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ABSTRACT 

Detection of chemical stimuli from the external environment is performed by all living 

organisms. Of all senses, the chemical sense is the evolutionary oldest. Also, the neural 

system devoted to process chemosensory information is strikingly well conserved across the 

different species, in particular the olfactory pathways. Due to their highly specialized ability 

of detecting air-born molecules over long distances, plus an accessible nervous system, 

noctuid moths have served as favorable model organisms for exploring basic neural principles 

underlying chemosensory information processing. Among the most extensively studied 

moths, are the heliothines, comprising numerous species distributed in all five continents. 

Whereas the first and second order levels of the moth olfactory pathway have been relatively 

thoroughly explored, less is known about the subsequent levels. In particular, the connection 

between the brain circuit and the motoric system, being positioned in the ventral-cord ganglia, 

is not described in the current insect group. In this study, fluorescence staining of the axon 

terminals of the second-order neurons, i.e. antennal-lobe projection neurons, was combined 

with staining of ventral-cord neurons for the purpose of exploring putative connections 

between the two neural arrangements in the Heliothine moth, Heliothis virescens. Dye 

application to the primary olfactory center of the brain, the antennal lobe, showed three major 

tracts projecting to higher processing regions, mainly to the calyces and the lateral horn, a 

particular part of the lateral protocerebrum that is innervated by medial antennal-lobe 

projection neurons. Labeling of the ventral cord, on the other hand, resulted in visualization of 

several neuropil regions in the brain, one of which being located in the ventrolateral area of 

the lateral protocerebrum was of specific interest. Double-labeling experiments performed in 

the same individual  demonstrated, however, that there is no overlap between terminal regions 

of second-order olfactory neurons and neural processes projecting in the ventral cord, 

meaning that the main portion of odor information is carried to the ventral cord, not via third 

order neurons projecting from the lateral horn, but via fourth or higher order neurons 

originating in another synaptic region of the brain. 
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1. INTRODUCTION 

1.1. Introduction 

Organisms use their sensory systems for finding food, shelter, and a mate. Also, 

sensory information is generally important for avoiding predators and danger. Thus, the 

external environmental cues (chemical signals, electromagnetic waves etc.) are converted to 

electrical signal in the sensory neurons and thus represented internally in neural networks in 

the brain displaying sophisticated behavioral responses that are adaptive to the particular 

situation (Hansson & Stensmyr, 2011; Martin et al., 2011). Among the sensory systems, that 

dedicated to detection of odor information is the evolutionary oldest and also the one being 

possessed by all organisms, including bacteria and humans. Actually, information about odor 

blends in the environment is detected and selectively discriminated by neural pathways that 

are remarkably similarly organized across various species. Due their highly advanced sense of 

smell and a nervous system being relatively easily accessible for experimental research, 

insects have been used as biological models for achieving general knowledge about the 

olfactory system (Martin et al., 2011). 

 Insects are the most diverse of all animal groups on our planet, comprising about one 

million different species. These various creatures occurring in distinct ecological niches have 

evolved diverse behaviors being perfectly adapted to the environment they inhabit. Male 

moths, for example, are equipped with an olfactory system enabling them to recognize a 

conspecific female and orient towards the source over remarkable long distances. Several 

moth species have therefore been attractive organisms for scientists dedicated to studying 

olfaction. Among the moths species most thoroughly studied are particular members of the 

sub-family Heliothinae. 

1.2. Anatomical organization of the insect olfactory system 

1.2.1. Peripheral pathways  

In insects, the large repertoire of odors in the environment is detected by olfactory 

sensory neurons (OSN) housed in about 100,000 hairlike structures, so-called sensilla, 

covering the antenna. The olfactory sensory neuron is bipolar extending one dendritic branch 

inside the sensillum and a second branch (an unmyelinated axon) projecting into the primary 

olfactory center of the brain, similarly to OSNs of vertebrates. Male moths have a large 



  Introduction 
 

2 

 

number of long hairs, sensilla trichodea, containing sensory neurons tuned to female-

produced pheromones specifically. In addition, they have shorter sensilla housing plant odor 

detecting neurons. The latter category seems to be similar to those possessed by the female.  

The olfactory receptors in insects differ somewhat from those identified in vertebrates 

by consisting of a heterodimeric complex, including one typical odorant-binding unit and one 

ubiquitous co-receptor (Orco protein) (Sato et al., 2008; Wicher et al., 2008). Also, the insect 

odorant receptor has an inverted topology compared with that of mammals by having the 

amino terminus located intracellularly. Recently, it has been suggested that this heterodimeric 

complex serves as a ligand gated ion channel and cyclic nucleotide activated protein, thus, 

forming a unique strategy for responding to the olfactory environment (Sato et al., 2008). The 

rapid detection of odor information is enabled by the ionotrophic pathway differing from the 

slow and sustained odor detection via the conventional G-protein pathway (Wicher et al., 

2008). 

The odorant receptor proteins are positioned on the dendrites of OSNs. The odor 

molecules pass through the pore in the cuticular wall and reach the aqueous sensillum lymph. 

The lipophilic odorant molecules are carried to the receptor protein by special proteins, so-

called odorant-binding proteins. The binding of odorant molecules to the receptor initiates the 

transduction process finally depolarizing the neuron and generating action potentials by 

opening the voltage gated ion channels. The action potentials are transferred to the primary 

olfactory center for further processing. 

1.2.2. The primary olfactory center 

The olfactory afferents from the antenna project to the primary olfactory center of the 

insect brain, called the antennal lobe. Here, the axon terminals target characteristic spherical 

neuropils structure termed glomeruli. The OSNs synapse with axons of second order neurons 

(Anton &Hansson, 2000). The number of glomeruli differs across the species and also in 

gender. For example, in male noctuid moths, the large number of male-specific receptor 

neurons being selectively tuned to female-produced pheromones project to a few enlarged 

glomeruli located dorsally in the antennal lobe, close to the entrance of the antennal nerve 

(Anton & Homberg, 1999). This arrangement of male-specific glomeruli has been termed the 

macro-glomerular complex (MGC). 

In the heliothine moth, Heliothis virescens, the MGC consists of four units, two large 

glomeruli located dorsally receiving input about the two principal pheromone compounds 
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while two smaller compartments located ventrally are the target region of so-called 

interspecific information, meaning signals emitted from heterospecific females (Baker et al., 

2004; Berg et al., 1998). In addition to the MGC-units, the male moth has a group of more 

numerous ordinary glomeruli receiving input from the plant odor neurons. In H. virescens, 

there are approximately 60 ordinary glomeruli (Berg et al., 2002; Lofaldli et al., 2010). This 

number corresponds to that reported in several other moth species. Among the ordinary 

glomeruli, there is one large unit, located ventrally in the antennal lobe, the so-called labial pit 

organ glomerulus being responsible for processing of CO2 information (Kent et al., 1986; 

(Zhao et al., 2013); Zhao et al., submitted article). 

In addition to the sensory axon terminals, the glomeruli are innervated by two main 

types of antennal-lobe neurons, i.e. projection neurons and local interneurons (Homberg et al., 

1988). The projection neurons carry the olfactory information to higher brain centers, mainly 

to the mushroom body calyces and the lateral horn. The neurites of local interneurons, on the 

other hand, are restricted to the antennal lobe. Many of the local interneurons are GABAergic, 

being responsible for interglomerular exchange of information, providing mainly lateral 

inhibition in the antennal lobe (Das et al., 2011). The local neurons receive input signals both 

directly from the sensory axon terminals and via other local neurons.  

In addition to the two main types of antennal-lobe neurons, a relatively small group of 

centrifugal neurons having dendrites outside the antennal lobe constitutes a third category. 

Particularly, in H. virescens, two categories of centrifugal neurons have been identified 

physiologically and morphologically: one is the serotonin immune reactive neuron (Zhao et 

al., 2009) and the other a multisensensory neuron responding to odor and sound (Zhao et al., 

2013). 

1.2.3. Antennal-lobe pathways 

The olfactory information is carried from the antennal lobe to higher brain centers via 

projection neurons, as shown in figure 1.1. The two main target regions of antennal-lobe 

projections are the mushroom body calyces (MBC), an area responsible for associative 

learning of odors (Müller, 2002), and the lateral horn, a region of the lateral protocerebrum 

(Homberg et al., 1988; RØ et al. 2007). Previous studies have reported about three parallel 

antennal-lobe tracts in moths, namely the medial antennal lobe tract (mALT), the mediolateral 

antennal lobe tract (mlALT), and the lateral antennal lobe (lALT) (Homberg et al., 1988; Ro 

et al., 2007, for terminology, see Ito et al., 2014).  
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The most prominent tract, the mALT, houses projection neurons arborizing in one 

single glomerulus, i.e. so-called uni-glomerular neurons. The mALT leaves the antennal lobe 

dorso-medially and runs posteriorly passing the central body before making a lateral turn in 

order to reach its first target, the mushroom body calyces. The axon bundle projects further 

laterally and terminates in a region of the lateral protocerebrum named the lateral horn. 

The mlALT, being considerably thinner than the mALT, consists of mainly 

multiglomerular projection neurons. The current tract exits the antennal lobe together with the 

mALT, but bends laterally at the level of central body. Different from the mALT, it projects 

directly to the lateral horn without forming any contact with the calyces (Homberg et al., 

1988; Ro et al., 2007). A considerable portion of the projection neurons passing in the current 

tract is reported to be GABAergic (Berg et al., 2009)  

The third tract, the lALT, contains both uni- and multiglomerular projection neurons. 

This path exits the antennal lobe ventrally and passes laterally toward the lateral horn where it 

has most of its terminal projections. Also, some fibers are reported to run dorsomedially from 

the lateral horn to the mushroom body calyces (Homberg et al., 1988; Ro et al., 2007). 

 

Figure 1.1: Confocal image 

showing the three antennal 

lobe tracts, the medial 

antennal lobe tracts (mALT), 

the mediolateral antennal lobe 

tract (mlALT), the lateral 

antennal lobe tract (lALT). 

AL antennal lobe; Ca calyces; 

LH lateral horn. Source: Xin-

Cheng Zhao (unpublished 

data). 
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1.3. Higher Olfactory centers 

As mention above, the three main antennal-lobe tracts project to two main regions in 

the protocerebrum, the mushroom body calyces and the lateral horn. The calyces receive odor 

information essentially via the mALT. In addition, some fibers from the lALT also target the 

calyces, however, after innervating the lateral horn. In the calyces, boutons of the antennal-

lobe projections are surrounded by dendrites of Kenyon cells (Yasuyama et al., 2002). The 

mushroom bodies, which also include several other structures, are involved in learning and 

memory and multisensory integration, in particularly in experience-dependent odor learning 

(Menzel & Muller, 1996). 

 The lateral horn is defined as the particular area of the lateral protocerebrum being 

innervated by antennal-lobe projection neurons (see Ito et al., 2014). The current region lacks 

visible synaptic structures and relatively little is known about its neural connections. 

Pheromonal and plant odor information are reported be processed in different regions in the 

lateral horn (Homberg et al., 1988; Kanzaki et al., 2003; Zhao et al., submitted article). 

Furthermore, the lateral horn is assumed to be closely connected to the motoric system than 

the calyces, and it has been suggested that it is linked to innate behavioral responses. 

Actually, the lateral protocerebrum is often being termed as a pre-motoric region. The term 

premotoric refers to the projection of the descending neurons in the brain being connected to 

the motor centers in the ganglia of the ventral cord (analogous to the spinal cord in mammals). 

This descending pathway is responsible for different behavioral responses (Wada & Kanzaki, 

2005). 

However, no evidence for a direct connection between the lateral horn and the motoric 

system, being positioned in the ventral cord ganglia, has been demonstrated so far. Also, it 

should be mentioned that the lateral protocerebrum, including the lateral horn, is considered to 

be a multisensory integration center of the insect brain.  

 Whereas the first and second order level of the olfactory pathway of the moth is 

relatively thoroughly explored, the subsequent pathway is poorly described. However, the 

lateral accessory lobe, situated adjacently to the central body and posteriorly of the antennal 

lobe in each hemisphere, is reported to be innervated by descending neurons responding to 

odors. Thus, in the male silk moth, Bombyx mori, so-called “flip-flop”-interneurons having 

dendritic branches in the lateral accessory lobe (LAL) and an axon projecting in the ventral 

cord have been found (Sakurai et al., 2014). Furthermore, in the male fruit fly, Drosophila 
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melanogaster, descending ventral-cord neurons with dendrites in the lateral triangle of the 

LAL have also been reported (Ruta et al., 2010) In heliothine moths, one particular odor-

responding neuron projecting from the ventrolateral protocerebrum into the ventral cord has  

 been found (Lofaldli et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The central nervous system (CNS) of the heliothine moth. A: 

Reconstruction of the ventral cord including the ganglia. B: Confocal image 

of the moth brain in frontal view. C: Confocal image of the primary 

olfactory center of the moth brain, the antennal lobe. CC cervical 

connectives; SEG suboesophageal ganglion; T1 thoracic ganglion; OL 

olfactory lobe; Cam mushroom body calyx; caL Mushroom body lobe. 

Source Adapted from (Zhemchuzhnikov et al., 2014); (Berg et al., 2002). 
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 1.4. Ventral cord neurons 

 The ventral cord consists of the cervical connectives and several ganglia. The cervical 

connectives contain axons of both ascending and descending neurons which connect to the 

central brain (Figure 1.2). The descending neurons are also named command neurons, by 

performing input to the motor centers. These neurons have their somata in the brain. In the 

cockroach, for example, cell bodies and dendritic arborisations of descending neurons are 

located in the lateral and the medial protocerebrum (Okada et al., 2003). The somata of most 

motoric neurons, on the other hand, are gathered in distinct ganglia in the ventral cord. 

Generally, the ascending ventral-cord neurons carry information to the brain about the state of 

activation in the ganglia (Cardona et al., 2009). These neurons usually have their somata in 

the ganglia as well.  

1.5. Comparison of brain structures in insects and humans 

A number of striking similarities have been found in the nervous system of insects and 

mammals, humans included. Figure 1.3 presents an overview of brain structures in the higher 

primate brain that are suggested to correspond with structures in the insect brain. In particular, 

the olfactory pathways seem to be well conserved during evolution. In addition to the general 

structure of the olfactory receptor neuron, being a small bipolar neuron extending a dendrite 

towards the external world and an unmyelinated axon directly into the brain, several 

similarities are found at various synaptic levels. In the primary olfactory center of the brain, 

the antennal lobe in insects and the olfactory bulb in mammals, the sensory neurons make 

synapses with second order neurons in characteristic structures, called glomeruli (Hildebrand, 

1996). Furthermore, the folded structure of the mushroom body calyces has been compared 

with the mammalian cortex, including the piriform cortex, amygdala, and hippocampus. 
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Figure 1.3: Distinct brain structures of higher primates that are suggested to 

correspond with brain structures of insects. VLP ventrolateral protocerebrum; LAL 

lateral accessory lobe; FB fan shaped body; PT protocerebral bridge; GPe external 

globus pallidus; GPi internal globus pallidus; EB ellipsoid body; STN subthalamic 

nucleus; SNc dopaminergic substantia nigra pars compacta; HI hippocampus; AM 

amygdala; SMP superior medial protocerebrum; TH thalamus; ILP inferior 

ventrolateral protocerebra Figure adopted from (Strausfeld et al., 2013). 
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1.6. Main aim of the thesis 

There is a considerable amount of knowledge about the first and second order level of the 

moth olfactory pathway. However, little is known about the third order level and the olfactory 

neurons descending to the ventral nerve cord. In particular, it is still unclear whether there are 

third order neurons projecting directly to motor regions in the ventral cord. The main aim of 

this thesis is therefore to map second order olfactory neurons, i.e. antennal-lobe projection 

neurons, and ventral-cord neurons in order to investigate whether the two categories display 

any overlap in the lateral horn areas. 

Specific goals of the study 

1. To map terminal regions of antennal-lobe projection neurons in the lateral horn. 

2. To map brain regions being innervated by ventral-cord neurons. 

3. To establish a staining technique enabling simultaneous labeling of antennal-lobe 

projection neurons and ventral-cord neurons by using two different fluorescence dyes. 

4. To investigate whether there are overlapping regions of antennal-lobe projection 

neurons and ventral-cord neurons in the lateral horn by performing double-labeling of 

the two neuron categories in the same preparation. 
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2. MATERIALS AND METHODS 

2.1. Insect cultures and selection of insects 

The insects (Heliothis virescens; Lepidoptera; Noctuidae) used in the experiments 

originated from our lab culture (eggs kindly provided by Bayer CropScience, Monheim, 

Germany), taken care of by Dr. Quingbo Tang. The insect pupae were sorted by gender, 

transferred to hatching cages (18 x 12 x 17 cm) and kept separated in two heating cabinets 

(Refitherem 6E incubator, Struers) at 22-24 °C. The cabinets had a light-dark cycle of 14 – 

10h and a humidity of 70 %. After hatching, the insects were transferred to cylinders of 

plexiglass (18 x 10 cm) and kept in this environment until they were used in experiments, 

usually 2 – 5 days old. 

2.2. Ethical considerations 

According to the Norwegian Law concerning animals used in research (Dyrevernloven), 

all vertebrates such as mammals, birds, reptiles, amphibians, and fish, and some invertebrates 

such as decapods, squid, and honey bees (www.lovdata.no) are included. Lepidoptera is not 

included, hence there are no restraints regarding the use of this particular order in research. 

However, the insects in our lab were treated with care. They were inspected daily, and they 

were regularly fed a mixture of honey solution or sucrose and water. Further, they had paper 

sheets to climb on and each plexiglass cylinder contained a maximum of 8 moths in order to 

avoid unnecessary space-related stress for the insects. 

2.3. Selection of the fluorescent dyes 

In total four fluorescent dyes from Life Technologies (www.lifetechologies.com) were 

used in the experiments. 1) Dextran tetramethylrodamine/biotin (3000MW; microruby; 

ext/emis: 490/508 nm), 2) Dextran fluorescein/biotin (3000 MW; microemerald; ext/emis: 

550/570 nm), 3) Alexa fluor 488 (10000MW; ext/emis: 495/519 nm), and 4) 

Dextrantetramethylrodamine (3000MW, anionic, ext/emis: 550/570 nm). Of these, dextran 

tetramethylrodamine and biotin (microruby), and dextran fluorescein and 

biotin(microemerald) worked best. All dyes were stored at -20
o
C in the crystalline form. 

Before the experiment began, the dye crystals were kept at room temperature for a shorter 

period, but in the dark in order to prevent the degradation of fluorescent entities. 

http://www.lovdata.no/
http://www.lifetechologies.com/
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2.4. Preparation of the insects 

Both male and female moths were used in the current project. Before the experiments, 

the insects were anesthetized in the cold by keeping them in the fridge for about ½ hour. 

Incision of the three leg pairs was done to ease positioning of the insect inside the plastic 

tubes, i.e. a plastic pipette (100-1000 µl) that was cut at the tapering end and covered with 

utility wax (Kerr Corporation Romulus, MI, USA). After placing the insect inside the plastic 

tube, the protruded head was fixed by means of the wax as shown in figure 2.1. The cephalic 

scales and hairs were removed by fine scissors under suction (to prevent allergic reactions). 

The head cuticle between the eyes was removed with a sharp razor blade, using a microscope 

(e.g. Leica, MZ12.5). Next, the muscles, tracheas, and thin neuronal sheet covering the brain 

were removed using the fine forceps. Thereafter, the brain was supplied with Ringer’s 

solution (Nacl: 150mM, cacl2:3mM, KCL: 3mM, TES buffer: 10mmol, Sucrose (C12H22O11): 

25mmol, p
H
 6.8) to keep the neural tissue alive and prevent dehydration. 

2.5. Staining of the antennal lobe 

Two approaches were applied for inserting dye into the antennal lobe. In the first 

method, a micro needle was used to pick up dye crystals (microemarald) that were 

subsequently injected into the AL of the moth brain.  

The second approach included usage of  a glass electrode made from a flaming-brown 

horizontal puller (P97; Sutter instrument, Novarto, CA, USA). The tip of the glass electrode 

was used to pick up the dye being applied into the antennal lobe. 

During both procedures, Ringer’s solution was applied immediately after dye 

injection. Then the solution was soaked up by medical wipes to uncover whether the region of 

interest was marked with the color of the relevant dye (for dextran microemarald, green). 

Finally, wet medical wipes, soaked in Ringer’s solution, were placed on the brain to apply 

nutrition and keep it humid. 
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Figure 2.1: Images showing the head of the moth Heliothine virescens, immobilize with wax during 

the preparation procedure. 

2.6. Staining of the cervical connectives 

The moth was mounted on wax with staple pins, with its ventral side facing upwards. 

Then the ventral sclerite of the prothorax was removed by cutting it horizontally. That 

exposed the prothoracic ganglion. Next, the cerebral connectives joining the suboesophageal 

ganglion (SOG) and the prothoracic ganglion was cut with the scissor. A micro needle was 

used to apply the dextran microruby dye at the cut end of the cervical connectives (Figure 

2.2). As for the brain, the cerebral connectives were rinsed with Ringer’s solution 

immediately after the dye was applied. 

2.7. Double labelling experiments 

For the double labeling experiments, the preparation with the pre-stained antennal–

lobe neurons was taken out of the plastic tube and mounted in the wax, as  described above. 

Then the micro ruby dye was applied to the cut end of the cerebral connectives before the 

insect was kept in a refrigerator at 4
o
C for 16-24 hours. 
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2.8. Dissection and fixation 

The insect was decapitated by cutting at the neck region with fine scissors. Forceps 

were used to remove the maxilla, proboscis, cuticles, muscles, tracheas, and a pigmented layer 

of the compound eyes. . The maximum duration for the dissection never exceeded 30 minutes. 

After the dissection, the brain was fixed in 4 % paraformaldehyde (Roti, Histiofix pH 7) for 1-

2 hours or overnight, i.e. 16-24 hours, in the refrigerator. The fixed brain was dehydrated in a 

series of alcohol (50%, 70%, 90%, 96% 10min each; 100%, 100% 10 min each). Then the 

brain was immersed in methyl salicylate for making it transparent, and put  them on a metal 

plate. After about 10 minutes a coverslip was applied. 

2.9. Intensification of brains 

Only preparations containing one dextran dye were intensified. This because both 

microruby and microemarald contains biotin, which is the element being visualized during 

intensification. Thus, the preparations stained by microruby only (usually ventral-cord 

neurons), were intensified by using CY3, which corresponds with tertramethylrhodamine, and 

the preparations stained by microemarald only (usually antennal-lobe neurons) with CY2.  

The brain cleared in methylsalicylate was rehydrated in a series of alcohol (100%, 

100%, 96%, 90%, 70%, and 50%: 10 min each). Then it is washed in PBS (0.1M, Ph7.2) for 

10 minutes at room temperature before being incubated in streptavidin CY3 or CY2, at a 

concentration of 1:200 in PBS, for 2 hours or overnight at 4
o
c. Then the brain was washed in 

PBS (0.1M, ph 7.2) for 2x10 min at room temperature. Thereafter, it was dehydrated in a 

   Figure 2.2: Images demonstrating the position of the preparation when applying microruby in the 

ventral nerve cord. A: Image of the moth mounted with its ventral side facing upwards. B: Image 

indicating the application site for the dye (red dot). The white arrow points at the prothoracic 

ganglion. 
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series of alcohol (50%, 70%, 90%, 96% 100%, 100%, 10 min each). Finally, the brain was 

cleared in the methyl salicylate. 

2.10. Visualization of stained processes using confocal laser scanning 

microscope 

Successfully stained preparations, selected from observations under a stereo 

fluorescence microscope (Carl stereo Discovery V12, motorized 12× zoom; pentafluor) were 

taken to a confocal microscope (LSM Zeiss 510 Meta Mira 900F, GmbH, Jena, Germany) for 

further analyzing. The preparations were scanned using three different objectives, 

10×0.45W(to retrieve the overview of the moth brain), 20×0.5 dry objective plan-neofluor( to 

retrieve the detailed image), and 40×0.8W  C-Achroplan( to retrieve the finer details of the 

staining process). The scanning of the preparation was made in the z- axis.  The resolution of 

the image stacks was 1024×1024 pixels with a slice thickness of 1-5 µm. The scan speed is set 

up to 6. The optimal pin hole diameter selected. The helium neon laser (wavelength, 543um) 

and argon laser (wavelength, 488um) were used to excite the microruby/CY3 and 

microemerald/CY2, respectively. Detector gain and amplification was adjusted for the brain 

preparation to give good scan. The stack of images was saved as Zeiss image files (.lsm). 

2.11. Image processing 

The files containing the confocal scans were studied amd visualized by means of the 

LSM 510 image browser (Carl Zeiss Microscopy, Jena, Germany, version 3.5). The contrast 

was adjusted in Adobe Photoshop. Finally, the images were edited in Adobe Illustrators CS6 

(Adobe systems, San Jose, CA). 

2.12. Nomenclature  

The naming of each olfactory tract and other neural structures are in accordance with 

nomenclature guideline proposed by (Ito et al., 2014). The previous medial, mediolateral and 

lateral antenno- protocerebral tracts are here named the medial, mediolateral, and lateral 

antennal-lobe tract (mALT, mlALT, and lALT, respectively). The nomenclature is based on 

the brain of Drosophila melanogaster as the reference standard. 
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3. RESULTS  

In order to visualize whether the processes of antennal-lobe projection neurons and 

ventral-cord neurons overlap within regions of the lateral horn, the two-neuron categories 

were stained using different labeling procedures. This includes separate staining of each 

neuron category as well as double labeling of the two neuron populations in the same 

preparation using different fluorescent dyes, one in the antennal lobe and the other in the 

ventral cord.  

Staining of antennal-lobe projection neurons and ventral-cord neurons, either 

separately or simultaneously, was attempted on 80 H. virescens moths, including 37 males 

and 43 females. In addition, two heliothine male moths of the species, Helicoverpa armigera, 

and three of the species, Silver Y moth (Autographa gamma), were used during the 

experimental period. Details of the different species used in the experiments are listed in 

Appendix 1. Among the 80 preparations, 20 were successfully labeled (all of the species, H. 

virescens). Six of these were stained from the antennal lobe only (three males and three 

females), three from the ventral cord only (two males and one female), and 11 were double 

labelled (five males and six females). 

The results are presented according to the following topics:  

3.1. Projection pattern of the antennal-lobe tracts 

3.2. Projection patterns formed by ventral-cord neurons 

3.3. Projection patterns of the two neuron categories obtained by double labelling  

3.1. Projection pattern of antennal-lobe projection neurons 

 Of the six successfully labelled preparations stained from the antennal lobe 

exclusively, four are presented in the current sub-section. Generally, all successfully stained 

brains showed the three main tracts projecting from the antennal lobe to the protocerebrum in 

the ipsilateral hemisphere. As indicated in figures 3.11, 3.12, and 3.13, these tracts were 

identified as the medial antennal lobe tract (mALT), the mediolateral antennal lobe tract 

(mlALT), and the lateral antennal lobe tract (lALT). The most distinctive tract, the mALT (Ø: 

18.21±5.3 µm), ran posteriorly, bypassing the central body ventrally before turning laterally.  

The measurement of the diameter is shown in the Appendix I. It sent off collaterals to the 

calyces before terminating in the lateral horn as shown in figure 3.11. 
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The somewhat thinner mlALT (Ø: 4.51±3.08 µm) projected together with the mALT 

for a short distance, but then turned laterally at the edge of the central body and passed 

directly to the lateral horn. This tract seemed to split into two axonal branches before 

terminating in the lateral horn as shown in figure 3.11A. 

The lALT (Ø :11.11±2.15 µm) left the antennal lobe medioventrally, ran in a lateral 

direction and targeted regions of the lateral horn, particularly in an area located ventro-

medially, as shown in figure 3.11A and C. One particular section of the lALT was strongly 

labelled. When rotating the dorsally oriented brain presented in figure 3.12A into a more 

sagittal position, the current region appeared as a pillar-like structure terminating in the 

superior protocerebrum (Figure. 3.12B). 

In addition to the three main tracts, one additional, termed the 2nd medio- lateral 

antennal-lobe tract (Lillevoll, 2013), terminating in areas adjacent to the calyces, was also 

observed in some of the preparations (Figure. 3.12C). This tract also bent off from the 

prominent mALT, and it ran in parallel with the mlALT, but in a more posterior position, 

targeting the lateral horn and a medially located region anterior of the calyces. 

The labelled projection neurons from the three main tracts targeted various regions of 

the lateral horn, which to some extent seemed to overlap. Particular areas were innervated by 

the lALT only, including a ventrally located region of the lateral protocerebrum (Figure. 

3.11A). 

In some preparations, a difference was observed between males and females as regards 

the projections from the calyces to the lateral horn. As shown in the male brain in figure 

3.13A and B, the projection neurons confined to the mALT terminates in two areas of the 

lateral horn, one located more anteriorly, and medially (indicated by a white dotted circle in  

figure 3.13A) than the other (indicated by a black dotted circle in figure 3.13B). In females, 

on the other hand, only one target region was observed for the corresponding projection 

neuron type (Figure. 3.13 C, black dotted circle). 
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Figure 3.11: Confocal 

images of one brain 

hemisphere showing the 

three main antennal-lobe 

tracts (ALTs), the 

medial ALT (mALT), 

the mediolateral ALT 

(mlALT), and the lateral 

ALT (lALT). A:.Three 

tracts project to the 

lateral horn (LH), the 

mlALT divide before 

terminating in the lateral 

horn indicated by a solid 

and a dotted arrow, B-C: 

The mALT projects to 

the mushroom body 

calyces (MBC) giving 

off collaterals in the 

current structure before 

terminating in the LH 

(dotted circle in C). The 

tracts were visualized by 

staining the antennal-

lobe projection neurons 

anterogradely, i.e. 

applying dye into the 

antennal lobe (AL). CB 

central body; P 

posterior; M medial; A 

anterior. Scale bar: 50 

µm. 
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Figure 3.12: Confocal images of the 

antennal-lobe tracts. A: The three major 

tracts, the medial antennal-lobe tract 

(mALT), the mediolateral antennal-lobe 

tract (mlALT), and the lateral antennal-

lobe tract (lALT). One particular segment 

of the lALT being strongly stained is 

marked with a white square in the 

dorsally oriented prepration. B: Rotated 

image of the scan presented in A in a 

more saggittal view, demonstrating the 

pillar-like structure associated with the 

lALT. C: Confocal stack showing the 1
st
 

mediolateral( 1st mlALT) and 2nd 

mediolateral antennal lobe tract (2
nd

 

mlALT). P posterior; M medial .Scale 

bar: 50 µm. 
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Figure 3.13. Confocal images of two brain 

preparations, one from a male and one from a 

female. A-B: A male preparation showing the 

antennal-lobe tracts (ALTs) scanned in a dorsal 

position. The medial antennal lobe tract (mALT) 

passes via the mushroom body calyces (MBC) and 

terminates in the lateral horn. The solid circle and 

the small dotted circle demonstrate two different 

termination areas of the male mALT in the lateral 

horn. C: A female preparation showing the mALT 

targeting one region in the lateral horn. The 

preparations were scanned with a 20x objective. 

CB central body; OL optic lobe; posterior; M 

Medial. Scale bars=50 µm 
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3.2. Projection patterns formed by ventral-cord neurons 

The current paragraph presents data from two of the three successfully labelled 

preparations stained from the ventral cord exclusively. In addition, two preparations from the 

double-labelling experiments are also included. 

3.2.1. Brain neuropils formed by stained ventral-cord neurons 

Dye application into the ventral cord resulted in distinct staining pattern in 

protocerebral areas of the brain. Particularly interesting for the current investigation was the 

labelling of one spherical neurophil structure being located in the ventro-lateral 

protocerebrum of each hemisphere, as shown in figure 3.21A. This neuropils structure is 

connected to a prominent tract projecting in a medial-lateral direction. In addition, one 

densely stained region located laterally to the central body identified as the lateral accessory 

lobe was found (Figure. 3.21B). 

3.2.2. Distribution of stained somata in the brain 

As shown in figure 3.22, several stained somata located in different brain regions were 

stained. The current staining technique did not enable identification of descending versus 

ascending ventral-cord neurons. The staining from the ventral cord showing the axonal fibers 

with the somata is presented in Appendix III. However, as descending neurons usually have 

somata in different areas of the brain whereas ascending neurons have their somata located in 

the ganglia of the ventral cord, the stained somata seen here assumingly belong to descending 

ventral-cord neurons. Many of the stained somata were found in the dorso-medial region of 

the brain, around the mushroom body calyces. In addition, the subesophageal ganglion (SOG) 

contained numerous labeled somata. One particular group of cell bodies positioned dorsally in 

each hemisphere was observed. This cell cluster was connected to a small fiber bundle 

projecting in a dorsal- ventral direction in the protocerebrum.  

3.2.3. Axonal fibers connecting the ventral cord and the antenna 

A few stained fibers connected the ventral cord and the antenna, as shown in figure 

3.23. In each hemisphere, the stained fibers by-passed the antennal lobe on its lateral side and 

projected through the ventral part of the SOG. Here, the current axons passed through one 

heavily labeled region identified as the antennal mechanosensory and motor center (AMMC) 
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Figure 3.21: Confocal (projection) images of the brain after having performed staining from the 

cervical connectives. A: Image of a moth brain in a dorsal position. The dotted circle demonstrates 

the ventro-lateral part of the protocerebrum, being distinctly stained. The white arrows point to one 

labelled fiber bundle that is stained in each hemisphere. B: Image of the same preparation scanned 

with a 20X objective showing the stained ventral-cord neurons, plus stained somata in a higher 

resolution. The large dotted circle in black indicates the lateral accessory lobe. The white arrow 

points to one descending axon having its cell body located in the posterior medial part of 

protocerebrum. P posterior; A anterior. Scale bars=50 µm. 
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Figure 3.22: Images indicating the distribution of stained somata in different parts of the moth brain after 

having applied dye into the ventral cord. A: Confocal image showing the arrangement of somata in the 

protocerebrum and the suboesophageal ganglion (SOG). Many somata are distributed around the mushroom 

body calyces. B: Schematic diagram showing the arrangement of somata linked to the ventral cord. D dorsal; 

V ventral; OL optic lobe; CC cervical connectives; r-AL  right antennal lobe; l.AL left antennal lobe. Scale 

bar=50 µm. 
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Figure 3.23: Images showing a small cluster of stained somata being connected to a particular fiber 

bundle in each hemisphere. A-C: Confocal scans showing the cluster of stained somata and their 

associated axons. The confocal images are scanned with a 10x objective. The schematic diagram 

indicates the stained cell clusters with their fiber bundles. D dorsal; V ventral; OL optic lobe; SOG 

suboesophageal ganglia. Scale bars= 50 µm. 
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Figure 3.24: Confocal images from one stack showing stained ventral-cord fibers connecting 

with the antenna. A: The arrow points to the stained fibers at the base of the antennal nerve. B: 

The stained axons bypass the antennal lobe (AL) on its lateral side. C-D: The stained axons 

project via the antennal mechanosensory centre (AMMC, dotted circle in D). D dorsal; V 

ventral; Scale bars=50 µm 
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3.3. Projection patterns of the two neuron categories obtained by double 

labelling 

Among the 11 successfully double-labelled preparations, image materials from four 

preparations are presented in the current sub-section. 

3.3.1. General staining pattern in the lateral protocerebrum 

The double-labelling experiments showed no overlap of antennal-lobe projection 

neurons and ventral-cord neurons in the lateral horn. As shown by the confocal scans in figure 

3.31 ˗ red indicating ventral cord neurons and green antennal-lobe projection neurons ˗ there 

is no overlap of the two dyes. 

3.3.2. Co-localisation of ventral-cord projections and antennal-lobe projections passing in 

the lALT 

The results from the double-labeling experiments showed that the lALT and a fiber-

bundle connected with the ventral cord followed the same path. The projections from the 

ventral cord were positioned ventrally to the lALT, as shown in figures 3.31C, 3.32A and B. 

The ventral-cord projections were connected with the strongly innervated region in the 

ventro-lateral protocerebrum. 

3.3.3. Co-localisation of ventral-cord projections and the antennal-lobe projections passing 

in the mALT 

In addition to the co-localisation of projections from the ventral cord and the lALT, 

respectively, a similar type of paired projections was found for one of the other antennal-lobe 

tracts. As shown in figure 3.32C, the mALT passed adjacently to projections from the ventral 

cord, though; the course of the two fiber bundles was not as tightly joined as for those 

mentioned above. The ventral-cord fibers could be traced and since they were connected with 

one particular cluster of somata located posteriorly in the protocerebrum, the current fiber 

bundle thus consists of descending neurons (see figure 3.23 and figure 3.32C). 
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Figure 3.31: Double-labeled preparation 

showing the projection neurons from the 

antennal lobe (green color) and the ventral-

cord neurons (red color). A: Image showing 

the antennal-lobe projection neurons only, 

including the three main antennal-lobe tracts 

(ALTs), the medial ALT (mALT), the 

mediolateral ALT (mlALT), and the lateral 

ALT (lALT). All three tracts terminate in 

the lateral horn (LH). B: Image showing the 

stained ventral-cord axons only. The arrow 

points to a stained fiber bundle associated 

with a particular region of the ventro-lateral 

protocerebrum that is labeled. C: Image 

showing the overlay of the two images 

above. As demonstrated, there is no overlap 

of the two neuron types. The bundle stained 

from the ventral cord projects together with 

the lALT, The dotted circle indicates the 

lateral horn. P posterior, M medial.  Scale 

bars: 50 µm 
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Figure 3.32: Confocal images of double-labeled preparations showing antennal–lobe projection 

neurons in green and ventral-cord neurons in red. A: Image showing co-localisation of the two neuron 

categories in the lateral antennal lobe tract (lALT) (dotted ellipse). B: Image from the same 

preparation showing co-localisation of the two neuron categories in a short part of the medial antennal 

lobe tract (mALT), indicated by a dotted arrow. C: Another preparation showing co-localisation of the 

mALT and the ventral-cord neurons. D: Schematic diagram of the co-localised neuron categories. The 

ventral-cord neurons could be traced to their somata, thus being descending neurons(DN).AL antennal 

lobe; P posterior; V ventral;OL optic lobe; SOG. Suboesphageal ganglia. Scale bars: 50 µm. 
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3.4 Additional observation 

In an attempt to inject dye into the antennal lobe, some of the antennal nerve neurons, 

which descend to the ventral nerve cord, were stained(Figure 3.4)., This could be the 

mechanosensory neurons that project director from antenna to the ventral nerve cord(Dr. M 

Zhemchznikov, pers. Comm). 

 

Figure 3.4: Sensory neurons from the antenna projecting to the ventral cord. P posterior; V. 

ventral. Scale 50µm. 
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4. DISCUSSION 

 The result of the present master thesis contributes to the knowledge about the 

organization of input and output regions in the lateral horn of the heliothine moth, H. 

virescens.The findings concerns possible overlap of antennal-lobe projection neuron axonal 

terminals and dendritic arborisations of ventral-cord neurons. The discovery of a descending 

neurons responding to a 10 component plant odor mixture (Lofaldli et al., 2012), formed the 

basis for performing double- labeling experiments of the antennal lobe neurons and the 

ventral nerve cord neurons. 

4.1. Result summary 

The successful staining of antennal-lobe projection neurons revealed the three main 

tracts, the medial antennal lobe tract (mALT), the mediolateral antennal lobe tract (mlALT) 

and the lateral antennal lobe tract (lALT). All these tracts targeted the particular region of the 

protocerebrum called the lateral horn. In addition, some preperations showed a fourth tract, 

the socalled 2
nd

 mediolateral antennal lobe tract. As the main goal of the current study was to 

investigate whether a significant part of the 3
rd

 order olfactory neurons projects to the ventral 

cord, labeling of the ventral-cord neurons was of particular interest. Among other stained 

regions in the brain, this revealed one characteristic neuropil structure in the ventro-lateral 

protocerebrum. However, successful double-labeling experiments showed no overlap of the 

stained antennal-lobe projection neurons and the ventral-cord neurons in the lateral 

protocerebrum. 

4.2. Staining pattern of antennal- lobe neurons 

 The results from injection of fluorescent dye in the antennal lobe, clearly visualized 

the major antennal-lobe tracts, the mALT, the mlALT, and the lALT. The current result 

corresponds with previous findings in different species of moth, H virescens, Helicoverpa 

assulta, and Munduca sexta (Homberg et al., 1988; Ro et al., 2007; Zhao et al., submitted 

article). The present finding of a fourth tract in some preparations is also in agreement with 

the results from a previous study by (Lillevoll, 2013), As suggested by Lillevoll in her master 

thesis, the projection neurons confined to the current tract may innervate just a few glomeruli 

of the antennal lobe, explaining why it appears only in some of the stained preperations. The 

manual injection of dye in the antennal lobe depends on the visual and motoric skills, trying to 
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target with the tip of the glass electrode in the same position in the antenna lobe obviously 

hitting exactly the same place is difficult. The fourth tract called 2
nd

 mlALT is reported to 

include PN axons carrying CO2 information from the labial pit organ glomerulus (LPOG) in 

the antennal lobe as well (Dahl, 2013). 

4.2.1. Projection pattern in the lateral horn 

 All the three major tracts projected to the lateral horn. The results showed that there 

are different projection patterns for the medial antennal lobe tract (mALT) in males and 

females. In males, two separate fibers bundles projected in two distinct areas of the LH, one 

antero-medially and the other postero-laterally. In females, however, only one fiber bundle 

projected to one continuous region in the LH. These findings are in agreement with previous 

results in other moths species including H. virescens. Thus, the mALT is shown to contain 

separate PNs mediating pheromone information and plant odor information (Homberg et al., 

1988; Kanzaki et al., 2003, zhao et.al., submitted article). Whereas the finding of two distinct 

target regions for the male are in agreement with previous results in other moth species, the 

discovery of two separate fibers bundles leaving the calyces, as found here, has not been 

previously reported. Also in the LH of the fruit fly, Drosophila melanogaster, spatial 

separation of axon terminals of the pheromone and the plant odor projection neurons are 

demonstrated. Here, the pheromonal projection neurons terminate in the anterior ventral 

position of the LH and the plant odor projection neurons in the posterior ventral area (Jefferis 

et al., 2007). The segregation of the two types of projection neurons demonstrates that the 

information is separated in the LH, possibly meaning that odors are represented in the current 

brain region according to their behavioral significance. Actually, double labeling from the 

MGC and the ordinary glomeruli, respectively, was carried out in H. virescens by Lillevold in 

her master thesis (Lillevold, 2013)  also demonstrating separate projection of the two kinds of 

PNs in the LH. Applying dye specifically in the MGC and the ordinary glomeuli is a 

challenging task and time did not allow for this kind of experiments in the current master 

thesis that had a different focus. However, to carry out more specific staining of the MGC and 

the ordinary glomeruli in order to visualize the distinct projection pattens associated with the 

two categories of antennal-lobe glomeruli and to compare these findings with corresponding 

data from females would be interesting in future experiments. The reason why the two lateral 

horn regions was visualized in the current study, including injection of only one fluorescent 

dye in the antennal lobe, was probably due to hitting both the MGC fibers and those 
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arborizing in the ordinary glomeruli during dye application, plus an optimal orientation of the 

brain preparation.  

4.3. The main portion of odor information seems to be carried to the ventral 

cord from another region than the lateral horn 

 Labeling with two fluorescent dyes made it possible to distinguish the 

terminals/processes of the two neuron categories, antennal-lobe projection neurons and 

ventral-cord neurons, by using two-channel confocal scanning. The confocal images revealed 

no overlap of the projection–neuron terminals and the processes of ventral-cord neurons in the 

LH. This result indicates that the main portion of the odor information from the brain is not 

transmitted directly to the ventral cord, but is passed on via other brain interneurons taking 

part in processing the odor signals. Thus, the odor information is carried from the brain to 

motoric neurons in the ventral nerve cord via 4
th

 order or higher order neurons. 

In the fruit fly D. melanogaster, particular mapping experiments using photoactivable 

green fluorescent protein (PA-GFP) combined with electrophysiology and optical imaging, 

revealed that the pheromonal information is transferred from the lateral horn to the ventral 

nerve cord via 4
th

 order neurons (Ruta et al., 2010). Here, the cell clusters of 3
rd

 order 

olfactory neurons in the lateral horn were discovered. The neurons associated with the current 

cell clusters were shown to project to a particular region of the lateral accessory lobe called 

the lateral triangle. The lateral triangle in turn, possesses descending neurons (4
th

 order) 

projecting to the ventral nerve cord (Ruta et al., 2010). Similarly, pheromone neurons 

projecting from the lateral accessory lobe to the ventral nerve cord have been physiologically 

and morphologically described in the silk moth, B. mori (Ryohei Kanzaki & Shibuya, 1986). 

However, the current neuron population has not been identified as 4
th

 order neurons in the silk 

moth because the connections between the lateral accessory lobe and the lateral horn have not 

been established in this insect species. 

It is still a matter of research whether there are additional brain regions harboring 

dendrites of odor neurons descending to the ventral nerve cord in the fruit fly and the silk 

moth. Noticeably, the descending neurons identified in the two species responded to 

pheromone information, i.e. 11-cis-vaccenyl acetate (cVA) in the fruit fly and bombykol in 

the silk moth. Interestingly, is in the H. virescens female, one plant-odor responding neuron 

projecting from the lateral protocerebum to the ventral cord has previously been 

physiologically and morphologically identified (Lofaldli et al., 2012). However, based on the 
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data from the current study, it can be concluded that the majority of descending neurons 

projecting from the brain to the ventral cord in the heliothine moth, including both pheromone 

neurons and plant odor neurons, is not constituted by 3
rd

 order neurons passing from the LH.  

4.4. One fiber bundle of ventral cord neurons project together with the lALT 

 Application of.two different fluorescent dyes, one in the antennal lobe and the other in 

the ventral cord, revealed tiling of two fiber bundles associated with the two regions, 

respectively – more precisely, a particular assembly of axons connected to the ventral nerve 

cord projected together with the lALT. The current staining method did not reflect whether 

the marked ventral-cord fibers belong to ascending or descending neurons. One of the macro 

distinguishing characteristics for such a categorization is the soma location. The labelled 

ventral-cord bundle was obviously connected with the characteristic spherical neuropil region 

in the ventro-lateral protocerebrum (see figure 3.21). No cell body cluster linked to the current 

processes could be observed in the brain preparations. This alone does not necessarily indicate 

that the current fiber tract belongs to ascending neurons. However, at least some of them may 

in fact be ascending since a population of sound-responding neurons in several heliothine 

species, H. virescens included, is reported to project from the ventral cord to the strongly 

stained region of the ventrolateral protocerebrum via this particular fiber bundle (Pfuhl et al., 

2014). The projection pattern of individually stained sound neurons, being identified via 

intracellular recordings, coincides with the mass staining result from the ventral nerve cord. 

Furthermore, the joint projections of the two neuron categories have been formerly reported in 

the master thesis of Børø (Børø, 2012). some of the antennal-lobe projection neurons confined 

to the lALT are reported to extend short neural processes from their axons already 

immediately after leaving the antennal lobe (Homberg et al., 1988) Elena Ian, personal 

communication). However, whether there are any synaptic connections between the two-

neuron bundles stained here is an open question. 

 The co-localisation of ventral cord neuron with the lAlT reveals how the nervous 

system is optimally organized within the small brain. There is also co-localisation of the 

mALT with fibers of ventral-cord neuron that have soma in the superior lateral 

protocerebrum, thus being descending neurons (Figure 3.23 and figure 3.32C 

4.5. Fibers connecting the antenna to the ventral cord 

 In some preparations, a few stained fibers connecting the antennal nerve to the ventral 

cord was observed. A pair of similarly thick projections appearing at the antennal-nerve base 
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has been previously reported in H. virescens when applying dye to the ventral cord (Pfuhl et 

al., 2014). Furthermore, large diameter giant fibers of similar morphology have been 

identified in a number of insect species (Bacon et al., 1986). Whether the stained neurons are 

ascending or descending is not determined. However, they may be ascending, as these 

neurons were not observed when applying dye into the antennal nerve (Mihail 

Zhemzhuchnikov, pers. comm). The stained neurons may thus terminate at the base of the 

antennal nerve. Interestingly, in the honeybee, octopaminergic neurons having their cell 

bodies in the SOG are reported to project into the antenna (Schroter et al., 2007). The 

modulatory effect of the large stained neurons is not yet known. 

4.6 Methodological consideration 

 The main aim of this investigation was to stain the projection neurons from antennal 

lobe and ventral-cord neurons for studying whether the two neurons categories had neural 

branches in overlapping regions of the lateral protocerebrum. Several different dyes were 

tested during the experimental work. Generally, microruby worked well both when applied 

into the antennal lobe and the ventral cord. As the most challenging part of the staining 

procedure was to stain from the ventral cord, being located relatively far from the 

protocerebral region of interest here, the microruby was applied in the ventral cord. The 

second dye used, which was applied into the antennal lobe, was micro-emerald. In spite of the 

lower photostability of this dye as compared to that of Alexa 488, it gave better results. 

Although the emission wavelength of micro-emerald overlaps with the autofluorescence of 

the moth brain, it gave good quality staining of the antennal-lobe tracts 

 The double-staining procedure always included initial labeling of the antennal lobe 

and then of the ventral cord. This because it would be difficult to fix the head of the moth 

after having exposed the ventral nerve cord. Altogether, a particular procedure for performing 

successful double-labeling from the antennal lobe and the ventral cord was established during 

the first period of the experimental period. 

 The insect that were kept overnight at the 4
o
C showed good results. The quality of the 

staining was to a certain extent related to the duration allowing for dye transportation. The 

transportation of the dye also depends on its the molecular weight. Generally, dyes, which are 

lower in molecular weight, are transported faster than higher molecular weight dyes.  
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5. CONCLUSION 

1. Anterograde staining of the antennal-lobe projection neurons demonstrated three main 

tracts, all of which targeted the lateral horn. 

2. Different projection patterns of the axons passing in the medial antennal-lobe tract were 

found in males and females; in males, the axon terminals targeted two distinct regions in the 

lateral horn whereas one continuous target area was found in females. 

3. Staining of ventral-cord neurons resulted in visualization of distinct neuropil regions in the 

brain, one of which located in the ventro-lateral protocerebrum was of particularly interest in 

the current study. 

4. Double-labeling experiments demonstrated no overlap of neural branches from antennal-

lobe projection neurons and ventral-cord neurons in the lateral horn, meaning that the main 

portion of odour information is carried to the ventral cord via other neurons than the third 

order category arborizing in the lateral horn. 

5. A particular fiber bundle connecting the ventral cord to the heavily stained region in the 

ventro-lateral protocerebrum projected tightly together with antennal-lobe projection neurons 

passing in the lateral antennal-lobe tract. 

6. A fiber bundle of descending ventral-cord neurons projected relatively close to the medial 

antennal-lobe tract on its route towards the calyces. 
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6. ABBREVIATION  

1
st
 mlALT- 1

st
 Mediolateral antennal-lobe tract 

2
nd

 mlALT- 2
nd

 Mediolateral antennal-lobe tract 

AL-Antennal lobe tract 

AMMC-Antennomechanical and motor center 

AN- Ascending Neuron 

CB- Central body 

CC- Cervical connectives 

DN- Descending Neuron 

GABA- Gamma amino butyric acid 

LAL- Lateral accessory lobe 

lALT- Lateral antennal- lobe tract 

LH- Lateral horn 

mALT- Medial antennal-lobe tract 

MBC- Mushroom body calyces 

MGC- Macroglomerular complex 

OG- Ordinary glomerulus 

OL- Optic lobe 

OsN- Olfactory sensory neurons 

PN-Projection Neuron 

VLP- Ventrolateral protocerebrum 

VNC- Ventral nerve cord 
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APPENDIX I 

In order to obtain good optimization to have better method and also best use of the 

available resources, long trials are being performed. In this particular section the selection of 

insects, dyes, different method used are presented. 

Insects 

Three species of moth species were used in the experiment, 

Heliothine virescens: 80 moths (37 males and 43 females), 2 moths of unknown sex at 

our lab 

Helioverpa armigera 2 male moths at our lab and 14 moths at Nepal and  

Silver Y moth (Autographa gamma): 3 moths, sex not known, collected at field at Låde, 

Trondheim. 

The experiment done at Nepal (at Kathmandu University) did not produce any significant 

results; the number of collection of moth species from the tomato field was hindered by rain.  

Selection of dyes 

Four dyes were used for good staining procedure. 

1. Dextran tetramethylrodamine/biotin(3000MW; microruby; ext/emis: 490/508 nm) 

2) Dextran fluorescein/biotin (3000 MW; microemerald; ext/emis:550/570nm) 

3) Alexa fluor 488 (10000MW; ext/emis: 495/519nm)  

4) Dextrantetramethylrodamine (3000MW, anionic, ext/emis: 550/570nm) 

Six different combinations were used for dyes in two areas of brain (Antennal lobe and 

cerebral connectives). 

Combination a. Alexa in AL and microruby in cerebral connectives(CC): 4 preparations 

Combination b. Alexa in CC and microruby in AL: 8 preparations 

Combination c. Tetramethylrodamine in AL and Alexa in CC: 2 preparations 

Combination d. Tetramethylrhodamine in CC and Alexa in AL: 3 preparations 

Combination e. Microruby in AL and Microemerald in CC: 5 preparations 

Combination f: Microruby in CC and Microemerald in AL: 45 preparations 

In the above combinations, microruby in cerebral connectives and microemerald in antennal 

lobe best work.  
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APPENDIX II 

 

 

Figure A1: Confocal image of dorsally oriented brain of male moth. The diameter of the three 

anxonal tract, the medial antennal lobe tract (mALT), 1
st
 mediolateral antennal lobe tract (1

st
 

mlALT), 2
nd

 mediolateral antennal lobe tract (2nd ml ALT), and lateral antennal lobe tract (lALT). 

The diameters are measured from the lsm image brower brower directly and indicated here in the 

picture 

lALT 

1st mlALT 

2ndmlALT 

mALT 
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Figure A2: Projection view of the ventral 

nerve cord neuron. A: Staining(red color) 

of cerebral connectives (CC) showing 

different neurons in the brain of moth.The 

descending neuron(DN) with their cell 

bodies are present in the posterior areas of 

brain. The white arrow indicates the 

ascending neurons whose cell body could 

not traced in the central brain. B: Three 

cell cluster(somata) of descending 

neurons. C: projection image showing the 

descending axonal tract with white arrow 

head.R rostral; C caudal; P posterior; A 

anterior. Scale bars=50 µm. 

 


