stationary

in the inertial frame. In practice this means that the observers are PE when the

vehicle velocity has a change of direction. For the ego motion estimation, this

means that the PE conditions are fulfilled when the acceleration and velocity are

not co-linear. In addition we compare the observers to an EKF inspired by the

states used in robust visual inertial odometery ([20]). A qualitative comparison

between the observers is presented in Table 5.1. In the rest of this section we

present the sensor setup for the ego motion estimation, and the observers that will

be compared.

5.3.1 Sensor setup

The IMU is assumed to be of high quality with an internal filter available to

calculate gravity estimates and biases. In addition a camera is available, providing

information about the velocity direction (course). The camera is calibrated and the

transformation between the camera and the IMU is known through calibration.

The following measurements and known values are then:

• Constant transformations pc
cb and Rcb between the IMU and and the camera.

• ωc � Rcbωb , The gyro rate from the IMU in camera frame

• uc
v , normalized camera velocity in the camera frame

• âc � Rcb( f b
+ gb) + S(ωc)2pc

cb , perceived acceleration provided by the IMU

from the specific force and gravity estimates together with the lever arm

compensation.

The term related to the angular acceleration �ω is neglected and assumed to be

zero for this setup, as done for the sensor setup in [41].

As the observers will be able to estimate velocity from only normalized velocity,

they can be used for initializing visual SLAM or VO methods, with the setup shown

in Figure 5.1. The normalized velocity can then come from a scheme as described in

[89], where a normalized velocity can be acquired from two-view algorithms such

as homography or the 5 point algorithm ([93]), not requiring any initialization. An
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CAM

IMU
(MAG)

T-V

VEL
SLAM/
VO

uc
v

f b, ωb, gb

vc

uc
δi

pc
i

pc

Figure 5.1: Block diagram of a possible initialization setup, where a two-view algorithms as explained
in [89] can provide a normalized velocity without any initialization. The velocity observer can thus
combine the normalized velocity with IMU data and initialize the scale of a visual SLAM/VO method,
or provide velocity measurements.

CAM

IMU
(MAG) VEL

SLAM/VO

uc
v

f b, ωb, gb
vc

uc
δi

pc
i

pc

Figure 5.2: Block diagram of a possible setup between the velocity estimation and a SLAM/VO, where
the VEL observer gets normalized velocity from the SLAM/VO method, and fuses it with the IMU
information which then can be used to maintain a drift free scale for the visual SLAM/VO.

alternative approach is shown in Figure 5.2, where the observer works in parallel

with a visual SLAM or VO. Acquiring the normalized velocity and fusing it with

the IMU data to return the metric velocity, a drift free scale estimate can therefore

be acquired.

5.3.2 Robust Extended Kalman Filter

Inspired by the work in [20], we use the robust EKF for comparison, where the

range and bearing states are separated, and the range estimate is inverted. As we

assume there are no biases in the IMU, and that a gravity estimate is available,

the states for the ego motion estimation are xEKF � [(uc
v)� , dv]�. The dv �

1
‖vc ‖

is the inverse metric speed, and the time derivative of the states are (5.2)-(5.3).

We show the discrete time implementation for the EKF, and we use the Euler

method to discretize the system. We apply the Rodriguez formula (2.35)-(2.36) for

propagating the unit vector

ωc
u[k] � ωc[k] + dv[k |k]S(âc[k])uc

v[k |k]
uc

v[k + 1|k] � R(Δtωc
u[k])�uc

v[k |k]
≈ I − Δt(S(ωc[k])uc

v[k |k] − dv[k |k]S(uc
v[k |k])2âc[k]) (5.6)

dv[k + 1|k] � dv[k |k] − Δtd2
v[k |k](uc

v[k |k])�âc[k],
where k ∈ N denotes the kth iteration step, and •[k |l] is the estimate of the

state at time-step kth given the lth measurement. In addition, ωc[k] and âc[k]
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are the averaged sensor measurements between time instants tk and tk+1. When

calculating the Jacobi matrices we utilize (5.6)

F ek f �

⎡⎢⎢⎢⎢⎣
∂uc

v [k+1|k]
∂uc

v [k |k]
∂uc

v [k+1|k]
∂dv [k |k]

∂dv [k+1|k]
∂uc

v [k |k]
∂dv [k+1|k]
∂dv [k |k]

⎤⎥⎥⎥⎥⎦ (5.7)

∂uc
v[k + 1]
∂uc

v[k] � I − Δt(S(ωc[k] + dv[k]S(âc[k])uc
v[k])

− d[k]S(uc
v[k])S(âc[k]))

∂uc
v[k + 1]
∂dv[k] � −ΔtS(uc

v[k])2âc[k]
∂dv[k + 1]
∂uc

v[k] � −Δtd2
v[k](âc[k])�

∂dv[k + 1]
∂dv[k] � I − Δt2dv[k](âc[k])�uc

v[k].

The covariance matrix is then propagated according to

P[k + 1|k] � F ek f P[k |k]F�
ek f + Rek f ,

where Rek f are approximated through linearization

Rek f � V
⎡⎢⎢⎢⎢⎣
cov(ωc[k]) 0

0 cov(âc[k])

⎤⎥⎥⎥⎥⎦ V�
+ Rre g , (5.8)

where Rre g is a regularization matrix and

V �

⎡⎢⎢⎢⎢⎣
∂uc

v [k+1|k]
∂ωc [k]

∂uc
v [k+1|k]
∂âc [k]

∂dv [k+1|k]
∂ωc [k]

∂âc [k]
∂dv [k |k]

⎤⎥⎥⎥⎥⎦
∂uc

v[k + 1|k]
∂ωc[k] � ΔtS(uc

v[k |k])
∂uc

v[k + 1|k]
∂âc[k] � −dv[k |k]S(uc

v[k |k])2

∂dv[k + 1|k]
∂ωc[k] � 0

∂âc[k]
∂dv[k |k] � Δtd2

v[k |k](uc
v[k |k])�.
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The cov(ωc[k]) and cov(âc[k]) can be calculated from the data sheet from the IMU,

or found empirically. The most challenging task is to find cov(âc[k]), as it is both

the combination of the gravity estimate and the specific force measurement. The

unit velocity vector zek f � uc
v(tk+1) is measured at time tk+1, and the Jacobian of

the measurement is thus trivial

J ek f �

[
I 03×1

]
.

The Kalman gain is then calculated using

Kek f � P[k |k]J�ek f (J ek f P[k |k]J�ek f + cov(zek f ))−1. (5.9)

The the estimate update is as follows

xEKF[k + 1|k + 1] �
⎡⎢⎢⎢⎢⎣
uc

v[k + 1|k + 1]
dv[k + 1|k + 1]

⎤⎥⎥⎥⎥⎦ (5.10)

�

⎡⎢⎢⎢⎢⎣
uc

v[k + 1|k]
dv[k + 1|k]

⎤⎥⎥⎥⎥⎦ + Kek f (zek f − uc
v[k + 1|k]) (5.11)

P[k + 1|k + 1] � (I − Kek f J ek f )P[k + 1|k]. (5.12)

As the magnitude parameter dv is inverted, the filter can be initialized without

any special procedure [20]. However as the filter is based on the EKF, there are no

guarantees of convergence, and the requirements for having the filter converge are

not clear

5.3.3 Sensor-centric observer - KF

The sensor-centric bearing-only SLAM is presented in [77]. By augmenting the

states and transforming the outputs, they are able to formulate the bearing only

SLAM problem as a linear system. This means that the filter can be implemented

with a Kalman filter, therefore, we give it the abbreviation KF. For a single

bearing measurement the states to be estimated are xKF � [vc , s]� and the input

is wKF � âc . Where vc is the metric velocity of the camera, and s is its speed; the

resulting system dynamics are

�xKF � AKF(t)xKF +BKF(t)wKF (5.13)

yKF � CKF(t)xKF , (5.14)
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where the time varying system matrices are partially built up by sensor data. The

matrices are then

AKF(t) �
⎡⎢⎢⎢⎢⎣
−S(ωc(t)) 0

0 0

⎤⎥⎥⎥⎥⎦ BKF(t) �
⎡⎢⎢⎢⎢⎣

I

uc
v(t)�

⎤⎥⎥⎥⎥⎦ (5.15)

CKF(t) �
[
I −uc

v(t)
]
, (5.16)

where the virtual measurement yKF � 0 works as a constraint on the system.

The system is proved to be Uniformly Completely Observable (UCO) if there exist

a time when ‖ �un
v ‖ > 0, implying that the KF can be designed to be globally

exponentially stable (GES) [3]. However, as the set-up provides noise that is not

Gaussian, introduced by the unit vector parametrization which gives a banana

shaped distribution, the optimality of the KF can not be expected. In addition the

system state space model is not minimal, and the noise is state dependent. This

may compromise the performance of this observer for noisy measurements.

5.3.4 Position Observer - PO

The position observers presented in [49] and [71] have measurements rotated in

the inertial frame. However since the comparison between the observers is made

in the body-frame, we transform the observers to work with measurements in the

body-frame. As the transformation from inertial to body-frame can be regarded as

a similarity transformation and hence preserves the observability properties of the

system, the observer in body-frame will have the same properties as the observer

in the inertial frame, which for both observers are GES.

In [49] a similar framework as described in section 5.3.3 is presented. The

system is augmented to a linear time-varying system, and an observer can be

created by applying the Riccati equations. However, the range is not explicitly

estimated, but implicitly estimated in the relative position estimate from the vehicle

to the landmark. In our case we estimate the velocity xPO � vc instead. It is also

shown how input bias estimation is possible with an expansion of the observer.

The system for one unit vector measurement in camera-frame, the normalized

camera velocity uc
v , and no bias estimation is

APO(t) � −S(ωc), BPO � I (5.17)

CPO(t) � S(uc
v(t))2 (5.18)

with the input wPO � âc , and a similar virtual measurements yPO � 0 as seen

previously, is used. The observer will have the same pros and cons as the observer

presented above, although it can be argued that the number of states of the system

is minimal. A similar fixed gain version was presented in [71], which is also able
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to estimate velocity bias. The simple observer for the system (5.17)-(5.18) is

�̂vc
PO � −S(ωc)v̂c

PO + âc − kPOS(uc
v)2v̂c

PO (5.19)

In addition, as it is argued in [29], that the difference between finding gains through

the Riccatti solution compared to using fixed gains is a matter of tuning. As it is

noted in [49], by designing the Kalman filter with certain covariance matrices,

the observer (5.19) is recovered. Hence we will use the fixed gain observer when

we compare this setup to the other observers. The observer is also proven to be

GES, assuming that a PE condition is satisfied. For a system with one bearing

measurement the PE condition is similar to the KF above; i.e. there exist a time

between t and t + ΔT when ‖ �un
v ‖ > 0, assuming �un

v is uniformly continuous.

5.3.5 Magnitude Observer - MO

The last observer was originally presented in [19], with proof of semi-global

asymptotic stability and locally exponential stability. The observer utilizes the

time derivative of the normalized vector and how it relates to the magnitude of

the vector corresponding to the unit vector measurement. From this, the inverse

magnitude of the vector is estimated, leading to vc
MO �

uc
x

dv
. Thus, the state repre-

sentation is identical to the robust EKF in section 5.3.2. The nonlinear observer is

driven by the input âc and ωc , and is as follows

�̂ub
δi � −S(ωc − kMO ũc)ûc

v + d̂vS(ûc
v)S(uc

v)âc (5.20)

�̂dv � projd(d̂2
v(uc

v)�âc − γMO(âc)�S(uc
v)2S(ûc

v)ũb
δi) (5.21)

ũc
� S(uc

v)ûc
v (5.22)

For this observer, the cross product between the unit vector estimate and measure-

ment is used as the error term. The system is proven to have semi-global stability

when a projection operator is applied in the estimation and ‖ �un
δi ‖ > 0. This means

that there also is an upper limit on the estimate d̂v to guarantee convergence for the

system. It is then natural to think that a similar bound should be set on the EKF as

well to increase the robustness. Another aspect with the MO observer is that it has

the skew-symetric structure similar to what is discussed in [101]. This means that

the observer can be tuned similarly to a second order system by using the gains

kMO � 2
√
αλ and γMO �

α
‖Bu ‖ , where Bu � (âc)�S(ub

δi)2S(ûb
δi). The convergence

rate will increase linearly with α, and λ is the damping ratio of the observer.

Remark 4. The various PE conditions discussed in this section are a bit different, however

they all depend on some excitation of the normalized velocity in the inertia frame ‖un
v ‖ > 0

at some time. However when uncertainty and noise is added to the system, the requirement

for the PE becomes stronger resulting in that the normalized velocity measurement ‖un
v ‖ >

0 should be exited regularly to get acceptable convergence.
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Table 5.1: Qualitative comparisons of the observers
presented

Observers States Observer Innovation Tuning parameters Stability PE condition

EKF [uc
v , dv] ỹ � uc

v − ûc
v QEKF , REKF Unknown Unknown

KF [vc , �] ỹ � 0 − v̂c − ŝuc QKF , RKF GES ‖ �un
v ‖ > 0

PO vc ỹ � 0 + S(uc)2v̂c kPO GES
t+T∫
t

S(un(τ))2dτ > μI , ‖vc ‖ > 0

MO [uc
v , dv] ỹ � S(uc)ûc kMO , γMO USGAS LES ‖ �un

v ‖ > μ, ‖vc ‖ > cδ

5.4 Ego-Motion Estimation

5.5 Simulation Results

The scenario presented in this section is of a vehicle traveling in a circle in 3D-space

at constant velocity vb � [0.5, 0, 0][m/s]. The trajectory of the vehicle can be seen

in Figure 5.3, which was the same trajectory used in the experiment. The simulator

was implemented using Euler integration, having step length h � 0.025[s].
The choice of circular trajectory was made so that the system matrices would be

close to constant and PE, making it easier to find what we call the optimal tuning,

and thus the comparison was made simpler.

When comparing different observers, how they perform is related to the tuning

of the observers. We found the tuning parameters that gave the lowest root mean

square error (RMSE) for the selected trajectory and noise parameters presented.

We regarded these tunings as optimal, and the mean and variance of the RMSE

of consecutive Monte Carlo (MC) simulations was used a metric of how well the

observers performed.

In addition to the observers presented in section 5.3, we introduced a velocity

observer, where the direction measurements were first filtered in the MO observer

and later used as measurements for the sensor-centric KF. The MO and KF were

thus in cascade and we named the filter XKF as it was inspired by [59]. The

motivation for this was to reduce the apparent noise sensitivity of the sensor-

centric KF which was seen in the results presented in [18], where also the semi-

global stability of this setup was proven.

5.5.1 Simulation without noise

To verify that the nonlinear observers presented in Section 5.3 had the exponential

stability claimed by the authors, prior simulations were performed without noise.

In addition, it was investigated how the convergence rate could be tuned for the

different observers. For the MO observer we was able to change the convergence

rate of the observer by utilizing the tuning presented in section 5.3.5, which were

confirmed through simulations. For the PO observer the convergence rate was

related to the gain kPO , however, there seemed to be a maximum acceptable con-
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Figure 5.3: The figure shows the trajectory of the vehicle flying in a circle over a plane with a camera
pointing downwards. The green arrow represents the normalized velocity measurement; red arrows
represent the bearing measurements,(100 of in this plot). The circles are the corresponding landmarks.

vergence rate, and choosing a gain for faster convergence resulted in oscillations

without faster convergence. It was tested if the numerical implementation played a

role in the oscillations, where reducing the step length of the discretization did not

affect the oscillations. As for the sensor-centric KF, the KF was tuned by changing

the diagonal entries for the measurement and process noise covariance matrices.

And changing these did not affect the rate of convergence of the observer, it was

also tried to change the matrix P(0), which also resulted in similar convergence

rate. The EKF was tuned with a combination of diagonal matrices and changing

the values of cov(ωc) and cov(âc) in (5.8). The results can be seen in Figure 5.4,

where the MO observer could be tuned to have arbitrary fast convergence. The PO

observer had approximately similar convergence rate as the KF and XKF, when

not oscillating. The KF and XKF did not change convergence rate by changing the

diagonal entries of the covariance matrix. In [5], the notion of tuneability and how

it is connected to observability was presented. Whether an observability analysis

can explain the lack of tunable convergence rate for the sensor-centric KF, XKF

and PO observers needs to be investigated further, as the circle maneuver ensures

that the system is PE for all the observers. The notion of tunable convergence rate

becomes increasingly important when the observer is working with a controller,

as it allows the control designer to decide the convergence rate of the observer

to meet the design criteria of the the state feedback controller transient response

specification and/or constraint.
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Figure 5.4: Logplot of the velocity magnitude estimation error without noise. The observers except of
the MO were tuned to be as fast as possible. The XKF can not be seen as it lies behind the KF line.

5.5.2 Noisy simulation and tuning

For the noisy simulations, realistic values of the sensor noise were chosen. The IMU

measurements were corrupted by white noise with standard deviation σω � 0.02I
[rad/s] and σ f � 0.02I [m/s2], which was meant to resemble a low cost MEMS

IMU. The white noise in the bearing measurements was σu � 0.00314I [rad],

resembling a pixel error for a camera with 90o field of view and 500 pixels image

height/width; the attitude heading reference system (AHRS) white noise was

σR � 0.0116I [rad] giving a 3σ value of 2o for the gravity; the velocity direction had

a white noise of σv � 0.1060I [rad], which was the mean error from a homography

with the setup in [41]. The bearing vector noise was orthogonal to the bearing

un � S(un
δi)wu , in which the noise wu was a white noise vector wu � N(0, σu).

This noise was then added, and the bearing was normalized, thus the noise became

nonlinear. As the camera velocity also was normalized after the noise was added,

this noise was also nonlinear. The unmeasured state for the observers is the

magnitude of the velocity, hence we utilized the velocity magnitude estimation

RMSE as a performance metric when we compared the observers.

The four observers and the EKF that we compared have different tuning pa-

rameters. The MO observer has two parameters kMO and γMO ; the PO has one

kPO , this can also be expanded to a matrix KPO ∈ R3×3 although this expansion

did not lead to significantly improved performance. The sensor-centric KF has

two matrices, corresponding to the process and measurement noise covariance

noise matrices, QKF ∈ R4×4 and RKF ∈ R3×3. As the XKF is a cascade of the MO
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filter and the KF, its tuning parameters are inherited from the MO observer and

the KF observer. The EKF has the tuning covariance matrices QEKF and REKF . A

summary of the observers is found in Table 5.1.

The observers were tuned using Monte Carlo (MC) simulations, where the

tuning parameter candidates were chosen randomly from various pools. For

the candidate MO and PO observers, as there were few parameters to choose

from, selecting the pool of possible tuning parameters was straightforward. The

results from these MC simulations can be seen in Figure 5.5 and 5.6. From these

simulations, it was evident that the MO observer was able to estimate the velocity

using a large set of tuning parameters (yellow area), and the PO observer also

seemed to have an optimal tuning.

To investigate how the sensor-centric KF and XKF observer could be tuned

properly, the covariance matrix of the process noise and innovation was found

empirically. This was done by simulating the system in parallel with and with-

out noise, and the covariances were estimated from the difference between these

two simulations. As the observer was implemented by Euler discretization, the

covariance estimate was of the discrete system, where Δx � h f (x , u)

Q̂ � cov(Δx − Δxm)
� h2cov((AKF(tk) −AKF(tk)m)x
+BKF(tk)u(tk) −BKF(tk)m u(tk)m),

where h is the discretization interval, and the tk is the discrete time and AKF(tk)
is the system matrix from (5.16) with noise-free sensor input, while AKF(tk)m has

noisy sensor input. The same applies to BKF(tk) and u(tk) and their corresponding

noisy version. The measurement noise covariance matrix

R̂ � cov(y − ym)
� cov(0 − CKF(tk)m x)

was estimated by running 10000 simulations and averaging the covariance esti-

mates from these runs. The matrices were then tested by calculating the normal-

ized error (NE)

NEQ(tk) �
1

N

∑
[Δx(tk) − Δx(tk)m]�i Q̂−1[Δx(tk) − Δx(tk)m]i ,

where [Δx(tk) −Δx(tk)m]i is the discrete process noise of the ith MC simulation at

time tk . From this test we could verify that the covariance found was consistent by

verifying that E[NEQ(t)] ≈ 4 , as dim(Q̂) � 4.
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Figure 5.6: Plot of log(RMSE) of the PO from 10000 MC simulations with varying tuning parameters

These covariance matrices were then used as starting point for the tuning

of the KF and XKF. It was tried to add a diagonal regularization matrix to these,

which improved the performance for the sensor-centric XKF. For the KF the tuning

variant giving the best results was multiplying the covariance matrices by gains

QKF � qgQ̂KF and RKF � rgR̂KF . The results of the KF simulations can be seen

in Figure 5.7. The initial covariance P(0) was initialized according to the initial

estimate error.

From the result of the MC simulations for the sensor-centric KF, it was evident

that the best result with lowest RMSE was qg � 0.22 and rg � 4, as seen in Figure
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Figure 5.7: Scatter plot of the log(RMSE) error of the KF for different gains multiplied to the covariance
matrices. The simulations were run 30 000 times, and tuning parameters were repeated over 300 times.
The log(RMSE) shown is the average of 300 runs.

5.7. Why the empirical covariance did not perform best, was probably because

the noise is state dependent and the empirical noise was found for actual state

estimates. The EKF was similarly tuned, where the covariance of both âc and uc
v

were found through 10000 MC simulations, and later tuning parameters rEKF and

qEKF were used so that

QEKF � Vcov([ωc ; âc])V�
+ IqEKF

REKF � cov(uc
v)rEKF .

where the best values were found to be qEKF � 2.6 · 10−3 and rEKF � 3.6, and the

Jacobian matrix V is defined in the Appendix.

From the MC simulations, we found what we regarded as the best tuning. The

observers with the optimal tuning were tested in MC simulations, where the mean

and variance of the RMSE can be seen in Table 5.2 columns Mean RMSE B and

VAR RMSE B. It can be concluded that the observers performing the best are the

MO observer followed by the XKF, as these observers have the combination of low

mean and variance of their RMSE. We see that the variance of the sensor-centric KF

is significantly larger than the other observers, and by examining the histogram

of the RMSE values from the MC simulation we saw that for about 0.61% of the

runs the KF failed to converge properly. The relationship between the noise and
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In Figure 5.8 we see how the tuning parameters of the MO part of the XKF affected
the observer. Both tuning parameters of the MO and KF were varied, however,
the most significant parameter for the performance of the XKF seemed to be the
kMO . The authors believe the result in Figure 5.8 can be explained by the noise
sensitivity of the KF in the cascade. The gain kMO had a large effect on the noise
level of the bearing measurements provided to the KF system matrices. And for
the gain kMO � 0.5, the MO observer worked as a smoothing filter for the bearing
measurements. It was also seen how the XKF seemed to have a much larger set of
tunings parameters that gave good results compared to the KF.
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Figure 5.8: Scatter plot of the log(RMSE) of the XKF observer versus the tuning parameters of the MO
observer. The results are from 10000 MC simulations, where the diagonal entries of the parameters of
the KF are varied from [0.2, 1.5]10−3 for the process noise covariance matrix Q, for the measurement
matrix R the parameters varied from diag([0.0015, 0.01, 0.01]) to diag([0.01, 0.02, 0.02])

the estimate can also explain why this filter failed to converge for certain runs. For

the XKF this problem was not seen, possibly because the noise was significantly

reduced by the MO filter.

5.5.3 High Noise simulation

To investigate the noise level robustness of the methods, an MC simulation was run

where the variance of all the noise parameters were increased by three times. The

same tuning as from the previous simulation was used to see how the observers

would react to the change. The results are displayed in Table 5.2 in columns

Mean RMSE C and VAR RMSE C. It was seen that the PO and XKF suffered

from a substantial bias, and the noisy measurements drove all the KF velocity

estimates close to zero, which explained its low variance in the RMSE. The MO
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Table 5.2: Table of the resulted mean and variance of the RMSE for 10000 MC simulations for the
optimal tuning of the observers. The columns with B ending are for normal noise described in section
5.5.2, while the columns with C ending are from the high noise scenario described in section 5.5.3

Observer Mean RMSE B VAR RMSE B Mean RMSE C VAR RMSE C

(MO) 0.046 1.47 · 10−4 0.192 5.7·10−3

(PO) 0.076 4.49 · 10−4 0.324 1.8 · 10−3

(KF) 0.061 0.030 0.638 6.6·10−4

(XKF) 0.051 1.349 · 10−4 0.414 0.015

(EKF) 0.067 2.473 · 10−4 2.592∗ 4.74∗
∗ 45% of the EKF runs had problems converging and ended up with an RMSE that was saturated to 5.
None of the other observers had similar problems.

also showed substantially worse results, however, it had the best performance for

this simulation. The EKF failed in almost half of the simulations which is reflected

in the results. Note the degeneration of the XKF, as this has previously been shown

to be resilience toward noise in [18]. However, a re-tuning of the observer would

make it perform better, which would be expected to be true for all the observers,

especially the EKF.

5.6 Experimental Verification

5.6.1 Experimental setup

The experimental verification was carried out by using an Octocopter flying in

a circle with an autopilot for 150 seconds. The data set was recorded from a

payload consisting of SenTiStack, which was built up of a SenTiBoard, an uBlox

GNSS receiver and a STIM300 tactical grade IMU ([2]). The SenTiBoard was also

connected to the flash signal of an uEye UI-3140CP camera, time stamping the flash

from the camera so that accurate timing from the images were available. The sensor

data and images were stored using an Odroid UX4. Before the flight IMU, camera

and temporal calibration was performed using the Kalibr toolbox ([37, 36]), finding

IMU biases, as well as the time delay and coordinate transformation between the

camera and the IMU. In the data set presented in this article, the image time

delay estimated was less than 3 ms, and as the timing of the image was related

to the flash signal, it was independent of the kernel load and thus assumed to

be constant. As the IMU was tactical grade, the acceleromter and gyro biases

were assumed constant for the duration of the experiment and respectively ba �

[0.03, 0.005, 0.085]� [m/s2] and bω � [0.007, −0.0002, 0.0017]� [rad/s]. The

gravity vector was also estimated using this scheme and was propagated using
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the gyro for the rest of the flight and used as a gravity measurement, which was

possible as the gyro-bias was stable for the time frame recorded. The data set

used consists of synchronized and calibrated IMU and camera measurements,

in addition, gravity direction estimate in body was initialized according to the

calibration, and GNSS was also available as navigation reference.

We also wanted to compare the velocity observers to the homography observer

presented in [41]. The nonlinear homography observer is denoted HOM. The UAV

flew over a flat field, so that we could use homography transformation between

two images to obtain the camera velocity we needed. For more details on how this

is done see [41], although we emphasize that for the observers using normalized

velocity, the camera velocity can come from many other computer vision algo-

rithms. For feature extraction we used the Kanade-Lucas-Tomasi feature tracker

([106]). The homography matrix was found with a 4-point direct linear transfor-

mation (DLT) ([1]). Outlier rejection was done using RANSAC ([32]). The velocity

was extracted from the homography using techniques based on [84]. As discussed

in [41], the homography can be a limitation for several scenarios. Nevertheless,

our experience is that the method is superior to other methods based on epipolar

geometry when the features are observed on a close to planar surface ([97]). We

therefore chose to use the homography to acquire the camera velocity, and this

velocity was then normalized to fit into the unit vector framework. Alternatively

we could have applied the two-view framework in [89], where homography and

the 5 point algorithm is used in parallel, and the velocity is chosen through a

weighting scheme, which would choose the homography as the superior method

in this setting. This also shows the flexibility of the unit velocity framework, by

how easily the unit velocity measurement is acquired from either the homography

or essential matrix.

The velocity reference magnitude in Figure 5.10 was the ublox GNSS velocity.

For the reference velocity in Figure 5.11, an RTK and camera aided inertial naviga-

tion system (INS) was utilized; based on the unit quaternion and a multiplicative

extended Kalman filter (MEKF) ([85]).

5.6.2 Experimental Results

The scenario presented in this section was a vehicle travelling in a circular pattern

in 3D-space, with a camera pointing downwards. The trajectory of the vehicle

can be seen in Figure 5.9, where the GNSS measurements, velocity and bearing

measurements at the last frame are shown. The number of bearing measurements

were between 317 and 400.

For the experimental data set, the MO and PO observers were tuned similarly to

the simulations. The XKF, KF and EKF had to be re-tuned as they had poor perfor-

mance with the tuning found in the simulations. The tuning for the experimental

data was done with MC simulations.
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Figure 5.9: The figure shows the trajectory of the vehicle for the experimental verification. The
green arrow represents the normalized velocity measurement; the red arrows represent the bearing
measurements from the camera, which there are 365 of in this plot.

The continues-time observers were discretized using forward Euler at every

image time stamp, where the measurements from the IMU were integrated be-

tween the images. The observers were tested on the data with two different initial

conditions, and the results can be seen in Table 5.3. From Figure 5.10, we see

how the different observers performed on the recorded data set when the velocity

was initialized with magnitude ‖v̂c ‖ � 3m/s. The MO observer had comparable

results to the HOM observer, and performed superior to the other unit vector

observers, with fast convergence and low RMSE error. The EKF started out with

a poor transient, that was not seen when the observer was initialized closer to

the true value. However the EKF was able to show satisfactory results with a

small increase in the error compared to the MO and HOM. The PO, KF and XKF

were able to stabilize their estimates, although with varying error. The PO had

slow convergence, though, it acquired good accuracy after convergence. The XKF

and KF had quite poor estimation, in the steady state condition at the end of the

sequence. In the simulation these methods also struggled for small excitation to

noise ratios especially KF, which the authors believe is because nonlinear noise is

introduced to the system matrices. In Figure 5.11, we see the estimated velocities

compared to the estimated velocity from the GNSS and camera aided INS, and

especially MO, HOM and eventually PO were able to provide accurate velocity

estimates for the experimental setup.

As some of the observers used inverted velocity magnitude as state, it was
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Figure 5.10: The upper plot shows the velocity magnitude estimate combined with the norm of the
GNSS velocity, while the bottom plot shows the velocity error
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Figure 5.11: The figure shows the estimates of the velocity of the camera compared to the reference
velocity.

natural to examine what happened when the inverted estimate increased. The

observers were therefore initialized with low velocity. For a velocity lower than

‖v̂c ‖ ≤ 0.11m/s the EKF had problems converging. A test was therefore performed

just above this limit with initial value ‖v̂c ‖ � 0.115m/s where the result can be

seen in Figure 5.12. Initially, we saw that all the nonlinear observers were able to

converge without any issues. Even the MO, which relies on the inverted magnitude

estimate, converged. The EKF however struggled when the inverted estimate

became small enough, and it overshot the estimates and used tens of seconds to

converge. Once they all converged, they had similar accuracy as the previous run,
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Figure 5.12: The upper plot shows the velocity magnitude estimate combined with the norm of the
GNSS velocity, while the bottom plot shows the velocity error.

Table 5.3: RMS error from the experimental results in Figure 5.10. 1: velocity estimate is initialized as
‖v̂c ‖ � 3. 2: velocity estimate is initialized as ‖v̂c ‖ � 0.0115.

time MO PO XKF KF EKF HOM

1: 70 ≤ t ≤ 110 0.308 0.585 0.270 0.294 0.381 0.215

110 ≤ t ≤ 150 0.0542 0.0599 0.307 0.477 0.107 0.0820

2: 70 ≤ t ≤ 110 0.346 0.205 0.336 0.260 47.7 0.281

110 ≤ t ≤ 150 0.0543 0.0762 0.282 0.244 0.107 0.0855

as expected.

5.6.3 Error in Gravity

A possibly optimistic assumption for the presented setup was that an accurate

gravity estimate was available through rotation of the gravity vector in NED/ENU

coordinates using tactical grade IMU or AHRS measurements. However, there

exist several industrial IMU with sub degree error in pitch and roll. To evaluate

how an error in gravity could affect the observers, the data set was ran with

a time-varying error of the gravity direction oscillating between 0.2o-0.4o . The

resulting performance can be seen in Figure 5.13, with the corresponding RMSE
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presented in Table 5.4. The velocity estimates were initialized similarly as for

the previous run with ‖v̂c ‖ � 0.115m/s. We see that the nonlinear observers
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Figure 5.13: The upper plot shows the velocity magnitude estimates combined with the norm of the
GNSS velocity, while the bottom plot shows the velocity error, for the data set run with an error in
gravity oscillating from 0.2o−0.4o

Table 5.4: RMSE error from the experimental results in Figure 5.13 with the error in gravity oscilationg
from 0.2o−0.4o

MO PO XKF KF EKF HOM

70 ≤ t ≤ 110 0.324 0.297 0.348 0.300 NaN 0.212

110 ≤ t ≤ 150 0.192 0.277 0.173 0.463 NaN 0.101

were not destabilized, but affected by the error introduced. The EKF diverged in

this scenario as the initial estimate d̂v was too large with gravity error. Among

the nonlinear observers, the most affected was the PO observer, which had large

oscillations, while the least affected was the HOM observer that had almost the

same RMSE, but in this scenario the error was oscillating. The MO observer was

also affected by the error, but less than the PO, which can be due to the slow

convergence of the PO observer. A surprising result was that the XKF in this

scenario had actually better results than without the error. Why this was the case

is uncertain, but it could be because the velocity estimates of the XKF were shifted
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upwards as a result of the added gravity error, which can be seen by comparing

Figures 5.10 and 5.13.

From the experimental results, we thus saw that the nonlinear observers were

able to estimate the velocity of the vehicle, with global convergence of the velocity

estimate, by only having calibrated IMU/AHRS and camera measurements. This

also showed that the ego-motion estimation can be performed by the observers pre-

sented. It was also shown that the nonlinear observers had more robust behavior

than the robust EKF implementation. It was also seen that the fixed gain observers

were easier to tune, and could reuse their tuning on the experimental data set.

The proposed setup can either be used for initializing a VO or VIO algorithms if

a calibrated IMU/AHRS is available or it can provide globally stable velocity esti-

mates for globally stable bearing-only navigation methods such as in [17, 71, 77],

paving the way for a globally stable SLAM solution using self calibrating IMU and

camera.

5.7 Conclusion

We presented a comparative study of globally stable observers applied to the ego

motion estimation. The solutions give globally stable velocity estimates provided

that a camera and an IMU with pitch and roll estimates are available. The compari-

son was shown both in simulations and using experimental data. The tuning of the

different observers was discussed and performed using Monte Carlo simulations

and by estimating the measurement and process noise of some of the observers. In

simulations the MO observer performed the best, followed by the XKF observer,

where it was also shown how the MO observer could filter the unit vector mea-

surements. Also on experimental data, the MO observer was shown to have the

best overall performance of the velocity direction observers, with fast convergence

and small RMSE in steady state. The nonlinear observers were also compared to

an EKF, and the observers were shown to have a more robust performance than

the EKF.

The results of this article confirms that ego-motion estimation with camera is

possible with global convergence of the velocity estimate, provided that an IMU,

with pitch/roll estimates and camera is available, which becomes a more favorable

setup as IMU sensors improve their performance in the future.



6Globally stable inertia bearing only SLAM

Part 1: Redesign
6.1 Introduction

Robust navigation and positioning of unmanned aerial vehicles (UAVs) are fun-

damental for any autonomous mission, particularly in challenging environments

where absolute positioning systems are absent or unreliable. A scenario were the

UAV’s and other autonomous vehicles are used for inspection missions, demon-

strates the need of high accuracy and consistency in position and attitude esti-

mates. In this scenario the vehicles will have to work as closely as possible to the

inspection target, which increases the need for stable, consistent and accurate es-

timates. Missions can be the inspection of structures such as bridges, power lines,

windmills etc. In this case, the electromagnetic interference and the existence of

ferromagnetic materials from the environment may degrade any magnetometer to

the point of becoming unusable [47]. To tackle these situations, aided navigation

techniques such as simultaneous localization and mapping algorithm (SLAM) can

be used. SLAM fuses the data from the surroundings with the data from the iner-

tal measurements unit (IMU) to increase accuracy in the navigation. By assuming

stationary landmarks, the change in the landmarks relative positions (LRP) can

give information about the motion of the vessel, and hence can be fused with

the IMU to increas navigation estimates. These sensors are typically provided in

ranges and/or bearing angles between the vehicle and each landmark, and with

these SLAM also builds a map of the surroundings of the vehicle. Over the past

decades, the research community has devoted tremendous effort in the field of

probabilistic SLAM. For a detailed review on SLAM see [28] and [6], and the

references within, which includes several successful implementations of SLAM

algorithms in experiments. A common approach is to use the extended Kalman

filter (EKF) SLAM, however, there are some challenges related to consistency and

stability, especially in regards of the error in the linearization due to wrong attitude

estimates [22]. For bearing only SLAM, there are a variety of methods; filter banks

[70], Rao-Blackwellized particle filters (RBPF)[15], linear mono SLAM [115] and

multi-state constraint Kalman filter (MSCKF) [88]. In [73], a hybridized SLAM

decides if a feature is processed using MSCKF or EKF, depending on the feature’s

track length; this in order to decrease computation time.

A proposed structure for global exponentially stable (GES) estimation was

presented by Johansen and Brekke [58], for range and bearing, bearing only and

range only SLAM. Nonlinearities from the attitude are handled by a nonlinear

observer [42], so that the the nonlinear system can be represented as a linear time

113
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varying (LTV) system. This gives the LTV system

�x(t) � A(z(t), t)x(t) + B(z(t), t)u(t) (6.1)

y(t) � C(z(t), t)x(t) (6.2)

where x is a vector with the states of the vehicle and landmark positions, y is the

vector output with a linear time varying dependency to the states. The vector z
contains auxilliary, possible nonlinear, measurements, such as attitude and bear-

ing angles represented as a linear time varying rotation matrix and line of sight

(LOS) vectors; The u are the inputs to the system such as acceleration. This rep-

resentation makes the SLAM problem solvable with the Kalman filter (KF), and

global stabillety can be proven by observability analysis [3]. Further, necessary and

sufficient conditions on the observability of the nonlinear system are derived in

[12]. Similar work, is done by Lourenco and Guerreiro [79][47], in which a globally

asymptotically stable (GAS) sensor-based SLAM estimation is presented, for range

and bearing, bearing only and range only measurements. In addition, they are

able to estimate the gyro bias with range and bearing measurements. They also

present the SLAM problem as a LTV system and uses KF for estimation, however,

they present the system in the coordinate system of the sensors, called robosentric

coordinate system.

6.1.1 Contribution

The contribution of this paper is two-folded. The main contribution is the redesign

of the bearing only SLAM presented in [58]. The new design requires less sensors

as it uses neither gyro nor bearing derivative. In addition, an intuitive assumption

for achieving observability is found, and is less restrictive compared to the one from

[58], explained in Section 6.8. In addition, a novel design of the output covariance

matrices through linearisation are proposed and analysed. Simulations are done

in 2D, and Monte Carlo (MC) simulations were used to investigate the consistency

of the SLAM estimator.

The structure of this paper is as follows: Section 6.2 contains the previous

work of the presented SLAM estimation; Section 6.3 presents the new bearing only

SLAM estimation, with observability analysis of the system. Section 6.4 presents

the the design of the covariance matrix, while Section 6.5 shows the simulation

results. Section 6.6 concludes the paper and suggests future work.

6.2 Previous Work

As mentioned, a GES SLAM estimation was presented by [58]. Both range and

bearing, bearing only and range only SLAM were presented as a LTV system, and

solved with Kalman filter. The nonlinearities from the attitude are estimated with

the comlimentary filter [42], with semi-globally exponetially stability. The stability
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of the system is then proved by observability for the LTV system. Similar work

has been done by Lourence and Guerreiro [79] [47], where a range and bearing,

and bearing only, SLAM filter is presented in body-frame coordinate system. The

global stability is proven with an observability analysis, thus guaranteeing GES of

estimator using the Kalman filter. When using the Kalman filter, an assumption is

that the process and measurement noise is Gaussian and white, and can therefore

be represented by the covariance matrices Q and R although this is not the case

for the nonlinear measurements coming out of the LOS vector and rotation matrix.

This means the LTV solution is not necessary optimal but the strong convergence

provided by the KF, combined with approximation of the noise characteristics;

results in a stable and useful estimation.

For the observability analysis of [58], an assumption was made in which

‖S(ω)lb
i +

�lb
i ‖ ≥ ε (6.3)

for some ε > 0. By examining the dynamics of the bearing measurements (2.32),

we see that this assumption is violated every time the velocity vb is parallel to the

bearing measurement lb
i , which gives a restriction on the suitable paths. To address

this, a new bearings only SLAM estimation is presented with a new observability

analysis.

In addition, an algorithm for estimating the vehicles position was presented in

[58]; where the vehicle estimate is set to zero at the start pn(0) � 0, which gives

lbim

vb

Attitude

!IMU

R̂nb SLAM

p̂ni

p̂n

v̂n

Magnetometer

IMU
f b
IMU

mb
mag

Bearing sensor

Velocity sensor

Figure 6.1: Block Diagram of the structure of the SLAM attitude observer in cascade with the SLAM
filter
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pn
i � δn

i (0). The position can then be estimated as

p̂n(t) �
m∑

i�1

wi(t)( �̂δn
i (0) − �̂δn

i (t)) (6.4)

p̂n
i (t) � p̂n(t) + �̂δn

i (t), i � {1,m} (6.5)

where it should be noted that the estimate will converge with a constant deviation

so that p̂n(t) � pn(t) + d, in which d �

m∑
i�1

wi(t)δ̃n
i (0).

Table 6.1: Overview of the Bearing only SLAM, for the corresponding matrices see [58]

Bearing Only SLAM, [58]

States Input

x � [vn , δn
1 , · · · , δn

m , �1 , · · · , �m]� u � Rnb f b
IMU + gn

Measurement model

yv � vb � (Rnb)�vn , y � [yv , yV
1 , · · · , yV

m , yE
1 , · · · , yE

m]�
yV

i � 0 � δn
i −Rnb� i lb

i
yE

i � 0 � wi vn − qi� i lb
i

wi � S(lb
i )2(Rnb)� , qi � S(ω)lb

i +
�lb
i

Dynamics model

�vn � u
�δn

i � −vn

�� i � −(lb
i )�(Rnb)�vn
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Table 6.2: Overview of proposed the Bearing only SLAM

New Bearing Only SLAM

States Input

x � [vn , δn
1 , · · · , δn

m�1 , · · · , �m]� u � Rnb f b
IMU + gn

Measurement model

yv � vb � (Rnb)�vn , y � [yv , yV
1 , · · · , yV

m]�
yV

i � 0 � δn
i −Rnb� i lb

i
Dynamics model

�vn � u
�δn

i � −vn

�� i � −(lb
i )�(Rnb)�vn
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6.3 Observability analysis

The proposed bearing only SLAM model is presented in Table 6.2. For the states

x � [vn , δn
1 , · · · , δn

m�1 , · · · , �m]�, the corresponding system matrices will be

AB
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

−I3 0 · · · 0
...

. . .
...

−I3 0 · · · 0

−(Rnb ub
1)� 0 · · · 0

...
. . .

...

−(Rnb ub
m)� 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BB
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3

0
...

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
CB

�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R�
nb 0 · · · 0 0 · · · 0

0 I3 · · · 0 −Rnb ub
1 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · I3 0 · · · −Rnb ub
m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We make an assumption on the trajectory of the vessel, to ensure observability of

the bearing only SLAM:

Assumption 2. There exist a T > 0, so that for every landmark a τi > 0 exists, so that

for all t > 0 we have t < τi < t + T, and that �un
i (τi) � 0. In addition, �un

v is uniformly

continuous.

This assumption ensures that the vehicle does not moves on a fixed line from

a landmark (see Figure 6.2), ensuring that �un
i (τi) � 0 for any landmarks for the

entire observation period.

Theorem 8. The model presented in Table 6.2, is UCO if and only if assumption 2 holds.

Proof. We will use the same techniques as in [78]. In the proof we will show that

the subsystems xB
i � [vn , δn

i , � i]� for each landmark is observable. Because of

the independence of the landmarks, the entire system is completely characterized

by the subsystem in terms of observability. This gives the system

AB(t) �
⎡⎢⎢⎢⎢⎢⎣

0 0 0

−I3 0 0

−(Rnb(t)ub
i (t))� 0 0

⎤⎥⎥⎥⎥⎥⎦
CB

�

[
R�

nb(t) 0 0

0 I3 −Rnb(t)ub
i (t)

]
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which is UCO as proven by calculating the transition matrix for the subsystem,
and then calculateing the observability Gramian. The state transition matrix is
found by the Peano-Baker series [25]

Φ(t , t0) � I3 +

t∫
t0

AB(σ1)dσ1 +

t∫
t0

AB(σ1)
σ1∫

t0

AB(σ2)dσ2dσ1 · · · (6.6)

where we see by the structure of AB(σ2) that AB(σ2)2 � 0, which also is the case

for AB(σ1)
σ1∫

t0

AB(σ2)dσ2 � 0, because the integral preserves the zero elements of

the matrix. This eliminates all the higher terms of the Peano-Baker serie, so we are
left with

Φ(t , t0) � I3 +

t∫
t0

AB(σ1)dσ1 �

⎡⎢⎢⎢⎢⎢⎣
I3 0 0

(t − t0)I3 I3 0

−RL∗(t , t0)� 0 I3

⎤⎥⎥⎥⎥⎥⎦
where RL∗(t , t0) �

t∫
t0

Rnb(τ)ub
i (τ)dτ. This can be inserted to (2.52) for confirma-

tion. We can then calculate the observability Gramian

W(t + T, t) �
t+T∫
t

(CBΦ(τ, t))�(CBΦ(τ, ))dτ (6.7)

(6.8)

where

CBΦ(τ, t) �
[

R�
nb 0 0

c[1](τ, t) I Rnb ub
δi

]
(6.9)

and c[1](t , t0) � I(t−t0)+Rnb ub
δiRL∗(t , t0)� If the observability Gramian is full rank,

the system is UCO. IfW(t , t0) is not full rank, there exist a vector c � [c�v , c�δ , c�� ]�
with magnitude ‖c‖ � 1 such that

c�W(t , t0)c � 0 (6.10)

which corresponds to

c�W(t + T, t)c �

t+T∫
t

‖CBΦ(τ, t)c‖dτ �

t+T∫
t

‖ f (τ, t)‖dτ
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We then need to find a c so that f (τ, t) � CBΦ(τ, t)c and its derivative is zero for

all τ > 0. Which gives the equations

f (τ, t) �
[

R�
nb(τ)cv

cv c[1](τ, t) + cδ + un
i (τ)c�

]
� 0 (6.11)

�f (τ, t0) �
[
−S(ω(τ))R�

nb(τ)cv

cv �c[1](τ, t) + �un
i (τ)c�

]
� 0 (6.12)

Immediately we see from (6.11) that it is necessary with cv � 0, which leads to the

equality cδ � un
i c� . We also see from (6.12) that we need to have �un

i c� � 0. By

Assumption 2, there exist a τi such that �un
i (τi) � 0, which implies that we need

c� � 0, which again imply that cδ � 0, following from (6.11). This contradicts that

‖c‖ � 1. We have proven that the the Gramian W(t + T, t) is full rank, and the

system is UCO, if and only if Assumption 2 holds. �

In the proof we showed that the bearing only SLAM is UCO, if and only

if, there exist a τi such that �un
i (τi) � 0, which implies that the inertia-frame

bearing measurement Rnb ub
δi can’t be constant. This is shown by assuming that

the bearing measurement is indeed constant, and showing that it makes the system

unobservable. For the assumption �un
i � 0 not to hold, we can see from (2.27), that

the velocity vector of the vehicle has to be zero or parallel to the bearing such that

S(un
i )vn � 0 for all time. By definition of observability [99], an observable system

must be able to distinguish two different initial states, by the knowledge of the input

and output only. Then consider the two cases, scenario a and b, where two vehicles

start at different distance from a landmark, but along the same angle and moving

parallel to the bearing measurements un
i at the same velocity and orientation, and

has the same acceleration (see Figure 6.2). This would result in them having the

same matrices AB and CB . If then, they in addition start with the same estimates

[v̂n
a (0), δ̂n

a (0), 
̂a(0)] � [v̂n
b (0), δ̂n

b (0), 
̂b(0)], it would lead to the same state

estimate evolution and output ya(t) � yb(t), thus the different initial conditions

are not indistinguishable from each other which makes the system unobservable.

Since we have shown that the system (AB , CB) is UCO if the Assumption 2 holds,

we know that globally exponentially stability can be achieved for the KF in the

nominal case.
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Figure 6.2: Two scenarios where the vehicle starts at the same angle from a landmark, with the same
velocity along parallel trajectory to its global bearing measurement.

6.4 Covariance matrix design

In this section we will estimate the covariance matrices QB and RB for the plant

noise wx and output noise w y , respectivly, when the bearings only SLAM is imple-

mented. As mentioned, the dependency of AB and CB on bearing measurements

and the rotation matrix, gives the need of approximating the noise characteristics.

If the noises are small perturbations, linearisation can give good approximation of

the noise characteristics. It should be noted that suboptimal covariance matrices

QB and RB will not damage the global stability, which can be seen in [3]. It is shown

in the proof that symmetry and positive definiteness are sufficient conditions on

QB and RB for the nominal system to be GAS. The sensor models in Section 2.5 for

the 2-D scenario will be used.

6.4.1 Introduction of virtual noise

When approximating wx and w y through linearisation, a problem is that the di-

mension of the output vector y from the bearing only SLAM in 2-D have dimension

2m + 2, while the number of sensor measurements used in the output are m + 3.

The rank of the covariance matrix of the sensor matrix SB is therefore less than

the dimension of the covariance of the output matrix RB , which can result in a

singular output covariance matrix approximation

R̂B � Y wSBY�
w . (6.13)
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The vector w contains all the noise variable from the measurements, which for our

case could be w � [wv1 , wv2 , wψ, wβ1 , · · · , wβm]�. The matrix Y w is then the

Jacobian Y w �
∂y
∂w . With this in mind, and the fact that the distributions from the

bearing vectors is nonlinear and has a covariance with dimensions two, while the

bearing angle has dimension one; it is natural to introduce a virtual noise parallel

to the bearing measurement

ub
δi m �

[
cos(βi + wβi)
sin((βi + wβi)

]
(1 + wli) (6.14)

By introducing the virtual noise, the dimension of the sensor matrix increases to

2m+3, which ensures a full rank output covariance matrix when using (6.13). This

also improved the performance of the filter substantially, compared to just using

regularization.

6.4.2 Noise model Linearization

As mentioned, linearisation was used for approximating the nonlinear stochastic

models. Hence we need the partial derivatives with regard to the noise inputs for

the rotation matrix

∂Rnb

∂wψ
� RnbS(1) (6.15)

where S(1) is the matrix

S(1) �
[
0 −1
1 0

]
(6.16)

The LOS partial derivatives with regard to the noise inputs is then

∂ub
δi m

∂wβ j
�

{
S(1)ub

δi i � j

0 i � j
(6.17)

∂ub
δi m

∂wl j
�

{
ub
δi i � j

0 i � j
(6.18)

Where i and j are different indices for LOS measurements. For the process model,
the main noise will come from the accelerometer, as an input to the velocity estimate
v̂n thus propagating to the rest of the estimates by the Kalman filter. In addition,
the range estimates have noise coming from the auxiliary measurement vectors ub

δi
and matrix Rnb . Since these occur in both AB and CB , there will be correlations
between the plant noise and the measurement noise. Simulations where done,
where the noise in AB was turned of, without any notable difference, so in this
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paper the noise from AB and CB are assumed uncorrelated, and implemented that
way. Recall that the landmark distances are given by the differential equations

��i � fi(x , t) � (Rnb(ψm)ub
δi(βm))�vn

� (Rnb(ψ)ub
δi(β))�vn

+ wxi

where wxi is the plant noise. From Table 2.1, we see that the measurements related

to ub
δi and Rnb are the attitude ψ, and bearing angles βi . In addition, the virtual

noise wl was introduced, as explained in Section 2.5. We therefore introduce the

noise vector w i � [wψ, wβi , wli], with covariance SBi � diag(σ2
ψ, σ

2
βi , σ

2
li). To

estimate the plant noise wxi linearisation is used

ŵxi �
∂ fi

∂w i
w i � f wi w i . (6.19)

With partial derivatives from above we find

f wi �
[
∂ fi
∂wψ

∂ fi
∂wβi

∂ fi
∂wli

]
f wi �

[
−(Rnb S(1)ub

δi)�vn −(Rnb S(1)ub
δi)�vn −(Rnb ub

δi)�vn
]

Giving the covariance of the � i dynamic to be estimated as

q̂B�i � f wiSBi f �wi (6.20)

the plant noise covariance matrix of the whole system will then become

Q̂B � QB + QB f + FwSBF�
w . (6.21)

The covariance matrix QB f � diag(σ2
f , σ

2
f , 0, · · · , 0) is from the accelerometer;

The matrix QB is included to allow some tuning, although it was left zero in

the implementation. The matrix SB is the covariance matrix of the vector w �

[wψ, wβ1 , wl1 , · · · , wβm , wlm]�, which is the noise vector for the whole system,

dependent on how many landmarks there are. The matrix Fw is the Jacobian

matrix with respect to the w of �x � f (t , x) � AB x for the whole system

Fw �

[
0 0 . . . 0 f 1

w
�

. . . f m
w
�

]�
(6.22)

where the row vector f i
w is the partial derivative of row number i of f (t , x) with

respect of the the vector w, i.e. f i
w � [ ∂ fi

∂wψ
, · · · ∂ fi

∂wβi
,

∂ fi
∂wli

, · · · ]
The same method is employed for the output model. The outputs are

yB
v � gv(t , x) � R�

nb vn (6.23)

yB
i � g i(t , x) � δb

i −Rnb ub
δi� i (6.24)
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where i is the index of the landmark. To approximate the noise of the output,

linearisation can also be used here

ŵ yv �
∂gv

∂w i
w i � Gwv w i (6.25)

ŵ yi �
∂g i

∂w i
w i � Gwi w i (6.26)

With partial derivatives from section 2.5 we find

Gwv �

[
∂gv
∂wψ

∂gv
∂wβi

∂gv
∂wli

]
, Gwi �

[
∂g i
∂wψ

∂g i
∂wβi

∂g i
∂wli

]
leading to

Gwv �

[
−S(1)R�

nb vn 0 0

]
Gwi �

[
−� iRnbS(1)ub

δi −� iRnbS(1)ub
δi −� iRnb(ub

δi)
]

We can then use the same elements for the whole system, where we linearise the

entire output y � CB x � g(t , x) � [gv
� , g1

� , · · · , gm
�]� with respect of the

whole noise vector w. The linearisation becomes

Gw �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂gv
∂wψ

0 0 · · · 0 0
∂g1

∂wψ

∂g1

∂wβ1

∂g1

∂wl1
· · · 0 0

...
...

...
. . .

...
...

∂gm
∂wψ

0 0 · · · ∂gm
∂wβm

∂gm
∂wlm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We get the approximate output covariance matrix the same way we obtained the

process noise covariance matrix

R̂B � RB + GwSBG�
w (6.27)

Here, matrix Gw is the Jacobian of the function g(t , x), and SB is a positive def-

inite tuning matrix, where in addition, the covariance of the velocity are main-

tained in the matrix elements RB (1:2,1:2) � Iσv
2. The matrix RB is also for tun-

ing/regularization, ensuring that the covariance matrix is always full rank, re-

gardless if �̂ i � 0. This was tuned so that the the covariance estimates where

consistent with the estimate errors.

6.5 Simulation Results and Performance Evaluation

The bearings only SLAM estimator was simulated in Matlab, where the model was

discretized with a time-step Δt � 1[s] using Euler. It was implemented using the

discrete-time Kalman filter, with estimates starting at the origin. The simulations

are in 2D environment, and for simplicity all the landmarks are observed at all
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time steps. The sensors are implemented as presented in section 2.5 with white

noise having standard deviation as follows: accelerometer σ f � 0.1[m/s2], AHRS

σψ � 0.8o , bearing angle σβ � 0.4o , velocity σv � 1[m/s] and the virtual noise

σl � 4.5 · 10−4. These were also used in the design of the covariance matrices

R̂B and Q̂B . The tuning/regularization matrix SB had diagonal entries SB �

diag(σ2
v , 502 , · · · , 502) . The standard deviation σv combined with the expected

initial distance to the landmarks, helped determine P(0). The vehicle travelled in a

spiral for 1350 seconds. The results can be seen in Figure 6.3. The estimated vehicle

trajectory and landmark estimates are in blue, while the true vehicle trajectory is

in red, and the landmarks are marked with 1,2,3,4. The position estimates have

also been translated, making comparison easier. The estimates converge fast, and

the estimate error of landmark 1 can be seen in Figure 6.4. The error characteristics

were the same for all the landmarks. From the error plots, it is apparent that

there is a bias in the estimate error, which is oscillating. MC simmulations were

made for 2500 seconds, where the results of Landmark 1 are shown in Figures

6.5-6.24. In Figure 6.5, the average error of all the simulations is plotted for every

time step. This bias vanishes if the the bearing and attitude noise is turned off in

the matrix CB in both filter model and simulation model. Bias compensation from

Bar-Shalom [7] has been explored, without success. Nevertheless, it is apparent

that the bias is predictable; and with an 1-2% error it is regarded as aceptable;

which is suported by examining Figure 6.3. To examine the concistency of the

SLAM solution, a normalized error squeared (NES) test [7][p.234-236] was also

preformed, resulting in Figure 6.24. The authors acknowledge that the NES test

fails in the strictest sense, especially because of the bias. However, the result of the

NES test also demonstrated stability of the solutions and the covariance estimates.

So it is hardly critical, but future research should address this with more detail.
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Figure 6.3: The landmark and vehicle position estimates of the bearing only SLAM. For this figure, the
end position estimate is set equal to the true end position for easier comparison in the figure, and one
can see that the evolution of the position estimates converge to the same trajectory as the true vessel.

Figure 6.4: The error of 150 trajectories of the Landmark 3 estimates, with 3σ plotted red. Here the
covariance matrix is the covariance from linearization added with a diagonal matrix. It is apparent
that the biassed estimates offsets the error.
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Figure 6.5: The mean error in range estimates of landmark 4 from 3000 MC simulations, from 500 <
t < 2500.

Figure 6.6: NES test of Bearing only SLAM with 1000 MC simmulations and 1% confidence interval for
landmark 4, with only linearised covariance matrix. It is apparent that the NES estimates are optimistic,
due to the bias estimates.
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Figure 6.7: The histogram of the bearings only output (b) along with the approximated noise through
linearisation (a). The histogram is created from the output at t=1000, from 3000 MC simulations.
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6.6 Conclusion

In this article we have presented a globally asymptotically stable bearing only

SLAM estimation, that is able to estimate landmarks and its relative position with

bearing only measurements in addition to IMU, velocity and attitude measure-

ments. The system was represented as an LTV system, where an observability

analysis was performed; in which conditions on the trajectory was found so that

with KF, global convergence could be achieved in the nominal case. A new design

of the input covariances was proposed, using the Jacobian of the system.

6.6.1 Future work

Future work include further analysis of the noise characteristics of the bearing only

SLAM solution and exploration of the noise correlation structure in detail. In ad-

dition, the goal is to develop an attitude observer for bearing only measurements,

which is not dependent on magnetometer to estimate gyro bias, and experimental

validation of the SLAM solution together with solutions presented in [58].

While working with the KF in this chapter, it was evident that the introduction

of nonlinear noise degenerated the KF, especially for high noise values. In order to

mitigate this sensitivity, a cascaded observer setup between the KF in this chaper

and the nonlinear observer from Chapter 4 was tested. The hypothesis was that

the nonlinear observer would filter the bearing measurements for the KF, thus

reducing the noise exposure of the KF.
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Part 2: eXogenus Kalman Filter
6.7 Introduction

Robust navigation and positioning of unmanned aerial vehicles (UAVs) are funda-

mental for any autonomous mission, with particular challenges in environments

where absolute positioning systems are absent or unreliable. To tackle these sit-

uations, aided inertial navigation techniques such as simultaneous localization

and mapping algorithm (SLAM) or visual odometry (VO) can be used. What all

these methods have in common is that they rely solely on on-board sensors to

preform the navigation. A common setup is fusing camera measurements with

inertia measurements unit (IMU) and/or velocity measurements. VO and SLAM

are differentiated on whether they preform loop closure or not, where SLAM is

the category preforming loop closure [21]. This means that a consistent filter [7]

is especially important for a SLAM algorithm, as a consistency property would

help make the search for possible loop closure faster and more robust. Over the

past decades, the research community has devoted tremendous effort in the field

of probabilistic SLAM. For a detailed review on SLAM see [28] and [6], and the

references therein, which include several successful implementations of SLAM

algorithms in experiments. However, a remaining open problem within SLAM is

robustness, especially for initialization and recovery [21]. This motivated research

on bearing only SLAM and VO solutions with global stability [77, 71, 58, 17, 19, 50]

Some of these filters [77, 58, 17, 50] get their result of global stability by setting

up the SLAM problem as an LTV system, where they introduce measurements

into the system matrices.

�x(t) � A(z(t), t)x(t) + B(z(t), t)u(t) (6.28)

y(t) � C(z(t), t)x(t) (6.29)

where x is a vector with the states of the vehicle and landmark positions, y is the

vector output with a linear time varying dependency to the states. The vector z
contains auxilliary measurements, such as attitude and bearing angles represented

as a linear time varying rotation matrix and bearing vectors; The vector u contains

the inputs to the system such as acceleration and velocity. This representation

makes the SLAM problem solvable with the Kalman filter (KF), and global stability

follows from observability analysis [3].

Using measurements to compute the system matrices, violates the assumption

of the processes noise and measurement noise being uncorrelated. Furthermore,

the treatment of the noises is no longer straightforward as the noise is neither ad-

ditive nor Gaussian, so the optimallity of the KF is lost. Nevertheless, in [17], it was

129
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Figure 6.8: Block Diagram of the XKF cascade, of the nonlinear observer (NO) and KF

demonstrated that the setup, if the covariance matrices are approximated through

linearization, can give estimates with approximate consistency and acceptable

bias. However, for larger noise levels, especially in the bearing measurements, the

noise matches the linearization inaccurate and the LTV setup has problems giving

satisfactory results.

6.7.1 Contribution

In this article we take inspiration from the XKF filter setup, introduced in [59]. We

will use the nonlinear filter [19] as a first-stage filter of the bearing measurements

and feed these to system matrices in the time varying KF presented in [17]. The

cascade structure can be seen in Figure 6.8. We prove that this setup is USGAS,

and simulations demonstrate that the cascade setup is more robust against large

measurement noise, than the filters individually. In addition we investigate how

the novel nonlinear observer [19] preforms against the KF [17].

The structure of this paper is as follows: Section 6.8 presents the KF and

nonlinear observer, and in Section 6.9 we prove USGAS for the error dynamics of

the cascade setup; 6.10 shows the comparative analysis between the new cascade

setup and the individual filters. Section 6.11 concludes the paper.

6.8 Bearing only filters

The cascade setup for bearing only SLAM, is of a nonlinear observer [19] in a

cascade with a time varying KF [17]. In this section we give a quick summary of

both filters.

6.8.1 Kalman filter

The Kalman filter presented here was first presented in [17], with including design

of the covariance matrices as well as consistency analysis; and the readers are re-
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ferred to this article for further details. It was a redesign of the bearing only filter

in [58], where the filter assumes that in addition to bearing and velocity measure-

ments, an AHRS is available. Thus the bearing only SLAM filtering problem can

be reformulated as an LTV system. The measurement model and dynamic model

are summarized in Table 6.3. For the states xKF � [vn , δn
1 , · · · , δn

m�1 , · · · , �m]�,

the corresponding system matrices are

un
δi � Rnb ub

δi

AB(un
δi) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

−I3 0 · · · 0
...

. . .
...

−I3 0 · · · 0

−(un
δ1
)� 0 · · · 0

...
. . .

...

−(un
δm)� 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, BB
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3

0
...

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
CB(t , un

δi) �

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R�
nb 0 · · · 0 0 · · · 0

0 I3 · · · 0 −un
δ1

· · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · I3 0 · · · −un
δm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The system was proven to be observable if the bearing vectors ub

δi were guar-

anteed to be non-stationary. Thus, as the system is LTV, the Kalman filter can yield

a UGES filter [3] as discussed.

In addition, an algorithm for estimating the vehicle’s position was presented in

[58]; where the vehicle position estimate is set to zero at the start pn(0) � 0, which

gives pn
i � δn

i (0). The position can then be estimated as

p̂n(t) �
m∑

i�1

wi(t)( �̂δn
i (0) − �̂δn

i (t)) (6.30)

p̂n
i (t) � p̂n(t) + �̂δn

i (t), i � {1,m} (6.31)

where wi are weights that sums up to 1. It should be noted that the estimate will

converge with a constant bias so that p̂n(t) � pn(t)+d, in which d �

m∑
i�1

wi(t)δ̃n
i (0).

The relative position estimate will converge as δ̃n
i (t) converges to zero. To improve

the position estimate, the initial state can be estimated. Because of the observability

of the system, by definition it can be estimated using [53]

x̂(t0) � W O(t , t0)−1

t1∫
t0

Φ(τ, t0)�C(τ)�(y(t) − C(τ)x) (6.32)
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So that better estimates of �̂δn
i (0) can be found.

6.8.2 Nonlinear observer Bearing Only SLAM

The nonlinear observer, in Table 6.4, was first presented in [17], and the readers

are referred to this article for further details. The observer filters unit vector

measurements and uses techniques from high gain observers and skew-symmetric

systems to estimate the range from the bearing and velocity measurements. The

observer was proven to be USGAS, with exponential stability for the bearing

estimate error being less than π
2 .

The states of the observer can also be stacked in a vector xNO � [un
1 , · · · , un

m , d1 , · · · , dm]�,

where un
δi is the unit vector and di is the inverted range, so that the LRP is found

using δn
i �

un
δi

di
.

6.8.3 Computational aspects of the nonlinear observer

Using inverted range estimates results in the substantial small estimates if the

range is large. If it is desirable to keep the inverted parameter larger, bearing vector

estimate can be implemented with an arbitrary magnitude, so that ‖M ûb
δi ‖ � M

and �̂δn
i �

M ûb
δi

M d̂i
resulting in that the inverted range estimate is M d̂i �

M
‖ �̂δn

i ‖
. The

Table 6.3: KF Bearing only SLAM

Bearing Only SLAM [17]

States Input

x � [vn , δn
1 , , · · · , δn

m , �1 , · · · , �m]� u � Rnb f bm
+ gn

Measurement model

y � [yv , yV
1 , · · · , yV

m]� , unm
δi � Rm

nb ubm
δi

yV
i � 0 � δn

i − unm
δi � i , yv � vb � (Rm

nb)�vbm

Dynamics model

�vn � u

�δn
i � −vn

�� i � −(ub
δi)�(Rnb)�vn
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observer dynamic will be the same as before, only multiplied by M

M �̂un
δi � M �̂un

δi ,
M �̂d � M �̂d (6.33)

Another aspect of the implementation of the observer is that it is originally de-

signed for 3-D especially as a result of the cross product. However, if it is desirable

not to use the skew symmetric matrix and keep the vectors in two dimensions, the

following identities can be used

−S(S(un
δi)ûn

δi) � (un
δi(ûn

δi)� − ûn
δi(un

δi)�) (6.34)

−S(ub
δi)2 � I − ub

δi(ub
δi)� (6.35)

S(ub
δi)S(ûb

δi) � (un
δi)�ûn

δiI − un
δi(ûn

δi)� (6.36)

In addition, due to the non-linearity of the propagation of the d̂ estimate, the Euler

method can become an insufficient implementation of the adaptation law for larger

time steps. For this reason the 4th order Runge Kutta was implemented for the

observer.

Table 6.4: Nonlinear Bearing only SLAM observer presented in [19]

Nonlinear Bearing Only SLAM, [19]

States Input

x � [un
δ1
, · · · , un

δm , d1 , · · · , dm]� u � Rm
nb vbm

Measurement model

yi � unm
δi � Rm

nb ubm
δi ỹ i � S(unm

δi )ûn
δi

Dynamics model and observer

�un
δi � −S(un

δi)2vn �di � d2(vn)�un
δi

�̂un
δi � −S(k ỹ i + d̂S(unm

δi )vnm)ûb
δi�̂di � d̂2(vnm)�unm

δi + γ(vnm)�S(unm
δi )2S(ûn

δi)ỹ i
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k1u � �̂un
δi(ûn

δi , d̂ , ũ
n
δi(tk), tk) (6.37)

k1d �
�̂d(d̂ , ũn

δi(tk), tk) (6.38)

k2u � �̂un
δi(ûn

δi + k1u
dt
2
, d̂ + k1d

dt
2
, ũn

δi(tk), tk) (6.39)

k2d �
�̂d(d̂ + k1d

dt
2
, ũn

δi(tk), tk) (6.40)

k3u � �̂un
δi(ûn

δi + k2u
dt
2
, d̂ + k2d

dt
2
, ũn

δi(tk), tk) (6.41)

k3d �
�̂d(d̂ + k3d

dt
2
, ũn

δi(tk), tk) (6.42)

k4u � �̂un
δi(ûn

δi + k3u dt , d̂ + k3d dt , ũn
δi(tk), tk) (6.43)

k4d �
�̂d(d̂ + k3d dt , ũn

δi(tk), tk) (6.44)

{ûn
δi}tk+dt

� ûn
δi + dt

k1u + 2k2u + 2k3u + k4u

6
(6.45)

{d̂i}tk+dt
� d̂i + dt

k1u + 2k2u + 2k3u + k4u

6
(6.46)

6.9 Cascade bearing only SLAM

In this section we will discuss the cascade setup of the KF and nonlinear observer

presented in the previous section. The cascade structure can be seen in the block-

diagram in Figure 6.8. The KF uses the bearing estimates from the nonlinear

observer, instead of the bearing measurements directly, when building the system

matrices. The covariance are build up using (2.43)-(2.44), however, the estimates

from the nonlinear observer are also used here. The setup is thus, the special case

of the XKF when the system can be linearly represented. The nonlinear observer

and KF in cascade is thus

Σ1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̂xB � AB(ûn
δi)x̂B + Bu + K(y − CB(t , ûn

δi)x̂B)
�P � AB(ûn

δi)P + P(AB(ûn
δi))�

−KCB(t , ûn
δi)P + Q̂(ûn

δi , d̂i)
K � PCB(t , ûn

δi)(R̂(ûn
δi , d̂i))−1

(6.47)

Σ2

{ �̂un
δi � −S(ku ỹ i + d̂S(un

δi)vn)ûn
δi�̂di � d̂2(vn)�un

δi + kd(vn)�S(ub
δi)2S(ûn

δi)ỹ i

(6.48)

As mentioned, the KF is UGES [17], and the nonlinear observer is USGAS. How-

ever, for the XKF setup, the assumption is that the nonlinear observer is either



6.9. CASCADE BEARING ONLY SLAM 135

UGAS, UGES or USGES, which means we can not use the Theorem from [59] di-

rectly. Regardless, we are still able to show that the system is USGAS by showing

that the system Σ1 is input to state stable (ISS) with respect to the error from Σ2.

Theorem 9. Consider the observer (6.47)-(6.48), for a system where velocity, attitude and

bearing measurements from landmarks are available, and are continuous and Lipschitz.

Further assume that the trajectory of the vehicle is so that the bearing measurements satisfies

‖ �un
δi ‖ > 0 and estimates satisfies ‖ �̂un

δi ‖ > 0, and that the states xB are bounded. Then

there exist gains ku and kd for (6.48), such that the estimate error (6.48) will converge

to zero. In addition, assume that, the bearing estimates ûn
δi from (6.48) are used in

building the system matrices AB(ûn
δi) and CB(ûn

δi) , and Q̂(ûn
δi , d̂i) and R̂−1(ûn

δi , d̂i) are

built from the estimates ûn
δi and d̂i so that they are bounded and positive definite and

(AB(ûn
δi), Q̂(ûn

δi , d̂i)) is controllable, then the origin of the error dynamics of the cascade

is USGAS.

Proof. As said, we will show that the KF Σ1 is ISS with respect to the error from

the nonlinear observer. For convenience we organize the system into the cascaded

Σ1

{
�η1 � f 1(t , η1) + g(t , η) (6.49)

Σ2

{
�η2 � f 2(t , η2) (6.50)

with η � [η�1 , η�2 ]�. Where we will use the stability property of the KF without

error

�η1 � f 1(t , η1) (6.51)

called the unforced system, to show that Σ1 is ISS. We introduce the additive

bearing error

e un
δi � un

δi − ûn
δi (6.52)

We note that ûn
δi is maintained on the unit ball, which means both un

δi and ûn
δi are

unit vectors. Through trigonometric relations we find the relationship between

the errors

‖e un
δi ‖ � 2 sin( θ̃ui

2
) ≤ 2 (6.53)

where θ̃ui is the bearing angle estimate error from Σ2 and is both bounded and

will go to zero, as the error dynamics of Σ2 is USGAS. We see that the additive

bearing error is both bounded by 2, and by θ̃ui which means it will also converge

to zero as θ̃ui → 0. Which means that eventually all ‖e un
δi ‖ will go to zero when

‖η2‖ → 0.
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What we notice next, is that the system matrices AB(un
δi) and CB(un

δi) are linear

with respect to the bearing, which means that we can define the error matrices

ÃB(e un
δi) � AB(un

δi) − AB(ûn
δi) (6.54)

C̃B(e un
δi) � CB(un

δi) − CB(ûn
δi) (6.55)

where it is evident that these matrices are bounded as ‖e un
δi ‖ ≤ 2, moreover

‖ÃB(e un
δi)‖ → 0 and ‖C̃B(e un

δi)‖ → 0 as ‖η2‖ → 0, as it would mean ûn
δi � un

δi , ∀i.
If we then look at the error dynamics for (6.47) x̃B � xB − x̂B of the KF

�̃xB
� �xB − �̂xB (6.56)

� AB(un
δi)xB − AB(ûn

δi)x̂B (6.57)

+ K(t)(CB(un
δi)xB − CB(ûn

δi)x̂B) (6.58)

which we can reorganize to

�̃xB
� (ÃB(e un

δi) + AB(ûn
δi))xB − AB(ûn

δi)x̂B

+ K(t)((C̃B(e un
δi) + CB(ûn

δi))xB − CB(ûn
δi)x̂B)

�AB(ûn
δi)x̃B

+ K(t)CB(ûn
δi)x̃B (6.59)

+ ÃB(e un
δi)xB

+ K(t)C̃B(e un
δi)xB (6.60)

We see that the error dynamics can be divided into two parts, one which

resembles the error dynamics of a KF, and one part which is with the induced

error from the nonlinear filter. The terms related to the error dynamics of the KF

combined with �P and K in (6.47) is then

�̃xB
� AB(ûn

δi)x̃B
+ K(t)CB(ûn

δi)x̃B (6.61)

�P � AB
û (ûn

δi)P + P(AB
û (ûn

δi))�
− KCB

û (t , ûn
δi)P + Q̂(ûn

δi , d̂i) (6.62)

K � PCB
û (t , ûn

δi)(R̂(ûn
δi , d̂i))−1 (6.63)

which resembles the error dynamics of a continues-time KF with system matrices

AB(ûn
δi) and CB(ûn

δi). (AB(ûn
δi), CB(ûn

δi)) is observable as ‖ �̂un
δi ‖ > 0, and we have

assumed that Q̂(ûn
δi , d̂i) and R̂−1(ûn

δi , d̂i) are bounded and (AB(ûn
δi), Q̂(ûn

δi , d̂i)) is

controllable, meaning that the error dynamic (6.61)-(6.63) UGES [3, 17]. Thus the

unforced system of Σ1 (6.51) is UGES, implying that Σ1 is input to state stable with

respect to the input η2 [65, Lemma 4.6]. What is then left, is to identify perturbation

g(t , η) which is the remaining part of the dynamic (6.60)

g(t , η) � (ÃB(e un
δi) + K(t)C̃B(e un

δi))xB (6.64)

which we know is bounded, since the matrices P and CB
û (t , ûn

δi) and R̂(ûn
δi , d̂i)−1

are bounded, implying that K(t) is also bounded. In addition, we have that the
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true states xb are also bounded. We thus see that the perturbation term is indeed

bounded, and will go to zero as ‖η2‖ → 0.

Then proving the that the entire system (6.49)-(6.50) will converge to zero

can either be done using the converse Lyapunov theorem for UGES systems [65,

Theorem 14.4], or follow the steps preformed in [65, Lemma 4.7] where UGAS

together with ISS in cascade is proven to give a UGAS system. �

6.10 Simulation Results and Performance Evaluation

The filters and observers were tested in simulations, where a vehicle moves in

circles in 2-D, while observing four landmarks positioned randomly in a box

1500m away. The simulations were discretized with the method having step-length

Δt � 0.25[s]. The system matrices used in the KF and XKF where the discretized

similarly and implemented as discrete time KF. The nonlinear observer was im-

plemented with 4th order Runge Kutta discretization due to its nonlinearities, and

with a magnitude ‖M ûb
δi ‖ � 3000 . The sensors were implemented as presented

in section 2.5 with white noise having standard deviation as follows: accelerom-

eter σ f � 0.25[m/s2], heading σψ � 0.46o , bearing angle σβ � 0.26o , velocity

σv � 1[m/s]. These were also used in the design of the covariance matrices R̂B and

Q̂B , as done in [17] with virtual noise σl � 1.2 · 10−3. The tuning/regularization

matrices had diagonal entries GQ � 0.01I and HR � diag(σ2
v , 502 , · · · , 502), which

was used in both the KF and XKF. The tuning of the nonlinear filter was based on

the tuning in [101]. Through quasi pole placement, where the parameter α (fre-

quency) and λ (damping-ratio), the gains where chosen respectively ku � 2
√
αλ,

and kd �
α

‖vn ‖ , and through Monte Carlo (MC) simmulations the tuning parame-

ters α � 2 · 10−4 and λ � 1.75 equivalent to an over damped system, were found to

give the lest amount of error. To tune the nonlinear observer in the XKF, a similar

MC simmulation was preformed. Where the tuning giving the least amount or

error for the XKF was chosen, and resulted in α � 4 · 10−3 and λ � 0.9, which is

equivalent to slightly under damped system.

To test the KF, XKF and the nonlinear observer against each-other, 1000 MC

simulations were run. Example run for each observers can be seen in Figures

6.9-6.11, where we see that all the methods are able to localize and estimate the

landmark position with varying accuracy. The error trajectories were also plotted,

with the KF and XKF having their 3σ boundaries plotted, which can be seen in

figures 6.12-6.14. Also the bias and normalized estimation error squared (NEES)

[7][p.234-236] was calculated with results seen in Table 6.5. From these figures

it is evident that the even though the KF has the most precise estimates, in the

sense of having least amount of variance, there is a bias which becomes evident by

examining Figure 6.15 and Table 6.5. The nonlinear observer has the largest error,

never the less it is still able to preform localization with some accuracy, and its bias

is not much larger than for the KF. For the XKF, the estimates are a bit more spread
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Figure 6.9: The landmark and vehicle position estimates of the KF bearing only SLAM. For this figure,
the end position estimate is set equal to the true end position for easier comparison in the figure, and
one can see that the evolution of the position estimates converge to the same trajectory as the true
vessel.

Figure 6.10: The landmark and vehicle position estimates of the nonlinear observer bearing only SLAM.
Simmilar setup as Figure 6.9
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Figure 6.11: The landmark and vehicle position estimates of the XKF bearing only SLAM. Simmilar
setup as Figure 6.9

Figure 6.12: The error of 1000 trajectories from the KF of the Landmark 1 estimates, with 3σ plotted
red.
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Figure 6.13: The error of 1000 trajectories from the Nonlinear Observer of the Landmark 1 estimates,
with 3σ plotted red.

Figure 6.14: The error of 1000 trajectories from the XKF of the Landmark 1 estimates, with 3σ plotted
red.
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and consistent than the KF, but with less bias as can be seen in Table 6.5. This is

because the nonlinear filter reduces the bearing noise significantly, as can be seen

in Figure 6.18, which leads to a less banana shaped noise experienced by the filter

in the XKF.

To test the methods when subjected to an increase in nonlinear noise, new

simulation were preformed where the variance of the measurement noise related

to the nonlinearities; bearing and attitude measurements were quadrupled. The

results is seen in the Figures 6.19-6.21 where the new error plots with co-variance

estimates are shown. In Figures 6.22 and 6.23 the new bias for the KF and XKF can

be seen. We see that the KF starts to have problems, which results in a significant

bias. The nonlinear observer also seems to have an increased variance as a result.

Conversly, the XKF is the setup least affected by the increase in nonlinear noise,

and is able to keep its consistency properties and accuracy when it is allowed to
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Figure 6.15: The mean error in range estimates from the KF of landmark 1 from 1000 MC simulations,
from 500 < t < 2500.
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Figure 6.16: The mean error in range estimates from the nonlinear observer of landmark 1 from 1000
MC simulations, from 500 < t < 2500.
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Figure 6.17: The mean error in range estimates from theXKF of landmark 3 from 1000 MC simulations,
from 500 < t < 2500.
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converge. Also, we see that even though the nonlinear observer has a greater

variance that the KF, it seems less biased, which is seen in Table 6.5. Regardless,

the XKF was shown to be the most robust setup against a high noise levels.

Table 6.5: The results of 1000 MC simmulations, for both a normal and high noise scenario.

Noise

level
Average KF NON XKF

Low
Bias 10.5 18 7.5

NEES 2.3 N/A 2.1

High
Bias 38 26 9

NEES 20 N/A 3
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Figure 6.18: The bearing measurement error vs. the bearing estimate error from the nonlinear observer
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Figure 6.19: The error of 1000 trajectories when the noise is quadrupled from the KF of the Landmark
1 estimates, with 3σ plotted red.

Figure 6.20: The error of 1000 trajectories from the Nonlinear Observer when the noise is quadrupled
of the Landmark 1 estimates, with 3σ plotted red.
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Figure 6.21: The error of 1000 trajectories from the XKF when the noise is quadrupled of the Landmark
1 estimates, with 3σ plotted red.
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Figure 6.22: The mean error in range estimates when the noise is quadrupled from the KF of landmark
1 from 1000 MC simulations, from 500 < t < 2500.

200 400 600 800 1000 1200
[s]

0

20

40

60

Avreged Bias XKF Error for Landmark 1

Figure 6.23: Test The mean error in range estimates when the noise is quadrupled from the XKF of
landmark 3 from 1000 MC simulations, from 500 < t < 2500.
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Figure 6.24: NES test of Bearing only KF SLAM with 1000 MC simmulations and 1% confidence interval
for landmark 1, with only linearised covariance matrix.
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Figure 6.25: NES test of Bearing only XKF SLAM with 1000 MC simmulations and 1% confidence
interval for landmark 1, with only linearised covariance matrix.
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Figure 6.26: NES test of Bearing only KF SLAM with 1000 MC simmulations and 1% confidence interval
when the nonlinear noise is quadrupled for landmark 1, with only linearised covariance matrix.
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Figure 6.27: NES test of Bearing only XKF SLAM with 1000 MC simmulations and 1% confidence
interval when the nonlinear noise is quadrupled for landmark 1, with only linearised covariance
matrix.
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6.11 Conclusion

In this article we have compared three bearing only SLAM observers, one based on

KF, a nonlinear observer and a cascade combination of these which was based on

the XKF framework. The cascade was proved to be USGAS, and all the observers

were able to preform satisfactorily. However for high noise level the benefits of the

XKF bacame apparent, as the nonlinear observer suppressed the nonlinear noise

exposing the KF, and thus was able to have a significantly less increase in bias due

to the increased noise as well as it was able to maintain its consistency property.



7Concluding Remarks
This thesis presented new theoretical results relevant to simultaneous localization

and mapping, with corresponding simulations and field experiments. A common

thread in the thesis was developing robust observers, with defined condition for

convergence, and large region of attraction.

In Chapter 3, it was shown how decoupling the gyro bias and attitude estimate

could lead to a more robust setup. It was also shown how landmark measurements

could be used in gyro bias estimation. In tightly coupled observers, a large error in

the attitude could compromise the gyro bias estimation, especially if the gyro bias

is large. Conversely as seen in the second part of Chapter 3; if the attitude suddenly

recovers measurements and is corrected after some drift, an unnecessary error will

be induced in the gyro bias estimation. Thus having the attitude and gyro bias

estimation decoupled, makes the gyro bias estimation more robust, which in turn

will make the attitude estimate more robust. For the presented setups, velocity

measurement was required. However, classical reference vectors can also be used

by setting distance to the landmark to infinity.

The gyro bias estimator in the second part of Chapter 3, can estimate both

gyro bias and distance to the landmarks. This makes the observer useful with a

monocular camera. In fact, as the observer is USGAS and exponentially stable,

it is the first observer the author is aware of that can preform bearing only mea-

surements from unknown landmarks with semi-global stability when gyro bias

is estimated. Also a condition for the convergence is derived, and is related to

the dispersal of the bearing measurements and where they point relative to the

velocity. This condition was calculated for several setups, which gave an insight

on when the effects of gyro bias and velocity can be distinguished by observing

the landmark kinematics. In addition it is has been verified experimentally on a

UAV, thus demonstrating the robust behavior.

In chapter 4, the vector magnitude estimator was first introduced. The notion

of using inverse depth estimates to achieve robust estimation has been used before.

The contribution here was to formalize the semi global stabillity for the inverse

depth observer, and thus also verify that the system is PE as long as the normalized

vector is non stationary in the inertial frame. The fact that the observer was

designed with bearing measurements represented as unit vector, and not a pixel

in the pin-hole model also made the observer applicable a larger set of systems,

including large field of view cameras as well as normalized velocity. It was also

shown how the observer was able to estimate velocity, provided that a high grade

IMU with pitch and roll estimates is available, and how it could be applied in

cascade to preform bearing only SLAM with a self calibrating IMU.

This opened up the possibility of estimating velocity by fusing normalized ve-

locity measurements with a high grade IMU. This fusion for estimating velocity

was called ego-motion estimation and, and the idea was thoroughly investigated
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in Chapter 5. The way the ego-motion estimation was framed, allowed other ob-

servers from the literature to be applied to the problem. In addition an EKF imple-

mentation was tested. In the comparative study, it was evident that the observers

based on nonlinear observer theory had an increased robustness compared to the

EKF implementation, and that the inverse depth nonlinear observer had higher

accuracy, robustness and was easier to tune among the nonlinear observers.

In Chapter 6, the scenario where an AHRS was available for bearing only SLAM

was investigated. How the rotation information could be applied to transform

SLAM into a linear system was shown. In addition, a proof of observability of the

system when the bearing measurements were non stationary in the inertia frame

was proved. Since the system requires sensor values in the system matrices. A

design of the tuning covariance matrices was proposed, with simulations showing

the consistency of the KF.

In the last part of chapter 6, the KF was combined with the nonlinear observer

in a cascade structure. Such a framework was inspired by the recently developed

XKF. Normally such a setup is desirable in order to stabilize an EKF. In the pre-

sented case, the KF was UGES, however, since the KF had sensor values in the

system matrices, it was experienced that it was sensitive to high noise, especially

as it was nonlinear from the bearing measurements. The nonlinear observer was

therefore used as a filter for the bearing measurements, and the filtered states

were provided to the KF. The result was more accurate estimation than the two

observers separately in the simulations, and it was shown how it was more robust

against high noise levels compared to the KF.

The course of the work, has shown that positioning with the help of landmarks

with semi-global stability is possible. For vehicles where velocity measurement

is present, a low cost gyro and bearing measurements are enough to estimate the

distance to landmarks. When a AHRS is available, or a self calibrating IMU with

gravity estimates, only a camera is sufficient to get global stability.

7.1 Future Work

Incorporating the observers and filters developed in the thesis in a full SLAM

system and preforming a thorough experimental verification would be a first

task. It would be especially interesting to see how the observer would react in a

loop closure. The hypothesis would be that the UGES property of the KF SLAM

would be especially beneficial and help the states to avoid converging into local

minimums; thus making the loop closure robust. What is still not fixed with the

proposed setup is the scaling problem, as the computational load increases cubic

with the number of landmarks. Assuming sparse structure in the co-variance

matrix and investigating how the co-variance update could be preformed more

efficiently is another interesting task.
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Need less to say, visual SLAM is still a difficult problem, especially for appli-

cation requiring a real-time robust solution. Never the less, as computationally

power increase, sensors improve their performance and drops their price. Si-

multaneous localization and mapping will be the backbone of many autonomous

systems in the future. Already vacuuming your home and moving the lawn, and

in the future driving us to work and delivering pizza to our home.
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